
Formalizing uncertainty in service request/offer
description and matching

Tommaso Bolognesi1

CNR - Istituto di Scienza e Tecnologie dell’Informazione ”A. Faedo”,
tommaso.bolognesi@isti.cnr.it,

WWW home page: http:/www1.isti.cnr.it/ bolognesi/

Abstract. This paper discusses the problem of describing and matching
service requests and offers, that appears as central and characteristic in
the context of the Service Oriented Computing (SOC) paradigm. Service
descriptions, be they requests or offers, are seen as a mix of detailed, local
state information, and fuzzy information, or speculation, about remote
partners. Service fruition is represented, at a very high abstraction level,
as an atomic interaction among two or more parties, each providing a
partial view about a global state change. We propose here four formal
solutions of increasing complexity; the first three of them are conveniently
formalized in TLA+ and illustrated by simple examples. The use of a
logic-based approach should favor the integration with current Semantic
Web technologies, and with Description Logics, and at the same time
it should help reducing the gap between formal and informal (natural
language) descriptions of services. 1

1 Introduction

One of the most characteristic and challenging features of the Service Oriented
Computing (SOC) paradigm [6] is related to the idea of run-time, automatic
or semi-automatic search, discovery and binding of services. The designer of a
complex system, or, more appropriately, of a complex functionality, or service,
is not expected to know in advance and in detail all the services that a given
network infrastructure might offer, as sub-components, for achieving his or her
goals; some of these services may not even exist at design time, while becoming
available at run-time. Part of the job of software SOC-based system designers
is therefore that of describing, at appropriate abstraction levels, service offers
and requests, and devising successful criteria for discovering and matching them,
without assuming a complete knowledge of the players, the rules, and the loca-
tions of the game. Of course SOC computing and its supporting technologies are
not being created from scratch, both for the need to exploit existing (legacy)
services and technologies, and because of the multiplicity and diversity of the

1 Work partly supported by the SENSORIA European IST-Integrated Project - con-
tract n. 016004

2

involved contributors on a global scale: it will be the result of a complex, evo-
lutionary process based on competition, selection, agreement, standardization,
similar to the one that has led to the WWW we have today.

In the software engineering of traditional distributed systems the distinction
between the roles of system developers and users is quite clear, and so is the
difference between the associated technical backgrounds. With SOC-computing
such a distinction is blurred, and a wider range of actors with varying degrees of
technical skills is likely to be involved. In particular, it appears nice and desirable
to offer to non-technical people the possibility to play some autonomous role in
the service offer/request game. One may imagine a scenario in which final user
Bob, connected by a home PC or handheld device, assembles a relatively complex
request and send it out in some ’infosphere’, via an electronic portal whose
address is the only explicit information available to him; in another scenario,
employee Mary creates, publishes and advertises in an elecronic e-commerce
mall the latest service offer from her company. Neither Bob nor Mary need to
be familiar with programming or formal specification languages.

On the other hand the assessment and comparison of various approaches to
the problems of service description, discovery, matching, does of course greatly
benefit from some formal treatment, for supporting both the analysis and the
implementation of the proposed solutions. In fact, the adoption of a formal
specification language of sufficient simplicity and general applicability may help
even in thinking about the rather intricate aspects of SOC, and in sorting out
the various issues and needs that emerge in this new computing paradigm.

In light of the remarks above, the work presented here has been inspired by
the following general requirements/objectives:

1. Keep compatible with the approaches and technologies of the Web Service
and Semantic Web efforts [8]. A service involves the exchange of objects of
which ’semantic’ descriptions are available: they are resources with properties
that can be declared and investigated, as in RDF [http://www.w3.org/RDF/].
On a long term, one might try to integrate some high level, logic based speci-
fication language (such as TLA [7]), for describing the dynamics of a service,
and Description Logics [2], or some subset or derivation from it, for describ-
ing the properties of the objects manipulated by the service. (A combination
of Description Logic and logic programs is indeed already proposed in [3].)

