

1

On state-oriented vs. event-oriented thinking
in formal behavioural specifications

T. Bolognesi

CNR – ISTI – Pisa
t.bolognesi@isti.cnr.it

Abstract. We introduce a simple conceptual framework for assessing a number of well known formal
specification techniques w.r.t. their ability to model state-oriented and/or event-oriented aspects of system
behaviour. By attributing a-priori equal importance to the notions of event and state, by explicitly recognizing
the two derived, very fundamental ways of thinking about system behaviours, and by assessing the bias of
existing formal methods towards one or the other, one can make more conscious decisions and selections in the
upper phases of software development, that is, in requirements elicitation and analysis, in the construction of
abstract system models, and in the choice of formal languages for high- and low-level design. In particular, we
assess the recently introduced model of Abstract State Processes, and the design choices behind its definition, in
light of the introduced state-event framework.

Keywords – D.2.1 Requirements/Specifications, D.2.2 Design Tools and Techniques --- Formal methods,
Process algebra, ASM, B, CCS, CSP, High-level Petri nets, LOTOS, TLA.

Contents

1. Introduction
2. Basic framework
3. Advanced framework
4. Simple constraints
5.Complex constraints
6. Design choices behind a new mixed specification model
7. Conclusions and open problems

1. Introduction

In this paper we refer to the problem of formally specifying complex (software and/or hardware)
concurrent, distributed, reactive systems. In the early phases of system development abstract
models of the system are built, possibly by means of formal specifications, in order to clarify system
requirements. Among the several formal or semi-formal specification techniques available for
building abstract system models, we are interested here on those that address explicitly system
behaviour. Thus we exclude, for example, Data Flow diagrams, Entity Relation diagrams and
(UML-) Class Diagrams, and we refer to formal specification techniques that allow one to express
dynamic aspects: which events happen when the system operates, and how does the system state
evolve? We shall use the terms behavioural specification and behavioural specification language.

In [AL93] Abadi and Lamport write:

The popular approaches to specification are based on either states or actions. In a state-based approach, an
execution of a system is viewed as a sequence of states, where a state is an assignment of values to some set of
components. An action-based approach views an execution as a sequence of actions. These different approaches
are, in some sense, equivalent. An action can be modeled as a state change, and a state can be modeled as an
equivalence class of sequences of actions. However, the two approaches have traditionally taken very different
formal directions. State based approaches are often rooted in logic, a specification being a formula in some
logical system. Action-based approaches have tended to use algebra, a specification being an object that is
manipulated algebraically. Milner’s CCS is the classic example of an algebraic formalism […].
State-based and action-based approaches also tend to differ in practice. […]

2

The excerpt above represents one of the main motivations for our work. Our objective is to further
investigate the issue of state-based vs. action-based specification, in the context of the early phases
of (software) system development, namely those that involve the initial brainstorming about system
functionalities, the elicitation and analysis of system requirements, the construction of abstract
system models, and the choice of formal languages for high- and low-level design. We therefore
focus on the expressive flexibility of languages – on their appeal to human intuition – rather than on
analytical power, or support to formal verification tasks.

Some software engineers seem to believe that the first, crucial step in system development is the
identification of the right global state structure. Others seem to prefer reasoning in terms of
external viewpoints: they first describe the system interactions with the environment as patterns of
events, without immediately worrying about the state. But, is it really possible, and convenient, to
hit the extremes of this spectrum, and have a purely state-oriented or purely event-oriented formal
specification? And how do existing formal specification languages support an integration of these
two descriptive modes? If there are multiple ways to do it, where are the advantages and
disadvantages?

Consider specification approaches such as ASM [G93, BS03], B [A96], CCS [M80], CSP [H85],
High Level Petri Nets [JR91], Statecharts [H87], UML-State Machines [BRJ99], TLA [L03], Z
[S89]. Most people would agree in regarding some of them as closer to state-oriented thinking (e.g.
ASM), and some others as closer to event-oriented thinking (e.g. CSP); but what does it really mean
for a formal specification language to be state oriented or event oriented? Can we provide a simple
conceptual framework or grid where existing formal specification languages can be positioned and
compared with one another based on their bias towards states of events?

The purpose of this paper is to shed some light on these questions. Frequently the selection of a
specification method – a choice which may influence in various ways the subsequent phases of
system development -- is driven by non-technical reasons such as tradition, corporate policy, or
even dogma. Our simple state-event framework is meant to contribute in supporting more
conscious and perhaps more successful choices, based on primitive but technical criteria.

