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Abstract. XML is becoming the standard representation format for metadata.
Metadata for multimedia documents, as for instance MPEG-7, require approx-
imate match search functionalities to be supported in addition to exact match
search. As an example, consider image search performed by using MPEG-7 vi-
sual descriptors. It does not make sense to search for images that are exactly equal
to a query image. Rather, images similar to a query image are more likely to be
searched. We present the architecture of an XML search engine where special
techniques are used to integrate approximate and exact match search functionali-
ties.

1 INTRODUCTION

XML is becoming one of the primarily used formats for the representation of heteroge-
neous information in many and diverse application sectors, such as multimedia digital
libraries, public administration, EDI, insurances, etc. This widespread use has posed a
significant number of technical requirements to systems used for storage and content-
based retrieval of XML data, and many others is posing today. In particular, retrieval
of XML data based on content and structure has been widely studied and it has been
solved with the definition of query languages such as XPath [1] and XQuery [2] and
with the development of systems able to execute queries expressed in these languages.
However, many other research issues are still open.

There are many cases where users may have a vague idea of the XML structure,
either because it is unknown, or because is too complex, or because many different
structures – with similar semantics – are used across the database [3]. In addition there
are cases where the content of elements of XML documents cannot be exactly matched
against constants expressed in a query, as for instance in case of large text context or
low-level feature descriptors, as in MPEG-7 [4] visual or audio descriptors.

In the first case structure search capabilities are needed, while in the second case we
need approximate content search (sometime also referred as similarity search).

In this paper we present the architecture of XMLSe a native XML search engine
that allows both structure search and approximate content match to be combined with
traditional exact match search operations. Our XML database can store and retrieve any
valid XML document without need of specifying or defining their schema. Our system
store XML documents natively and uses special indexes for efficient path expression
execution, exact content match search, and approximate match search.
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The paper is organized as follows. In Section 2, we set the context for our work.
In Section 3 we present the overall architecture of the XMLSe system. In Section 4 we
describe the query algebra at the basis of the query processor. Section 5 shows some
example of query execution in terms of the query algebra. Section 6 concludes.

2 MOTIVATION AND RELATED WORK

In the Digital Libraries field three different approaches are typically used to support
document retrieval by means of XML encoded metadata. The first consists in using
relational database to store and to search metadata. In this case metadata should be
converted into relational schemes [5] [6] [7] and this is very difficult when complex and
descriptive metadata schemes such as ECHO [8] and MPEG-7 [4] should be managed:
even simple XML queries are translated into complex sequences of joins among the
relational tables. The second approach consists in using full text search engines [9] to
index metadata records, and in general this applications are limited to relatively simple
and flat metadata schemes. Besides, it is not possible to search by specifying ranges of
values. The third and last approach consists in doing full sequential scan of metadata
records. In this case no indexing is performed on the metadata and the custom search
algorithms always scans the entire metadata set to retrieve searched information.

A relatively new promising approach is to store metadata in native XML databases
as for instance Tamino [10], eXist [11], Xindice [12], which are some of software prod-
ucts which have been developed in recent years with this approach. However, these
systems, in addition to some simple text search functionality, exclusively support exact
match queries. They are not suitable to deal with multimedia metadata and to provides
users with structure search functionalities.

With the continuous increase of production of multimedia documents in digital
format, the problem of retrieving stored documents by content from large archives is
becoming more and more difficult. A very important direction toward the support of
content-based retrieval is feature based similarity access. Similarity based access means
that the user specifies some characteristics of the wanted information, usually by an ex-
ample image (e.g., find images similar to this given image, represents the query). The
system retrieves the most relevant objects with respect to the given characteristics, i.e.,
the objects most similar to the query. Such approach assumes the ability to measure the
distance (with some kind of metric) between the query and the data set images. Another
advantage of this approach is that the returned images can be ranked by decreasing
order of similarity with the query. The standardization effort carried-out by MPEG-7
[4], intending to provide a normative framework for multimedia content description,
has permitted several features for images to be represented as visual descriptors to be
encoded in XML.

