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SUMMARY  
 

Component-based development has emerged as a system engineering approach that promises rapid 
software development with fewer resources. Yet, improved reuse and reduced cost benefits from software 
components can only be achieved in practice if the components provide reliable services, which makes 
component analysis and testing a key activity. This paper discusses various issues that can arise at 
component integration phase. The crucial problem is the lack of information for analysis and testing of 
components externally developed, aggravated by differing perspectives of the key players in component 
based software development. Several component integration testing techniques have been recently 
proposed to provide a solution for those issues. These techniques are here surveyed and classified according 
to a proposed set of relevant attributes. The paper thus provides a useful and comprehensive overview as a 
starting point for investigation in the field. 
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1. INTRODUCTION 
In the latest years software developers are facing unrivaled challenges. On one side, information 
processing systems become increasingly complex, networked, pervasive, and also critical because more 
and more they are used in risky activities. On the other, the high competitiveness in software production 
causes an almost unbearable reduction of the time-to-market. As a consequence, developed software 
must retain maintainability, reusability, testability, and all the other –ilities related with software 
productivity, but at the same time it must assure a high dependability, or else the consequences can be 
catastrophic.  

The most promising answer to these challenges relies on the potential to obtain complex systems by 
the composition of prefabricated pieces of software called components, following in this direction the 
example provided by other “more traditional” engineering disciplines. Indeed, component-based 
software systems are becoming prevalent as an engineering approach that empowers rapid development 
with fewer resources. Furthermore, the reuse of subsystems, which have already been tested in 
operation as part of earlier “successful” systems, should in principle grant a higher reliability. However, 
some laboratory experiments [1], and even catastrophic events [2] have soon warned that composing 
software components is not an easy task at all, and much work is necessary to enable this vision. As a 
consequence, a new, very active, research branch has been established inside the software engineering 
area, generally referred to as Component Based Software Development (CBSD), as testified by the 
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escalation of devoted conferences (e.g., CBSE Symposium, CD Working Conference, ICCBSS, just to 
cite a few), journal issues [3,4] and books [5-7]. 

Actually, the very idea of producing software systems out of components is older than thirty years 
[8], but it is only recently that strong efforts are made towards the concrete affirmation of this 
methodology. Nowadays CBSD promises the benefit of producing quality software utilizing minimum 
time and resources.  

CBSD is the process of assembling components to make them interact as intended. Each component 
can require pre-specified services from other components, exclusively through interface invocations. As 
said, CBSD facilitates software reuse and promotes rapid application development, but it is not without 
its constraints. For example, concealing proprietary information is one of its advantages; however, this 
privacy affects user understanding for subsequent component testing. In addition, assuring software 
reliability is made more challenging when commercial pre-tested software components are used. 
Crnkovic [9] provides a quite long list of research challenges related to CBSD, among which: 

• Modeling languages: It is necessary to develop languages for modeling software systems at a 
high level of abstraction, neglecting those technical details that are not relevant at that level. 
In particular such languages should permit to describe the architecture of the system in term of 
coarse-grained components and of their required features. 

• Technologies: It is necessary to develop suitable technologies to make easier components 
integration and their communication. In particular, technologies should provide high level 
services that permit to easily bind together components and make them cooperate, freeing the 
software assembler from networking and non-business logic details. 

• Composition Predictability: Two different views can be considered for this requirement. The 
first involves inferring interesting properties of an assembled system, starting from the known 
properties of the composing components. The second view takes an opposite direction: 
inferring system properties starting from the study of the logical architecture of the global 
system. 

• Development Process and Tools: It is necessary to better understand the steps that can lead to 
the development of a system starting from available components. Clearly, a highly iterative 
process is needed which permits to consider features of reused elements starting from the first 
phases of the development. This process will foresee phases peculiar to CB development, such 
as a provisioning phase leading to the identification of suitable existing implementations for 
the components in the architecture. Of course, it is equally necessary to develop tools that 
assist the CB developer along all the phases of the development process. 

With reference to testing, it is particularly important to implement tools that make the testing of 
externally acquired components easier. Testing could, in fact, be fruitfully used for the evaluation and 
final choice of an external component, and this step could involve many different components. Indeed, 
if the rapid expansion of reusable software components requires on one side to ensure they provide 
adequately high reliability, on the other hand their integration must also be effectively tested. The well 
known failure of the “Ariane 5” launch vehicle [2], which veered off target and blasted in less than 1 
minute after takeoff, is a prominent and unfortunate demonstration of the importance of integration 
testing, as the failure was attributed to insufficient testing of reused software component in the system. 

Several testing strategies for effectively utilizing software components exist in the literature, 
however inadequacies in existing techniques occur due to component characteristics that are not 
amenable to traditional software development.  

In this paper software component testing phases are discussed with a review of recent literature on 
integration testing techniques. Following this introduction, the paper is organized in two parts: the first 
overviews the field of CBSD, while the second part mainly focuses on survey of CB integration testing 
approaches that exist in the literature. Specifically, Part 1 covers the preliminary concepts and 
characteristics of components and their development process, followed by an introduction of 
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component testing types and component testability metrics. CBSD brings a change to the development 
process, which further impacts the testing phases of component lifecycle. In Part 2, firstly the issues or 
problems specific to component testing are emphasized. Secondly integration testing techniques, 
existing in literature, are discussed with respect to these issues. Part 2 mainly provides an overview of 
the test elements in component testing phase, and an overview of various research contributions 
attempting to provide solutions for component integration testing. 

Part 1  
The first part presents an overview of basic notions, current trends, and topics in the wide area of 
CBSD. This part is not meant as a comprehensive treatment of the topic, but rather as a basis on which 
the survey of proposed approaches for component-based testing can be set up in Part II. 

1.1 Trends in Modeling Software Systems 

Objective of modeling is to provide an abstraction of a (physical) system, thus allowing engineers 
to reason about that system by ignoring extraneous details while focusing on relevant ones [10]. 
Software artifacts are probably the most complex systems that have ever been constructed, therefore 
[11] the potential benefits on the use of models are significantly greater in software than in any other 
engineering discipline. Indeed, as system complexity increases, the overall system structure becomes a 
more significant question than the choice of particular algorithms or data structures.  

Our interest in modeling approaches stems from the fact that the information carried on by models 
constitutes the basis for the definition of useful test cases. In particular, in CBSD models become a key 
source for test cases derivation given the prevalent black box nature of components, especially of 
Commercial Off The Shelf (COTS). 

Three interrelated fields of study strongly influence the modeling of CB software systems, namely: 
• Software Architecture 
• Unified Modeling Language 
• Model Driven Development 

1.1.1 Software Architecture 
Software Architecture (SA) [12, 13, 14, 15] emerged in the last decade as one of the most 

promising instruments to derive, from the requirements, a formalized specification of the system in 
terms of components and their interactions. By abstracting away from implementation details, a good 
architecture description makes a system intellectually tractable. Many researchers are working on this 
topic and important industries have started to introduce SA.  
In general terms, the architectural design of a software system is concerned with its gross structure and 
the ways in which that structure leads to the satisfaction of key system properties. Structural issues of 
interest for the SA description of a system include the composition of components, the definition of the 
global control structures, the definition of the protocols used for the communication, synchronization 
and data access, the assignment of functionality to design elements, the physical distribution of the 
component in the architecture, the scaling and performance feature of the system, the dimension of 
evolution of the system and finally the selection among different design alternatives. 
From the architectural definition of a system it must be possible to identify the three basic elements that 
characterize a SA: components, the elements in which the logical computation is “located”; the 
connectors, the elements that mediate the interactions among the components; and the properties, such 
as pre/post conditions, signatures, and non-functional properties as well.  
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Hence, there exists a strict relation between the SA and the design of a CB system. In particular, among 
the aspects of software development in which SA plays a basic role [15], the architectural description 
provides a blueprint to the developers, in which the different components and the relations among them 
are shown. Moreover, architectural descriptions provide new opportunities for software analysis, also 
specifically for test derivation. Reuse is a goal, which joins both SA and CB. Reusing pieces of code is 
central to reduce the time to market in the development of complex system. In this area SA can play a 
central role grouping at a high level of abstraction the necessary functionalities and at the same time 
identifying the components that should provide such functionalities.  

1.1.2 The Unified Modeling Language (UML) 
The Unified Modeling Language (UML) [16] is a standard language for specifying, visualizing, 
constructing, and documenting software systems (and non-software systems as well). At the same time, 
the UML provides a collection of best engineering practices that have proven successful in the 
modeling of large and complex systems. A detailed description of diagrams for the concerned readers 
can be found in the UML specifications official documents [16, 17].  

In the upcoming version 2.0, the UML provides thirteen different diagrams that can be used to 
specify a software model. Figure 1, from [17], provides a graphical view of how these diagrams can be 
organized in two categories: 

• Structure diagrams mainly represent static concerns about the system under development.  
• Behavioral diagrams, by which the developer can specify behavioral concerns.  
 

 

 
Figure 1: UML Structure and Behavioral Diagram 

Besides, the UML provides three standard ways to extend the set of elements available: tagged 
values, constraints and stereotypes. Using them the modeler can use the UML predefined elements to 
create new elements with added semantics. An important tool for defining extensions is the Object 
Constraint Language (OCL) [18], that is a language defined by the OMG that permits to express logical 
constraint on the elements of a diagram. Another heavyweight alternative to extend the UML is to 
intervene at the meta level defining in such manner a UML like notation that however will not be 
recognized by a UML compliant tool anymore.  

The UML has been initially defined to aid the development of Object-Oriented systems, however 
thanks to the extension mechanisms, several initiatives started trying to adapt/extend UML for use in 
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different development fields. The increasing availability of tools for diagrams management, and the 
spreading diffusion of the language pushed other modeling communities, such as the SA community, to 
study the possible use of UML for architecture description [19]. A strong relationship in fact exists 
between the UML and the software architecture, being both two instruments for software modeling. 
However the use of the UML for SA description, even though it can appear quite natural, is not so 
obvious. In particular the UML lacks direct supports for modeling and exploiting architectural styles, 
explicit software connectors, and local and global constraints. Even though the upcoming version 2 of 
the UML provides a better support for describing connectors, such as ports and protocol state machines, 
there is not yet a complete inclusion of the software architecture abstractions.  

