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Abstract. We introduce and investigate three synchronized shuffle op-
erations on words and languages. We show how such operations come
into play when proving compositionality of automata-based specification
models, by demonstrating their usage in the context of team automata.
As far as the mathematical properties of these operations are concerned,
we prove that in a trio the closure under shuffle is equivalent to the clo-
sure under any of the synchronized shuffles studied in this paper. Finally,
based on this result, we present an algorithm for deciding whether or not
a given regular language is synchronized shuffle closed.

1 Introduction

We introduce and investigate three synchronized shuffle operations on words and
languages. Before doing so, we elaborate on the usefulness of such operations in
a setting which is relevant to practice, viz. when proving compositionality of
automata-based specification models like team automata.

Component-based system design is a complex task that benefits from a step-
wise development. This means that an abstract high-level specification of a de-
sign is decomposed into a more concrete low-level specification by step-by-step
refinement, at each step replacing components of the current specification by
more detailed ones. To guarantee correct decompositions it is of the utmost im-
portance that the chosen specification model is compositional. This means that
a specification of a composite system can be obtained from specifications of its
components [15]. In case of automata-based specification models, composition-
ality thus requires that the relevant behaviour of a composite automaton can be
obtained from the behaviour of its constituting automata.

Most automata-based specification models guarantee compositionality by
choosing a single and very strict method of composing automata, in effect result-
ing in composite automata that are uniquely defined by their constituents. The



choice prevalent in the literature is to allow the execution of an action in a com-
posite automaton if and only if all of its constituting automata that share this
action simultaneously execute it. In [4] this type of synchronization of shared ac-
tions is coined mazimal-action-indispensable (mazimal-ai for short). Examples
of automata-based specification models with composition based on mazimal-ai
synchronizations include I/O automata [19], I/O systems [15], timed cooperating
automata [17], and reactive transition systems [8].

Team automata were introduced for the specification of groupware systems
and their interconnections, but they were shown to provide a flexible frame-
work for modelling collaboration between components of reactive systems in
general [11,3,4,2]. A team automaton is composed of component automata,
which are automata with a partition of their sets of actions into input, output,
and internal actions. Input actions are not under the automaton’s control, but
instead are triggered by output actions of the environment consisting of other
components. Output and internal actions are under its control, but only output
actions are observable by the environment. Input and output actions together
constitute the external actions and form the interface between the automaton
and its environment, whereas internal actions are not available for interactions.

The crux of composing a team automaton is to define the way in which its
constituting component automata interact through synchronizations of shared
actions. Whereas all of the aforementioned specification models compose the
originally independent automata in a unique way, there is no such thing as the
unique team automaton. Rather, a whole range of team automata, distinguish-
able only by their synchronizations, can be composed over a set of component
automata. A team automaton is determined on the basis of its components by
choosing synchronizations reflecting the specific protocol of collaboration to be
modelled. This freedom offers the flexibility to distinguish even the smallest nu-
ances in the meaning of a design and thus sets this approach apart from most
other automata-based specification models from the literature.

In [4] a variety of fixed strategies for composing team automata, all leading
to uniquely defined team automata, was introduced. These strategies are based
on the basic types of synchronization mazimal-ai, mazximal-free, maximal-state-
indispensable, and on the more complex types of synchronization mazimal-peer-
to-peer and mazimal-master-slave involving the role of actions. In [5], conse-
quently, the conditions under which these strategies lead to team automata sat-
isfying compositionality were investigated. In particular, the relation between the
behaviour of team automata defined according to the mazimal-ai and mazimal-
free strategies and the behaviour of their constituting components is studied
in detail. This required establishing which combinations of words—if any—from
the behaviour of the components can be combined—and in particular how—such
that a word from the behaviour of the particular team automaton composed over
those components results. To this aim, a synchronized shuffle (S-shuffle for short)
and two special cases of this S-shuffle, viz. the relazed synchronized shuffle (rS-
shuffle for short) and the fully synchronized shuffle (fS-shuffle for short), were
introduced.



