
The Cyclades Collection Service

Leonardo Candela Donatella Castelli Pasquale Pagano
Istituto di Scienza e Tecnologie dell’Informazione “Alessandro Faedo”

Consiglio Nazionale delle Ricerche
Area della Ricerca CNR di Pisa

Via G. Moruzzi, 1 - 56124 PISA - Italy
{L.Candela|D.Castelli|P.Pagano}@isti.cnr.it

Abstract

This report introduces a digital library service, termed Collection Service, designed to sup-
port the dynamic creation of virtual collections of documents. Collections are created by speci-
fying a set of descriptive criteria that express the information needs of a given community. The
Collection Service provides two capabilities: on the one hand it constitutes a tool for dynam-
ically structuring the information space according the needs of particular user/communities,
on the other it supports the implementation of more efficient digital library services.

The paper exemplifies this service by showing how it has been instantiated in the Cyclades
digital library system and how it supplies support for efficient and effective query routing.



2 The Cyclades Collection Service

Contents

1 Introduction 3

2 Cyclades: a Personalized and Collaborative DL 4

3 Collection Service Functionality 5
3.1 Collection Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Membership Condition Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Collection Service Architecture 8

5 Language Model and Query-Based Sampling 9

6 Source Selection Technique 12

7 Implementation 14
7.1 The Collection Service API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7.1.1 XML objects: XML schemas . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.1.2 Efficiency Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7.2 The Collection Service GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

8 Related Work 25

9 Conclusion 25



L. Candela, D. Castelli and P. Pagano 3

1 Introduction

The building of a virtual library from distributed information resources was first made feasible by
the Z39.50 community [2]. The Z39.50 protocol allows complying systems to search on multiple
distributed databases and view the selected information sources as a single library. Although a
Z39.50 Profile for Access to Digital Collections has been developed, the Z39.50 Protocol has been
mainly used for bibliographic databases. A recent trend in digital libraries (DLs) is building by
aggregating content by a set of different heterogeneous sources [10] that may grows along the
time. The aim of these new generation DLs is to serve not only the information needs of those
communities for which the component sources were initially set up, but also the needs of other
multidisciplinary communities whose interests span across various information sources. One of
the main problems encountered in designing these DLs is the implementation of an efficient and
effective resource discovery. The heterogeneity of the content and the huge dimensions of the
stored information render this problem hard to solve. The most common solution used in the past
consists in structuring the whole information space into a number of established content classes,
possibly organized hierarchically. Before formulating her/his query a user is asked to navigate in
the hierarchy and to locate the class that best satisfies his/her needs. This organization is based
on some fixed set of criteria – e. g. subject, date, location – that reflects both the typology of the
underlying information sources and the needs of the expected user communities. This solutions
fails for expandable DLs. Each new document added to the registered sources, or stored into the
new sources must be explicitly indexed according to the terms of the established organization. This
organization may over the time becomes obsolete and not capable to satisfy anymore the needs of
the new communities of users.

This paper presents a different approach to this problem that works also for this new class
of DLs. This approach has been designed for component-based DLs, i. e. DLs that are built as
a federation of co-operating networked services. It has been currently experimented within the
framework of the Cyclades (IST-2000-25456) EU funded project but it quite general and can
be applied in many others component-based architectural frameworks. The key elements of our
approach is a new type of service, the Collection Service (CS). This service is a dynamic content
space mediator that mediates between the real organization of the content space, i. e. the set of
registered content sources, and an organization into virtual sets of documents, termed collections,
that are meaningful from the perspective of the DL user communities. Via collections users can
collect together a set of resources logically correlated in order to satisfy an information need and
refer to those as an information unit. The most important characteristics is that this set of resources
is characterized via logical criteria and it is dynamic, e. g. if a new resource meet the collection
definition criteria then it become automatically part of the set of collection’s documents. The CS
accepts requests for the creation of new collections, expressed in term of a set of criteria and, by
exploiting the information about the underlying architectural configuration, dynamically generates
collection descriptive metadata that are disseminated on request to the other services.

The rest of the report is structured as follow: the next section describes the Cyclades system.
Section 3 presents the functionality of the CS in detail, while Section 4 introduces its logical
architecture. Section 5 and 6 presents two key functions that are implemented by the CS service:
the automatic archive content description acquisition and the archive selection. Sections 7 describes
in detail a how the CS has been implemented in the Cyclades system. Section 8 presents related
work and Section 9 concludes.



4 The Cyclades Collection Service

Figure 1: Logical view of Cyclades functionality.

2 Cyclades: a Personalized and Collaborative DL

Cyclades1 has developed an open collaborative virtual archive service environment supporting
both single scholars as well as scholarly communities in carrying out their work.

The objective of Cyclades is to provide an integrated environment for users and groups of
users (communities) that want to use, in a highly personalized and flexible way, open archives,
i. e. electronic archives of documents compliant with the Open Archive Initiative (OAI) [13]. The
OAI develops and promotes interoperability standards that aim to facilitate the efficient dissem-
ination of content. In particular, the OAI defines an easy-to-implement gathering protocol over
HTTP, termed OAI-PMH [11], which give data providers (the individual archives) the possibility
to make the documents’ metadata in their archives externally available. This external availabil-
ity of the metadata records then makes it possible for service providers to build higher levels of
functionality. To date, there is a wide range of archives available in terms of its content, i. e.
the family of OAI compliant archives is multidisciplinary in content. Under the above definition,
Cyclades is an OAI service provider (see Figure 1) and provides functionality for (i) advanced
search in large, heterogeneous, multidisciplinary digital archives; (ii) collaboration; (iii) filtering;
(iv) recommendation; and (v) the management of records grouped into collections.

The Cyclades system architecture is depicted in Figure 2. It consists of a set of independent
but interoperable services accessible via Web:

• The Access Service that is responsible for harvest-based information gathering, plus indexing
and storage of gathered information in a local database;

• The Collaborative Work Service that supports collaboration between members of communities
and project groups by providing functionality for creating shared working spaces referenc-

1http://www.ercim.org/cyclades/



L. Candela, D. Castelli and P. Pagano 5

Access Service

Archive1 ArchiveNArchive2

Collection Service

Mediator Service Search and Browse Service

Collaborative Work Service

Filtering and
Recommendation Service

OAI-PMH

Figure 2: Cyclades Services Architecture.

ing users’ own documents, collections, recommendations, related links, textual annotations,
ratings, etc.;

• The Filtering and Recommendation Service that supports (a) information filtering on the
basis of individual user profiles, and profiles of the working communities the user belongs to
and (b) recommendations about new published articles within a working community;

• The Search and Browse Service that supports users in formulating queries, develops plans
for their evaluation and provide an advanced multilevel browse facility completely integrated
with the search facility;

• The Mediator Service that acts as a registry for the other services and provides security, i. e.
it checks if a user is entitled to use the system, and ensures that the other services are only
called after proper authentication.