2. Recognize the ultimate similarity between service offers and service requests,
by observing that either description may in general include both precise
knowledge about a local environment and uncertain information about po-
tential remote partners. We may therefore neutrally talk about service de-
scriptions that match one another.

3. Provide a formalization of service (request/offer) descriptions that is simple
enough to be easily converted into formulations in (restricted forms of) nat-
ural language, in view of usability by a wide range of possibly non technical
people.

4. Provide a formalization of the service offer/request matching rule.

3

In Section 2 we provide a list of more specific choices that have guided our
approach to the abstract, formal description of service offers/requests, and to
the associated matching rules. In Section 3 we provide three formal solutions,
using TLA+, and compare them; they open the way to a further, more elaborate
formal solution, presented in Section 4. In Section 5 we compare our solutions
with existing work, and identify items for further research.

2 Further requirements for service description and
manipulation

In addition to the general requirements identified above, we have adopted the
following more specific design choices.

Atomicity. At the highest abstraction level, it seems appropriate, and possi-
bly also convenient w.r.t. conversion to formulation in natural language, to
describe a service offer or request simply as a change of state of (a part of)
the world, that takes place in one atomic step. At this level a service could
then be seen as a binary relation between global states.

Object-based architecture. Service requestors and providers (’agents’) are
objects – instances of classes – equipped with a local state – a set of local
variables, or attributes – and a set of operations. Each agent shall have
one synchronization operation for each type of service it offers or requests,
beside other local operations that are inessential for our investigation. The
exchanged data items are also represented by objects, whose properties are
declared and/or inspected by the involved partners.

Multi-party synchronization and distributed state updating. The
fruition of a service corresponds, in general, to a multi-party synchronization
among operations of a set of distributed agents. Each agent participates in
the interaction by executing one of its operations, that involves preconditions
and postconditions on the local state of the agent.

Synchronization boards and objects. The synchronization occurs via a syn-
chronization ’board’, which is a place where each agent can virtually post
a set of synchronization object descriptions; these objects may of course be
related to the local state of the agent, via pre and post-conditions. Agents
(and their operations) are aware of the existence of boards, but are uncertain
about the precise nature of the needs of potential partners, that is, on the
alternative sets of objects that may or must be made available on the board
for the service to come to fruition. Thus in their synchronization operations
they express partial views on these sets of objects.

Lamport’s TLA, and its derived TLA+ specification language [7], provide
a useful expressive tool for giving formal substance to the ideas above, and for
exploring alternative solutions. In extreme synthesis, TLA+ is first order predi-
cate logic and set theory enriched with some temporal logic operators and some
convenient and fairly standard constructs for modularizing large specifications.

4

The above requirement on atomicity is conveniently supported by the notion
of action in TLA+ (an action is a logic formula that includes unprimed as well
as primed variables, where the latter denote changed values of state variables,
as in several specification notations; and an action may or may not be satisfied
by a pair of adjacent states, called a step.) And, although the TLA+ definition
does not make explicit reference to object-oriented or object-based concepts, one
can establish rather obvious analogies between a TLA+ ’module’ and a class,
a TLA+ module instance and an object, and between a TLA+ and an O-O
operator.

The precise ways in which the features of TLA+ can represent the above ideas
on multi-party synchronization and distributed state updating are introduced in
the next section.

3 Service offer/request description and matching in
TLA+

In this section we provide specifications in TLA+ that illustrate three increas-
ingly complex formalizations of the design choices discussed above. Familiarity
with TLA+ is beneficial, but the plain logic nature of this language should allow
even the uninitiated reader to follow the examples, which are also commented
in the text following each formal fragment. In illustrating our TLA+ solutions
we shall refer to an example involving three agents.

3.1 Three agents exchanging files

Three agents interact for exchanging files. As discussed earlier, it its not im-
portant to assign to agents the precise and mutually exclusive roles of service
provider or requestor. Each agent in general shall be able, with respect to some
service, both to offer and to request data. For example, a ’provider’ may offer an
audio file, and request a payment, and a ’requestor’ may offer a payment, and
request an audio file. At the level of our formalization, agents are all of the same
type.