In [5] it is shown that some of the aforementioned fixed strategies lead to team
automata satisfying compositionality. For one, the behaviour of a team automa-
ton composed according to the mazimal-ai strategy equals the fS-shuffle of the
behaviour of its constituting component automata. Furthermore, the behaviour
of a team automaton composed according to a mixture of the mazimal-free and
mazimal-ai strategies—under some conditions—equals the rS-shuffle of the be-
haviour of its constituting components. Hence, for a few specific types of team
automata, compositionality is proved through the use of synchronized shuffle
operations. In [2], finally, it is shown that corresponding results hold when also
the infinitary behaviour of team automata is taken into account.

In order to identify more types of team automata satisfying compositionality
than those investigated in [5], it is necessary to establish the precise conditions
under which the behaviour of team automata defined according to other fixed
strategies can be obtained from the behaviour of their constituting component
automata. This calls for more types of synchronized shuffles than those intro-
duced in [5]. This is the main goal of this paper. To this aim, we introduce and
investigate three synchronized shuffle operations: the strongly synchronized shuf-
fle (SS-shuffle for short), the weakly synchronized shuffle (WS-shuffle for short),
and the arbitrarily synchronized shuffle (AS-shuffle for short). While there ex-
ist conditions under which the SS-shuffle degenerates to the rS-shuffle or the
fS-shuffle (and thus to the S-shuffle), both the WS-shuffle and the AS-shuffle
are—to the best of our knowledge—new types of synchronized shuffles.

This paper is organized as follows. First we formally define the three afore-
mentioned synchronized shuffle operations and compare them to other synchro-
nized shuffle operations from the literature. Consequently, we show that in a trio
the closure under shuffle is equivalent to the closure under any of these synchro-
nized shuffle operations. Finally, based on this result, we give an algorithm for
deciding whether or not a given regular language is synchronized shuffle closed.

2 Preliminaries

We assume familiarity with some basic notions from algebra and formal language
theory. For any unexplained notion, we refer the reader to [26,23].

We have the following conventions. Set inclusion is denoted by C. The set
difference of sets V and W is denoted by V \ W. The powerset of a set V
is denoted by P(V) and the empty set is denoted by &. For convenience we
sometimes denote the set {1,2,...,n} by [n]. Then [0] = @. The empty word is
denoted by A. For a word v € V*, we use |v| to denote its length. Thus |A\| = 0.
The alphabet of v is denoted by «(v) and consists of all symbols that actually
occur in v. Thus a(\) = 2.

The function presy, also called the projection on I', is a morphism from X*
into I'* defined by pres;(a) = a if a € I' and pres;(a) = A otherwise. In other
words, presp preserves the symbols from I' and erases all other symbols. By
convention, pres,(v) = A, for any word v.



A finite transducer is a sixtuple M = (Q,V,U, f,qo, F), where Q is the set
of states, V is the input alphabet, U is the output alphabet, f is the transition-
and-output mapping from @ x (VU{A}) to finite subsets of @ x U™, go € @ is the
initial state, and F' C () is the set of final states. If f is a function from Q x V
to finite subsets of Q x U*, i.e. M reads exactly one symbol at each transition,
then A is said to be a sequential transducer. In the literature, these devices are
also called generalized sequential machines [10]. The transition function may be
extended in a natural way to @) x V*. Each finite transducer M as above defines
a finite transduction

Tu(z) ={ueU"|(g;u) € f(qo,v); g€ F},

which can be extended to a language L C V* by Ty (L) = U, cr T (v).

3 Shuffles and Synchronized Shuffles

A shuffle of two words is an arbitrary interleaving of subwords of the original
words such that it contains all symbols of both words, like the shuffling of two
decks of cards. This is a well-known language-theoretic operation with a long his-
tory in theoretical computer science, in particular within formal language theory.
In the literature shuffling is sometimes called interleaving, weaving, or merging,
and—given two words u and v—it may be denoted by v ©v, u||v, v LU v, uOwv,
u®v, ul||v, or uow [12,24,21,14,13,7,23]. The idea underlying shuffling also
appears in numerous other disguises throughout the computer science literature.
Within concurrency theory, e.g., as a semantics of parallel operators modelling
communication between processes [1,22, 6].