A proposal for using the UML specifically for modeling CB software systems is “UML 
Components” [20], which defines particular stereotypes to represent software components. However, 
the “UML Components” proposal seems lacking for what concerns the support for architectural 
concepts such those highlighted by the SA community (e.g. connectors), and besides it can be 
considered superseded by similar concepts now embedded in the UML 2.0. Nevertheless, it provides an 
interesting iterative process for the development of CB software systems.  

1.1.3 Model Driven Architecture  
The most advanced frontier in the use of models in software systems production is today 

represented by the Model Driven Development approach. The vision underneath is the possibility of 
having models automatically transformed into the corresponding final executable code. As a result a 
new generation of languages and tools will be available to the system developer, providing a level of 
abstraction never experimented and, from an architectural point of view, the possibility of automatically 
verifying models that will be successively refined to become the final program.  

The most concrete effort towards the realization of this vision is certainly the Model Driven 
Architecture (MDA) initiative. MDA is based on the use of the forthcoming version of the UML, based 
on a precise semantic so to enable the unambiguous transformation of software models.  

In the MDA view the transformation between the different models is executed in automatic with the 
support of specific tools. There is not a wide number of tools enabling the MDA view, yet, however 
considering the benefits that the real success of this methodology to software production will bring it is 
not difficult to foresee that many tools will be released in the near future [21]. Among the several 
benefits that the MDA will bring in such as productivity, maintenance, and documentation, of 
particular importance towards CB development are certainly portability and interoperability, since 
these are at the basis for enabling the regular and smooth integration of different software components. 

1.2 Technologies Enabling Component-based Development 

The development of modern software systems would not have been possible without the great 
achievements in the area of software technologies of the last years. Indeed, the area of software tools 
and technologies to aid the development of complex software systems is far more mature than the 
correspondingly modeling languages and methodologies. Among the technologies defined to assist the 
implementation of complex software systems, two of them are at the basis of CBSD:  

• Middleware 
• Component Models 
Whereby the middleware addresses interoperability and distribution issues, while component 

models focus on managing the reuse issues, and on defining rules for packaging and accessing services. 
However, these technologies are obviously intertwined and commercial products nowadays, such as, 
J2EE [22] and .NET [23] provide mechanisms for both categories. 



 6  

1.2.1 Middleware 
In parallel with the trend of modularization of complex systems into components, the last years 

have also witnessed an enormous raise of the demand for distributed software systems. Among the 
causes, particularly relevant are both the spreading of companies in many remote places, also as a 
consequence of the great number of companies merging, and the advent of the World Wide Web that 
led to the creation of “e-facilities”, greatly impacting on the way in which services (by government or 
commercial companies) are provided and used. Moreover, some general non-functional 
requirements/features [24], such as Resource Sharing, Scalability, Heterogeneity, Fault-Tolerance, and 
Openness, lead to prefer a distributed architecture, instead of a centralized one. 

The development of distributed software is far more complex than that of centralized one. For this 
reason it is useful to hide, as much as possible, to system developers the issues strictly related to 
distribution: this is the rational behind the concept of the middleware. As a general idea middleware is a 
kind of connectivity software that allows applications and users to interact with each other across a 
network. In particular middleware provides services that are generic across applications and industries, 
that run on multiple platforms, that are distributed, and that support standard interfaces and protocols 
[25]. For example a message switch that translates messages between different formats is considered 
middleware if it makes it easy to add new formats and is usable by many applications.  

Components are implemented above the middleware layer. In this regard, the main task of 
middleware is to make transparent to the CB system engineer the new dimensions of complexity 
introduced by distributed systems. In particular [24], among desirable transparency features for CBSD, 
Access Transparency requires that the interface to a service does not depend from the location of the 
components that use it, and Location Transparency implies that a request for a service can be made 
without knowing the physical location of the components that provide the service, and thus allows for 
physically moving components across nodes.  

1.2.2 Component Models 
Component models refer to the mechanisms provided specifically for binding together software 

components. Basically these technologies provide a set of services that permit to produce and use 
components, by generally imposing a set of rules concerning the packaging of the component and 
sometimes requiring the implementation of specific interfaces, that will be used by the technology for 
management purposes.  

Two main kinds of component models have been defined. The first, called desktop components, 
provide mechanisms that permit the integration of component deployed on the same system. This is the 
case of COM [26] and JavaBeans [27]. The second model, referred to as distributed components, 
provides mechanisms for integrating components that could be dispersed on more than one physical 
system. Distributed component technologies obviously rely on middleware technologies. The 
implementation choices made by the different component model technology providers can vary and in 
general it is not possible to take a component from one world (a component model technology) and 
deploy it into another world.  

Apart from implementation details, the basic starting point for defining a component model is the 
naming and locating service, whose task is to provide, at run time, the components that need a specified 
service with the reference to that component that provides it. Through the implementation of a naming 
and locating service a component model permits the implementation of software elements that do not 
contain embedded references to the final providers of the required services.  

Several different component models have been defined so far, three of which currently lead the 
scene: COM/.NET from Microsoft [26], CCM/CORBA from OMG [28], and EJB/J2EE Sun 
Microsystems [29]. 
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1.3 Component Basic Concepts and Characteristics 

So far software components have been discussed resting on the quite intuitive meaning that this 
terminology suggests. In this section, before diving into methods for component-based testing, which is 
the main topic, more precise definitions and characterization of software components are provided. 

One of the most widely accepted and reported software component definitions is by Szyperski [5]: 
A software component is a unit of composition with contractually specified interfaces and 
explicit context dependencies only. A software component can be deployed independently 
and is subject to composition by third parties 

This definition covers different peculiar aspects of components. In particular it has a technical part, 
with aspects such as independence, contractual interfaces, and composition. A component can be 
plugged into a system as a unit of composition, with its services accessible via a defined set of 
interfaces. The importance of interfaces can be determined also from Brown’s definition [30] of a 
software component as “…an independently deliverable piece of functionality providing access to its 
services through interface ”. The dependencies of each component on other components or system must 
be clearly defined for accurate usage. The above definition also has a market related part, with aspect 
such as third parties and deployment. Each component is in fact deployed as an autonomous unit by 
organizations other than the developing organization.  

 
Component vs. Object 
To start with the characterization of a component, it may be worth to highlight the differences 

between the concept of a component and that of an object. A component is not a running element, as an 
object, but rather a static element that can be deployed in a system. An object, instead, generally 
requires services from other specific objects and this relation is embedded within the object itself. 
However, given this and other differences, it is true that components and objects are strongly 
interrelated and share many characteristics. Moreover, components are generally developed using 
object oriented concepts and languages, and at execution time they take the form of a collection of 
objects. 

 
Source Code Unavailability  
Software components are generally developed by a provider organization and used by multiple 

users, which do not necessarily belong to the same organization. The implementation of component 
interfaces is typically not exposed to component users, rather only textual abstractions are attached as 
interface specifications. The signature of each interface is clearly mentioned with an explanation of the 
component functionality without any implementation details. Thus component source code is hidden 
reducing development complexity for application developers at the component user end. The user is 
simply benefited by using component services without any concern for implementation details, and the 
provider holds the component ownership rights even after component deployment. Authors generally 
use the terms of black- gray- and white-box components with reference to different levels of closure of 
the component internal essence. In particular a black-box component does not disclose anything about 
its internal implementation, whereas at the opposite end side, a white-box component completely shows 
it to the user. In between, there may exist different levels of gray-box components depending on how 
many details are made public. The discussion about the opportunity of using one or the other of these 
different kinds of transparency is endless.  

 
Service Granularity 
The component interface defines the access point to a service provided by the component itself. The 

service that a component provides should be necessary to someone else, otherwise the component has 
no market and there is no reason in developing it. In this context also aspects of service granularity play 
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an important role. The component should provide services sufficiently complex to justify its existence 
as a component.  Simple components, in fact, can be more easily developed in house. On the other hand 
too complex services may reduce the market for the component [5] and therefore the convenience in 
developing it. The component granularity mainly affects [32] the development environment, in 
particular the production time and effort by the component developer. This characteristic can be 
assessed in terms of the interface descriptions, or the number of use-cases supported by the component.   

 
Plug and Play  
A software component is an autonomous entity with an inherent plug-and-play nature. It can be 

deployed in the system to provide services, brought offline, modified, and again deployed in the same 
system providing modified functionality.  

 
Component Metadata 
Metadata consist of augmenting the component with additional information in order to increase the 

component user’s analysis capability. Carney and Long [31] categorized a component with respect to 
the organizational relationship between the component provider and user. In this categorization, a 
component can be a commercial item, a version of a commercial item, an existing component from an 
external source, or a component produced in-house. The categorization of components is defined by the 
level of modifications allowed in the component source and the artifacts attached with components in 
each category. This supports the importance of component metadata for the purpose of components 
maintenance attached with the components. 

The motivations of metadata can also be understood by another research effort supporting the 
addition of component descriptions with component. Brereton and Budgen [32] gathered and analyzed 
disparate issues of component-based applications, in the form of a framework. According to them [32], 
reuse benefit of component based application leads to special issues that must be considered by 
component developers. Issues relating to software component as a product, the development process, 
and business issues of components are discussed in perspectives of software engineers being developers 
and integrators of component-based software applications. It is foreseen that integration of commercial 
off-the-shelf products and in-house components will likely shift the focus of software engineering from 
the “specify, design, and implement” paradigm towards the “select, evaluate, and integrate” one. In the 
latter paradigm, appropriate and explicit component descriptions are clearly needed to perform software 
engineering tasks. 

  
Contract-Aware Component 
In an ideal component world an interface should be completely characterized by a description that 

provides the system assembler with precise and complete information on the service that is 
implemented by the component, for instance using some formal mechanism. An interesting and quite 
successful way to associate semantic to an interface is the use of contracts, as advocated in the well-
known design-by-contract paradigm [33]. A contract describes a service using first order logic and 
specifying conditions that should hold before the invocation of the services and conditions that will be 
true after the execution of the service. At the same time a contract can specify invariant conditions that 
remain true during the whole execution of the service. Contracts are a really useful mechanism in CB 
development, although this use can raise some problems, in particular when callbacks, i.e., the called 
service itself invokes back the caller, are considered.  