In our system we have realized the techniques necessary to support XML repre-
sented feature similarity search. For instance, in case of an MPEG-7 visual descriptor,
the system administrator can associate an approximate match search index to a specific
XML element so that it can be efficiently searched by similarity. The XQuery language
has been extended with new operators that deal with approximate match and ranking,
in order to deal with these new search functionality.
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3 SYSTEM ARCHITECTURE

In this section we will discuss the architecture of our system, explaining the character-
istics of the main components: the data storage and the system indexes. A sketch of the
architecture is give in Figure 1.

3.1 Data storage

In recent years various projects [6] have proposed several strategies for storing XML
data sets. Some of these have used a commercial database management system to store
XML documents [5], others have stored XML documents as ASCII files in the file sys-
tem, and others have also used an Object storage [13]. We have chosen to store each
XML document in its native format and to use special access methods to access XML
elements. XML documents are stored in a file, called repository. Every XML element
is identified by an unique Element Instance IDentifier (eiid ). As depicted in Figure
1, we use an offset file to associate every eiid with a 2-tuple �������
	��
��������� , which
contain respectively a reference to the start and end position of the element in the repos-
itory. By using structural containment join techniques in [14] containment relationships
among elements can be solved. The mapping between XML element names and the
corresponding list of eiid is realized through an element index.

3.2 System Index

To improve the efficiency of XML queries, special indexes are needed. For this reason
we have analyzed and realized some indexes to efficiently resolve the mapping between
element and its occurrences and to process content predicates, similarity predicates, and
navigation operations throughout the XML structure.

<people>(1,1)
<person>(2,2)

<name>(3,3)
<fn>(4,4)John </fn>(5)
<ln>(5,6) Smith</ln>(7)

</name>(8)
<address>(6,9) 

San Diego
</address>(10)

</person>(11)
<person>(7,12)

<name>(8,13)
<fn>(9,14) Bill</fn>(15)
<ln>(10,16) McCulloc</ln>(17)

</name>(18)
<address>(11,19)

San Francisco
</address>(20)

</person>(21)
</people>(22)

Offset File

……

……

……

……

<3, 8>3

< 19, 20>11

< 16, 17>10

< 13, 18>8

<2, 21>2

<1, 22>1

Similarity

ContentIndex

PathIndex

Signatures

..

..

..

System Index
XML document

Fig. 1. The components of data storage.
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Path Index. Without special index, processing a path expression (es: //person/ln), with
optional wildcard, involves two steps: first, the occurrences of elements specified in
the path expression (es: person and ln) should be found and second, hierarchical re-
lationships, according to the path expression being processed, should be verified with
containment joins. Using ad hoc indexes, like in [15] [16] [17], which associate en-
tire pathnames with the list of their occurrences in XML documents, processing a path
expression is much more efficient.

In accord to this approach we have proposed a new path index to resolve efficiently
the path expressions. The advantage of our approach with respect to the others, is that
also path expressions containing wildcards in arbitrary position can be efficiently pro-
cessed. This approach, discussed in [18], is based on the construction of a rotated path
lexicon, consisting of all possible rotations of all element names in a path. It is in-
spired by approaches used in text retrieval systems to processing partially specified
query terms. In our system the concept of term is substituted by path: each path is as-
sociated with the list of its occurrences and for this reason we call path lexicon the set
of occurring paths (see Figure 2). Let path, path � be pure path expressions, that is path
expressions containing just a sequence of element (and attribute) names, with no wild-
cards, and predicates. We can process with a single index access the following types
of path expressions: path, //path, path//path � , path//, and //path//. For more details on
technique see [18].

Content Index. Processing the queries that, in addition to structural relationships, con-
tains the content predicates (es: /people/person//ln=’McCulloc’ ), can be inefficient. In
order to solve this problem we have extended our path index technique to handle simul-
taneously the content predicates and structural relationships. The content of an element
is seen as a special child of an element so it is included as the last element of a path.
Of course, it does not make sense to index content of all elements and attributes. The
database administrator can decide, tacking into account performance issues, which el-
ements and attributes should have their content indexed. By using this extension, an
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{8,16}/people/person/address
{6, 14}/people/person/name/ln
{4, 12}/people/person/name/fn
{3,11}/people/person/name
{2,10}/people/person
{1}/people
Posting ListPath lexicon

{8,16}/people/person/address
{6, 14}/people/person/name/ln
{4, 12}/people/person/name/fn
{3,11}/people/person/name
{2,10}/people/person
{1}/people
Posting ListPath lexicon

Fig. 2. The paths and their inverted lists associated



5

expression of comparison can simply be processed by a single access to the path index
[18].