For simplicity, each agent has only one local variable called S , which is a
set of bit triples, and can interact with the other agents by requiring and of-
fering bit triples. S can be seen as a simple model of a library of files, and a
bit triple is then an extremely simple model for a file with three (ordered and
unnamed) fields. The idea is that agents may interact, and let the service come
to fruition, by expressing constraints on the requested and offered items, which
refer to the fields (properties) of these interaction objects. In perspective, these
characterizations of requested and offered objects should be based on some for-
malized representation of their semantics, that is, on ontologies, possibly using
some form of description logic.

As another simplification, in the formalizations we shall only use one, default
synchronization board, so that the agents do not need to mention its name
explicitly.

5

3.2 TLA+ formalization with free, blind offers

In our first solution an agent expresses its view about a potential synchronization,
for service fruition, by the following two constructs:

Get This is an action (in TLA+ sense) describing an object – a bit triple –
or set of objects that the agent must obtain, and that must not be already
included in the agent’s local set S . Satisfying this request is mandatory: no
synchronization can take place if the agents involved in the interaction are
collectively unable to provide these objects. The typical postcondition for
this action is the inclusion of these the objects into S .

Show This is a state function(again using the TLA+ terminology) used to spec-
ify a set of objects (bit triples) that an agent owns in its set S , and is willing
to show at the (default) synchronization board to any potentially interested
agent. Any other agent can indeed access (some of) these displayed objects,
via the Get action.

In calling this technical solution ’free, blind offers’, ’free’ refers to the fact that it
is not possible to express any dependency of the offered objects on the requested
ones, and ’blind’ refers to the fact that an agent showing some values is not
aware of which one of them, if any, is indeed used by which partner; thus, this
information cannot contribute to the agent’s postcondition.

The following TLA+ module, called AAgents, describe three agents that use
the above two constructs in various ways.

module AAgents
extends BitTriples

module AgentA1
variable S

Init ∆= S = BitTriples
Get ∆= S ′ = S
Show ∆= {y ∈ S : y [3] = 1}

module AgentA2
variable S

Init ∆= S = {0} × Bits × Bits
Get(x) ∆=

∧ x ∈ BitTriples
∧ x [1] = 1
∧ ¬x ∈ S
∧ S ′ = S ∪ {x}

Show ∆= {y ∈ S : y [2] = 1 ∨ y [3] = 1}

module AgentA3
variable S

6

Init ∆= S = {〈0, 0, 0〉}
Get(x1, x2) ∆=

∧ x1 ∈ BitTriples ∧ x2 ∈ BitTriples
∧ ¬x1 ∈ S ∧ ¬x2 ∈ S ∧ x1 6= x2
∧ x1[1] = 0 ∧ x2[1] = 1
∧ S ′ = S ∪ {x1, x2}

Show ∆= {y ∈ S : y [1] = 0}

variable S1, S2, S3

AgA1 ∆= instance AgentA1 with S ← S1
AgA2 ∆= instance AgentA2 with S ← S2
AgA3 ∆= instance AgentA3 with S ← S3

Init ∆= AgA1!Init ∧AgA2!Init ∧AgA3!Init
Offer ∆= AgA1!Show ∪AgA2!Show ∪AgA3!Show
Next ∆= ∃ x , x1, x2 ∈ BitTriples :

AgA1!Get ∧AgA2!Get(x) ∧AgA3!Get(x1, x2)
∧ {x , x1, x2} ⊆ Offer

Spec ∆= Init ∧2[Next]〈S1, S2, S3〉

The module imports, via the TLA+ extends contruct, an elementary mod-
ule called BitTriples, defining this simple data type, and not shown in the spec-
ification; then, it encapsulates three module definitions, for the three agents
AgentA1, AgentA2, AgentA3.