The CS introduces a mechanism, the virtual collection, that allows users/communities to define
their own information space, i. e. the set of documents they are interested in, via a set of charac-
terization criteria. The most important feature of this mechanism is that the set of documents is
dynamic, it reflects the dynamism of the Cyclades information space builded as aggregation of a
dynamic set of OAI-PMH compliant archives. Virtual collections make transparent the real, “by
publisher” organization of the information space to the users. Each community, potentially each
user, is enabled to tailor the whole Cyclades information space on his needs and reorganizing it
using the collection mechanisms.

By exploiting the reduction and readaptation of the information space to particular information
needs, Cyclades provides higher-quality result sets and a more faster search. This is in agreement
to what is stated by Blair in [4]“the best strategy for searching on a large system is to first reduce
it to a small document collection”.

3 Collection Service Functionality

Cyclades allows users to follow the search strategy proposed in [4]. Here a two-stage search
process is presented in order to improve the document retrieval on large collections. The first phase



6 The Cyclades Collection Service

of this process consists of the partitioning of a large document collection into small collections (a
partition), while the second phase consists of submitting the query representing the information
needs to the right partition, i. e. the partition which is likely to contains the desired documents. The
Collection Service supports the partitioning mechanism via the definition of virtual collections. A
collection is usually defined as a statically identified set of documents. The Cyclades collections
are virtual as the system does not gather and store the documents belonging to a collection but it
characterizes and identify them via a set of definition criteria. This means that CS collections are
dynamic, i. e. they follow the dynamism of the underlying information space. If a new document
meets the collection definition criteria then it is automatically included in the collection. The
requests for the creation of new collections are submitted to the CS. These are formulated via
a declarative collection definition language termed Membership Condition language that will be
presented in Section 3.2.

Defined collection are stored by the CS and information about them is disseminated to the
other services upon request. A collection is described by Collection Metadata, i. e. a set of data
about the collection that comprises identification and managing information. The format and and
the semantics of this metadata are described more in detail in Section 3.1.

The collection metadata are generated by a stepwise process that is composed by the following
phases:

1. Via the CS GUI (Section 7.2) the user expresses his own information need using a definition
language (Section 3.2). Note that this kind of information need is not a one-time request,
i. e. is not intended for the identification of the single document the user is interested in, but
it represents an expression of interest about a set of documents with certain characteristics
where further to search in for a document;

2. The system processes the request of the user in order to generate the collection. During this
phase detailed data about the collection (see Section 3.1) are derived by the system using
a set of internal and automatic procedures. The most important procedure identifies the
documents that belong to the collection. These documents are characterized by the set of
characterization criteria that forms the Retrieval Condition (see Sections 3.1 and 6).

3. The collection is now ready to be consumed by other Cyclades’ services. The main func-
tionality that Cyclades implements over the collection mechanism is the two-stage search
process. The Search and Browse Service allows, via its GUI, to select one or more collec-
tions where to search in. The Filtering and Recommendation Service is able to recommend a
collection, i. e. an entire set of documents with a certain topic, to a user if it meets the user
profile.

In what follows we will describe in more details the first two phases of the process described above.

3.1 Collection Metadata

Collection Metadata is the information that the system stores about a collection and disseminates
upon request. It is composed by the following fields:

- Identifier - the unique identifier of the collection;

- Name - the name of the collection;

- Description - the textual description associated with the collection;

- Membership Condition (MC) - the condition that the creator has used to define the collection.
It is maintained as a formal specification of the collection;



L. Candela, D. Castelli and P. Pagano 7

- Retrieval Condition (RC) - the condition that specifies how to retrieve, effectively and effi-
ciently, the documents belonging to the collection;

- Parent - the identifier of the parent collection. It is used to maintain the hierarchical orga-
nization in the set of collections.

This is the minimal set of fields i required to manage collections. It contains identification informa-
tion (Identifier, Name and Description), information on how to formally (MC) and operationally
(RC) retrieve the content of the collection and information (Parent) about its position in the the
hierarchical organization of the set of collections. This set of fields can be extended, with other
kind of information - e. g. statistics about content, policies to regulate the access, and so on - in
order to allow other service to have a more rich and detailed description of the collection. The
richer this set of fields is the more accurate is the functionality that the other services can supply
building over collections.

The main issue that the CS comes up against is the automatic derivation and generation of
these metadata fields. A lot of them, e. g. Name, can be derived directly from the definition
criteria expressed by the user, others are generated by the system, e. g. Identifier, whereas others
require supplementary knowledge that the CS must either receive as input or acquire automatically.
Section 5 and 6 discuss the latter case in more detail.

3.2 Membership Condition Language

The CS allows users to specify their own information needs via a declarative collection definition
language termed Membership Condition Language. This language must be simple, expressive and
quite powerful to capture any kind of information need arising from users. On the other hand,
the definitions given in this language must be translated into a condition that all the information
sources constituting the information space understand.

The syntax of the language that has been used in the prototype realization of the Cyclades
CS is given below using the Backus-Naur Form (BNF):

query ::= condition* [, (archiveList)]
condition ::= ([weight,] field, predicate, value)
weight ::= + | - | 1..1000
field ::= [schemaName":"]attributeName
predicate ::= cw | < | <= | >= | > | = | !=
archiveList ::= archiveName | archiveName, archiveList

This is an ALTAVISTA-style language where a query is a set of conditions, which are either op-
tional, mandatory (+) or prohibitive (-). In addition, it allows for weighting of optional conditions
(e. g. for relevance feedback). With respect to the structure of metadata records it assumes that
they have a one-level structure and allows for the use of namespace (schemaName). The set of pred-
icate supported is composed from the classical comparison operators (<, <=, >=, >, = and
! =) plus cw operator used to specify a condition on the content of a text field, e. g. (description,
cw, library) stands for “the field description contains the term library”.

This language has pros and cons:

• it is quite simple and intuitive as it is similar to others, well known query languages;

• it is quite general, the assumption about the one-level metadata record structure can be
simply removed using the attribute name path instead of the attribute name;

• it is not enough expressive as others query languages are, e. g. SQL. We are currently working
at the evaluation of the right grade of expressive power required in order to define collections.



8 The Cyclades Collection Service

Collection Service GUI

MD
Repository

MC

RC Generation
Module

Source Selection
Module

RC

Use

MC + RC

Language Model Generator
Load

Query Sampling
Module

MC

Collection
Service

API

U
s

e

Digital Library Infrastructure

G
e

 t
C

M
API

Store
MD

Language
Model
Module

Language
Model
Module

Language
Model

Repository

MD Generation
Module

Figure 3: The Cyclades Collection Service Logical Architecture.

4 Collection Service Architecture

Figure 3 shows the logical architecture of the Cyclades CS. This picture shows how the initial
user description of the collection, i. e. the membership condition MC, is manipulated in order to
produce the collection metadata MD that are stored into the system and disseminated upon request
via the CS API, in accordance with the process presented in Section 3.