1.4 Component Based Development Process 

Every software product follows a particular process model. In the conventional waterfall model, 
software development adheres to definite sequential phases that commonly include the following:  
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• Requirements Analysis and Specification  
• Design 
• Implementation  
• Testing 
• Maintenance  
The software development process uses the well-known “divide and conquer” strategy for solving 

large problems, i.e., a problem is identified and cut into small sub-problems, so that each sub-problem 
can be disentangled and solutions are assembled to form the system. The lifecycle phases of software 
products are controlled by a single organization; and when multiple organizations are involved they 
communicate and share product development information. Thus, bugs in software can be detected to 
some extent by using the artifacts of standardized documentation packaged with the software product to 
facilitate software testing.  

CBSD does not follow this standard development process. In general, the typical waterfall process 
model phases may still apply, but the activities performed in each phase are varied and their 
relationship is changed. The same “divide and conquer” strategy is applicable to CBSD, but available 
components are explored in search of a solution, instead of building new ones. Hence the 
implementation phase mainly deals with the development of what is generally referred to as the glue 
code. This code is the necessary instrument to facilitate the correct interactions among the different 
components. The components instead are not generally implemented, but are looked for in the in-house 
repositories or on the market, through what is generally referred to as the provisioning phase. After one 
or more candidate components have been identified, it is necessary to evaluate their behavior when 
integrated with the other already chosen components. Obviously for this purpose testing plays a key 
role. In fact on the basis of the specifications for the searched component, testers can develop useful 
(functional and architectural) tests to be executed to evaluate each candidate component. A testing 
methodology should thus allow for the effective testing of a component by someone who has not 
developed it, and within an application context that was completely unknown when the component was 
developed. The CB testing stages are further discussed in the next section. 

With regard to the requirements analysis and specification phase, in the new process the emphasis 
must be on the re-usability and interoperability of the components, and an important instrument is 
provided by the already discussed, SA. In fact, using the specification mechanisms developed for the 
SA, the structure of a system is explicitly described in terms of components and connectors. It is 
important to establish a direct correspondence between the architectural components and the run-time 
components. In other terms, the components forming the software architecture and the interconnections 
among them must remain clearly identifiable also dynamically, during execution. This feature, in fact, 
affects the quality of the system in terms of reuse, replaceability and then makes maintenance and 
evolution easier.  

A distinctive feature of CB production is the co-existence all along the development process of 
several and new stakeholders. A CB process must in fact foresee and manage the spreading, in time and 
space, of different tasks among several uncoordinated subjects [34]. Hence, it is essential to define 
special engineering processes to assemble the building blocks in the complete system. An overview of 
CB life cycle processes embedding quality assurance models can be found in [35]. 

A general process model for CBSD has been presented by Dogru and Tanik [36]. Software system 
specifications are analyzed and modularized into sub-parts. For each subpart a component is searched 
from a set of already developed components. The components chosen from the available set are 
assembled to form the software system. If a valid solution is not found then either an existing 
component is modified or a new component is built for the sub-part requirement. The end product 
software is called a “connected set of abstract components”, and the end product consists of only the 
“connectors and components” [36]. The connector set represents the interrelationships identified during 
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decomposition and carries on integration process information, which is useful in integration testing of 
components.  

1.5 Software Component Testing Phases  

Software testing [37] consists of the dynamic verification of the program behavior on a finite set of 
test cases, suitably selected from the usually infinite executions domain, against the expected behavior. 

As for the other development phases, the testing stage as well needs a rethinking to address the 
peculiar characteristics of CB development [34]. The component provider and the component user roles 
can be compared as a minimum as yielding distinguished responsibilities for testing purposes. The first 
needs to test the software component in order to validate its implementation, but cannot make any 
assumption on the environment in which the component will be employed. The second, instead, needs 
to (re)test the component as an interacting part of the larger CB system under development. In [38], 
Harrold et al. addressed issues and challenges involved in analysis and testing in CBSD from both 
component provider and component user perspectives. Table I compares Harrold’s [39] widely 
referenced perspectives, based on the distinct characteristics of software components presented in the 
next section. 

Table I. Perspectives in Component Testing 

Component Provider Component User 
Develops component Uses component 
Source code available Source code unavailable 

White box and Black box Testing 

Black box of component unit 
 
White box testing of component-links or 
integrations with other components or 
system (as component interface names 
being invoked by the system are visible to 
the user, it can be termed as white box 
testing) 

Context-independent view of component Context-dependent view of component 

All configurations or aspects of behavior 
of component must be tested 

Subset or all configurations and only those 
aspects of behavior of component that are 
application related are tested 

Performs unit test for insuring its correct 
functionality 

Performs integration test by invoking 
component services 

Low bug fixing cost High bug fixing cost 
 
Traditionally, the development of complex systems involves three main testing phases: unit testing, 

integration testing and system testing. Another testing level that can also be categorized as a component 
testing type is regression testing.  In CB development, these three traditional testing phases have to be 
reconsidered and extended (see Figure 2).  
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Figure 2: Adapting the Test Process 

1.5.1 Unit/Component Testing 
The smallest test unit becomes the component. Component testing is performed by the component 

developer and is aimed at establishing the proper functioning of the component and at early detecting 
possible failures. Software components are initially tested in isolation to detect errors in internal 
functionality of unit components. The availability of source code to the component developer permits 
white-box testing of all component configurations regardless of a specific usage context. The developer, 
however, must also perform black-box component testing to ensure that correct specifications are 
attached with the reusable component. However, such testing cannot address the functional 
correspondence of the component behavior to the specifications of the system in which it will be later 
assembled. In fact it is impossible for the developer to consider all the environments in which the 
component could be successively inserted.  

1.5.2 Component Integration Testing 
IEEE defines integration testing as “testing in which software components are combined and tested 

to evaluate the interaction between them” [40]. Indeed, unit testing cannot confirm the reliable behavior 
of components in a new system; hence another testing campaign—by the component user—is essential 
to attain an acceptable reliability level. Councill [41] termed testing by the component user during its 
implementation in the real environment second party testing.  

Software components can be incorporated in a system as units, or multiple components may work 
together to provide system functionality, as shown in Figure 3. The component, whether integrated 
individually or with other components, requires integration testing--that is, testing component 
interactions as expected in the actual usage environment--before actual component deployment.  

Component integration testing is an indispensable phase. Performed by the component user, the 
purpose of integration testing is thus the validation of the implementation of the components that will 
constitute the final system.  This phase can be further divided conceptually in two successive sub-
phases. In the first sub-phase the component can be tested as integrated in an environment constituted 
of stubs that roughly implement the components as foreseen by the specifications. In that manner it can 
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be early checked whether the component correctly interacts with the “ideal” environment. In the second 
sub-phase, the real integration between several chosen components is verified. To do this, the 
interactions among the actual implementations of the architectural components during the execution of 
some test cases are monitored, and undesired interactions can be possibly detected. It is worth noting 
that potential mismatches discovered by the component user during integration testing are not in general 
``bugs'' in the implementation. Rather they evidence the non-conformance between the expected 
component and the tested one (and hence the need to look for other components). 
 

 
 

Figure 3: Component Integration Testing by the Component User 

A particular case of integration testing is when a real component comes equipped with the 
developer's test suite, and the customer re-executes those tests in his/her environment. These tests 
guarantee that the “intentions” of the developer are respected in the final environment and their 
execution generally lead to a more comprehensive evaluation. They can possibly include test cases not 
relevant for the customer's specific purposes, but that can be however useful to evaluate the behavior of 
the component under customer's unexpected entries.  

1.5.3 System Testing 
System test does not show major conceptual differences with respect to the traditional process (at 

this level of the analysis) and is performed by the component user when all the various components are 
integrated and the entire system is ready to run. System testing encompasses load and performance 
testing, to test the functionality of the whole system. The system testing process thus does not require 
white box testing of each component, even though it assumes that each component has been tested and 
attained a certain level of reliability. The emphasis of system testing is not only restricted to test 
components, rather, components are again tested in system context to assess the performance of the 
whole system as a black box.  
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1.5.4 Component Regression Testing 
Regression testing is considered to be the first step in integration testing. According to Binder [42] 

rerunning accumulated test suites, as components are added to successive test configurations, builds the 
regression suite incrementally and reveals regression bug. The regression test suite does not contain 
tests for new or changed capabilities of modified components; however, the previously tested code must 
be tested again in a new context. The integration test suite requires the previously tested system code to 
re-execute not only in the context of the modified component but also the modified behavior of the 
component. It is for this reason that regression testing and integration testing are not synonymous. The 
already cited failure of the Ariane 5 rocket controller was in large part due to an assumption that 
previously tested code would work when it was reused, obviating the need for regression testing. Two 
main testing inaccuracies caused this failure. First, the components that interacted were not tested 
during the integration phase rather they were delayed for system testing only. Second, regression testing 
was not performed on the entire system. This single most costly bug in software history could have 
been detected by regression testing. 

1.5.5 Standard For Software Component Testing  
A generic software component test process is covered in BS 7925-2 standard [43]. The standard 

mandates the addition of specifications with the component containing results of all executed test cases. 
The  defines 13 test case design techniques and 11 test measurement techniques. The test design 
techniques do not correspond to the test measurement techniques. An explicit standard compliance 
mechanism is not defined for a software component testing process to comply with the BS 7925–2 
standard. However, it is assumed that generic testing process is followed and component specifications 
are also provided with component. The term component testing covers all testing types, including unit, 
integration, and system testing. Although a general process for component testing is defined in the 
standard, it lacks a description specifically for component integration testing. 

1.6 Software Component Testability 

Software testability provides the basis for evaluating the software application test process. 
Component testability is related to component testing, and provides essential metrics that can be used 
by component vendors and users to assess the component testability level. In the software industry, 
testable and reusable components are required to fulfill the immense demand of rapid and cost effective 
software development. To achieve this goal, component providers need more practical research results 
that provide valid methods and guidelines for developing testable software components. Component 
testability measures can help component users to select and evaluate components, and to gauge the 
effort spent on the component by the developer for increasing component testing capability. The IEEE 
Standard Glossary [40] defines software testability as: 

“The degree to which a system or component facilitates the establishment of test criteria 
and the performance of tests to determine whether those criteria have been met; the 
degree to which a requirement is stated in terms that permit the establishment of test 
criteria and performance of tests to determine whether those criteria have been met”. 