In the module for the first agent, the local state S is initalized by the Init
predicate to be the whole space of bit triples. This agent does not require any
object, and the Get action is only used for expressing the invariance of the local
state S . The need to explicitly indicate unchanged state components is a feature
of TLA+ (the so called ’frame’ problem) that we do not need to discuss here.
With the Show state function this agent identifies the set of values it is willing
to offer, which is the subset of the bit triples it owns with last bit equal to 1.

In the synchronization behavior of AgentA2 the Get action has parameter
x , which identifies the requested object. The body of this action identifies the
type of x (BitTriples), it restricts the choice by stating a property of it – the
first component must be ’1’ – it explicitly excludes that this object be already
present in the local state S , and it describes this inclusion as a postcondition. A
set of objects is offered also by AgentA2, characterized by some properties of its
elements.

In AgentA3 the get action is only a bit more complex, and involves two
objects, x1 and x2.

The composition of the three agents is expressed in the subsequent part
of module AAgents. Three instances of the above modules are created, called
AgA1, AgA2 and AgA3, by the instance construct, which also renames the local

7

variable S of each agent as, respectively, S1, S2 and S3. The global initialization
is defined as the logical conjunction of the individual initialization conditions.
State variable Offer is defined as the union of the sets of objects individually
made available by the agents via their Show state functions. The pre- and post-
conditions for the service interaction are expressed by action Next, which includes
the conjunction of the invidual Get actions. A crucial conjunct in the body of the
Next action states that the set of objects cumulatively required by the agents,
namely {x , x1, x2}, must be included in the set of those collectively shown by
the agents. Note that in TLA+ (and in the associated TLC model checker) extra
copies of the same element in a set are disregarded, so that, for example, this
inclusion is recognized as true:

{0, 0, 1, 2, 2, 2} ⊆ {0, 1, 1, 2, 3}

The definition of the module is completed by the usual temporal formula con-
ventionally named Spec, involving predicates Init and Next, and the ’always’
temporal operator, denoted by the box symbol ’2’. A behavior is a sequence of
states, that are assignments to the variables S1, S2 and S3. A behavior satisfies
the Spec when its first state satisfies predicate Init and every step (i.e., pair of
adjacent states) satisfies predicate Next, or keeps all three variables unchanged
(stuttering step).

3.3 TLA+ formalization with constrained, blind offers

Our second formalization of the service specification and matching rule is a bit
more general, in the sense that the objects an agent offers may depend on those
it requests – within the same transaction: offers are ’constrained’, as opposed to
’free’. This feature allows an agent to be more selective and precise about the
items it offers. An yet, similar to the previous solution, an agent has no means
to know which elements of yy are indeed exploited by its partners, and therefore
it cannot modify its own state based on this information: offers are still ’blind’.

One way to express the above feature in TLA+ is to equip every interacting
agent with a single action – a predicate that we may call GetShow – which is
parameterized both by the requested and by the offered objects, so that the
relation between the two sets can be expressed in the body of the predicate.

module BAgents
extends BitTriples
variables S1, S2, S3

module AgentB1
variable S
Init ∆= S = {0} × Bits × Bits

GetShow(x , yy) ∆=
∧ x ∈ BitTriples
∧ x [1] = 1

8

∧ ¬x ∈ S
∧ S ′ = S ∪ {x}
∧ yy = {y ∈ S : y [2] = x [2] ∧ y [3] = x [3]}

module AgentB2
variable S
Init ∆= S = Bits × {0} × Bits

Get(x) ∆=
∧ x ∈ BitTriples
∧ x [2] = 1
∧ ¬x ∈ S
∧ S ′ = S ∪ {x}

module AgentB3
variable S
Init ∆= S = Bits × Bits × {0}

Show(yy) ∆= yy = {y ∈ S : y [1] = 1}

AgB1 ∆= instance AgentB1 with S ← S1
AgB2 ∆= instance AgentB2 with S ← S2
AgB3 ∆= instance AgentB3 with S ← S3

Init ∆= AgB1!Init ∧AgB2!Init ∧AgB3!Init

Next ∆= ∃ x , x1 ∈ BitTriples, yy , yy1 ∈ subset BitTriples :
AgB1!GetShow(x , yy) ∧AgB2!Get(x1) ∧AgB3!Show(yy1)
∧ {x , x1} ⊆ (yy ∪ yy1)

Spec ∆= Init ∧2[Next]〈S1, S2, S3〉

For example, in module AgentB1 above, the offered set of objects, yy , de-
pends on the values of the second and third elements of the x object, with yy
and x being exchanged within the same atomic interaction. Action GetShow is
designed to handle these two object, that flow in opposite directions.