Shuffle Formally, the shuffle of words u,v € X* is a set of words denoted by
u LI v and defined recursively as

W A=Az ={z}, z€ X" and
ar LW by = a(z W by) Ublaz W y), a,be X, x,y € ™.

The shuffle of two languages L1, Lo C X* is denoted by L; LLI Ly and is defined
as the language consisting of all words that are a shuffle of a word from L; and
a word from L. Thus

LiLly={weuWv|uely,veE Ly} = U u L v.
u€ELy,vEL>

Note that the shuffle of two words never equals the empty set, i.e. given u,v € X*,
then u LLI v # @. Furthermore, given a word w € u LLI v, it is clear that a(w) =
a(u)Ua(v) and that |w| = |u| + |v]. Finally, it is plain that the shuffle operation
is both commutative and associative, i.e. u LLl v = v LUl w and (u LUl v) L w =
u LU (v LW w), for all words u,v,w € X*.



We now continue our exposition on shuffle operations by introducing some
more intriguing types of shuffles, built on top of the basic shuffle operation de-
fined so far. We generalize the basic shuffle operation recalled above by defining
three synchronized shuffle operations. Rather than freely interleaving the letters
of the words being shuffled, part of these letters are now synchronized. These
synchronized letters, while occurring in each of the words being shuffled, thus
occur only once in the resulting words. Furthermore, the sequence of synchro-
nized letters forms a “backbone” of the resulting words, which means that there
is an order that the letters being synchronized must adhere to.

As was the case for shuffling, the idea underlying these synchronized shuf-
fle operations is not new, but it appears in numerous disguises throughout the
computer science literature. The idea seems to stem from the concurrent com-
position P & @ of synchronizing processes P and @ as defined in [16]. Within
formal language theory, a slightly adapted version of the idea was introduced
in [9] as the ‘produit de mixage’ u M v of words u and v. This operation was
renamed synchronized shuffle in [18] and in [5] it was generalized to the syn-
chronized shuffle (S-shuffle for short) u || v on an arbitrary alphabet I' (of
letters subject to synchronization) of (possibly infinite) words u and v. In [5]
also two special cases of the S-shuffle were defined, viz.—given a word u over
X, and a word v over X,—the relaxed synchronized shuffle (rS-shuffle for short)
Uy MFEZ v =wu||I'"*17*2 ¢ on an arbitrary alphabet I" of u and v, and the fully

synchronized shuffle (fS-shuffle for short) u , ||, v = u[|**"*>v of u and v,
both with respect to Xy and X5. These operations can thus be distinguished by
the alphabet on which they require words to synchronize. Within concurrency
theory, finally, two more slightly adapted versions of the idea were introduced
in [25] as the weave uwv = u y ||, v of two words u and v, and in [22] as
the alphabetized parallel composition P .||, @ of processes P and (—given
alphabets X and Y. a

Also the new synchronized shuffle operations that we define next can be
distinguished from each other by the manner in which they require the words
to synchronize. Along the way we will briefly compare our variants to those
above, but for a more complete comparison—including (fair) synchronized shuffle
operations on infinite words and infinitary languages—we refer the reader to [2].

Strongly Synchronized Shuffle Given two words v € X and v € X3 and a
subset " of Xy N X5, the strongly synchronized shuffle of v and v on I" requires
u and v to synchronize on all occurrences of the letters from I, while all their
other letters are shuffled. This means that pres, (u) = pres,(v) must hold.
Formally, the strongly synchronized shuffle (SS-shuffle for short) of words
u€ Xfand v € X5 on ' C ¥ NXyis denoted by u L 7 v and is defined as

u L 15~ v={(u1 W v1)x1(us LU v2)x2 - Tp_1(uy W vy) | n>1,
uj € (21\[‘)*’ v; € (22\F)*7 i€ [’I’L], T1,T2,--+;Tp—1 EF,

ULT1U2LY = " Tp—1Up = U, V1XT1V2T2 - Tp—-1Vp =V }



Note that u LLI ¥ v = @ as soon as presp(u) # presp(v). Let w € u LUl 7 v. Then
presp(w) is called the backbone of w. Clearly, presy(w) = presp(u) = presp(v),
for all w € u L 7 v, i.e. all words in u LLI 7 v have the same backbone.