In this definition two different testability concerns can be identified. First, the way a software 
system is developed, and secondly, the requirements on the software system that serve as the basis for 
test suite definition. Beyond these aspects, however, component testability can be further extended to 
include the 5 metrics [44, 45] discussed below.  
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1.6.1 Component Understandability 
The interface descriptions attached to components to explain their functionality also enhance their 

understandability, allowing component reuse, the major benefit of CBSD. Information attached to the 
component other than the source code provides a gauge to access the understandability metric.  

1.6.2 Component Observability  
According to Freedman [46] a software component is observable "if distinct outputs are generated 

from distinct inputs" so that, if a test input is repeated, the output is the same. If the outputs are not the 
same, then the component is dependent on hidden states that are internal to the component. 

Hence, mapping the inputs with their corresponding set of outputs for each component interface can 
assess component observability. If component behavior can change internally, then it requires 
determining all possible outputs for one component input. Such information for each interface of the 
component enhances component observability.  

1.6.3 Component Controllability 
According to Freedman [46] component controllability is the ease of producing a specific output 

from a specific input. Component controllability refers to the mapping of component output from a 
specific set of inputs, i.e., the expected outputs are controllably produced from particular inputs. The 
normal execution of software components with definite inputs is checked to measure component 
controllability to produce the expected defined output.    

1.6.4 Component Traceability 
Software component traceability is classified as black box traceability and white box traceability. 

Component black box traceability can be assessed by a comparison of component behavior with its 
execution, while component white box traceability is established by checking the internal state of 
software components on every interface invocation. Gao et al. [45] explored and demonstrated the 
concept of traceable CBSD in distributed environments. The traceability metric involves various traces, 
which include operational, event, state, performance and error trace. These can be easily checked 
through detailed software component behavior and implementation testing.       

1.6.5 Component Test Support Capability 
Component test support capability involves the mechanisms to improve component testability. 

Mechanisms to generate test suites, to execute testing, and to manage the test process are required to 
improve the testing support capability of software components. Although it is the least explored metric, 
it is important in assessing the testability of software components.  

Part 2  
The second part presents a survey of several proposed approaches related to CB testing from the 

component user's view. Approaches for testing a component from the component developer perspective 
are purposely left out the scope of this paper, since the information available on the component internal 
structure (such as the source code) allows the developer to use different, white-box oriented, 
methodologies (see, e.g., [47]).  
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The approaches discussed cannot be considered alternative, on the contrary the combined usage of 
more than one of them can certainly give better results than only selecting one. Obviously the list is not 
exhaustive, but reflects the authors’ comprehension and best knowledge of the literature. 

Unfortunately, the same characteristics discussed in Section 1.3, which make components an 
attractive means for software production, affect the testing process negatively. In fact, typical 
component features such as source code unavailability, component heterogeneity, and continuously 
changing nature, are generally recognized as impediments to integration testing. Certainly, the major 
issue that affects integration testing is the lack of information. Commercially available software 
components are generally packaged without source code, and this may also cause difficulties in 
component integration testing [48, 49]. On one side the developer performs unit testing with no system 
context information (as also highlighted by Weyuker [50]) or knowledge of component deployment 
environment. On the other side the user chooses and deploys component in his/her application, by 
analyzing only the component published services but no implementation details. 
Thus mechanisms for component integration testing in general demand additional information packaged 
with the component, and/or additional structure for reliable use of component applications, which is 
necessary for effectively utilizing the “reuse” benefit of components.  

2.1 Coverage Notions for Component Integration Testing 

The overview of CB testing approaches starts by defining some relevant coverage notions for 
component testing. One of the goals of integration testing is to ensure that messages from objects in one 
component are sent and received in the proper order and that messages have the intended effect on the 
state of components receiving the messages [42]. An operation may consist of a sequence of interface 
invocations, which further can be an external event or the result of a sub-invocation chain triggered by 
external event. Integration test coverage criteria are thus required to provide test coverage for the 
elements [48] including interface, event, context-dependence, and content-dependence. These four test-
related elements stem from OO software developments, in which they provide the basis for defining 
specialized test coverage criteria.  

Interface and Event Test Coverage 
         Software component services are accessible through their interfaces. The first integration test 
coverage criterion is thus to execute each interface at least once. An explicit definition of each 
component interface is generally provided through textual specifications, which include a description of 
interface functionality, its parameters, and return types.  

At a higher level of coverage, the criterion may include testing each interface against all its possible 
invocations, which is equivalent to testing each event at least once. An event is a normal invocation of 
an interface. The event coverage criterion not only requires the invocation of each interface once, but 
also requires that each interface be invoked against all its possible events of invocations in the 
application environment. Many possible events can be generated from a component to fulfill this test 
coverage criterion particularly for a specific component environment. However it is still considered a 
weak criterion for integration testing.   

Context dependence Test Coverage 
Sometimes, events can have sequential dependencies on each other and the order in which they are 

triggered can result in distinct program behaviors. Such dependencies are termed as context-
dependencies. The coverage of such dependencies could only be achieved by testing all possible 
operational sequences in the component. 

Interfaces and possible sequences of their invocation in application must be known prior to testing 
the context dependence of components. The context dependence provides coverage for interoperability 
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faults as direct and indirect interactions of software components are tested. Interoperability faults 
testing should be done of all possible interaction sequences. For example, an interface is dependent on 
another for its execution, which is itself dependent on another interface and the chain of dependence 
may continue in a similar manner. Operational dependence of each interface must be known for the 
context-dependence test coverage.  

Content dependence Test Coverage  
A still higher coverage level tends to test all content-dependence relationships. A content-dependant 
relationship exists between two interfaces I1 and I2 of a component if an operation of I2 modifies the 
value of a variable that is used in an operation of I1. In that case, interface I1 is said to be content-
dependant on I2. This coverage corresponds to the data flow strategy for structural testing of traditional 
programs. An efficient testing mechanism requires coverage criterion for these dependence relations in 
OO components. 
 

However, component interaction clearly affects the respective domain coverage. In [51], realizing 
the lack of theoretical bases for testing of CB systems, Rosenblum redefined test adequacy criteria for 
component unit and integration testing, providing a foundational reference notion for component 
testing. He formalizes the notion of test adequacy (with reference to a particular subdomain-based test 
criterion C) in the presence of a component M that is integrated in a program P. The study is based on 
the well-known Weyuker’s axioms of anticomposition and antidecomposition [52], which are 
applicable only to programs simply containing sequential statements. In [51] the two new 
complementary definitions of C-adequate-for-P and of C-adequate-on-M are introduced. Informally, 
in CB testing, adequacy is reinterpreted over that subset of M input domain that can be ever invoked by 
P, denoted as “P-relevant”. In fact, although it is P that is being tested in integration testing, the 
criterion C must be chosen and then evaluated in terms of the invocation relationship between P and M. 
The concept C-adequate-for-P characterizes adequate unit testing of M, whereby informally a test set 
TM is C-adequate-for-P if it includes at least one test input from each P-relevant subdomain of M. The 
concept of C-adequate-on-M is instead defined to characterize adequate integration testing of P with 
respect to its usage of M, whereby a test set TP is C-adequate-on-M if it traverses M with at least one 
input from each P-relevant subdomain. 

2.2 Component Integration Testing Techniques: A Classification 

The test inputs in integration testing must be determined in actual usage environment, i.e., 
integration testing requires knowledge of component usage environment. Hence, only the component 
user, or a third-party tester having this type of information, can conduct integration testing. The third-
party tester may be provided with test information from both the user (component usage requirements) 
and the developer (component metadata, see Section 2.5).  

For testing purposes, a component can be classified depending on the information that is carried on 
with the component itself. In this sense, a continuous spectrum of component types can be analyzed, at 
one extreme of which there are fully documented components, whose source code is accessible (for 
instance, in the case of in-house reuse of components or open-source components). At the other extreme 
of the spectrum there are components for which the only available information consists into the 
signatures of the provided services, which is the typical case of COTS components. Clearly, the testing 
techniques to be used by the component user will be quite different depending on the type of 
component. For instance, in the case of COTS, the unavailability of code hinders the possibility of 
using any of the traditional code based testing techniques. Components developed in-house may allow 
full access to component’s internal representations and source code; however, in general, software 
components do not provide source code access.  
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A few testing techniques are defined for components that assume the availability of source code for 
example in-house components. Several testing techniques are defined for components packaged without 
source code; these techniques may further depend on the developer to append test information or rely 
on the user to extract test information from component. On the other hand, user and developer can also 
utilize the services of third-party tester to conduct testing, by providing component test information, and 
simulating specific component environment.  

In the following component integration testing techniques are discussed. For exposition purposes, 
techniques are classified into five coarse categories: 

1. Built-in Testing Approach 
2. Testable Architecture Approach 
3. Metadata Approach 
4. Certification Strategy Approach 
5. Customer’s Specification-based Testing Approach 

A more detailed categorization and comparison of the integration testing techniques is then provided in 
Table IV after having discussed the various approaches. 

2.3 Built-in-Testing Approach 

Built-in-testing is a generic approach for testing, earlier adopted in OO programming. In general, 
BIT is “the test software that resides in an application” [42], i.e., literally the component is augmented 
with executable test cases that are built in the component together with the normal functions. BIT 
requires component developers to embed tests in software component implementation to support self-
testing. By running the embedded test cases, the component user can thus validate in the final 
environment the hypotheses made by the component developer. Several techniques have implemented 
this philosophy. 

2.3.1 BIT wrappers 
Edwards [53] has proposed a framework to provide BIT wrappers for component testing, using the 

specification language RESOLVE as an example, but other languages could also be adapted. The 
RESOLVE specification is assumed to include pre and post conditions for each interface, for which in 
RESOLVE “requires” and “ensures” keywords are used, respectively.  