In Section 2 we introduce a first, elementary version of the conceptual framework, in form of a
simple diagram, and we discuss two instances of it (two existing specification methods) that
actualize in different ways its constituent elements. In Section 3 we refine the framework, based on
the need to handle multiple event types, multiple fragments of the global state, and multiple
specification ‘chunks’. These multiplicities lead us to naturally distinguish among five basic
constraint types, corresponding to as many behavioural specification paradigms.

In Section 4 we discuss the two most simple constraint types: invariants and pure event-event
constraints. Section 5 is devoted to the more advanced specification paradigms, that we call
disjoint-events/shared-variables and shared-events/disjoint-variables; two instances of these
paradigms are discussed. In Section 6 we assess the recently introduced model of Abstract State
Processes, and the design choices behind its definition, in light of the discussed state-event
framework. In the concluding Section 7 we provide a list of research topics related to the
conceptual vehicle introduced in the paper.

For space reasons, we cannot provide introductions to the several formal languages considered in
the paper, and we can only provide small examples of formal specifications that reflect (some of)
the discussed paradigms. We defer more substantial coverage of these components to a longer
version of this paper.

3

2. Basic framework

Figure 1.a illustrates a well known concept in electrical engineering: the synchronous sequential
circuit. At each clock step the circuit, based on the current state s and the input sample in, produces
the output sample out and a new state, say s’. The outputs are defined by a combinational
(stateless) circuit, that represents the ‘logics’ of the system. The way most behavioural
specification languages work can be ultimately described by the diagram in Figure 1.b, which
proposes in a new setting the basic elements of Figure 1.a. This diagram implies that states and
events are primitive concepts of equal importance in behavioural specification.

(a) (b)

Figure 1 – Basic framework for behavioural specification languages

In Figure 1.b:

- Circles are intended to represent state variables or, more generally, portions of a global state
structure.

- Rectangles represent events, which may be structured, and may involve data provided from,
and/or offered to the environment. Event occurrences are instantaneous; they may depend
on the current state value, and affect it according to some ‘logics’.

- Hexagons represent the 'logics' that connects the state and the events, that is, the actual
formal specification of the system, be it a piece of text or a diagram; this specification would
be meaningless without the semantic rules of the language, which are therefore also
considered, perhaps implicitly, as part of the ‘logics’. We adopt the term constraint for this
element, since it enforces some correlation between event occurrences and values on one
hand, and state values on the other.

The system specification and the language semantics are the static elements of the picture; the state
and the event are the dynamic ones. State variables tend to persist, but events make them change.
Events disappear. One can make future use of the value of an event only by recording it somewhere
in the state, as the event happens. Apart from this difference, states and events may well be of the
same type (e.g., tuples of natural numbers). In Figure 2 the state structure is represented by a
dynamic set of state variables that may change their values (colours) as events occur.

Digital logic: sequential circuit

Combinational

circuit

 δ

Memory

circuit

s

 in
out

Behavioural specification

δ

in/out

s

Event

(dynamic: it happens)

‘Logics’ =

Spec (user) + Semantics

(static information)

State

(dynamic: it evolves)

4

Figure 2 – Events and state changes

2.1 Instances

We briefly consider here two instances of the basic framework of Figure 1.b. The purpose is to
emphasize how formal specification languages may differ in the way they conceive and represent
events, states and constraints.

Predicate/Transition nets

A Predicate/Transition net [JR91] is a bipartite graph where nodes can be places (circles) or
transitions (boxes), and arcs are labelled by multisets of terms representing token values. A finite
set of tokens distibuted over one or more places represents the initial marking. Transitions are
labelled by first order formulae. A transition T with label P can fire when its input places contain
tokens with the values as specified by its incoming arc’s labels, and P can be satisfied; the effect is
to inject tokens with values defined by T’s outgoing arc labels into T’s output places.

The correspondence between the diagram of Figure 1.b and Predicate/Transition nets is as follows
(see Figure 3):

- An event is the firing of a transition. Some of the variables appearing in P can be readily
interpreted as event parameters, whose values can be provided or used by an external,
unspecified observer.

- The state is the current marking.
- The system specification is the net itself, which includes the initial marking
- The operational semantics is the transition firing game

Full LOTOS

Full LOTOS [BB87] is a process algebraic language. System behaviours are described by
behaviour expressions, built by behavioural operators, and by value expressions used for denoting
data values. A system is conceived as a dynamic set of processes that interact with one another and
with their environment by synchronising (rendez-vous) at so called gates, and by possibly
exchanging data values.