Weakly Synchronized Shuffle Given two words v € X} and v € X} and a
subset I" of Xy N X5, the weakly synchronized shuffle of v and v on I requires
u and v to synchronize on some occurrences of the letters from I', while all
the other occurrences together with the letters not appearing in I" are shuffled,
provided that each pair of subwords that is to be shuffled cannot synchronize
on any occurrence of the letters from I'. Now pres,(u) = pres,(v) does not
necessarily hold anymore.

Formally, the weakly synchronized shuffle (WS-shuffle for short) of words
u€ X7 and v € X3 on I' C ¥y N Xy is denoted by u LI W v and is defined as

wi Voo = { (w1 L vy)@q (U LU v9)@g - - - Tt (up L vy) |0 > 1,
u; € X7, v € X3, alu;) Na(v,) N =@, i € [n], z1,22,...,0p-1 € I

ULT1U2T2 " " Tpp—1Up = U, V1X1V2L2 - Tp—-1Up =V }

Note that presp(u) # presp(v) does not imply that L}V v = w LI 7 v,
but u LW % v C u LW W v always holds. Let w € u LI ¥ v be such that w =
W1 TLWT2 -+ - T 1 W, Wy € u; L v, u; € X, v € X5, a(u)Na(v) NI =3,i €
[n], Z1,22,...,Zp—1 € I', u1Z1U2Ts - - - Tp_1Up, = U, and V1T1V2Ts -+ Tp_1Vy =
v. Then 125 . ..x,_1 is called the backbone of w w.r.t. the above decomposition.
Note that, contrary to the SS-shuffle, different words in u LLI ¥ v may have
different backbones.

Arbitrarily Synchronized Shuffle Given two words v € X} and v € X3
and a subset I' of Xy N X, the arbitrarily synchronized shuffle of u and v on
I requires v and v to synchronize on some occurrences of the letters from I,
while all the other occurrences together with the letters not appearing in I" are
shuffled.

Formally, the arbitrarily synchronized shuffle (AS-shuffle for short) of words
u€ Xyand v e X35onl CXyNY,is denoted by w LLI fi v and is defined as

u L 14 v ={(ur L v1)z1(us LU v3)xo - Tp1(uy LW vy,) |0 > 1,
u; € X, v; € X3, i €[n], z1,29,...,2p-1 € I

UTT1U2LY - Tp—1Up = U, V1T1V2TL2 - " Tp—-1Upn =V }

Note that pres,(u) # presp(v) does not imply that u LLI 4 v = u L 7 v, but
ull ¥ v Cull# v always holds. Also u LI W v C w LI 4 v holds. As be-
fore, let w € u LLI 14 v be such that w = wiziwsxy -+ Tp_1wy, w; € u; LU v;,
u, € X, v € X5 alu) Na(v,)) NI = @, i € [n], z1,22,...,85-1 € I,
UIT1ULLD ** * Ly Uy = U, and v T1V2X2 - Tp_ 1V, = v. Then z129...2, 1 is
called the backbone of w w.r.t. the above decomposition. Again, different words
in u L # v may have different backbones.



We now take a closer look at the three synchronized shuffle operations intro-
duced above, in particular regarding their relation to the basic shuffle operation.
First we note that each synchronized shuffle operation is indeed a generaliza-
tion of the shuffle operation: u LI X v = u W v, for all u € X}, v € X3, and
X e {S,W, A}

Next we let w € X, v € X3, and I' C Xy N X5 be such that (a(u) \ I') N
(a(v)\ I') = @. Then

wlld P v=(ull presy,\ r(v)) N (presg,\ r(u) LW v).

The condition (a(u) \ I') N (a(v) \ I') = @ is necessary. This follows from the
following example, where we show that given words v € X} and v € ¥ and an
alphabet I' C Xy N X, in general u LUl 7 v does not equal (u LLI presy,\ r(v)) N
(presy,\r(u) LU v). We note, however, that u LLI v C (ull presy,\ p(v)) N
(presg,\r(u) LU v) always holds.