A component BIT wrapper is composed of two layers around the component. The internal layer is 
for handling component’s internal errors while the external layer handles component’s integration with 
system or other components. The wrapper adds the benefit of testing software component but diligent 
effort is required for managing the BIT code. The wrapper must be attached to the component in a way 
that the component behavior is not modified nor the component internal structure is affected, because 
this may put at risk the original objective of bounding wrappers around component: the key objective is 
to test component behavior and to reduce the behavior invalidity, not to introduce further complexity or 
making any changes in the structure of component. A wrapper is like a filter that permits the passage of 
only certain inputs and outputs to and from a component. The automation of the framework [53] relies 
on the RESOLVE specifications provided with the component. The interface specifications can be used 
to generate test-suite, test-driver, component BIT wrappers, and test oracles for test automation 
processes. The test-oracles are dependent on the BIT wrappers to be comprehensive enough to hold all 
the post-conditions. Component behavioral descriptions, i.e., specifications attached with the 
component are used to generate test cases and test data for black box testing. The test-oracles can also 
be derived from the specifications but the defect finding rate is improved by using the BIT wrappers, 
although using the wrapper approach increases complexity.  
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The BIT wrapper detects any interface violations inside the component or being generated by any 
invalid input to the component. However, a generalized approach is not presented rather it is restricted 
only for those components having RESOLVE specifications attached with the component. The 
specifications are necessary for framework automation, and in case of missing specification the 
programmer is required to generate the specifications manually by executing component and 
determining the component behavior. The generality of this approach is limited, as it is dependent on 
the provider to cater BIT wrapper definition and to provide component specifications. Besides 
maintenance issues need special care for components with BIT wrappers. 

2.3.2 BIT in maintenance mode operation 
The BIT approach had been used by Wang at el. [54] for enhancing CB software maintainability. 

They build tests in component source code as extra member functions; components in their approach 
operate in two different modes, which include the normal mode and the maintenance mode. In normal 
mode components perform the normal required functionality, while in the maintenance mode the 
component user can invoke particular methods, enclosed with each class constituting the component, 
that have been added to codify dedicated test cases. Being part of the class, these methods can access 
every private variable and invoke every method. So the mechanism provides the component user with a 
powerful means of evaluation, without requiring the component customer to use any specific 
framework or tool for testing purposes. 

2.3.3 Self-Testable Software Component 
Mechanisms to improve software component testability have been sought by applying the principle 

of design for testability in hardware, which relies on the addition of extra pins in integrated circuits to 
increase the observability and controllability. Similarly in software components additional interfaces 
can be provided with the software component to improve component testability.  

Martin et al [55] used the Transaction Flow Model (TFM) as designed by Siegel [57] for creating 
self-testable components. TFM is used for unit testing of a class; message sequences for a single class 
are generated as a transaction starting from object instantiation to its destruction. TFM is generated for 
a class, and for each transaction, the Concat [58] test tool is used to generate test cases. The test cases 
once produced are reused, by applying different value of test data with the same test cases. The user 
accesses these test cases through methods built in the software component. The additional code for 
testing component is thus built and executed to find inconsistency in component implementation.  

This self-testing methodology requires extra effort by the component developer to increase the 
component testability, and to maintain software component for reusability by multiple applications. The 
proposed approach results into complex code, which in turn may cause problems in component 
maintenance.  

2.3.4 STECC (Self-TEsting COTS) Strategy 
Beydeda and Gruhn [56] proposed the STECC strategy, which is similar to BIT as the software 

component is itself enabled to hold the information and the mechanisms to access the information, but 
differs in that it requires information from the component user for stub and driver generation. The test 
cases are first generated within the component to unit test it, while for stub and driver generation the 
user has to provide the input data for test execution. The test code in component can also perform test 
evaluation if the expected results are defined as test oracles in the component implementation, 
otherwise the results have to be manually verified. This technique relies on the component provider for 
defining an objective component testing process.  
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2.3.5 Built In Testing Approach Review 
In general, the main advantage of the BIT approach is that it enhances the component testability and 

allows for easy maintenance. The proposed techniques in this approach however suffer some 
drawbacks. The first, and technical in kind, is that the memory required at run-time to instantiate the 
objects from a class, can become huge and mainly dominated by the need of space to allocate the 
testing methods; these, obviously, are completely useless in normal mode. The second, and more 
conceptual problem concerns the meaningfulness for the component user of developer's defined test 
cases. This approach depends on component provider to generate test cases for the software component.  
Even not considering malicious developers, only those aspects of a component can be tested that are 
enabled by the component developer.  

BIT improves component testability but it is limited up to a certain level as it allows the developer 
to only provide static component test coverage criteria. As advocated by different authors [49], it is 
instead important that the customer develops his/her own test suites so to ascertain that a candidate 
component be “compliant” with the requirements for the searched component.  

BIT is a generic testing approach, which could be further improved by the definition of 
standardized processes for heterogeneous components. In this way the BIT approach may not be 
restricted only to a specific type like OO components, rather it will be uniformly applicable to all 
component types regardless of their implementations. The definition of standard procedures for stub 
and driver generation can further enhance the BIT generality, and also facilitate the execution of 
component integration testing. 

 

2.4 Testable Architecture Approach 

This approach can be seen as a special case of the previously described approach, and in fact shares 
the same aims. However, differently from built-in testing, this one prevents the problem concerning the 
huge amount of memory required at run-time. The idea is that the component developer equips the 
component with a specific testable architecture that allows the component user to easily execute the test 
cases. The test information is appended by the developer in the form of specifications instead of 
enclosing them in the component itself.   

2.4.1 Component Interaction Graph (CIG) 
An effort by Wu et al. [48] is the definition of a test-model called CIG (Component Interaction 

Graph) for integration testing. As a first step test elements are identified to build CIG, and test cases are 
generated for each test element in the CIG. Test coverage criteria are then defined based on these test 
elements, which are accessed directly from component source code if it is accessible to the user. If 
component implementation is not visible then mechanisms are required to indirectly extract component 
test elements from component design information. Wu et al [48] define a set of mechanisms to access 
these elements in different types of component models such as EJB, CORBA and COM based 
components. The interface list is provided with every component regardless of component model type. 
Similarly events can also be accessed, and if not provided in the specifications the component developer 
can attach the interaction diagrams with the component. Otherwise a set of events can be generated 
exhaustively for testing purposes. On having the interfaces and events, an algorithm is designed for 
extracting context dependencies. For content dependencies Wu et al [48] require component developer 
to append the design information such as class diagram. CIG model defines the test coverage criteria to 
reveal interaction faults by exhaustively testing all test elements, as mentioned above in section 2.1. The 
results of the case study [48] also reveal that the test elements are useful in deriving test cases for 
integration testing of OO components. The technique however suffers a drawback, as it would allow the 
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access to component source code through reverse engineering from design information. CIG model 
requires the developer to append the design information such as sequence diagram for easy test 
derivation. This information may allow the user to perform the reverse engineering task and get an 
access to source code thus affecting the implementation transparency, which is an important 
characteristic of software component.  

2.4.2 Introspection Through Component Test Interfaces  
In [59], Gao and coauthors require that each component implements a specific interface for testing 

purposes. This interface has the explicit goal of augmenting the component testability. In that manner 
the developer can then provide the component user with test cases coded in terms of clients that use the 
testing interface. By foreseeing the presence in the test-oriented interface of methods that use the 
introspection mechanisms, which are generally provided by component standard models, the same 
power of the built-in testing approach can be obtained in terms of access to methods and variables 
otherwise not visible to clients. The maintenance of such components is not simple, as it requires much 
effort on the side of component developer.   

2.4.3 Contract-based Built-In Test Architecture   
Another interesting approach also relying on the definition of a particular framework for component 

testing has been proposed by Atkinson and Gross [60]. Differently from the previous approach, in this 
case there is no use of the introspection mechanisms provided by the various component models. As a 
consequence the framework cannot reach the same power of the built-in testing approach. However this 
framework is not intended for the execution of generic test cases, but it focuses on providing the 
customer with specific test cases derived from contract specifications. In order to check the validity of a 
contract the authors suppose that a component developer implements particular methods for state 
introspection. In particular these states are defined at a logical level using a component model based on 
KobrA [61], a modeling tool developed in the area of Product Line (PL) design. 

This approach allows the user to define component requirements in the form of contracts. The 
developer then builds the state introspection mechanism for only the interfaces specified by the user. 
This architecture thus facilitates the user for establishing confidence in component services. It also 
increases component reuse on the developer side, as the test specifications generated for one user may 
get reused with the same component being delivered to another user.  

The implementation of this method is achieved through the use of modeling tool. Any user can test 
the required services by examining the logical definitions of states in the component model. This 
requires the use of these tools to trigger the state introspection mechanism in component. Hence, the 
technique does not present a generalized approach equally applicable for heterogeneous component 
environments.  

2.4.4 Testable Architecture Approach Review 
The testable architecture approach is slightly different from BIT and also solves some problems in 

BIT approach. Firstly the memory consumption problem is resolved, as the test specifications are built 
separately from the component source code. Secondly a few testable architecture approaches allow the 
user to specify the test requirements thus resolving the issue of static test coverage criteria to some 
extent. Some Testable Architecture approaches require the developer to define test cases according to 
the requirement specifications given by the user. In this way the test case derivation process to some 
extent involves user participation thus simplifying the component integration process.  

This approach enhances component testability yet poses considerable challenges. The contract 
based testable architectures as discussed in section 2.4.3 are tool dependent, and so may not be 
applicable components without running the modeling tool. This limits the architecture only for those 
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components that support the modeling tool. Similarly the approach cannot be generally applicable to all 
component types. Extra effort is demanded from developer largely at maintenance time, and most of 
techniques in this approach are not further valid for heterogeneous components.  

The testable architecture must support test case derivation process according to user requirements 
but at the same time also preserve component implementation transparency, an important characteristics 
of software components. Component reverse engineering through component design information allows 
component source code generation. In the same way the UML dynamic diagrams in CIG technique 
(section 2.4.1) may allow the user to generate the source code from component design. The addition of 
such component design can affect the implementation transparency. For this reason the developer must 
equip component with such architecture that does not allow for component reverse engineering. That is 
the architecture supports the test case derivation process but does not allow the source code generation.  

2.5 Metadata Approach  

Among the several problems hindering CB testing process, the main issue is lack of adequate 
information about the acquired component. A lot of research work has attempted to solve this problem 
by attaching additional information with the component, without making available the source code. All 
forms of additional information appended with software component, either by the developer, or user or 
a third party tester, to facilitate software testing can be regarded as forms of metadata. In particular, to 
improve integration testing process by component user, metadata is defined as the information added 
with the component to increase the component customer's analysis capability and to facilitate 
component user testing.  