State
structure

Events

time

5

The correspondence between the diagram of Figure 1.b and Full LOTOS and is as follows (see
Figure 3):

- An event is … a LOTOS event, consisting of a gate name and, possibly, a tuple of
parameter values.

- The state is the current behaviour expression: this evolves as the events occur, and during
evolution its data variables are substituted for actual values that play the role of state
variables, although LOTOS is not an imperative language (LOTOS exploits single-use,
‘logical’ variables, that cannot be re-assigned values). A behaviour expressions acts as a
complex state which implicitly defines all the transitions immediately possible from for that
behaviour, that is (i) all the events that may occur immediately, and (ii) the residual
behaviour expression obtained after each of these events.

- The system specification is the LOTOS text.
- The operational semantics is the set of axioms and inference rules of the LOTOS SOS

(Structural Operational Semantics), that formally define the transition relation.

Figure 3 - Two instances of the diagram in Figure 1.b: Pr/T nets and Full LOTOS

Note that in both cases the state ranges in an unbounded set of values. A marking may have an
unbounded number of tokens, each with values drawn from an unbounded domain. A behaviour
expression may grow unboundedly (by using parallel composition in conjunction with process
instantiation), and be parameterized by variables of infinite types.

3. Advanced framework

In the previous section a specification was conceived as a single, monolithic piece (see Figure 1.b).
We can achieve a better assessment of behavioural specification languages by introducing another
dimension in our framework, that has to do with specification decomposition. Formal
specifications are produced and read by human beings, who need to break them into manageable
blocks. This is where further differences emerge: different specification languages support different
system decomposition policies, that are based on different types of specification block, or
constraint.

The differentiation among constraint types is basically driven by two distinct factors: the
differentiation among event types, or classes, and the fragmentation of the global state. In systems
with complex behaviours it is quite natural to distinguish among event types, for accurately

Pr/T net
(with init. marking)

Current
Marking

Transition name
and parameters

+ Firing
game

LOTOS
specification

Current
Behaviour
expression

Gate name
and parameters

+ SOS
rules

6

modelling functional requirements and user-interaction scenarios. Similarly, one often partitions
the global state into pieces, for reflecting logical or physical boundaries within the system.

Taking into account this new dimension leads to the revised framework depicted in Figure 4. Note
that the splitting of the event and the global state allows us to explicitly represent also event-to-
event and state-to-state constraints.

The purpose of the state-event framework in Figure 4 is to distill and compactly represent the
essentials of behavioural description. The meanings of box, circle and hexagon in the diagram are
as discussed for Figure 1, except that now the language semantics is left in the background: the
hexagon just represents a specification block, or constraint. Let us shortly introduce the five
constraint types.

Figure 4 – A conceptual framework: the ST.EVE square

1. Invariants.

The hexagon labelled ‘Type 1’ connects two state variables (could be, in general, any
number), and is meant to represent specification chunks that constrain the possible values
simultaneously taken by those variables during system operation. These state-to-state
constraints are widely known as state invariants.

2. Pure event constraints.

The hexagon labelled ‘Type 2’ connects two event types (could be, in general, any number),
and is meant to represent specification chunks that constrain the possible instances
(occurences) of those events. Recall that each event type could be instantiated several or
infinite times, thus yielding multiple event occurrences. The purpose of the constraints is
exactly to express the ‘when’ (in terms of relative ordering) and possibly the ‘what’ (in
terms of data values) of event instances. Note that the ‘what’ is here limited to the
consideration of event values, if any, not state values. Thus, event-event relations may be
used for expressing aspects such as temporal ordering (sequence), causality, cyclic
behaviour, choice, synchronisation, simultaneity, independence, interleaving, priority.
Furthermore, we certainly allow for hierarchical definitions, although this is not made
explicit in the graphics: complex constraints can be defined in terms of simpler ones.

3. Disjoint-events/shared-variables.

The hexagon labelled ‘Type 3’ connects exactly one event type and two (could be more)
global state fragments, and is meant to represent specification chunks that constrain the

Type 4

Type 2

Type 3

Type 1

Event
type

Global
state
fragment

constraint
Type 5

7

occurrence of events of that type by relating them, via pre-conditions and post-conditions, to
the connected portion of the global state. Note that pre- and post-conditions refer
exclusively to state variables, and possibly to the parameters of the event under
consideration, not to other events. In other words, information about the history of past
events is exclusively available via the current system state. Figure 5.a represents the idea
that, in this scenario, constraints are in one-to-one relation with event types, but may share
state variables. One could say that the constraints interact by a shared-variable policy.