The CS contains a module, the Retrieval Condition Generation, that is responsible for the
generation of the retrieval condition RC, i. e. the condition that is used in order to find the doc-
uments belonging to the collection. The RC consists of the membership condition plus a set of
automatically selected archives2 that are relevant to the conditions specified via the membership
condition.

In order to identify this set of archives the Retrieval Condition Generation module uses the
Source Selection Module. This module is responsible for the solving the source selection problem,
i. e. the selection of the subset of information sources relevant to a given query among the set of
accessible sources (see Section 6). Cyclades can be considered a distributed search environment.
As previously stated the Access Service is responsible for harvest-based information gathering,
plus indexing and storage of gathered information in a local database. From the design choice of
Cyclades the Access Service does not have a global index for all the archives, instead it has an
index for each archive. If a query is over the whole Cyclades information space, i. e. if none of
the archives have been specified, the Access Service dispatches the query to all the archives and
then merges the results to produce the result of the query.

In order to choose the right information sources, the CS must know them, i. e. it must have
an appropriate knowledge of the content of each information source. How to best represent an
information source content is an open problem. The current approach to this problem is based on
the use of lists of terms with their frequency or term weight information also known as language
model. This approach will be presented in more detail in Section 5 where a technique used for
acquiring the language model from a set of non cooperating information sources is reported.

Finally, it is important to note that even though some of the logical modules must interact
directly with the DL infrastructure and, therefore, part of their design is strictly dependent on
that environment, the CS can be considered infrastructure independent because only a minimal
API set has to be realized.

2In the follow we will use the terms archive and information source as synonyms.



L. Candela, D. Castelli and P. Pagano 9

5 Language Model and Query-Based Sampling

Cyclades elaborates a query using the classical approach adopted in a distributed search envi-
ronment: (a) it reformulates the query for each information source – if necessary –, (b) it sends
the appropriate query to each archive and (c) it merges the results returned. In order to improve
the efficacy of this process we have introduced a pre-phase termed source selection that aims to
select the relevant information sources for the query.

The purpose of translating the information needs expressed by the user via the collection’s
Membership Condition into the collection’s Retrieval Condition is twofold: (i) on the one hand it
is necessary to rewrite the MC into the query language supported by the information source in order
to allow it to reply; (ii) on the other hand it is important to optimize, to module the information
needs expressed by the MC considering the actual state of the underlying information space. The
latter aspect is related with the source selection: the CS generates a Retrieval Condition that
shows to the Cyclades Access Service the information source to be queried in order to supply the
information need expressed by the collection.

In order to select the relevant information sources for a query, the CS must have a description
of their content. From our point of view an information source is a set of documents. The issue of
how to best describe this set is an open problem. The most widely used approach in the literature
consists in using a language model, i. e. a list of terms with their term frequency or term weight
information. As it will be clarified in the next section, this knowledge is sufficient for the source
selection technique that we have adopted.

In the Cyclades framework the information sources do not supply their own language model
as usually happens in a federated search environment. Each information source exposes his own
content, i. e. the set of records it maintains, via the OAI-PMH and the Access Service gathers this
content and stores it into a local database supplying to other services only query functionality. By
exploiting this characteristics the CS is able to acquire the language model using the query-based
sampling technique.

The query-based sampling technique has been proposed by Callan and Connell [6] for acquiring
accurate resource description3 in a context where information sources are text databases. This
technique does not require the cooperation of source providers, nor does it require that source
providers use a particular search engine or presentation technique. Resource descriptions are
created by running queries and examining the documents returned. At the end of this process a
sample of the records of the information source that represent its content is acquired. This set is
called resource description and using it the language model of the archive can be derived.

1: query = generateInitialTrainingQuery();
2: resultSet = run(query);
3: if(|resultSet| < Ltr){
4: go to 1;
5: }else{
6: updateResourceDescription(resultSet);
7: if(NOT stoppingCriteria()){
8: query = generateTrainingQuery();
9: resultSet = run(query);
10: go to 6;
11: }
12: }

Figure 4: Sampling Algorithm.

3Resource description is a kind of knowledge about the content of an information source.



10 The Cyclades Collection Service

Figure 4 shows the query-based sampling algorithm that we have extended for databases with
multiple text attributes – e.g. bibliographic records – (similar to [16]). This algorithm uses the
functions explained below:

generateInitialTrainingQuery() generates the start training query. In order to generate a
query we need: (a) a set of words among which randomly choose the ones to build the
condition and (b) a set of attribute among which randomly choose the ones to build the
condition. For each selected attribute we randomly select 1 to maxt distinct terms and for
each pair we choose an operator to relate attribute and term into the condition.

This function, like the generateTrainingQuery(), is dependent from the information source
query language and from other parameters. Here we assume that each query language sup-
ports at least conditions on single attribute of a bibliographic record. All the other aspects
are configurable.

In the Cyclades CS prototype we have taken the following design choices: (a) the words
belongs to the set of terms that characterize the second and the third level of Dewey Decimal
Classification [1] , (b) the attributes that we have used belongs to the Dublin Core4 fields,
(c) maxt = 4 and (d) the operator used is always the cw operator – the query language
supported by the Access Service is similar to the one presented in Section 3.2.

updateResourceDescription() updates the set of records that represents the resource descrip-
tion. Note that a query must return at least Ltr records before the records collected (the
top Ltr) can be added to the resource description record set. This minimum result size is
required because query returning small results do not capture source content well.

In our prototype we have use Ltr equals to 4 as proposed in [16], this is just another config-
uration aspect.

stoppingCriteria() evaluates if the stopping criteria was reached. For our best knowledge no
one has proposed significantly stopping criteria.

Callan and Connell [6] experiments have been conducted stopping the sampling after exam-
ining 500 documents, a stopping criteria chosen empirically observing that augmenting the
number of documents examined the language model does not improve significantly.

In our prototype implementation the stopping criteria is reached when the system runs
10 queries, each ones returns at least Ltr records without resource description records set
changes. This is an aspect that we plan to further investigate in the future.

generateTrainingQuery() generates the next training query. Training queries are generated as
follow:

1. randomly select a record R from resource description record set;

2. randomly select a set of attribute of R to use in training query;

3. for each attribute to be included in the training query, construct a predicate on it
by randomly selecting 1 to maxt distinct terms (stopwords are discarded) from the
corresponding attribute value and using the cw operator.

In order to investigate the accuracy of the learned resource description acquired via the sampling
technique, we have conducted some experiments whose results are reported below.

4http://dublincore.org/



L. Candela, D. Castelli and P. Pagano 11

We have considered two bibliographic information source, Archive 1, quite small and homoge-
neous5 information source, and Archive 2, larger and heterogeneous6 information source.

The experimental method was based on comparing the learned resource description of an infor-
mation source with the real resource description for that information source. Resource description
can be represented using two information, a vocabulary V of the set of terms appearing in the
information source records and a frequency information for each vocabulary term. This frequency,
also called document frequency (df), represents the number of documents containing the terms. In
accordance with [6] we have used two metrics to evaluate the quality of the resource description
acquired by sampling, the ctf ratio (CTF) to measure the correspondence between the learned (V ′)
and the real (V ) vocabulary and the Spearman Rank Correlation Coefficient (SRCC) to measure
the correspondence between the learned and the real frequency information.