Different kinds of information can be provided by the developer such as a Finite State Machine 
(FSM) model of the component, information on pre- and post-conditions for the provided services, 
regression test suites [62], and so on. The CIG (component integration graph), discussed in section 
2.4.1, for example, can be itself seen as a form of metadata. The Metadata based component integration 
testing techniques as discussed in following subsections can be compared by the analysis of echelon of 
metadata appended with the component in each technique. It is important at the same time that suitable 
tools for easing the management and use of metadata are also developed.  

2.5.1 White-box Components Analysis  
Orso et al. [63] highlight the need for added information with component for testing and 

maintenance purposes. In their view, component implementation information is extracted and used as 
metadata by requiring the developer to enable run-time checking mechanisms. Three types of summary 
information are provided in this approach:  

• Program slicing involves associating slices of component source with a set of variables. 
Program slicing is done to develop an understanding of a software component: program 
statements are divided into chunks of code (i.e., sub-domains) according to a variable use and 
summary information is bound with each chunk. A slicing algorithm [64] is used for backward 
traversal of program to compute the transitive closure of the data and control dependence in this 
approach. This transitive closure helps in establishing program understanding for analysis and 
testing. Program-slicing information is then included.  

• Control-flow analysis associates predicates with each statement to hold true for the execution of 
statement. Errors that may occur in the component due to external environment are attached 
with those statements and can be reported by exception generation. At detailed level summary 
information can be provided with each exception containing information for set of variables 
and a state defined for the values of variables.  This control flow analysis information is defined 
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for abstract component model, but needs to be redefined according to the requirements for a 
particular model. 

• Data-flow analysis at lowest level provides the definition and use of only input variables, while 
at maximum level this information can contain the definition and use of each variable in the 
component, as defined in the program-slicing phase. After testing the variable’s definition and 
use as the tester generates initial test suit. For achieving higher level of coverage, the tester can 
also generate test cases for those sub-domains, which are left uncovered by the data flow 
analysis. In this way all aspects of program are tested accomplishing high coverage level.  

These types provide generally applicable information to abstract component models, and require 
redefinition for a particular model. The approach does not provide a practical implementation. 
However, it provides the starting work for recovering the missing information, and can be extended to 
supply comprehensive component testing information.  

A format similar to MIME (Multi-purpose Internet Mail Extension) is proposed for metadata 
representation. The component metadata consists of information such as parameter types and state 
invariants of OO programs, in the MIME tags. The tags for this information are defined and can be 
filled at execution time. These tags need further improvement for complete definition of component 
behavior.  

Also the proposal of Stafford and Wolf [66], who foresee the provisioning of pathways expressing 
the potential of an input to affect a particular output, can be re-conducted to the Metadata approach. 
Whaley et al. [67] propose to supply models that express acceptable method calls sequences. In this 
manner the customers can evaluate their use of the component and check whether legal calls are indeed 
permitted. 

2.5.2 UML Test Model 
With the widespread adoption of UML, UML based metadata obviously become an attractive means for 
the integration testing of CB software in industry. 

Wu et al. [68] propose an approach for metadata in the form of UML models, which target the 
addition of specific test elements of software components by the providers. They define a set of 
adequacy testing criteria in which the UML interaction diagrams are used for extracting the test 
elements. The interfaces for components are outlined in the associated specifications and the events are 
also added in the form of virtual interfaces. Coverage of these elements is straightforward, but does not 
provide substantial confidence. The level of confidence can be improved, while still keeping the 
complexity low, by covering the context-dependence relationships. These relationships are modeled 
conveniently and directly in UML interaction diagrams. Execution of each possible sequence through 
these diagrams provides the desired reliability estimation, which can be enhanced still further by 
covering the possible sequences in the associated state-charts. On the other hand, the content-
dependence relationships are not modeled directly in any UML diagram, however, the same can be 
extracted indirectly from collaboration and state-chart diagrams. The collaboration diagrams, that 
involve entity classes, can show the content-dependence relationship through update and retrieve 
messages. An update message only modifies a value (in entity class). This is modeled by a single 
message flowing into an entity class without any corresponding out-flowing message. Retrieve 
messages, on the other hand, read a value and are modeled by a pair of in an out-flowing messages. If 
the execution of an interface I1 involves an update message that has a corresponding retrieve message 
in interface I2, then I2 is content-dependant on I1. Similar to the use of collaboration diagrams, state-
charts can also be employed to identify content-dependence relationships.  

The proposed UML Test model provides a comprehensive technique for functional testing of third 
party components under the unavailability of source code. UML models abstract the complexity of 
integration of such components and provide only relevant information for test coverage of all test 
elements of software component. Automatic test case generation from UML models allow software 



 23  

component users to generate test cases from the UML artifacts attached by the component developers. 
On the other hand, the proposed test-model assumes that one interface corresponds to one operation of 
software component, but more in general an interface may abstract occurrence of multiple component 
operations, invocation of one interface in component results in the activation of several operations each 
with a specific task. The complexity of multiple operation invocation is not handled in the testing 
process. Wu et al [68] advocate providing UML diagrams with the component only for the context and 
content dependence coverage while interfaces and events can be outlined from the associated 
specifications. In addition, manual usage of this technique can be a very slow and tedious process thus 
automation is desirable. No tool, or any empirical evaluations currently support the work.  

Redolfi et al. [65] defined a reference model in the form of class diagram. They take into account 
the characteristics and properties of components existing in literature for defining this reference model. 
This model does not directly expose the implementation part, however, implementation specification 
part in the class diagram allows accessing the component behavior as in the component source code, 
affecting the implementation transparency feature of component. The model is mainly used in defining 
a component repository so that a component can be easily accessed based on requirements of 
component functionality and behavior. Reuse, an important benefit of software components, is achieved 
through documentation of component properties. By enhancing component understandability, this 
reference model can also be classified as a form of metadata facilitating component testing. 

2.5.3 Checking OCL Constraints 
Another approach of metadata based testing is the one proposed by Brucker and Wolff [69]. This 

technique has been inspired from the design by contract principle [33] and based on it, attempts to 
generate components that have the capability of testing themselves. This is achieved by building some 
testing code into the component that executes and tests the component. The self-testing code is in the 
form of pre and post conditions on the methods that have to be checked on each entry and exit 
respectively. Violation of any of these conditions represents a bug. This self-testing information is 
derived from a class diagram, which is annotated with constraints specified in OCL. Once the 
components are built, these constraints (conditions) have to be added to it. This is automatically done 
through instrumentation tools already available. Similarly the execution of this code would require 
executing and checking the constraints that are still specified in OCL format even in the code. Again, 
tool support for OCL constraint checking exists. In addition to providing built-in test support in 
components, the work also defines some design patterns for distributed components and support them 
with a prototype tool. 

2.5.4 Metadata Approach Review 
Like the testable architecture approach, the metadata approach tends to enhance component testability. 
In this approach the component user is provided with component minimal details so that the user is 
allowed to generate test cases from the added metadata. The benefit of the approach is that the test 
coverage criteria are defined according to user requirements, thus eliminating static test coverage 
criteria problem. In this way component metadata assists in software engineering tasks such as testing 
and maintenance by providing analysis and testing information to the component user. Nevertheless 
there exists a need to define standardized methods to query and generate the metadata dynamically as 
for the large software components the design information or metadata becomes too complex to manage. 
The techniques in metadata approach generally do not handle heterogeneous components.     

For the existing techniques, the format of component metadata can apparently be classified in some 
way that facilitates metadata understanding. This heavily impacts the effectiveness of these testing 
approaches. For instance Cechich and Polo [70] propose to use aspects to provide a more effective 
categorization and codification mechanism of component services.  
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Some of the techniques in this approach indirectly tend to affect the implementation transparency of 
the software component, similarly to the Testable Architecture approach. The design information 
appended as metadata particularly the UML dynamic structure diagrams (e.g., interaction diagrams) 
allow source code generation through component reverse engineering processes. In this way component 
metadata must support component analysis only for component testing and maintenance purposes and 
must not affect the implementation transparency feature of software component. Another improvement 
to the approach can be that the techniques be further explored so that the test information like test data 
and test cases be automatically generation from the metadata. This can further ease the integration 
testing process at the user end.  

2.6 Certification Strategy Approach 

The widespread use of software components can only be obtained by building a high level of 
confidence in the software component, but the customer of a component is generally suspicious about 
the information and proof of quality provided by the component developer. Indeed, the component 
developer cannot be entrusted to produce error-free components and moreover possible inconsistencies 
between the component and the accompanying metadata cannot be detected until the component user 
executes the software component and verifies the results. Hence, to increase more effectively the trust 
of a customer on a component, different forms of component certification have been proposed [70]. 
These forms mainly rely on the idea that each component undergoes a standard certification for the 
development process and for its features and architecture. In general, the component certification 
process is classified into the following types based on who takes the role of certifier: 

• Third party component certification 
• Component user certification 
• Component developer certification 

2.6.1 Third Party Component Certification  
Third-party certification is an effective way to build component trust, because it can preserve the 

objectivity in component testing [40, 72, 73]. Once a component is tested by a third-party organization, 
multiple vendors can use it effectively by reusing the test-results as generated by the third party.  

A first proposal [74] involved the constitution of independent agencies, or Software Certification 
Laboratories, with the main duty of deriving and verifying the qualities of a component. To this end the 
agency should extensively test (from a functional and performance point of view) the components using 
an impartial mechanism and then publish the results of the executed tests and the used environments. 
This can be more beneficial for large software systems, and particularly for safety critical systems.  

Councill [40] states that third party testing can provide impartial component testing to component 
users, and it may be performed voluntarily, contractually required or enforced by legal permission. The 
results or findings of third party testing are provided to the requesting organization. 

Ma et al. [73] have proposed a framework for third party testing of software components. A process 
is defined for third-party component testing using metadata attached by the component developer for 
this purpose. The specific elements of metadata are not identified, however it is assumed they generally 
include information according to the general philosophy of component metadata, i.e., analysis and test 
support information. The framework defines a three-step process:  

• Third party tester provides guidelines and supporting tools to the component developer. 
• Component producer generates a test-package using these guidelines. The test-package consists 

of information for deploying and testing the component and to audit the test suite of the 
component in the form of metadata. 
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• Third-party tester checks the conformance of test-package with their guidelines, executes the 
test package, and generates a test report.  