4. Shared-events/disjoint-variables.

The hexagon labelled ‘Type 4’ connects two event types (could be more) and exactly one
portion of the global state, intended as disjoint from those connected to other constraints in
the specification. Similar to the pure event-event constraint, this type of specification
chunk constrains the possible instances of several event types. However, each constraint
can now encapsulate a disjoint portion of the global state, and use it, in conjunction with the
connected events, for expressing pre- and post-conditions on event occurrences. The
constraints interact purely by a shared-event policy (hand-shake, or rendez-vous). This
circumstance is pictorially represented in Figure 5.b.

(a) (b)

Figure 5 – (a) disjoint-events/shared-variables, and (b) shared-events/disjoint-variables

Figure 6 is a simple transformation of Figure 5 in which the graphical elements in one-to-
one relation are collapsed: constraints collapse into events in case (a), and state variables
collapse into constraints in case (b). These diagrams are more easily recognized as
representative of various specification paradigms, as will become clear later when we
consider concrete examples.

Figure 6 – (a) disjoint-events/shared-variables, and (b) shared-events/disjoint-variables

5. General case. The hexagon labelled ‘Type 5’ is meant to represent constraints that can

freely insist on any portion of the global state and any subset of event types, and share both
events and state variables. This case represents the least restricted type of specification
chunk.

8

4. Simple constraints

In this section we discuss in more detail the elementary constraints of types 1 and 2 identified in
Figure 4, and we mention how they are actually instantiated by some formal languages.

4.1 Invariants

We use this type of constraint for expressing relations that must be preserved among state variables
regardless of the events that may change them. Figure 7 illustrates a set of four state variables and a
set of four invariants that relate them pairwise. LivesIn and worksIn are relations in People × Cities.
Whatever event may occur that changes the values of one or more variables, these must keep
satisfying the constraints for the whole duration of a possibly infinite system run. According to the
specification, not all persons must necessarily work, and not all populated cities must necessarily
have people that work there. Dom and ran denote, respectively, the domain and range of a binary
relation.

Figure 7 – Four state invariants

Several formal languages support the explicit formulation of invariants: examples are Z, B, and
TLA.

Remarks

No realistic specification (language) can limit itself to the pure expression of invariants. The
identification of the state variables and the relations that must be preserved as the system evolves
may be an convenient starting point; however, this provides no information about what can actually
happen, that is, about the nature and temporal sequence of events. For this reason, some
specification techniques, B for example, adopt invariants as a sort of initial contract that the
subsequent, more detailed behavioural specification is expected not to violate.

4.2 Pure event constraints

What is an event? Probably the most simple and general definition is suggested by physics: an
event is a point in space and time. The pair (room B, 9.00 am) represents an event, one that
happens in room B at 9.00 am. Assuming a one-dimensional space, an event is a pair (x, t), where x
and t real numbers. Figure 8 illustrates a set of four events and a set of four constraints that relate
them pairwise. Events (x1, t1) and (x2, t2) occur on a train running at constant speed, respectively

livesIn

persons workers

worksIn ran(worksIn) ⊆ ran(livesIn)

workers ⊆ persons

persons = dom(livesIn) workers = dom(worksIn)

9

at the front and rear of it: their space distance is TrainLength. Events (x1’, t1’) and (x2’, t2’) occur
on the ground, simultaneously: their time distance, relative to the ground system, is zero. If we
insist that (x1, t1) and (x1’, t1’) are the same event as seen, respectively, from the train and from
the ground, their coordinates must be related by the Lorentz transformation Lorentzv(x, t, x’, t’):

22 /1

'.'

cv

tvx
x

−

−
=

22

2

/1

')/('

cv

xcvt
t

−

−
=

where v is the speed of the train and c is the speed of light. The same applies to events (x2, t2) and
(x2’, t2’).

Figure 8 – Events and constraints for measuring the length of a running train

.
The diagram can indeed be seen as a behavioural specification: the system behaviour is composed
by any quadruple of events that satisfies the constraints. These are the essential events involved in
the experiment of measuring the length of a running train, as described in [E16]. In particular, if the
constraints are respected, the space distance between events (x1’, t1’) and (x2’, t2’) always provides
the length of the train as measured from the ground, which turns out to be shorter than the
TrainLength measured from the train.

The limit of this specific instantiation of pure event constraints is that the solution of the network of
constraints only accounts for finite sets of actual events, since the boxes actually represent event
instances. Unlike the case of state invariants, every alternative solution here is another finite
system run, and infinite behaviours are out of reach.