CTF =

∑

i∈V ′
ctfi

∑

i∈V

ctfi
(1)

SRCC = 1− 6
n3 − n

∑
di

2 (2)

This metrics are calculated using formulas 1 and 2 where:

• ctf i is the number of times terms i occurs in the resource description of an information
source,

• di is the rank difference of common term i where term rankings are produced by learned and
actual df values,

• n is the number of terms.

Five trials were conducted for each information source and for each trial the resource description
of 500 records has been acquired. The results reported here are the average of the results returned
by the trials.

Figures 5 and 6 shows respectively the CTF and the SRCC metrics calculated by field and by
record for Archive 1, varying the number of records considered building the resource description
acquired by sampling, while Figures 7 and 8 shows the same metrics calculated for Archive 2.

By observing the CTF graphics we note that the language model acquired for the first archive
is better then the one acquired for the second one. Moreover we can note that the language model
acquired for a field has different characteristics than the one acquired for others field. The reasons
for this behavior are twofold: Archive 2 contains more records and is more heterogeneous than
Archive 1 and some fields, e. g. creator, are more heterogeneous than others, e. g. date.

By observing the SRCC graphics we can note that the quality of the language model acquired
via sampling is high, considering the record as a plain text we can found values greater that 80%
(see RECORD line).

During our experiments we have not considered the stopping criteria described earlier. The
quality of the results obtained – we have not the same regularity – has suggested us to consider a
different stopping criteria in sampling procedure than that proposed by Callan.

A more complete and detailed study of this technique is necessary and we plan to do this in
the near future. The positive and interesting aspect is that the source selection works well with
the sample acquired using our algorithm as showed in the next section.

51616 records, 13576 unique terms after stopwords removing, papers about computer science published by the
same authority.

616721 records, 79047 unique terms after stopwords removing, papers published by different authorities.



12 The Cyclades Collection Service

Archivio 1
CTF by Field

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

50 100 150 200 250 300 350 400 450 500

creator title
date.available date.issued
description.abstract RECORD

Figure 5: Archive 1: CTF.

Archivio 1
SRCC by Field

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

50 100 150 200 250 300 350 400 450 500

creator title
date.available date.issued
description.abstract RECORD

Figure 6: Archive 1: SRCC.

Archivio 2 
CTF by Field

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

50 100 150 200 250 300 350 400 450 500

creator title
date.available date.issued
description.abstract RECORD

Figure 7: Archive 2: CTF.

Archivio 2
SRCC by Field

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

50 100 150 200 250 300 350 400 450 500

creator title
date.available date.issued
description.abstract RECORD

Figure 8: Archive 2: SRCC.

6 Source Selection Technique

As already stated, source selection is the problem of selecting from a large set of accessible infor-
mation sources the ones relevant to a given query. In our case is the query is the MC, i. e. the
collection characterization criteria, while the selected information sources are used in the genera-
tion of the Retrieval Condition in order to allow a faster discovery of the documents belonging to
the collection.

The source selection problem can be formally defined as follow:

Let IS = {IS1, IS2, . . . , ISN} be a set of Information Sources. Let q be a query.
Compute E ⊆ IS such that ∀F ⊆ IS Goodness(q,E) ≥ Goodness(q,F).

Goodness is a function on the results returned by a set of IS E against a query q defined as follow:

Goodness(q, E) =
∑

ISi∈E

si

where si is the result size returned by ISi for query q.
In order to obtain the maximum Goodness value for a query it is sufficient to rank the informa-

tion sources estimating the result size returned by each one. The weighting scheme that we propose
has been obtained extending the CORI scheme [5] in order to manage bibliographic records instead
of text documents and to consider a richer query language than a keyword-based ones.

In accordance with the Membership Condition Language reported in 3.2 we consider a keyword-
fielded-based query model, this mean that a query q is defined as a list of condition (wi, ai, oi, vi)
where:



L. Candela, D. Castelli and P. Pagano 13

- wi is the weight of this condition. + mean that the condition must be fulfilled, - that the
condition must not be fulfill (the boolean NOT);

- ai is the field of the bibliographic record involved in the condition;

- oi is the operator to use, e. g. <=, =, cw, etc.;

- vi is the keyword.

For example, to retrieve all the records having author “Castelli” and subject “Cyclades” we use
the following query:

(+,author,cw,‘‘Castelli’’)(+,subject,cw,‘‘Cyclades’’)

The technique exploits the discriminatory powers of different conditions to increase the accuracy
of archive selection. This is done by summarizing the content of the information source IS via
the language model LM . As stated in Section 5 the language model consists of a list of terms
with their term frequency and it is acquired by sampling. Using it the CS is able to calculate
the document frequencies (denoted by dfi,j) defined as the expected number of records in ISi that
match against the condition cj plus other statistical values described in the follow.

Formally, the Goodness score G(q, ISi) for IS ISi and query q is defined as follow:

G(ISi, q) =





0 if ∃k ∈ [1..|q|] |wk ∈ {+,−} ∧ p(ck|ISi) = 0∑|q|
k=1 p(ck|ISi)

|q| otherwise
(3)

where the “belief” p(ck|ISi) in ISi for condition ck is defined as

p(ck|ISi) =
{

Ti,k · Ik · wk if wk ∈ [1..1000]
Ti,k · Ik if wk =“+” or wk =“−” (4)

Ti,k =
dfi,k

dfi,k + 50 + 150 · cwi,k

cwk

(5)

Ik =
log

(
|D|+0.5

cfk

)

log (|D|+ 1.0)
(6)

where:
dfi,k is the expected number (estimated via LMi) of documents in ISi satisfying ck,
cwi,k is the number of terms in attribute ak in LMi,
cwk is the mean cw of the ISs being ranked,
cfk is the number of ISs that satisfying ck,
|D| is the number of the ISs being ranked.

Note that the accuracy of the automatic source selection using this technique is promising, i. e. the
RC that is generated approximates very well the MC. This is demonstrated by a set of experiments
the we carried out on a Cyclades configuration that was working on 62 OAI compliant archives.
In particular, in these experiments we generated randomly 200 collections using Dublin Core
fields. The collections generated are of two kinds: 100 collections (T1) are generated using a
combination of conditions on description and title fields, 100 collections (T2) are generated
using a combination of conditions on all fields of the Dublin Core schema.