Example 1 Let ¥ = {a,b,c}, let I' = {c}, let uw = abe, and let v = bea.
Then (u LI presy,,\ p(v)) N (presy,\p(u) LW v) = (abe LU ba) N (ab LU bea) =
{abbca, babca, abcba} # {abbca, babca} = u LU 7 v.

Based on the above relation between the SS-shuffle and shuffle operations, we
obtain an alternative definition of the SS-shuffle operation in terms of morphisms.
Let u € X, v € X3, and I' C Xy N Xy be such that (a(u)\ )N (a(v)\ ') = 2.
Then

wlll Fv={we (T UXy)"| presy, (w) = u, presg, (w) =v }.

Note that the condition (a(u) \ I') N (a(v) \ I') = @ is satisfied whenever I" =
21 n 22.

Let w € Xf and let v € X5. If I' C ¥y N Xy, then the SS-shuffle on I
of u and v equals the rS-shuffle (S-shuffle) on I' of u and v as defined in [5].
Hence u LW v =u ||'y, v = u||" v whenever I' C &1 N Z. In its turn, the
S-shuffle on a arbitrary alphabet I" of v and v is a slight generalization of both
the concurrent composition as defined in [16], which requires I' C X} = Xs,
and the synchronized shuffle operation as defined in [9, 18], which requires I =
a(u) Na(v). If I' = Xy N Xy, finally, then the SS-shuffle on I' of w and v equals
the fS-shuffle (S-shuffle) on I' of u and v as defined in [5] as well as the weave
of u and v as defined in [25]. Hence u LUl 7. v = Uy llg,v=ull"v=uwov
whenever I' = X} N X,. To the best of our knowledge, however, the WS-shuffle
and the AS-shuffle are new types of synchronized shuffle operations.

Recall that the result of the shuffle of an arbitrary word and the empty word
consists of the arbitrary word only, i.e. the shuffle operation has unit element
A. Due to the requirement of a matching backbone, we immediately conclude
that this in general does not, hold when the SS-shuffle operation rather than the
shuffle operation is considered. In fact, for an alphabet I" and a word u, we note
that u LI % X\ = X\ L 3 u equals {u} if and only if I'Na(u) = @ or I' = @. On
the other hand, u LI & A = X L ¥ u = {u}, for any word u and X € {W, A}.



We now discuss the associativity of the three synchronized shuffle operations
we have introduced, restricted to words over the same alphabet and the same
alphabet of letters subject to synchronization.

Proposition 1 1. For any alphabet X and I' C X, (X*, LU 7) is a commutative
semigroup. Moreover, if I' = X, then this semigroup is idempotent.

2. The WS-shuffle has a unit element, but it is not associative.

3. For any alphabet X and I' C X, (X*, LU 4, ) is a commutative monoid.

Proof. 1. The commutativity of all three operations follows easily from the defini-
tions and the commutativity of the basic shuffle operation. Since the backbone of
every word in the SS-shuffle on a given alphabet of two words is the same word,
inherited from the two words, and the basic shuffle operation is associative, it
follows that the SS-shuffle operation is associative. Furthermore, it is obvious
that v LW § u = {u}, for any word u € X*.

2. We prove that the WS-shuffle operation is not associative. To this aim, let
Y =T = {a,b,c} and consider the three words z = acb, y = bca, and z = abe.
One can easily check by direct calculus that bacbabe € ((z LU W y) L WV 2)\
(zw W (¥ 2)).

3. Let z,y,2 € X* and let I’ C X. Since LU 4 is commutative, the in-
clusion ((z LW 4 y) W} 2) C (z W4 (yWl 4 2)) is sufficient for proving
the associativity of the AS-shuffle operation. We associate with any word w €
((z W 2 y) L 2 2) the word

wl = <a17 11,21,31)(@2, ]-27 22732> e <an7 ]-n7 2n73n>7

with i; € {0,1}, 7 € [3], and j € [n], such that the following conditions are
satisfied:

(1) w=aias - a, and
(i1) z = hy(w'"), y = ha(w'), and z = h3(w'), where the morphisms h;, with
i € [3], are defined by

a; le] =1 and

hi({aj,15,25,3;)) = {)\ otherwise.