For this reason, many formal specification languages omit time information from events, or just use
relative rather than absolute time measures, and succeed in supporting finite representations of
infinite event occurrences. Examples are CCS, CSP and (Basic) LOTOS. For example, the four
constraints in Figure 9 can be expressed by the four LOTOS processes defined below. Each
constraint/process captures a fragment of information about the relative orderings of two parameter-
less events. Although in principle one could have breakfast on the way to the office, due to the
need to feed the dog at home, but only after breakfast, the latter is taken at home.

Process P1[wakeUp, breakfast] := wakeUp; breakfast; P1[wakeUp, breakfast]

Process P2[wakeUp, drive] := wakeUp; drive; P2[wakeUp, drive]

Process P3[breakfast, feedDog] := breakfast; feedDog;P3[breakfast, feedDog]

Process P4[feedDog, drive] := feedDog; drive; P4[feedDog, drive]

The processes can then be composed by the LOTOS parallel expression:

 x1-x2 = TrainLength

Lorentzv(x1, t1, x1’, t1’)

x1 t1 x2 t2

t1’ = t2’ x1’ t1’ x2’ t2’

Lorentzv (x2, t2, x2’, t2’)

10

(P1[wakeUp, breakfast] |[wakeUp]| P2[wakeUp, drive])
|[drive, breakfast]|

(P3[breakfast, feedDog] |[feedDog]| P4[feedDog, drive])

Figure 9 – Pure event constraints for some daily activities

The reader may object that the small specification above is not a valid example of pure event-
oriented reasoning, since behaviour expressions represent evolving state information, as discussed
Section 2. However, we insist in ascribing pure behaviour expressions to pure event-oriented
thinking. A pure behaviour expression is one that does not manipulate data. In fact, in Basic
LOTOS one can’t write anything but pure behaviour expressions. And indeed, while the example
above makes use of only a few behavioural operators (namely action prefix, process instantiation
and parallel composition), the set of expressive tools for supporting pure event-oriented
specification is wider, and includes operators such as choice, interleaving, enabling, disabling.

We claim that pure event-oriented specification can indeed be achieved also by making explicit use
state variables, as long as (i) these assume finitely many values, and are used only for event-
ordering purposes, not for representing data structures, and (ii) the behaviour is described in terms
of instances of a finite set of parameter-less events (as in the example above). For example, one
can readily replace the four Basic LOTOS processes above by equivalent, two-state machines.
And, in the same way in which one can compose Basic LOTOS processes in a number of ways, via
choice, interleaving, partial synchronisation, enabling, disabling, and so on, one can consider
equivalent, or similar operations on state machines, along the lines of Statecharts [H87].

Remarks

Is pure event-oriented specification any useful? Several researchers and developers tend to answer
negatively, based on the idea that a good model for the global system state is a necessary step for
building a useful specification. On the contrary, our experience with applications of process
algebras, in their data-less forms, seems to indicate that pure event-oriented thinking does offer
some advantages, although these only apply to the very early stages of system conception .

Let us first point out the typical limitation of this method: by reasoning solely in terms of temporal
ordering of pure events, we cannot record any data and refer to it later for deciding about the
possible occurrence or value of some event. Consider the evergreen example of a vending machine.
At a very high abstraction level, its behaviour can be described in terms of a small number of pure
events, such as InsertCoin, SelectItem, GetChange, GetChocholate, GetTea, and the like. In a pure
event-oriented description, we would not be allowed to refine, say, the InsertCoin events by

P1

P2

P4

P3

wakeUp breakfast

drive feedDog

11

numeric parameters indicating coin values, nor could we accumulate these values in an internal
variable, for later deciding whether or enough money was inserted for enabling a GetChocolate
event. Actually this limitation could be circumvented by coding (finitely many) values into event
names, yielding names such as Insert5, Insert10, Insert20, Insert50, … and by growing event trees
in a way which carefully keeps track of the number of different Insert events up to any stage along
each path. But, due to combinatorial explosion, very soon this approach would lead to
unmanageable complexity. On the contrary, a combined usage of parameterized events, such as
Insert(x: Coin), and state variables, such as CurrentDeposit, would yield a simple description. A
state variable is enough for keeping track of the relevant events, abstracting from the order in which
they have occurred.