Table 1 shows the results of some preliminary tests on the quality of the source selection.
Precision is defined as gcd/(gcd + bcd) and recall is defined as gcd/(gcd + gncd). In order to
calculate this values we submit the MCi query to all the archives in Cyclades obtaining a set



14 The Cyclades Collection Service

Precision

0.00 – 0.11 – 0.21 – 0.31 – 0.41 – 0.51 – 0.61 – 0.71 – 0.81 – 0.91 –

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.00 – 0.10 0.33% 0 0 0 0 0 0 0 0 8% 8.33%

0.11 – 0.20 0 0 0 0 0 0.16% 0 0 0 5.83% 6%

R 0.21 – 0.30 0 0 0 0 0 0 0 0 0 5.83% 5.83%

e 0.31 – 0.40 0 0 0 0 0 0 0 0 0 7.5% 7.5%

c 0.41 – 0.50 0 0 0 0 0 0.16% 0 0 0.16% 12.16% 12.5%

a 0.51 – 0.60 0 0 0 0 0 0.16% 0 0 0 2.5% 2.66%

l 0.61 – 0.70 0 0 0 0 0 0 0.16% 0 0 8.66% 8.83%

l 0.71 – 0.80 0 0 0 0 0 0 0 0.5% 0.33% 8.83% 9.66%

0.81 – 0.90 0 0 0 0 0 0 0 0 1.33% 9.83% 11.16%

0.91 – 1.00 0 0 0 0 0 0 0 0 0 27.5% 27.5%

0.33% 0 0 0 0 0.5% 0.16% 0.5% 1.83% 96.66%

Table 1: Source selection: precision and recall.

T1 T2 Average
MC 162874 ms 186909 ms 174892 ms
RC 48469 ms 52253 ms 50361 ms

Improvement in ms 114405 ms 134655 ms 124530 ms
Improvement in % 70.24% 72.04% 71.20%

Table 2: Source selection: average response time.

of records RetMCi , then we submit the RCi to the archive specified in it obtaining a new set of
records RetRCi . gcd is the number of documents that belong to the collection that are correctly
retrieved, i. e. |RetMCi ∩ RetRCi |, bcd is the number of documents that do not belong to the
collection that are erroneously retrieved (also called false positives), i. e. |RetRCi \ RetMCi |, and
gncd is the number of documents belonging to the collection that are not retrieved (also called
false negatives), i. e. |RetMCi \ RetRCi |. The calculated pairs of this values have been partitioned
into precision/recall intervals and reported into the table as percentage. Moreover the right most
column and the bottom row shown the total amount w. r. t. a row and a column, respectively. For
instance, we have that 27.5% of the test cases have a recall level in [0.91,1], while the 96,66% of
the test cases have a precision level in [0.91,1].

The RC effectively improves the performance. Table 2 shows a measure of this improvement.
In particular, it compares the query response times obtained by retrieving the set of documents
matching the MCi with those obtained using the RCi.

Table 1 and Table 2 shows that there is an high improvement in response time with little loss
in the set of records retrieved after automatic source selection.

7 Implementation

One of our main goal in designing and implementing the Collection Service has been reusability
and adaptability to different contexts. This section describes the choices that have been taken to
achieve this goal as far as the implementation is concerned.

First, we have chosen to use Java as development tool in order to realize a fully portable service.
Moreover, service functionality has been made accessible either via GUI using a Web browser – (see



L. Candela, D. Castelli and P. Pagano 15

Section 7.2), and via API using the XML-RPC protocol (see next section for a detailed description).
Finally, we have used XML to represent collection metadata in order to enhance data portability.

Another interesting aspect is the configurability of the system. Many characteristics of the
service are easily modifiable, e. g. some aspect of the Membership Condition Language, like the set
of the attribute or the set of predicate supported, some parameters of the query based sampling,
like the set of words to use in query generation or the number of documents to examine, etc.

7.1 The Collection Service API

The Collection Service provides an API to other services in order to allow them to easily access its
own functionality. This section supplyies a full description of this API reporting the signature, a
description of the method and of its parameters, and the set of exception raised for each method
supported. Moreover in Section 7.1.2 the results of a set of tests conducted on this API are
reported.

API methods can be called using the inter-service communication protocol XML-RPC7. This is
a Cyclades project choice justified mainly by the characteristics of simplicity and wide support
that this protocol has.

Invoking the Collection Service’s methods such default exception can be thrown:
10000 no such method Method invoked is not defined.
10001 bad number of parameters Method invoked with a wrong parameters number.
10002 bad parameter type Method invoked with a wrong parameter type.
10010 internal error An undefined exception exists.

- Method: addCollection
Signature: collectionId addCollection()
Description: this method creates a new collection identifier which can be assigned to a
collection which will be created soon.
Parameters:
Output: collectionId integer the identifier of the new collection that will be created.

- Method: initializeCollection
Signature: collectionId initializeCollection(collectionId, collectionName, collectionDescrip-
tion, membershipCondition, userId)
Description: this method creates a collection, whose parent collection is the Cyclades col-
lection, if the membership condition is legal.
Parameters:
Input: collectionId string the identifier of the new collection.

collectionName string the printable name of the collection (max 50
chars).

collectionDescription string textual description of the collection.
membershipCondition string the condition to be verified by all the members of

the collection coded in XML (see 7.1.1).
userId string the identifier of the user which sends the request.

Output: collectionId string the identifier of the collection that has been initialized.
Exception:

7http://www.xmlrpc.com/



16 The Cyclades Collection Service

10003 missing or null parameter value if collectionName or collectionDescription are “”.
14112 User doesn’t exists
10200 no permission operation not allowed, user isn’t enable to do it
14113 Identifier is not valid collectionId is not valid.
14107 Bad XML file error parsing membershipCondition.
14115 Out of bounds if collectionName is out of bounds.

- Method: initializeCollection
Signature: collectionId initializeCollection(collectionId, collectionName, collectionDescrip-
tion, membershipCondition, userId, parentCollection)
Description: this method creates a collection whose parent collection is parentCollection,
if the membership condition is legal.
Parameters:
Input: collectionId string the identifier of the new collection.

collectionName string the printable name of the collection (max 50
chars).

collectionDescription string textual description of the collection.
membershipCondition string the condition to be verified by all the members of

the collection coded in XML (see 7.1.1).
userId string the identifier of the user which sends the request.
parentCollection string the identifier of the parent collection in the col-

lection hierarchy.
Output: collectionId string the identifier of the collection that has been initialized.
Exception:
10003 missing or null parameter value if collectionName or collectionDescription are “”.
14112 User does not exists
10200 no permission operation not allowed, user is not enable to do it
14113 Identifier is not valid collectionId is not valid.
14105 Collection does not exists parentCollection does not exists.
14107 Bad XML file error parsing membershipCondition.
14115 Out of bounds if collectionName is out of bounds.

- Method: deleteCollection
Signature: void deleteCollection(collectionId, userId)
Description: this method removes a collection from the set of existing collections if: a) the
user is authorized to do it and b) the specified collection exists.
Parameters:
Input: collectionId string the identifier of the new collection.

userId string the identifier of the user which sends the request.
Exception:
10200 no permission operation not allowed, user is not enable to do it
14105 Collection does not exists collectionId does not exists.