Let us assume that w € u L 4 2z, for some u € z LW 4 y. Informally, the
occurrence of (aj,1,0,0), (a;,0,1,0), or (a;,0,0,1) on the jth position of w'
means that the occurrence of a; on the jth position of w comes directly from
an occurrence of a; in x, y, or z, respectively. The occurrence of (a;,1,1,0) on
the jth position of w’ means that the occurrence of a; on the jth position of w
comes from the synchronization of x and y on an occurrence of a; in both words,
while u and z do not synchronize on this occurrence of aj. The occurrence of
(a;,1,0,1) on the jth position of w' means that the occurrence of a; on the jth
position of w comes from the synchronization of v and z on an occurrence of a;
in both words, but this occurrence of a; in u comes directly from z. An analogous
meaning is associated with each occurrence of a letter (a;,0,1,1). Finally, the



occurrence of (aj,1,1,1) on the jth position of w’ means that the occurrence of
a; on the jth position of w comes from the synchronization of # and y on an
occurrence of a; in both words, while u and z do further synchronize on this
occurrence of a;.

More formally, the word w’ can be constructed in two phases as follows:

(A) We associate with u € (z1 LU y1)v1 (22 LU ya)vs -+ - Up—1 (2 L yp), with
n>1,v1,v2,...,05-1 € ', T101T202 - Vp—1Ty, = T, a0d Y101Y202 ** Vp—1Yn =
y, the word v’ constructed from u as follows:

(i) each letter a of all ;, with ¢ € [n], is replaced by (a,1,0,0),
(74) each letter a of all y;, with i € [n], is replaced by (a,0,1,0), and
(i4¢) each letter v;, with ¢ € [n], is replaced by (v;,1,1,0).

(B) We associate with w € (u1 LU z1)t1 (u2 LU 29)ts - - - ty—1 (U W z4,), with
m 2 1, tl,tg, e 7tm—1 c F, U1t1UQt2 N -tn_lun = u, and th1Z2t2 - -tn_lzn =z,
the word w’ constructed from w as follows:

(7) each letter a of all z;, with ¢ € [m], is replaced by (a,0,0,1),
(74) each occurrence of any letter a of all u;, with i € [m], is replaced
by the letter of v’ associated with this occurrence, and

(191) each letter ¢;, with ¢ € [m], is replaced by

(i, 1,0,1), if the letter of u' associated with this occurrence
of t; in u is (ti, 1,0,0),

(t:,0,1,1), if the letter of u’ associated with this occurrence
of ¢; in w is (t;,0,1,0), and

(ti, 1,1, 1), if the letter of u' associated with this occurrence
of ¢; in wis (t;,1,1,0).

By these explanations, we infer that h; 5)(w') € 2 LU 4y, h(i,s(w') € z LU 42,
and hy 3 (w') € y LU 4 2, where the morphisms h,5), with i, € [3] and i # j,
are defined by

Qg ifik\/jkzland

hi, ) (ak, Ths 2, 3k)) = {)\ otherwise.

Consequently, w € (z LU 4 (y LU 4 2)). O

4 Synchronized Shuffles on Languages

In this section we naturally extend the three synchronized shuffle operations
defined in the previous section to languages and we present some properties of
some families of languages with respect to these operations.

Let X € {S,W, A}. Then the XS-shuffle on I" of languages L; C X}, with
i € [2], is denoted by L; LLI ¥ L, and is defined as the language consisting of



all words that are an XS-shuffle on I' of a word from L; and a word from L.
Hence
Ly 1)"( L, = U u L ijﬂoz(u)ﬂoc(v) .
u€Ly,vELs

We write LLI (L) instead of L LLI X L. Let L C ¥* be a language and let
I' C ¥. Then we say that L is XS-shuffle closed w.r.t. I if 1L ¥(L) C L. We
simply say that L is XS-shuffle closed if it is XS-shuffle closed w.r.t. «(L). Note
that any language L such that a(z) = a(L), for all € L, is SS-shuffle closed;
more precisely, LLI g(L)(L) = L.

It is worth mentioning that all three synchronized shuffle operations are dis-
tributive over the union. Hence

Proposition 2 1. For any I' C X, (P(X*),U, LW %, @) is a commutative hemi-
ring (i.e. a semiring without a unit element).
2. For any I' C X, (P(X*),U, LW 4 @, )) is a commutative semiring.