Tree Signature. Efficient processing of path expressions in XQuery queries requires
the efficient execution of navigation operations on trees (ancestor, descendant, parent
etc . . . ), for this reason in our system we have used the signature file approach. Signa-
tures are a compact representations of larger structures, which allow the execution of
queries on the signatures instead of the documents. We define the tree signature [19] as
sequences of tree-node entries to obtain a compact representation of the tree structures.
To transform ordered trees into sequences we apply the preorder and the postorder
numbering schema. The preorder and postorder sequences are ordered lists of all nodes
of a given tree T. In a preorder sequence a tree node is traversed and assigned its rank
before its children are assigned their rank and traversed from left to right, whereas in
the postorder sequence a tree node is traversed and assigned its rank after its children
are assigned their rank and traversed from left to right.

The general structure of tree signature for a document tree T is

�����������! "�����#�%$'&(�)���#�+*�*,�#�+*-�.��/���0,�1$2&(����0(�3*�*#0#�+*-�40,/)5)5�56/7��8-�1$2&(����8-�+*�*(8-�+*-�489�
where *�*#:��1*-�4:1� is the preorder value of the first following ( first ancestor ) node of
the node with the preorder number � . The signature of an XML file is maintained in a
corresponding signature file consisting of a list of records. Through this tree signature
the most significant axes of XPath can be efficiently evaluated, resolving any navigation
operation.

Exploiting the capability of the tree signature is it is also possible to process struc-
ture search queries, as discussed in [3]. In fact, there are many cases where the user may
have a vague idea of the XML structure, either because it is unknown, or because it is
too complex. In these cases, what the user may need to search for are the relationships
that exist among the specified components. For instance, in an XML encoded bibliog-
raphy dataset, one may want to search for relationships between two specific persons to
discover whether they were co-authors, editors, editor and co-author.

Approximate Match Index. Recently published papers [20] [21] investigate the possi-
bility to interrogate XML documents not only with the exact-match paradigm but also
with the approximate match paradigm. An exact-match approach is restrictive, since it
limits the set of relevant and correlated results of queries. With the continuous increase
of multimedia document encoded in XML, this problem is even more relevant. In fact
rarely a user express exact requests on the features of a multimedia object (e.g., color
histogram). Rather, the user will more likely express queries like ”Find all the images
similar to this”.

For supporting the approximate match search in our system, we have introduced
a new operator ; , which can be applied to content of XML elements. To be able to
resolve this type of query we have used suitable index structures. With regard to the
generic similarity queries the index structure which we use is the AM-tree [22]. It can
be used when a distance function is available to measure the (dis)-similarity among
content representations. For instance it can be used to search by similarity MPEG-7
visual descriptors.
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For the text search, we make a use of the functionalities of the full-text search engine
library. Specifically we have used Lucene [23].

4 QUERY ALGEBRA

An XQuery query is translated into a sequence of simple operations to be executed
(the logical query execution plan). Operators of our query algebra take as arguments
and return lists of tuples of eiid (see Section 3.1). We call these lists Element Instance
Identifier Result (EIIR ). For instance, given an EIIR R, the evaluation of <>=? Par-
ent(R, article) gives back the EIIR <@= that is the set of elements named article, which
are parents of elements contained in R.

InstanceElements. To initiate processing a query, the first step is finding the occur-
rences of the element names specified in the query. We define the operator <>=A 
���B�����
��C6��D>E1��FG�����7�
�%D>HI� that returns <J= , which contain all the eiid corresponding
to D>H , where with D>H we indicate an element name. It returns all occurrences of the
element name D>H in the repository.