An evaluation of third-party testing framework by Ma et al [73] demonstrates that third-party tester met 
some problems while executing the test suite provided by the developer. The objective of third-party 
testing framework was functional testing of a software component by a third party having some 
knowledge of the component, but the generated test package proved insufficient for the testers to 
understand and test component functionality. The problems encountered in the evaluation reinforce the 
need to attach comprehensive metadata by the producer, but the framework lacks an explicit definition 
and a formalized notation for metadata representation. Some discrepancies also occurred between part 
of testing information metadata and the software component. In addition component developer could 
not produce correct test oracles, as the developing team lacked expected testing skills, although 
guidelines were given to the developers for the generation of test package. These problems arose due to 
reliance on component producer for the generation of test package, whereas normally developing teams 
lack standard testing potentials. However, third-party testing framework aims at providing objectivity in 
component testing, and can be used effectively by the component users to rapidly verify and validate 
software components, thus increasing reliability in CBSD applications. 

2.6.2 Component user certification 
The inherent difficulties in establishing these third-part agencies suggested that in alternative 

warranties be derived as the result of extensive operational usage, following some notable Open Source 
example (e.g. Linux). By coordinating the users of particular software, a “user-based software 
certification” [75] could be established. 

The component users can check that a selected component performs specified functionality for 
system by component user certification. It is also an element of integration testing. Voas [74] defines 
component user certification process by incorporating black-box component testing, operational system 
testing, and system level fault injection. Table II provides the objective of each testing technique used 
in the certification process.   

Table II: Objectives of testing in the certification process 

Testing for certification process Objective 
Black-Box Component Testing To check component compliance with the 

specification, and to check component quality 
Operational System Testing To determine system’s reliability with 

operational component 
System-Level Fault Injection To determine system’s reliability while 

generating failures in the component 
 
The component user performs black-box component testing to reveal errors. For black box testing, 

test cases are generated based on component interface specifications. If the component meets the 
quality requirements of component user then operational system testing of component is performed. In 
order to assess the reliability, faults are randomly generated, and instead of testing component with 
correct inputs, the system is tested with wrong outputs from the component. The wrong outputs 
generated and passed to the system allow the user to determine the undesirable inputs to the system. 
Those outputs of a component are revealed, which can adversely affect system. The application 
developer uses the component wrappers as a filter to such component outputs with the limitation that 
only expected outputs are filtered by the wrapper.  

In this certification approach component buyer defines oracles for testing quality of software 
component hence an accurate set of oracles is utilized in the certification process. Wrappers designed 
by the application developer may not filter an erroneous output by a component, thus causing system 
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failure. For this, component developer may append additional specifications with the component, which 
can assist finding such errors by the application developer, thus making the process more effective in 
finding the bugs in integration testing. 

2.6.3 Component Developer Certification 
A different approach to certification has been proposed by Morris et al. [72], starting from the 

remark that using the services of a certification agency could be particularly expensive for a small 
software company. To overcome this problem a developer's software certification approach is proposed, 
i.e., the component developer provides a certification that component functionality complies with the 
test specifications provided with the component, by testing the component’s behavior and attaching 
testing information (metadata) with the component. It is therefore foreseen that the developer generates 
test cases and testing information, performs component testing and appends the testing cases and test 
results with the component as a proof of tested software component. This approach relies on the release, 
together with the component, of test case sets specified in a formal notation using XML (Extensible 
Markup Language) [76]. This format should guarantee a better understanding, on the component user’s 
side, of the test cases that have been executed by the developer on the component.  

According to the authors, on the one hand this should increase the trust of the customer on the 
component behavior. On the other hand, by using suitable tools, it should be possible for the customer 
to (re-) execute the XML test cases in the target environment. Thanks to this feature, the approach could 
also be seen as another variant of built-in testing. 

The test specifications consist of a set of test cases generated for each interface. A Testset consists 
of multiple TestGroups, which further consist of operations. Each operation is a collection of method 
calls, thus to perform the operation testing each method call in operation is tested. To be precise, the 
test case for each operation requires executing a set of method-calls given in the operation. For OO 
components the invariant-element is specified, which must hold true from object construction, and all 
through operations in object life cycle till object clean up. 

2.6.4 Certification Strategy Approach Review 
The three certification strategies discussed above show some dissimilar characteristics. All these 

strategies require some form of certification but the certification process is governed by the role of 
certifier, and hence they present different pros and cons in the testing process. 

In third party component certification a third party tester enhances the confidence in component 
services. It allows impartial component testing by an independent organization so can be very useful for 
safety critical systems. On the other hand the cost of component test execution is raised by third party 
certification process.  

For component user certification the fault injection testing by the user allows increased reliability in 
the component services at a black box level. The component services are executed in the user’s system 
environment thus allowing the black box testing of software component. The only lack in this 
certification process is that it does not support white box component testing.  

Component developer certification can be very useful at deployment time for user, and the added 
test related information could also be termed as component metadata as they facilitate the user 
understanding of component functionality. However, as it is the component developer who performs 
component testing, he/she cannot take into account any context dependence information while 
generating test cases and test data for integration testing. Testing performed by the developer fulfills the 
requirements of component unit testing, but cannot be utilized fully by the user for integration testing.  
Test specification is generated by component developer and statically kept with the software 
component. For integration testing the component user is assumed to again generate the test cases, and 
perform integration testing. This certification has less support for impartial component testing. All test 
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specifications are attached and validated by the component developer thus relying completely on the 
developer for unbiased component testing. 

2.7 Customer's Specification-based Testing Approach 

To different extents, all of the above approaches rely on some cooperation and good will on the 
component developer's side: that some specified procedure is followed in producing the component (in 
particular, that some test cases are executed and documented), or that some required information or 
property about the component behavior and/or structure is provided. However this cannot be assumed 
as the general case as often components are delivered supplemented of really little information.  At this 
point the unique means, in the hands of the customer, to increase his/her trust on the component 
behavior remains the execution of test cases that he/she has defined on the basis of the specifications for 
the searched component. This philosophy is at the basis of the Customer’s specification approach. The 
use of test cases developed on the basis of the component user's specification and in the target 
environment is useful in any case, but especially when only black-box test techniques can be used. The 
application of this kind of approach requires, however, the development of suitable tools and 
methodologies for test case reuse and derivation. It is also of primary importance to develop new means 
for the derivation of relevant test cases from the specifications. 

2.7.1 Interface Probing 
Interface probing [77] identifies a quite intuitive and ad hoc approach to component testing: very 

simply, the component user derives a set of test cases, executes the component on them, and analyzes 
the outputs produced. The goal is to understand component properties, functionality and possible 
limitations. It is proposed more as an approach to component understanding [78], rather than as an 
approach to integration testing. However, it can also be included in the set of customer’s specification 
based testing approaches, in that it is in fact the customer that designs the exploratory test cases, based 
on his/her “mental model” [78] and expectations from the component when he/she first uses it. Korel 
[77] distinguishes among test cases aimed at finding an input on which a desired property is exhibited, 
test cases aimed at detecting if there exists any input on which a required property is violated, and 
finally test cases aimed at identifying component pre-conditions. Then he proposes an approach for 
partially automating interface probing, by means of a search engine which automatically searches for 
component inputs on which the component property is revealed using a combination of existing 
automated test generation methods for black-box testing and for white-box testing. More precisely, the 
component user first uses assertions to describe the properties of interest in terms of the component 
inputs, and secondly defines the search scope (which consists of the range of input parameters to be 
explored) as well as the goal for which the search is performed (depending on the above test case 
classification). Once these specifications are formalized, different automated test generation methods 
can be used. In particular, Korel proposes random testing, boundary value analysis or execution-
oriented methods, as direct-search. 

Interface probing is an exploratory test approach, and may require a high number of test cases. With 
the support of automated search engines, as suggested by Korel’s approach, the number of test cases 
might be reduced, but still a high effort on the side of the component user is required for specifying the 
needed inputs to the search engines and then to infer component’s properties. 

2.7.2 Component Deployment Testing  
Taking the move from the observation that in practice COTS components may still today be 

delivered with scarce, if any, useful information for testing purposes, Bertolino and Polini [79] propose 
an integration testing framework for easing the execution of test cases derived from the customer 
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architectural specifications, making the least restricting assumptions on how the component is 
developed or packaged. 

The user performs an analysis of component requirements before actually deploying the 
component. Through this analysis the user identifies a virtual component, which partially simulates 
expected component requirements, but without requiring complete component development. The 
deployment-testing framework then allows the user to test and compare multiple available components, 
by matching the real component outputs and features accessed at run-time with the virtual component. 
This process involves the following steps [79]: 

Step 1: Component user defines component test cases. 
The component user defines interface descriptions of a virtual component by coding minimal 

functionality into a so-called Spy class (virtual component simulated by the user). The virtual 
component represents the expected requirements of component user, which are expressed syntactically 
in Spy class containing method signatures. One Spy class may abstract the functionality of multiple 
objects of real component. Test cases are coded and stored for Spy class by using JUnit tool, which is a 
framework for conducting and managing test cases. Tool-based approach eases generation of test cases 
for modified Spy class. 

Step 2: Disparities in real and virtual component are settled. 
The user selects a set of available components matching user requirements. Each real component is 

plugged in the framework and its outputs and features at run-time are validated with the virtual 
component. For each component to be tested, firstly the Spy class is modified according to the 
component under test. In this way multiple components can be evaluated for performance in the system. 
In Spy class the expected functionality is expressed syntactically while in performing comparison of 
this virtual component with the real component, the syntactic differences are ignored. An XML Adapter 
and Casting classes are used for executing the real component by invocations on virtual component. 
The method of virtual component are triggered in real component through the casting class, this 
requires an extra overhead of method invocation transfer mechanism simulated by the component user. 
The casting classes attempt to resolve the naming, and syntactic conflicts but this mechanism is not 
tested over a non-trivial example.  

Step 3: Test cases are executed on real component. 
Real components in this framework must have their run-time checking mechanisms enabled. The 

mechanisms are required to access the method signatures of real component. An XML Parser obtains 
the real component method signatures from the XML Adapter and passes them to the Driver class, 
which is another element in the deployment framework, to simulate the corresponding test cases of 
virtual component. To execute test cases, the tests are initialized (as generated in the first step), and the 
methods in real component are provoked by the execuMethod() in the Driver Class, which resolves the 
syntactic deviations and executes test cases using the XML Parser.  