Let X € {S,W, A}. A family of languages F is said to be fully closed under
XS-shuffle if for any two languages Li,Ls € F and any I' C a(Lq) N a(Ls),
Ly Wl 1)5 L, € F. Moreover, F is said to be closed under XS-shuffle if for any
two languages Ly, Lo € F, Ly LLI f(Ll)ma(h) L, e F.

A family of languages which is closed under (non-erasing) morphisms, inverse
morphisms, and intersection with regular languages is called a full trio (trio).
By the aforementioned considerations, any family that is fully closed under XS-
shuffle, with X € {S, W, A}, is closed under shuffle as well. By the next three
propositions, we show that in a trio the closure under any of the shuffle operations
defined in this paper implies the closure under all the others.

Proposition 3 FEvery trio is closed under shuffie if and only if it is fully closed
under SS-shuffle if and only if it is closed under SS-shuffle.

Proof. We first prove the full closure of the trio F under SS-shuffle, provided
that F is closed under shuffle. Let L; C X}, with ¢ € [2], be two languages in F.
Furthermore, let I' C X'} N X5. We define the new alphabet 2‘2 ={ala€ Xy}
and consider the morphism h : ¥ —s Y3, h(a) = @, a € X5. Let M be a
sequential transducer which defines a finite transduction from (X; U 22)* onto
(X1 U X5)* and which works as follows:

1. M checks the following two conditions to be satisfied:
(i) each occurrence of a letter a from I in the input word w either is imme-
diately followed by @ or @ does not appear at all in w, and
(ii) each occurrence of a letter @, with a from I, in the input word w either
is immediately preceded by a or a does not appear at all in w.
2. When reading the subword aa, M outputs a.
3. When reading a and a, M outputs a.

10



By these explanations,
Ly W 3 Ly = Ty (L1 W h(Ly)).

Since any trio is closed under transducer mappings, it follows that F is fully
closed under WS-shuffle.

Clearly, any family fully closed under SS-shuffle is closed under SS-shuffle. It
remains to prove the closure of F under shuffle, provided that F is closed under
SS-shuffle. To this aim, for two languages L; C X%, with ¢ € [2], in F we define
the same alphabet 22 and morphism h as above. Furthermore, we consider the
morphisms:

g1 (1 U{ce}) — X7, g1(a) =a, a € X1, gi(c) = A,

g2 (L2 U{c})" — 13, g2(a) =@, a € Xy, g2(c) = A, and

Fi(ZuSu{e) — (DU, fla)=a, a€ Xy, f@) =a, a€ X,
fle)=A

It is plain that I' = a(g; ' (L1)) Na(gy ' (h(L2))) = {c}. Therefore
Ly W Ly = f(g7 ' (L) W 7 g5 (A(L2))),
which concludes the proof. a

Proposition 4 Every trio is closed under shuffie if and only if it is fully closed
under WS-shuffle if and only if it is closed under WS-shuffle.

Proof. We first prove the full closure of the trio F under WS-shuffle, provided
that F is closed under shuffle. Let L; C X, with i € [2], be two languages in F.
Furthermore, let I" C X1 N Y5. We define the new alphabets 2’2 ={a|la€e Xy}
and T = {@ | a € X, }. Let the finite substitution s : X3 — P(Zy U X,) be
defined by s(a) = {a}, for any a € X, \I', and s(a) = {@,a}, for any a € I'. Now
we construct a sequential transducer M which reads words from (X U 2‘2 UXs)*
and outputs words in (X U Xy)*. It works iteratively in two phases as follows:

1. M scans the input word until either an occurrence of a, for some a € I,
is met or the input word is completely read. Along this computation, when
reading a letter ¢ from X; and b from X5, M writes ¢ and b, respectively.
However, if the currently scanned subword of the input word contains a pair
of letters (b, b), for some b € I', then M enters a designated error state and
blocks the computation. This checking process can be done by storing the
letters from I' U T read so far in the current state.