In conclusion, we believe that pure event-oriented thinking can be used mainly for providing very
abstract, and very early behavioural descriptions of a wide class of reactive systems. They would be
even more useful if formal refinement techniques were available for smoothly introducing state
information. Often the supporters of state-oriented thinking criticize process algebraic approaches
by saying that they cannot scale up to realistic system sizes, and that they are only good at
describing toy examples such as vending machines. Our reply is that a vending machine is indeed a
very complex object, as demonstrated by its frequent malfunctioning; it could be described by very
complex internal state structures and event patterns. It is the specifier’s choice of a very high
abstraction level that makes the description so simple. Whether the level is too high, and the
description too naïve to be of any practical use, even for pure documentation purposes, is another
question, which is left open for further discussion.

5. Complex constraints

In this section we discuss in more detail the constraints of types 3 and 4 identified in Figure 4, and
we mention how they are actually instantiated by some formal languages.

5.1 Disjoint-events/shared-variables

The structure of specifications of this type is abstractly depicted in Figures 5.a and 6.a. These
specifications are structured around event types: the specification is a set of formal fragments, or
blocks, each describing one event type and its associated pre- and post-conditions, which involve a
number of state variables. Events are usually expected to occur one at a time. Specification blocks
may share state variables.

Many behavioural formal models adopt this specification paradigm, possibly combined with
invariants. Z, B, TLA are fundamentally based on pre- and post- conditions and invariants. For
example, in Z one can write a schema describing the global state and its invariants, and other
schemata, one for each operation. These identify pre- and post-conditions on state variables, and
input and output parameters associated with the operation.

Predicate/Transition nets express pre- and post-conditions on events in a very appealing, partly
graphical way. The net of Figure 10, that matches Figure 6.a, describes a portion of a car share
system. Places livesIn and worksIn represent relations in People × Cities (as in Figure 7): each
token in these places is an element of the relation, that is, a (person, city) pair. The values of the
tokens requested and produced by transition ‘Pairing’ are indicated in the multisets of terms (pairs)
appearing in the shown arc inscriptions. The transition is characterized also by an input parameter –
the system user indicates the city c where the involved persons p1 and p2 must live -- and includes a

12

predicate (c ≠ d) establishing that the city where they work is different, so that it makes sense for
them to share a car.

Figure 10 – A detail of a predicate/transition net for a car share system

Remarks

The success of the disjoint-event/shared-variables approach, using pre- and post-conditions, is due
to its simplicity: it allows one to concentrate on event types individually. One does not have to
think explicitly about patterns of events in time: these are implicitly defined by the ‘game’ of pre-
conditions and post-conditions. Specifiers only define the rules of this game. The advantage of this
approach is also its limitation: one cannot directly express ‘views’ about system behaviour made up
of several events.

5.2 Shared-events/disjoint-variables

The structure of specifications of this type is abstractly depicted in Figures 5.b and 6.b; they are
structured into chunks that describe the behaviour of one logical or physical entity, each
encapsulating a portion of the global state and insisting on a number of events. Each fragment –
possibly called a process -- expresses ordering and other constraints on the occurrences of these
events. Entities interact by rendez-vous (shared events).

This is the specification paradigm adopted by process algebraic languages such as CCS and CSP.
The temporal constraints on events are expressed by behaviour expressions, built in terms of
behavioural operators. Mutual influences between event parameters and data values are also
expressible, whenever these languages offer data representation capabilities.

Figure 11, matching Figure 6.b, illustrates three LOTOS processes People, Cities and a non-
specified R, that interact by sharing events birth, death, and a non-specified event g. Events birth
and death have the same structure: they have two parameters, namely a person and a city. The
LOTOS syntax for the composition is:

 (People[birth, death, g](P)

|[birth, death, g]|

Cities[birth, death, g](C)

)
|[g]|

R[g](X, Y)

Input: c

teams livesIn worksIn

c ≠ d

[[…]]

Predicate

Transition

Place

Arc inscription
(multiset)

[[(p1,d), (p2,d)]]

[[(p1,c), (p2,c)]]

[[(p1, p2)]]

‘Pairing’

13

Figure 11 - Interacting LOTOS processes

Minimal definitions for processes People and Cities could be as follows. We use underscore ‘_’ for
don’t care variables.