- Method: listCollections
Signature: (collectionId, collectionName, collectionDescription, parentCollection)* listCol-
lections(userId)
Description: this method returns the list of existing collections whose owner is userId.
Parameters:
Input: userId string the identifier of the user who sends the request
Output: a list of (collectionId, collectionName, collectionDescription, parentCollection) where:



L. Candela, D. Castelli and P. Pagano 17

collectionId string the identifier of the collection.
collectionName string the name of the collection.
collectionDescription string the description of the collection.
parentCollection string the identifier of the parent. collection .

Exception:
14112 User does not exists

- Method: listCollections
Signature: (collectionId, collectionName, collectionDescription, parentCollection)* listCol-
lections()
Description: this method returns the list of existing collections.
Parameters:
Output: a list of (collectionId, collectionName, collectionDescription, parentCollection) where:
collectionId string the identifier of the collection.
collectionName string the name of the collection.
collectionDescription string the description of the collection.
parentCollection string the identifier of the parent collection.

- Method: editCollection
Signature: void editCollection(collectionMetadata,userId)
Description: Update collection metadata description.
Parameters:
Input: collectionMetadata string new collection metadata coded in XML (see 7.1.1).

userId string the identifier of the user who sends the request.
Exception:
14107 Bad XML file error parsing collectionMetadata.
10200 no permission operation not allowed, user isn’t enable to do it
14105 Collection doesn’t exists

- Method: getCollectionMetadata
Signature: (collectionId, collectionMetadata)* getCollectionMetadata(collectionIds*)
Description: for each specified collection identifier, this method returns the corresponding
descriptive metadata.
Parameters:
Input: collectionIds string* a list of collection identifiers.
Output: A list of pairs (collectionId,collectionMetadata) where:
collectionId string the identifier of the collection .
collectionMetadata string the collection metadata coded in XML (see 7.1.1).

- Method: getPersonalCollections
Signature: (collectionId, collectionName, collectionDescription, parentCollection)* getPer-
sonalCollections(userId)
Description: this method returns the list of personal set of collections for user userId.
Parameters:
Input: userId string the identifier of the user who sends the request
Output: a list of (collectionId, collectionName, collectionDescription, parentCollection) where:
collectionId string the identifier of the collection.
collectionName string the name of the collection.
collectionDescription string the description of the collection.
parentCollection string the identifier of the parent. collection .



18 The Cyclades Collection Service

Exception:
14112 User doesn’t exists

- Method: deleteUser
Signature: void deleteUser(userId)
Description: Notify the Collection Service that user userId was removed.
Parameters:
Input: userId string the identifier of the user.
Exception:
14112 User does not exists

- Method: deleteArchive
Signature: void deleteArchive(archiveId)
Description: Notify the Collection Service that archive archiveId was removed.
Parameters:
Input: archiveId string the identifier of the archive.

7.1.1 XML objects: XML schemas

As stated previously we have used XML to represent collection metadata in order to enhance data
portability. Moreover the Membership Condition itself is described via an XML file, the schema
can be used to validate the syntax of this file. In this section we report the XML Schema describing
formally this information.

Collection Metadata Schema

<?xml version="1.0" encoding="UTF-8"?> <xs:schema
targetNamespace="http://project.iei.pi.cnr.it:8080/CollectionService"
xmlns:query="http://project.iei.pi.cnr.it:8080/CollectionService"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:cs="http://project.iei.pi.cnr.it:8080/CollectionService"
elementFormDefault="unqualified" attributeFormDefault="unqualified">

<xs:include schemaLocation="query.xsd"/>
<xs:include schemaLocation="membership.xsd"/>
<xs:element name="CollectionMetadata" type="cs:collectionMetadataType">
</xs:element>
<xs:complexType name="collectionMetadataType">
<xs:sequence>

<xs:element name="Id" type="xs:string"/>
<xs:element name="Name" type="xs:string"/>
<xs:element name="Description" type="xs:string"/>
<xs:element name="OwnerId" type="xs:string"/>
<xs:element name="ParentCollection" type="xs:string"/>
<xs:element name="MembershipCondition" type="cs:MCType"/>
<xs:element name="FilteringCondition" type="query:FCType"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="FCType">
<xs:sequence>

<xs:element name="query">
<xs:complexType>



L. Candela, D. Castelli and P. Pagano 19

<xs:sequence>
<xs:element name="collection-query" type="query:collection-queryType"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="schema" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:schema>

Membership Condition Schema

<?xml version="1.0" encoding="UTF-8"?> <xs:schema
targetNamespace="http://project.iei.pi.cnr.it:8080/CollectionService"
xmlns:cs="http://project.iei.pi.cnr.it:8080/CollectionService"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="unqualified" attributeFormDefault="unqualified">

<xs:element name="MembershipCondition" type="cs:MCType"/>
<xs:complexType name="MCType">
<xs:sequence>

<xs:element name="metadataFormat" type="xs:string"/>
<xs:element name="condition" type="cs:conditionType" maxOccurs="unbounded"/>
<xs:element name="archive" type="xs:string" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="conditionType">
<xs:attribute name="weight" type="xs:string"/>
<xs:attribute name="field" type="xs:string" use="required" />
<xs:attribute name="predicate" type="xs:string" use="required" />
<xs:attribute name="value" type="xs:string" use="required" />

</xs:complexType>
</xs:schema>

Query Schema

<?xml version="1.0" encoding="UTF-8"?> <xs:schema
targetNamespace="http://project.iei.pi.cnr.it:8080/CollectionService"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:query="http://project.iei.pi.cnr.it:8080/CollectionService"
elementFormDefault="unqualified" attributeFormDefault="unqualified">

<xs:complexType name="archiveType">
<xs:attribute name="id" type="xs:string" use="required"/>

</xs:complexType>
<xs:complexType name="collection-queryType">
<xs:sequence>

<xs:element name="condition" type="query:queryConditionType"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="archive" type="query:archiveType"
minOccurs="0" maxOccurs="unbounded"/>



20 The Cyclades Collection Service

</xs:sequence>
</xs:complexType>
<xs:complexType name="queryConditionType">
<xs:sequence>

<xs:element name="field-condition" type="query:field-conditionType"
maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="weight" type="xs:string"/>
<xs:attribute name="field" type="xs:string" use="required"/>

</xs:complexType>
<xs:complexType name="field-conditionType">
<xs:attribute name="subfield" type="xs:string"/>
<xs:attribute name="predicate" type="xs:string" use="required"/>
<xs:attribute name="value" type="xs:string" use="required"/>

</xs:complexType>
<xs:element name="query">
<xs:complexType>

<xs:sequence>
<xs:element name="collection-query" type="query:collection-queryType"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="schema" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:schema>

7.1.2 Efficiency Tests

The aim of the efficiency tests was to quantify the performance of the API methods of the CS
service, more precisely of the functionality of the CS accessible via API.

The test environment was composed by Apache JMeter8 1.8.1 and Mozilla 1.3 [Mozilla/5.0
(Windows; U; Windows NT 5.0; en-US; rv:1.3) Gecko/20030312] on Windows 2000.