Selection. The selection < =  A����E%��C
��KL�%<JM#� is applied to <JM to return < =ON <�M
that satisfy a selection predicate P . In addition to the standard set of operators (  , Q ,
etc.), the elementary conditions supported by XML include the approximate match (or
similarity) operator ; , which is used as a binary operator as Exp ; Const. When the
elements of Exp are indexed using the AM-tree index the selection operator returns
all the elements similar Const, according to the similarity function associated with the
AM-Tree. When the Exp is indexed using the full-text index, the selection returns all
the elements whose content is pertinent to the text given.

Join. The join operator �%<@=R S< MUT1VWK <JXY� take as input two EIIR , respectively ex-
ternal <JX and internal < M , and returns the EIIR output <@= , which contain the elements
of < M[Z <JX that satisfy the predicate P , which is defined on both the EIIR .

Navigation operator. The navigation operators, which we evaluate using the signatures
(as described in [24]), are described in the following:

– a child operator <J=O \C)]^�_E1�2�1< M � , which given the EIIR < M returns for every
element of < M its children. For instance the node � has as the first child the node
with index �a`cb and all the other children nodes are determined recursively until
the bound *�* : is reached.

– a parent operator <J=c d$2�
	#�����6�1< M � , which given the EIIR < M returns for every
element of < M its parent. The parent node is directly given by the pointer *-�.: in
tree signature of every element of <UM .

– a descendant operator <@=? e�W�#��C6�����
�W���6�1< M � which given the EIIR < M returns
for every element of <@M its descendants. The descendants of node � are the nodes
with index �-`fb up to nodes with index *�* :�g b .

– an ancestor operator < =  e�
��C6�#�)��&�	(�
�%<JM�� which for every element of EIIR <@M
returns its ancestors. The ancestors nodes is calculated like a just recursive closure
of parent.
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Particular combinations of these operation can be processed with the path index (see
Section 5). For more details about realization of this operator see [19].

Structure Join. The structure join operator is used to support structure search queries.
It is useful when the structure of XML data is unknown and the specific objective of the
query is to verify the existence of relationships (in terms of XML hierarchies) among
specific elements. Basically this operators, given a tuple of elements, verifies if they
have a common ancestor below a specified level, considering level 0 that of the root
of a document. For instance, in Figure 2, nodes John and San Diego have a common
ancestor of level 1. On the other hand, John and S. Francisco does not have an ancestor
of level 1, but they have one of level 0.

The structure join operator <J=e h���i	�j-C
�ij'	#�,k�&��_��l7�1< � �)5)5�5)�+<Jm(� takes as input n
EIIR , and returns the EIIR <@= N < �oZ 5)5�5 Z <Jm which have a common ancestors
at least a level E in the document structure: all tuples for which there is not a common
ancestor of level E are eliminated from the result.

The cost of producing first the Cartesian product of the n lists and then eliminating
those tuples that do not satisfy the predicates, can be very high. In [3] we propose a new
structure join algorithm, able to perform this step of query execution efficiently.

5 QUERY EXECUTION

In this section we discuss the translation of some queries XQuery into our algebra.
In the following we assume that the document considered are those of Figure 2 and

<?xml version="1.0" encoding="ISO-8859-1"?>
<Mpeg7 xmlns="urn:mpeg:mpeg7:schema:2001" …>
<Description xsi:type="ContentEntityType">
<MultimediaContent xsi:type="ImageType">
<Image>
<MediaLocator>
<MediaUri>D:\ANSAnumb\104.JPG</MediaUri>
</MediaLocator>
<VisualDescriptor xsi:type="ScalableColorType" numOfBitplanesDiscarded="0“
numOfCoeff="64">
<Coeff>-16 34 127 94 5 14 -5 -14 27 15 -11 -28 -11 12 0 1 … </Coeff>
</VisualDescriptor>
….
<VisualDescriptor xsi:type="EdgeHistogramType">
<BinCounts>2 4 5 6 5 5 1 4 5 4 4 1 2 3 5 3 2 7 7 5 4 3 2 6 5 3 1 4 5 4 4 3 6 6 4 3 1 2 3 
</BinCounts>
</VisualDescriptor>
<VisualDescriptor xsi:type="HomogeneousTextureType">
<Average>94</Average><StandardDeviation>144</StandardDeviation><Energy>238 
215 186 200 189 209 210 171 179 180 179 170 174 151 122 163 123 151 144 115 98 
138 128 141 139 69 53 110 61 71</Energy>
….
</Image>
</MultimediaContent>
</Description></Mpeg7>

Fig. 3. An example of a MPEG7 document encoded in XML.
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Figure 3. We resolve the path expression with path index. We suppose that the elements
VisualDescriptor are indexed by an AM-Tree and ln by a full-text index.