Process People[birth, death] :=

OnePerson[birth, death]
|||

i; People[birth, death]

where

Process OnePerson[birth, death] :=

birth ?p: person ?_: city;

death !p ?_: city;
stop

Process Cities[birth, death](C: setOf City) :=
 birth ?_: person ?aCity: city;

 ([aCity In C] -> Cities[birth, death](C)
 [][aCity NotIn C] -> Cities[birth, death](C union [aCity])

)

[] death ?_: person ?aCity: city;

 Cities[birth, death](C minus [aCity])

Process Cities handles the set C of cities currently represented in the system. LOTOS variables are
not exactly state variables, as found in imperative languages: they do not represent memory
locations that can be re-assigned values. Each process is parameterized by ‘logical’ variables, che
get bound to the values passed via actual parameters when the process is instantiated; updating
these variables is achieved by re-instantiating the process with different actual parameters. These
variables are represented in Figure 11 by dotted lines.

An object-oriented instance of the paradigm of communicating agents that share events and
encapsulate state information, where the latter is represented as traditional, imperative state
variables, is described in [BD98].

6. Design choices behind a new mixed specification model

In this section we consider the recently introduced model of Abstract State Processes [BB03], and
match its features against the conceptual framework introduced so far, with the purpose to better

Process

Event (gate + data)

Process
parameter
 Y C X

People Cities R

birth death g

14

assess the design choices behind its definition. Abstract State Processes enrich ASM (Abstract
State Machines) with few behavioural operators borrowed from process algebra, for supporting
flexible specification of concurrent, distributed, reactive systems.

As a first step, in Figure 12 we instantiate the general diagram of Figure 1.b w.r.t. Abstract State
Processes.

Figure 12 – Instantiating the diagram of Figure 1.b for Abstract State Processes

The diagram reflects the following design choices.

- Event. In Abstract State Processes, an event is an update set, that is, a set of pairs,
each consisting of a memory location and a value to be assigned to it. The updates
take place synchronously, and affect the current state σ. The notion of synchronous
updates is exactly as found in the original ASM model.

- State. In Abstract State Processes, a state is a pair (B, σ), called configuration, where
B is a behaviour expression B and σ is a traditional ASM state, that is, a structure of
functions (we shall still use the term ‘state’ for referring to this element). Thus, in
Abstract State Processes we combine two fundamental ways to represent state
information, as adopted, respectively, by imperative languages and by process algebra
(both were represented in Figure 3)

The inference rules of the abstract state process semantics [BB03] allow one to derive transitions of
the general form:

(B, σ) --- u ---> (B’, σ’)

where (B, σ) is the current system configuration, u is an update set (an event), and (B’, σ’) is the
next configuration. The state σ’ is obtained from σ by applying the update set u to σ’, exactly as
done for ASMs.

We consider now the problem of relating Abstract State Processes with the conceptual framework
of Figure 4. In this formalism, a system is conceived as a collection of interacting processes, and a
specification is structured as a collection of process definitions, representing the constraints of our
framework. In the current definition of Abstract State Processes [BB03], any process in a
specification can refer to any element of the σ state, and update it. Since events are update sets, a
process sharing with other processes portions of the state will share, in general, also events, unless
read-only variables are explicitly introduced. Let us be more precise on the way in which two
abstract state processes may share an event. Similar to ASM, two parallel processes P1 and P2
share an event/update set U, when P1 can produce event U1, P2 can produce event U2, and U = U1

(Bex0, σ0)

Bex

Update set

+ inference rules of
semantics

σ

15

∪ U2. U1 and U2 must update in the same way the locations they share (if any). Furthermore, the
selective synchrony parallel composition of Abstract State Processes, borrowed from CSP and
LOTOS, implies synchronisation, and the union of update sets, in a more selective way. Only when
the composed processes are ready for events that include the updating of a common location
explicitly indicated by the user in the operator itself, do the two processes synchronize; otherwise,
their events are interleaved. The composition ‘P |[f]| Q’ means that P and Q may produce a joint
event only if are both ready to consistently update, possibly among other locations, the same point
of function f. For example, P may be ready to produce the updates g(x) := a || f(y) := b, and Q may
be ready to produce the updates f(y) := b|| h(z) := c; then, their composition yields the updates:

g(x) := a || f(y) := b || h(z) := c

Based on the above discussion, and referring to Figure 4, we would be induced to view Abstract
State Processes as type 5 constraints, and to represent them as in Figure 13.

Figure 13 – Interacting abstract state processes

However, while diagrams such as the one in Figure 13 suggest (as precisely intended) that events
and state components are equally important factors in structuring a specification, Abstract State
Processes do not fully reflect this symmetry. When understood as update sets, events are
conceptually subordinate to the state component, and it does not make sense to think of defining
and partitioning the event space of a system before providing its state structure. And, even when
the state structure is fully defined, the different combinations of event types (different tuples of
locations to be simultaneously updated) that may emerge at execution time tend, at least in
principle, to explode combinatorially: event types do not lend themselves as a natural means for
structuring the specification.