For each method of the CS API a test plan was created with the Apache JMeter test kit,
simulating an XML-RPC request to the system. For these test suites it was determined how fast
the system responded to each request. After that, for each API call, the system was subjected to
a critical evaluation of its performance under high load, to determine its scalability. Therefore the
test suits were started concurrently with an increasing number of simultaneous runs. Again the
response times were determined. We report the min, the max and the average response time, and
the error percentage of all tests. It was also checked how reliable the system was under the high
load, by verifying the results and noting errors.

In the tables that follow are reported the results of all API tests, in terms of response time and
error percentage.

Method: addCollection()
conc. calls loops total Avg ms Min ms Max ms Error% Rate

1 200 200 166 130 1091 0,00% 6,1/sec
5 40 200 685 160 1442 0,00% 6,6/sec
10 20 200 1166 140 2774 0,00% 6,1/sec
15 15 225 9797 541 38085 0,00% 1,4/sec
20 10 200 2571 150 5779 0,00% 5,5/sec

8http://jakarta.apache.org/jmeter/



L. Candela, D. Castelli and P. Pagano 21

Method: initializeCollections(Id,Name,Description,MembershipCond,UserId)
conc. calls loops total Avg ms Min ms Max ms Error% Rate

1 200 200 169 120 2444 0,00% 6,3/sec
5 40 200 727 130 5308 0,00% 6,2/sec
10 20 200 1700 140 12097 0,00% 4,9/sec
15 15 225 8884 30 24145 0,00% 1,6/sec
20 10 200 855 10 7841 0,00% 5,8/sec

Method: listCollections()
conc. calls loops total Avg ms Min ms Max ms Error% Rate

1 200 200 111 80 441 0,00% 9,0/sec
5 40 200 395 80 1031 0,00% 10,3/sec
10 20 200 568 90 1822 0,00% 9,9/sec
15 15 225 4615 10 7651 0,00% 2,9/sec
20 10 200 230 90 1742 0,00% 7,5/sec

Method: listCollections(userId)
conc. calls loops total Avg ms Min ms Max ms Error% Rate

1 200 200 154 120 531 0,00% 6,5/sec
5 40 200 621 130 1722 0,00% 6,9/sec
10 20 200 1017 140 2363 0,00% 6,8/sec
15 15 225 5698 30 10766 0,00% 2,3/sec
20 10 200 879 140 2914 0,00% 6,1/sec

Method: getPersonalCollections(userId)
conc. calls loops total Avg ms Min ms Max ms Error% Rate

1 200 200 151 130 620 0,00% 6,6/sec
5 40 200 647 130 1262 0,00% 6,6/sec
10 20 200 1066 140 2664 0,00% 6,7/sec
15 15 225 1110 140 2772 0,00% 6,1/sec
20 10 200 1220 150 2824 0,00% 5,8/sec

Method: editCollection(collectionMetadata,userId)
conc. calls loops total Avg ms Min ms Max ms Error% Rate

1 200 200 346 290 1092 0,00% 2,9/sec
5 40 200 1652 171 3144 0,00% 2,8/sec
10 20 200 3149 350 5729 0,00% 2,8/sec
15 15 225 5107 521 8022 0,00% 2,6/sec
20 10 200 5920 601 12338 0,00% 2,4/sec

Method: getCollectionMetadata(collectionIds)
conc. calls loops total Avg ms Min ms Max ms Error% Rate

1 200 200 272 240 881 0,00% 3,7/sec
5 40 200 1353 260 2403 0,00% 3,5/sec
10 20 200 2653 260 4857 0,00% 3,2/sec
15 15 225 4010 391 8612 0,00% 3,3/sec
20 10 200 1659 270 5378 0,00% 4,5/sec



22 The Cyclades Collection Service

Method: deleteCollection(collectionId)
conc. calls loops total Avg ms Min ms Max ms Error% Rate

1 200 200 91 60 1022 0,00% 11,5/sec
5 40 200 726 110 5888 0,00% 5,6/sec
10 20 200 608 70 4396 0,00% 10,9/sec
15 15 225 1835 130 8111 0,00% 6,3/sec
20 10 200 895 80 8802 0,00% 6,5/sec

Method: deleteArchive(archiveId)
conc. calls loops total Avg ms Min ms Max ms Error% Rate

1 200 200 232 110 4647 0,00% 4,8/sec
5 40 200 1355 241 24756 0,00% 4,8/sec
10 20 200 3501 10 54057 0,00% 4,6/sec
15 15 225 6131 40 117780 0,00% 1,7/sec
20 10 200 851 120 3615 0,00% 6,5/sec

Method: deleteUser(userId)
conc. calls loops total Avg ms Min ms Max ms Error% Rate

1 200 200 85 70 410 0,00% 11,7/sec
5 40 200 314 70 962 0,00% 12,3/sec
10 20 200 703 90 1853 0,00% 9,1/sec
15 15 225 838 70 2634 0,00% 10,5/sec
20 10 200 91 70 180 0,00% 8,1/sec

7.2 The Collection Service GUI

The graphical user interface of the CS is accessible via a web-browser. It has been designed keeping
in mind the easy-to-use concept so it has been organized into two areas, the menu area and the
working area as shown in figure 9. Menu area contains a menu bar (at the upper) and an action
menu. Working area contains a collection hierarchy area and a collection data area.

The menu bar

At the upper of the interface (under the Collection Management title bar) there is a menu bar
with three menus and/or action shortcut.

Via the Browse menu the user may choice the set of collections shown in the working area
among own created collections and all Cyclades collections.

Via the Personal Collections Set shortcut the user can browse/edit his “personal collection set”.
Figure 10 shows the GUI that allows user to manage his personal collection set. This GUI has a
working area little bit different from the previous, there are two collections hierarchy areas, one (the
left) for the “actual” personal collections set and the other (the right) for all collections. Clicking
on a collection in the left area the user can remove this from the actual personal collections set,
clicking on a collection in the right area the user can add this from the actual personal collections
set. Collection data area in the middle shows collection data (e. g. name, description) for the
selected collection.

Via Collection→New the user can create a new collection. The system will present a form
(Fig. 11) to fill in, please enter here the name and the description of the new collection (useful
to identify it later), the parent collection (collections may be organized hierarchically), and the
membership condition (a Cyclades query and/or one or more archives). The membership condi-
tion is the set of conditions that will characterize the set of documents belonging to the collection.



L. Candela, D. Castelli and P. Pagano 23

Figure 9: CS Graphical User Interface.

Figure 10: CS Graphical User Interface for select the Personal Collections Set.



24 The Cyclades Collection Service

Figure 11: CS Graphical User Interface: Create Collection Form.

Interestingly, the system will automatically determine the best source from which to search for
(this is the ”Retrieval Condition”).

The action menus

Under the menu bar the CS interface provide an action menu. The items of this menu are related
to the collection shown in the collection data area.