 

2.7.3 A Framework for OO Component Testing  
Buy et al. [80] have proposed a framework for testing OO components. This framework relies on 

generating message sequences for component under test and for integration of component in the system. 
Data flow analysis is achieved in a similar mechanism, as defined by Harrold and Rothermel [81]. 
CCFG (class control flow graph) is generated for the component, which further consists of a control 
flow graph (CFG) for each method in component, for performing the data flow analysis. Definition use 
pairs are identified or derived from CCFG.  Simultaneously, using symbolic execution the pre, and post 
conditions, the relation between input and output variables, and the set of variables defined along each 
path are identified. The def-use pairs and the information via symbolic execution are used for 
generation of message sequences for the class through automated deduction. The message sequences for 
single class are generated starting from the constructor and then proceeding through every possible next 
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message at least once. Two components are integrated at a time, i.e., components are added 
incrementally for integration testing. For integration testing, the message sequences of both components 
generated separately are combined and their invocations are tested. Component testing framework 
presents an essential solution for integration testing of OO software components, by defining a 
mechanism to generate and test message sequences. The symbolic execution is a static analysis 
technique, which requires program execution using symbols like variable names, i.e., dry run is 
accomplished by symbolic variables, rather than actual values for input or output data. The program 
input and output data in symbolic execution is expressed as logical or mathematical symbols rather than 
the actual values of data. The only limitation in this testing approach for OO components is that it does 
not take into account source code unavailability, heterogeneity, and significant characteristics of 
software components.  

2.7.4 Customer's Specification-based Testing Approach Review 
In customer specification based testing three techniques have been presented. The aim of each 
technique is to conduct component testing by generating test specification at the user end. We analyze 
each technique separately.  
 Firstly, the interface probing technique is largely based on the component user’s understanding 
of the component behavior. The information that is generated from observing test results is adequate for 
integration testing as it is generated in the context of the component integration environment, but as 
said a large number of test cases might be required, and some functional guidance in the exploration of 
component behavior might also be desirable. 

 Some kind of guidance is provided in the deployment test framework by the customer’s 
architectural specifications. CDT facilitates component user in testing and evaluating multiple 
components, however the testing of multiple software components in the system can aggravate the cost 
issues and require extra effort for diligent testing of each software component so that it does not affect 
the implementation complexity of software system. Besides, for component testing, the developer must 
enable the run time checking mechanisms in the component (e.g., reflections API in Java), but this may 
not always be possible, due to the programming language of component or to developer’s copyright 
issues. Hence CDT is technology dependent, and can only be easily used for component developed 
using Java language. The test cases are generated, executed, and stored for each component. If a first 
component does not pass the tests, then these test cases can be reused for next component. With an 
increase in component size, the complexity of test cases is aggravated, and requires management of 
large number of test cases. 
 The framework for component testing by Buy et al [80] suffers the problem that it does not 
cater implementation transparency, an important characteristics of software component. On the other 
hand the framework incorporates symbolic execution technique for executing the object-oriented 
component testing process. Another problem in this framework is that it does not handle heterogeneous 
components rather it is restricted only to OO software components.  

2.8 Component Integration Testing: A Comparison of Approaches  

In this survey, various component integration-testing techniques have been discussed according to a 
preliminary coarse classification approach. The classification proposed was useful for viewing 
similarities and relations between component integration testing techniques as discussed. However, that 
classification cannot be considered exclusive in application. Based on the discussion, more detailed 
comparison attributes can now be established, as defined in Table III below. These attributes are then 
evaluated in Table IV against each of the surveyed approaches. In particular, the second column in 
Table IV indicates the coarse category of the testing technique, the third column and then each 
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following column refers to the acronyms of the comparison attributes as defined in Table III below. 
Obviously, the comparison attributes can be usefully applied for evaluating any other component 
integration testing technique, even the ones not included here.  

 
Table III: Comparison Attributes For Comparing Integration Testing Techniques 

Acronym  Comparison attribute Possible values of attribute 
TDeriveBy Who defines the test cases?  Component Developer (CD), Component 

User (CU), Third Party Tester (TPT)  
TExecuBy  Who executes the test cases?  CD, CU, TPT 
Metadata Additional information required for test 

derivation? 
YES (Which and How), NO 

MetaStruct Additional structure required for test execution? YES (Which and How), NO  
TSpecEasy Test Specifications are easily accessible YES, NO 
TSpecComp Test Specifications Increase Complexity YES, NO 
HH Handles heterogeneous components? YES, NO  
AM Allows for Easy maintenance?  YES, NO 
FCSyntax Formal Constructs for Test Specification 

Syntax 
YES-P (partial), NO 

FCSemantics Formal Constructs for Test Specification 
Semantics 

YES-P (partial), NO 

TDAuto Supports Test Data Automation  YES-P (partial), NO 
TCAuto Supports Test Case Automation YES-P (partial), NO 
TOAuto Supports Test Oracles Automation YES-P (partial), NO 
ToolTC/TD Tool Support for Test-Case or Test-Data 

Generation 
YES (TestCase (TC)/TestData(TD)), NO 
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Table IV: Component Integration Testing: A Comparison of Approaches 

Testing Technique Category 
TDerive 

By 
TExecu

By 
Meta    
data 

Meta       
-Struct 

TSpecEas
y 

TSpec 
Comp HH AM FC 

Syntax 
FC 

Semantics TCAuto TDAuto TOAuto Tool 
TC/TD 

BIT Wrappers BIT Approach CD              CU NO YES YES NO NO NO NO YES YES YES YES NO
BIT in maintenance 

mode operation BIT Approach CD              CD/CU NO YES YES YES NO NO YES YES NO NO NO NO

Self-testable 
Software 

Component 
BIT Approach CD CD/CU NO YES YES  YES  NO  NO  YES  YES  YES  NO  NO   YES 

(TC) 

STECC Strategy BIT Approach 
 CD CU NO YES YES  YES  NO  NO  NO  NO  YES  YES  YES-P  NO  

Component 
Interaction Graph 

Testable 
Architecture 

Approach  
CU CU YES  YES  YES  NO  YES   YES  YES  NO  YES   NO  NO  NO  

Introspection 
Though Component 

Test Interfaces 

Testable 
Architecture 

Approach 
CU CU  NO YES YES  NO  YES-P NO  YES  YES  YES-P  NO  NO  NO  

Contract Based 
Built-In Testing  

Testable 
Architecture 

Approach 
CU CU  NO YES NO   YES  NO  NO  YES  NO  YES  NO  NO  YES 

(TC,TD) 

Metadata For 
Component Testing  

Metadata 
Approach CU CU YES  YES  YES  YES  NO  NO  NO  NO  NO  NO  NO  NO 

UML Test Model, 
Checking OCL 

Constraints  

Metadata 
Approach CU CU  YES NO  YES  NO  NO  NO  YES  NO  YES  NO  YES  YES  

Third-Party 
component 
certification 

Certification 
Strategy Approach TPT TPT YES  NO  YES  NO  NO  NO  NO   NO  NO   NO   NO  NO  

Component user 
certification 

Certification 
Strategy Approach CU CU NO  NO  YES  NO  NO  NO  NO  NO  NO  NO  NO  NO  

Component 
developer 

certification 

Certification 
Strategy Approach CD CD/CU YES NO  YES  YES  NO  NO  YES  YES YES   NO  NO  YES 

(TC) 

Interface Probing 

Customer’s 
Specification 
Based Testing 

Approach 

CU              CU NO NO YES NO YES NO NO NO YES-P YES-P NO NO

Component 
Deployment Testing 

Customer’s 
Specification 
Based Testing 

Approach 

CU CU NO  NO  YES  YES  NO  YES  YES  NO YES  YES  NO  YES 
(TC)  

A Framework for 
Software 

Component Testing 

Customer’s 
Specification 
Based Testing 

Approach 

CU CU NO NO NO  YES  NO  NO  YES  YES  NO  NO  NO  NO  
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7. Conclusions 
While generally acknowledged as a quite attractive paradigm for increasing reuse and 

reducing time-to-market, component-based development also gives rise to a new critical problem 
in the area of software production, generally referred to as the Component Trust Problem [82]. 
This problem points at the component user's exigency of means to gain confidence on what a 
component produced by someone else does and how it behaves. Obviously this issue is especially 
hard for components built by third parties and for COTS delivered without the source code. 
However, also in the case of components reused internally to an organization, the difficulties of 
communication between teams and the lack of a clear documentation can produce to some extent 
similar effects.  

This survey article discussed software component testing issues and provided an overview of 
proposed techniques for component integration testing on the component user’s side. The 
importance of this stage in CB development has already been highlighted also by authoritative 
sources, and can never be overstressed. In fact, even though a component has already undergone 
extensive testing by its developer, since complete testing is clearly impossible and the developer 
cannot know in advance all the possible application domains or what components will interact 
with the produced component, some kind of testing against the component user's specifications 
remains always necessary [50]. In this sense, it is also illusory to hope that reuse of components 
drastically diminishes the need for testing [42, 50]. 

The most critical problem in component integration testing is the lack of information for 
component analysis. For application of appropriate testing techniques, packaging of suitable 
metadata along with the component implementation would be advisable. Testing techniques have 
thus been proposed which exploit metadata attached with the component; still the existing 
metadata approaches do not completely fulfill the requirements for component test information. 
In fact, the inclusion of metadata must be accomplished such that it does not affect the component 
implementation transparency. The future research in this field requires the development of 
mechanisms to ensure that proper information is available to the component users at the 
integration testing time. This also requires the definition of automated processes to append 
metadata with component before its final shipment and the processes, which display the metadata 
to user without exposing implementation details.  

As a final remark, it may be useful to remind with [82] that “no single technique can produce 
completely trusted components”. This paper focused on component integration testing 
approaches, but in practice an appropriate combination of approaches should be applied, both to 
component construction, such as the mentioned Design by Contract [6] approach or formal 
specification techniques, and to validation, such as formal proofs, formalized review, and 
differentiated testing phases. By providing an up-to-date and comprehensive overview of 
proposed integration testing techniques for CB systems, classified according to a proposed set of 
relevant attributes, this paper hopefully provides a baseline for continuing investigation in the 
field and a useful piece of input as well towards addressing the burning problem of component 
trust. 
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