In conclusion, Abstract State Processes do not seem to find a fully convincing place in the state-
event framework we have successfully used for the other formalisms mentioned in this paper. The
reason is that the notion of event with which we have equipped them is not sufficiently independent
from that of state. Do we then need a new, stronger notion of event for Abstract State Processes?

7. Conclusions

We have introduced, in two steps, a conceptual framework for assessing formal specification
languages with respect to their ability to model complex system behaviours. The framework
explicitly handles the primitive concepts of state, event, and five types of constraint. Event-event,
state-state, and state-event constraints correspond to the various constructs offered by specification

Update sets

Processes

Memory
locations
(function points)

16

languages for decomposing system specifications into manageable chunks (schemata, rules,
processes, blocks…). We believe that recognizing explicitly these fundamental and different ways
of thinking about system behaviours before selecting a formal specification model should help in
making more conscious decisions in the upper phases of software development. Our experience
indicates that often software engineers and computer scientists express their opinions and
preferences on modeling techniques without referring explicitly to the simple ideas and options that
we have tried to distill into the ‘st.eve’ framework.

Several questions are posed by this paper, and left open. Is the most general form of constraint –
type 5 of Figure 4 – any useful? In other words, are there advantages, in terms of expressive
flexibility, in working with specification units that may share simultaneously state variables and
events? We suspect that the increased expressive potential offered by this mix might not be of
much practical use, since specifiers would miss the divide-and-conquer strategies based on event
types or, separately, on state encapsulation, and would be left with no clear guidance for
specification decomposition. For this reason, many methods only admit constructions of type 3 or
type 4, that are proper sub-cases of type 5: the apparent limitation is indeed adopted for promoting
discipline in writing specifications (this reminds us of a saying attributed to the French composer
Pierre Boulez: ‘When everything is allowed, nothing is possible’).

In the very early phases of system conception, it may happen that constraints of mixed types are
incrementally produced. For example, after a very abstract, stateless specification given in terms of
pure events, one may provide a refined specification involving the state structure and a refinement
of the events with data parameters. Much remains to be investigated about the practical usefulness
of these mixed specifications, and about the associated consistency and verification problems.

On a longer run, an attractive problem is the relation between natural language descriptions of
system requirements and the different formal specification paradigms. Appropriate restrictions of
natural language are likely to facilitate one or the other type of formalisation.

References

[AL93] M. Abadi, L. Lamport, ‘Composing Specifications’, ACM Transactions on Programming Languages and

Systems 15, 1 (January 1993), 73-132.
[A96] J.-R. Abrial, The B-Book – Assigning Programs to Meanings, Cambridge University Press, 1996.
[BB87] T. Bolognesi, E. Brinksma, ‘Introduction to the ISO Specification Language LOTOS’, Computer Networks

and ISDN Systems, Vol. 14, No. 1, pp. 25-59, North-Holland, 1987.
[BB03] T. Bolognesi, E. Boerger, ‘Abstract State Processes’, in: E. Boerger, A. Gargantini, E. Riccobene (eds),

Abstract State Machines - Advances in Theory and Applications, Proceedings of 10th International

Workshop, ASM 2003, Taormina, Italy, March 2003, LNCS 2589, Springer-Verlag 2003..
[BD98] T. Bolognesi, J. Derrick, ‘Constraint-oriented style for object-oriented formal specification’, IEE Proc.-Soft.,

Vol. 145, No. 2-3, April-June 1998.
[BRJ99] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User Guide, Addison-Wesley, 1991.
[BS03] E. Boerger, R. Stark, Abstract State Machines, Springer-Verlag 2003.
[E16] A. Einstain, Űber die spezielle und allgemeine Relativitätstheorie (gemeinverstandlich), 1916.
[G93] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Boerger, editor, Specification and Validation

Methods, pages 9–36. Oxford University Press, 1995.
[H85] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.
[H87] D. Harel, ‘Statecharts, a visual formalism for complex systems’, Science of Computer Programming, 8,

North-Holland, 1987.
[JR91] K. Jensen, G. Rozenberg, High-Level Petri Nets, Springer-Verlag, 1991.
[L03] L. Lamport, Specifying Systems, Addison-Wesley, 2003.
[M80] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science, Vol.92, Springer-

Verlag, 1980.
[S89] J. M. Spivey, The Z Notation – A Reference Manual, Prentice-Hall, 1989.