If the collection data area shows a collection created by the user than the action menu contains
the item Edit, in order to edit this collection, and Delete in order to delete this collection.

The collections hierarchy area

On the left of the working area there is the collections hierarchy area. In this area there is a
navigable hierarchical view of the set of collections actually in use (own created collections or all
collections).

Clicking on a collection allows a user to see collection data in the collection data area and, if
the user has the rights, to manage them (via the action menu).

The collection data area

On the right of the working area there is the collection data area. This area shows collection data
(e.g. name, description) for the selected collection in the collections hierarchy area.



L. Candela, D. Castelli and P. Pagano 25

8 Related Work

In the DL field the concept of collection is broad, there is still confusion about what a collection
is and what its characteristics are. In many papers, e. g. [9, 3, 15] the term collection is used as
synonym of information source and the issue is how to automatically populate it. This paper has
focused on collections as mechanisms for self-organizing the information space that a DL manages.
However, we intend a collection as a virtual information source as it does not actually store any
documents.

The concept of collection service proposed by Lagoze and Fielding in [12] shows many similari-
ties with our CS mainly: (a) collection membership is defined through a set of criteria rather than
containment and (b) CS must supply an independent mechanism for introducing meaningful and
dynamic structure into a distributed information space. No implementation of this concept has
ever be delivered.

Greenstone [15] propose an approach collection-centric where each collection has a user interface
that allows users to search and browse over the collection. This kind of collection is similar to a
IS, as the collection creator has to supply the documents belonging to it. This approach is quite
static, the collection creator can add documents to a collection but has to do that manually.

In [8] the term “virtual collection” is introduced and a set of benefits for digital libraries that
contains collections are outlined. That paper focuses on how to easily generate collection-level
metadata without specifying how collection’s documents have been collected and selected.

Many papers have been proposed about source selection in different fields. [16] proposes a
database selection technique called TQRS for resolving the problem of query routing where the
ISs are databases with multiple text attributes. That technique uses query sampling in order to
acquire database’s knowledge and then an extensions of the CVV ranking method [17] to rank each
database. This is similar to the solution that we have proposed but we have used a revised version
of CORI [5] instead of CVV because it is one of the most stable and effective [7] and compatible
with resource descriptions acquired by query-sampling, while CVV is not [14].

9 Conclusion

This report has introduced the CYCLADES Collection Service, a service for supporting virtual
collections. This service is exploited by other services to provide virtual views of the DL customized
according to the needs of the different communities of users.

We consider the CS we described in this paper as a first prototype of a more general media-
tor infrastructure service that can be used by the other DL services to efficiently and effectively
implement a dynamic set of virtual libraries that match the user expectations upon the concrete
heterogeneous information sources. In particular, we are now working on the generalization of the
Collection Service to include other aspects of the information space in the virtual view, like the
structure of the documents, their descriptive metadata formats, and the used controlled vocabu-
laries, i. e. terms used in describing a document.

Acknowledgements. This work was partially founded by the Cyclades project. Thanks are
due to the DLib Group at CNR-ISTI for the considerable support received.

References

[1] Dewey Decimal Classification. http://www.oclc.org/dewey.

[2] Z39.50 Maintenance Agency. http://lcweb.loc.gov/z3950/agency/.



26 The Cyclades Collection Service

[3] Donna Bergmark. Collection Synthesis. In Proceeding of the second ACM/IEEE-CS Joint
Conference on Digital Libraries, pages 253–262. ACM Press, 2002.

[4] David C. Blair. The challenge of commercial document retrieval, Part II: a strategy for
document searching based on identifiable document partitions. Information Processing and
Management, 38:293–304, 2002.

[5] J. P. Callan, Z. Lu, and W. Bruce Croft. Searching Distributed Collections with Inference
Networks . In E. A. Fox, P. Ingwersen, and R. Fidel, editors, Proceedings of the 18th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 21–28, Seattle, Washington, 1995. ACM Press.

[6] Jamie Callan and Margaret Connell. Query-based sampling of text databases. ACM Trans-
actions on Information Systems (TOIS), 19(2):97–130, 2001.

[7] James C. French, Allison L. Powell, Jamie Callan, Charles L. Viles, Travis Emmitt, Kevin J.
Prey, and Yun Mou. Comparing the performance of database selection algorithms. In Proceed-
ings of the 22nd annual international ACM SIGIR conference on Research and development
in information retrieval, pages 238–245. ACM Press, 1999.

[8] Gary Geisler, Sarah Giersch, David McArthur, and Marty McClelland. Creating Virtual
Collections in Digital Libraries: Benefits and Implementation Issues. In Proceedings of the
second ACM/IEEE-CS Joint Conference on Digital Libraries, pages 210–218. ACM Press,
2002.

[9] Greg Jane and James Frew. The ADEPT digital library architecture. In Proceeding of the
second ACM/IEEE-CS Joint Conference on Digital Libraries, pages 342–350. ACM Press,
2002.

[10] Carl Lagoze, William Arms, Stoney Gan, Diane Hillmann, Christopher Ingram, Dean Krafft,
Richard Marisa, Jon Phipps, John Saylor, Carol Terrizzi, Walter Hoehn, David Millman,
James Allan, Sergio Guzman-Lara, and Tom Kalt. Core services in the architecture of the
national science digital library (NSDL). In Proceedings of the second ACM/IEEE-CS Joint
Conference on Digital Libraries, pages 201–209. ACM Press, 2002.

[11] Carl Lagoze and Herbert Van de Sompel. The Open Archives Initiative Protocol for Metadata
Harvesting. http://www.openarchives.org/...

[12] Carl Lagoze and David Fielding. Defining Collections in Distributed Digital Libraries. D-Lib
Magazine, November 1998. http://www.dlib.org.

[13] Carl Lagoze and Herbert Van de Sompel. The open archives initiative: building a low-barrier
interoperability framework. In Proceedings of the first ACM/IEEE-CS Joint Conference on
Digital Libraries, pages 54–62. ACM Press, 2001.

[14] Luo Si and Jamie Callan. Using Sampled Data and Regression to Merge Search Engine
Results. In Proceedings of the 25th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 19–26. ACM Press, 2002.

[15] Ian H. Witten, David Bainbridge, and Stefan J. Boddie. Power to the People: End-user Build-
ing of Digital Library Collections. In Proceedings of the first ACM/IEEE-CS joint conference
on Digital libraries, pages 94–103. ACM Press, 2001.



L. Candela, D. Castelli and P. Pagano 27

[16] Jian Xu, Yinyan Cao, Ee-Peng Lim, and Wee-Keong Ng. Database selection techniques for
routing bibliographic queries. In Proceedings of the third ACM conference on Digital Libraries,
pages 264–274. ACM Press, 1998.

[17] Budi Yuwono and Dik Lun Lee. Server Ranking for Distributed Text Retrieval Systems on
the Internet. In Database Systems for Advanced Applications, pages 41–50, 1997.