Example 1. Considering the following query:
for $a in /people/person,

(A) where $a//ln ; ’Culloc’
return $a//address

We look for the address of person which have Culloc in their lastname ln. This query is
translated in our algebra as follow:

a) < �  instanceElements( people)
b) < 0  child( < � , person)
c) <Jp� descendant( < 0 � ln)
d) <�qJ select( <Jp , ; ’Culloc’ )
e) <Jr� ancestor( <�q , person)
f) <Js� descendant( < r , address)

Whereas using the indexes we have this execution plan:

A1 <U�t PathIndex( /people/person//ln)
A2 <J0u FullTextIndex(ln,’Culloc’ )
A3 <Jpu Intersect( < � , < 0 )
A4 <�q� Ancestor( <Jp , person)
A5 < r  Descendant( < q , address)

We have processed A1 the path expressions /people/person//ln only with an access to
index (PathIndex), whereas in the logical plan the same expressions is processed with
three operations. Second (A2), since full-text index is available on the last element (ln)
of path, we resolve the select operator with an access to full-text index. Then (A4)
the tree signatures are used to navigate through the structure and taken first the person
ancestor of < p and then the address descendants of < q .
Example 2. Considering the following query related to XML document of Figure 3:

for $a in /Mpeg7, $b in /Mpeg7
(B) where $a//MediaUri =’D: v ANSAnumb v 104.jpg’ and

$a//VisualDescriptor ; $b//VisualDescriptor
return $b

It returns all the elements Mpeg7 whose visual descriptors are similar to that of image
(’D: v ANSAnumb v 104.jpg’ ). The logical query plan is:

a) <@�u instanceElements w+x (Mpeg7 )
b) <�0J instanceElements w+y (Mpeg7 )
c) < p  descendant( <U� , MediaUri )
d) < q  select( < p , = ’D: v ANSAnumb v 104.jpg’ )
e) <�rJ ancestor( <�q , Mpeg7 )
f) < s  descendant( <Jr , VisualDescriptor)
g) <�zJ descendant( < 0 , VisualDescriptor)
h) <�{J select( <Jz , ;J|.<@|s )
i) <�}J ancestor( <J{ , Mpeg7 )



9

In the previous plan the instanceElements ~ (E ) is a particular notation to indicate the
recover of all the eiid corresponding to E, and the binding with the variable x. This is
an example of a possible execution plan:

B1 < �  PathIndex(/Mpeg7//MediaUri )
B2 <J0� Select( <U� , = ’D: v ANSAnumb v 104.jpg’ )
B3 <Jp� Ancestor( < 0 , Mpeg7 )
B4 < q  Descendant( < p , VisualDescriptor)
B5 < r  AM-Tree(VisualDescriptor, < q )
B6 < s  Ancestor( <Jr , Mpeg7 )

As in Example 1 we have processed in B1 the path expressions /Mpeg7//MediaUri with
an access to index (PathIndex). Second (B2), we have selected from the elements of < � ,
the one corresponding to the image 104.jpg. With the navigation operations (B3, B4)
we have accessed the corresponding element VisualDescriptor. Then (B5), since image-
similarity index is available on the elements (VisualDescriptor), we use it to take the
elements similar to the selected one < q . Finally (B6) the tree signatures are used to
navigate through the structure to access the Mpeg7 ancestor of < r .

6 CONCLUSION

We have presented the architecture of XMLSe, a native XML search engine that offers
XML approximate content search and structure search in addition to traditional exact
match search. We have introduced the various index structures that are used to effi-
ciently process XML queries and we have presented the query algebra at the basis of
the query processor. This XML search engine is particularly indicated to manage meta-
data for multimedia digital libraries, where approximate match queries are particularly
frequent. The XML search engine has been successfully employed to support meta-
data management of the MILOS multimedia content management system [25], which
in turns has been used for implementing multimedia digital libraries.
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