2. When a is reached, the second phase starts. M enters a new state and,
without writing anything, checks whether or not the next input symbol is
exactly a. If this is not the case, then M enters the error state and blocks the
computation. Otherwise, M enters the initial state and writes one a only.
Now the first phase is resumed for the rest of the input word.
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3. All states are final ones, except the error state and the states of the second
phase.

By these explanations,
Ly W W Ly = Ty(Ly W s(Ly)).

Since any trio is closed under finite substitutions and transducer mappings, it
follows that F is closed under WS-shuffle.
The final part of the previous proof works well for proving the closure of F
under shuffle, provided that F is closed under WS-shuffle. |
Obviously, a similar construction as above holds for the AS-shuffle. Hence

Proposition 5 Every trio is closed under shuffle if and only if it is fully closed
under AS-shuffle if and only if it is closed under AS-shuffle.

Based on the above results we can now present a procedure for deciding
whether or not a regular language is XS-shuffle closed w.r.t. any given alphabet
of letters subject to synchronization.

Proposition 6 For any regular language L C X*, any I' C X, and any X €
{S, W, A}, one can algorithmically decide whether or not L is XS-shuffle closed
w.r.t. I

Proof. Since the family of regular languages is a trio closed under shuffle, LI X (L)
is still regular for any regular language L C X* any I' C X, and any X €
{S, W, A}. Moreover, given a finite automaton which accepts L one can effec-
tively construct a finite automaton which recognizes LU % (L). On the other
hand, the inclusion problem is decidable for regular languages, therefore one can
algorithmically decide whether or not LLI ¥ (L) C L. O

Proposition 7 Let F be an arbitrary family of languages.

1. If F is (fully) closed under SS-shuffle and intersection with reqular sets,
then F s closed under intersection.

2. If F is closed under morphisms, inverse morphisms, and (fully) closed
under XS-shuffle, with X € {S,W, A}, then F is closed under intersection.

Proof. 1. Let L; C X'f, with ¢ € [2], be two languages in F. Clearly,
LiNLy=(Ly W%y, L) N (21N Ze)"

2. As F is (fully) closed under XS-shuffle, for any X € {S, W, A}, it is closed
under shuffle, a property which together with the closure under morphisms and
inverse morphisms implies the closure of F under intersection. |

We now present a characterization of the family of nonempty finite languages
with a single binary generator involving the synchronized shuffle operations.

Proposition 8 The family of nonempty finite languages is the smallest family
containing the language {ab}, closed under union, closed under projections, and
(fully) closed under any synchronized shuffle.
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Proof. Clearly the smallest family containing the language {ab}, closed under
union, closed under projections, and (fully) closed under any synchronized shuf-
fle, denoted by F, contains finite languages only.

Conversely, the languages {A} and {a} belong to F. Since F is closed un-
der union and projections, it suffices to prove that the singleton language con-
sisting of an arbitrary word w = ajaz---an, with a; # a; and 1 < ¢ #
j < n, lies in F. We prove this by induction on n. Obviously, the assertion
holds for n € {0,1,2}. For any n > 3 and X € {S,W, A}, we have {w} =
{aas---ap_1} LW fanil} {an-1a,}. O

5 Conclusion

We have introduced and investigated three synchronized shuffle operations on
words and languages. Since the idea underlying such synchronized shuffle opera-
tions appears in numerous disguises throughout the computer science literature,
e.g. in formal language theory and concurrency theory, the three synchronized
shuffle operations studied in this paper may well be applicable to existing re-
search issues in the aforementioned fields. We briefly hint at two such usages.

To begin with, it remains to be investigated whether or not the synchronized
shuffle operations introduced in this paper can be used to define the way in which
the constituting component automata of a particular team automaton interact
through synchronizations of shared actions. This undoubtedly requires these
synchronized shuffle operations to satisfy some of the fundamental mathematical
properties studied in this paper, even more so when also the infinitary behaviour
of team automata is taken into account (as can be concluded from [2]).

It moreover remains to be investigated whether or not the synchronized shuf-
fle operations introduced in this paper can be used to model some aspects of
parallel compositions of concurrent processes that contain re-entrant routines,
such as those that are part of the kernel of operating systems like UNIX and
Linux. An algebraic approach to modelling such processes was initiated in [20]
and continued in [1].
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