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This paper presents a technique to reconstruct the permittivity range profile of a 
layered medium using noisy backscattering data. Working on an ill-posed 
problem, inverse scattering normally provides either unstable or oversmoothed 
results. Our method tries to obtain an accurate reconstruction using a two-step 
genetic algorithm employing a regularization constraint with an explicit line 
process and a local deterministic optimization strategy.  
 

Introduction 
 

In inverse scattering, an unknown scattering object is probed with known waves 
to estimate its structure by measuring the scattered fields. Noninvasive imaging 
inspection by electromagnetic probing radiations is very appealing in several 
areas from civil and industrial engineering to nondestructive testing and 
biomedical applications. In spite of this great importance, most microwave 
tomographic techniques are still far from solving practical problems. In fact, there 
are theoretical aspects hard to manage, such as the nonlinear and nonconvex 
relationship between the scattered field and the object structure and the robustness 
of the inversion algorithms against noise.  
 
Some of the authors who tried to solve the inverse scattering problem by new 
computational paradigms resorted to evolutionary computing, namely, to different 
versions of genetic algorithms (GAs) [1][2]. Since these approaches proved to be 
able to efficiently find a global optimum in a fitness landscape, we attempted to 
exploit this feature in order to get both stable and locally smooth solutions, 
preserving possible discontinuities. Our specific problem regards the 
reconstruction of the permittivity range profile of a lossless layered object from 
measurements of its complex reflection coefficient within a certain frequency 
band. The inversion is achieved by a hybrid GA, which evolves in two distinct 
phases. In the first one, the solution is only regularized by a global smoothness 
constraint; in a second phase, the fitness function is augmented by an explicit line 
process (LP) in its regularization part [3]. After the activation of the LP, a local 
deterministic optimizer is used to improve the fitness value before creating the 
new generation for the GA scheme. In this paper, we give some details on our 
formulation of the range profile reconstruction problem, its genetic solution with 



local smoothness constraints, and discuss some of the results from our early 
experimentation. 
 

Genetic Algorithm Implementation  
 

Let us consider a lossless dielectric wall of thickness L surrounded by air and 
probed with a plane-wave electromagnetic field in the microwave range. The 
incidence is supposed to be normal. The complex reflection coefficient is 
measured at n frequencies within the chosen bandwidth and stored in a complex 
vector. Our aim is to estimate the wall permittivity as a function of the depth 
coordinate z. To solve this problem, we discretize the wall into a finite number M 
of homogeneous layers of equal thickness. The GA has to find the configuration 
of layers that gives the best fit between the measured and the computed reflection 
coefficients, subject to suitable regularizing constraints. The forward solver 
implemented in the code evaluates the total reflection coefficient of any structure 
composed by a finite number of layers for each of the n frequencies used in the 
probing session. The fitness function to be optimized in the first stage is the 
following: 
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where dist is a suitable distance between the two n-element arrays of the 
measured ( measΓ ) and the calculated ( GAΓ ) reflection coefficients. The second 
term is the quadratic penalization given by the global smoothness constraint, 
which prevents the permittivities of any two adjacent layers from being too 
different. Although the optimizing function F1 is only able to provide smooth 
profiles, it allows us to obtain a first rough approximation of the actual 
permittivity profile. After a fixed number of GA generations, a further 
regularization term is activated in the fitness function whose form now becomes: 
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where the new variables lm are introduced to preserve abrupt permittivity 
variations where these are likely to occur. When lm=1, any difference between the 
permittivities of two adjacent layers is not penalized, except for a constant 
contribution α that is added to the fitness function. When lm=0, the difference 
between 1mε +  and mε  is quadratically penalized, and the algorithm prevents to 
consider solutions with a significant permittivity discontinuity between the two 
layers. The l array, which represents the values of the LP, is encoded in the last 
part of each chromosome. The α and λ parameters influence the discontinuity 
values which can be accounted for.  
 
According to the selection strategy we adopted, any chromosome is assigned with 
a probability to enter in the next generation that is proportional to its fitness value 
and the introduction of simple elitism prevents the loss of the current best 
solution. The mutation operator is only allowed to affect the three less significant 
bits of each gene. The crossover takes place between any two chromosomes, 



which could exchange a gene. The algorithm chooses one gene in a chromosome 
and one in the other and makes the change. This means that a certain layer is 
passed from one configuration to another. During the edge-preserving 
optimization phase a deterministic operator manipulates the best solution found at 
that moment before letting a new generation be created. From the best 
chromosome in the current generation, we build a new l array as follows. Starting 
from the first, a single lm bit is fixed to 0 and the fitness function of the best 
chromosome with this new l array is calculated. Then, the same is made fixing the 
bit to 1. The first bit is then chosen according to best fitness value found. This 
procedure is followed for all the lm bits. At the end, we have a new LP set for the 
best chromosome. This solution is compared to that of the actual best. If we have 
found a better one, this new chromosome replaces the old best chromosome in the 
evolutionary process.  
 

Discussion of Results 
 

The described method seems to provide good results. All the following 
reconstruction are elaborated by using M=12 layers and n = 100 frequencies in the 
range 0.8 GHz – 3 GHz. The assumed SNR is 25 dB. The reconstructed profile 
for a concrete wall (εr=10) of thickness L=24 cm with an air inclusion inside is 
shown in Fig. 1. In Fig. 2 the algorithm is facing a wall of the same depth but with 
a discontinuity of 4 cm in the rightmost part. The last result (Fig. 3) was obtained 
in the case of a discontinuity that does not match the lattice of the assumed 
layered model. The reconstruction is still quite good.  

 

 
Fig.1- Reconstruction of a simulated discontinuous profile from 25 dB-SNR data. The 
solid line shows the original profile while the dashed one represents the reconstruction. 
 



 
Fig.2 – Reconstruction of a profile with a discontinuity in the rightmost side of the wall. 
The SNR is 25 dB. Original (solid) and reconstructed (dashed) profiles. 

 
Fig.3 – Result obtained in a case where the discontinuities do not fit the reconstruction 
lattice. The SNR is 25 dB. Original (solid) and reconstructed (dashed) profiles. 
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