AgentB2 and AgentB3 illustrate the separate use of operators Get and Show.
In action Next of the outer module BAgents, existential quantification is

used both for the requested objects and for the offered object sets, while in
the previous case it only referred to the former. Then, in the scope of this
quantification, the pre- and post-conditions of the three agents are conjoined,
and the condition is expressed that the requested objects be included in the
union of the offered object sets, as done for the AAgents.

For notational uniformity we have used a parametric Show, with parameter
yy , but when an agent only needs to ’show’ objects, as it happens with AgentB3,

9

the previously adopted formal solution of using a simple state function is also
possible.

Note that, in spite of the the ’blindness’ limitation, the availability of both
variables x and yy in the body of the GetShow predicate gives us at the possi-
bility, whenever meaningful, to express a dependency also between the set yy ,
as a whole, and the next state S ′.

3.4 TLA+ formalization with constrained offers

Our third formalization is an extension of the second one and gives more control
on the ’offered’ objects, that can individually affect and be affected by the local
state of their provider. Offered objects are now handled by Put actions, that are
similar to Get actions, and may involve post-conditions. In the example below,
all objects offered by the three agents, denoted by the y variables, contribute
by subtraction to the updating of the respective local states. We use one syn-
chronization action for each agent (Put, GetPut, GetGetPut respectively), which
simultaneously handles the requested and offered objects for that agent and their
effects on the local state.

module CAgents
extends BitTriples
variables S1, S2, S3

module AgentC1
variable S
Init ∆= S = {0} × Bits × Bits
Put(y) ∆=

∧ y ∈ S
∧ S ′ = S \ {y}

module AgentC2
variable S
Init ∆= S = Bits × {0} × Bits
GetPut(x , y) ∆=

∧ x ∈ Bits × {1} × Bits
∧ ¬x ∈ S
∧ y ∈ S
∧ y [1] = 0
∧ S ′ = (S ∪ {x}) \ {y}

module AgentC3
variable S
Init ∆= S = Bits × Bits × {0}
GetGetPut(x1, x2, y) ∆=

∧ x1 ∈ BitTriples ∧ x2 ∈ BitTriples
∧ x1 6= x2

10

∧ ¬x1 ∈ S ∧ ¬x2 ∈ S
∧ y ∈ S
∧ y [1] = 1
∧ S ′ = (S ∪ {x1, x2}) \ {y}

AgC1 ∆= instance AgentC1 with S ← S1
AgC2 ∆= instance AgentC2 with S ← S2
AgC3 ∆= instance AgentC3 with S ← S3

Init ∆= AgC1!Init ∧AgC2!Init ∧AgC3!Init

Next ∆= ∃ g1, g2, g3, p1, p2, p3 ∈ BitTriples :
∧AgC1!Put(p1)
∧AgC2!GetPut(g1, p2)
∧AgC3!GetGetPut(g2, g3, p3)
∧ {g1, g2, g3} ⊆ {p1, p2, p3}

Spec ∆= Init ∧2[Next]〈S1, S2, S3〉

Quantification now refers to individual objects, both for requested and for
offered items. Furthermore, the usual inclusion between the two sets is enforced;
this means that, similar to the previous two cases, the overall set of objects
that eventually satisfy all the requests may be strictly smaller than the overall
set of offered objects. Thus in a sense this solution might still be considered as
a ’blind’ one, because an agent still has no complete knowledge about which
subset of its offers were eventually used by other agents. However, while in the
previous cases this lack of information suggested us exclude the possibility to
express any influence of the individual offered objects on the local state, in
the third solution we have adopted the somewhat opposite extreme of letting
every individual offered object, if desired, affect the local state in its own way,
regardless of whether or not the offer was used by some partner.

Are there any intermediate scenarios between these two extremes, that we
can express in TLA+?

The next example illustrates the use of mutually exclusive offers. Agent CA-
gentXor below puts forward its offer through a single variable y , but this variable
can be bound to two mutually exclusive objects, which correspond to two dif-
ferent post-conditions for state variable S . Mutual exclusion is achieved via the
first element of bit triple y .

module CAgentXor
extends BitTriples

variable S
Init ∆= S = Bits × {0} × Bits
GetPut(x , y) ∆=

11

∧ x ∈ Bits × {1} × Bits
∧ ¬x ∈ S
∧ y ∈ S
∧ y [3] = x [3]
∧ (∨ (∧ y [1] = 0

∧ S ′ = (S ∪ {x}) \ {y})
∨ (∧ y [1] = 1

∧ S ′ = (S ∪ {x})))

However this is only a partial solution to the problem of blind offers. The
good feature is that the agent is now able to specify a set of potential offers
and associated local state changes, while at the same time letting only one of
them be offered and affect, correspondingly, the local state. The bad feature is
that the agent still does not know whether that one offer was actually used by
some partner, or was simply redundant. Note that this problem is not solved by
replacing the inclusion of requests into offers by the equality of these two sets,
in the body of the Next predicate of the outer TLA+ module expressing the
composition of agents, since duplicate offers from different agents would still be
possible: any duplicate would be redundant.

A solution to this problem is presented in the next section.

4 A generalized atomic service synchronization rule

The limitation of the service synchronization policies described in the previous
section is that an agent is not aware of which ones of its offers have been essential
for the success of the synchronization, and which ones have been redundant and
disregarded by the other partners. Thus, the agent cannot reflect this information
in its postcondition.

In our solution to this problem, a service-oriented operation for an agent
shall still involve two sets of objects, the requested and the offered ones, and, as
before, all requests must be satisfied while not all offers must be taken. However,
we want now to be precise in the computation of an agent’s postcondition, and
let it reflect the exact subset of essential offers, as mentioned above. The first
step for doing this is to associate individual postconditions to individual offers,
so that the postcondition for an agent’s operation can then be defined as the
selective composition of only those postconditions that are associated to the
contributing offers. Since composing postconditions referring to the same state
variable is not a trivial task, we shall restrict to very simple postconditions,
namely plain insertion and deletion of elements in sets.

The structure of the body of a synchronization operation shall be as follows:

GetAll {x1, ..., xn} : G(S , x1, ..., xn,S ′)
PutSome {y1 : Py1(S , y1), ..., ym : Pym(S , ym)}

12

The set of synchronization variables {x1, ..., xn} identifies the requested objects.
All requests must be satisfied for the interaction to take place. G is a precondition
that relates the requested objects with one another and with the current value
of the local state S .

The set of synchronization variables {y1, ..., ym} identifies the offered objects.
Not all offers must be consumed. In this case we associate a different precondition
– the P ’s – to each offered object. A default conjunct of all these preconditions
is that the y object be owned by the agent that offers it: y ∈ S (relaxation of
this condition is left for further investigation).

Let Op = {Opi , . . . ,Opk} be a set of operations, each belonging to a different
agent. Each operation basically expresses a partial view about the set of syn-
chronization objects that enable the atomic interaction, thus service fruition. All
these operations can successfully engage in a synchronization when it is possible
to find a set of objects that matches the view expressed by each operation.

Let Var = Var1∪. . .∪Vark be the set of synchronization variables, consisting
of the union of the variable sets (Vari) from each operation, that we assume to
be disjoint. We view tuples as sets, for taking their union.

Let VarGeti and VarPuti denote, respectively, the tuples of variables (say
{x1, ..., xn} and {y1, ..., ym}) used for denoting the requests (GetAll) and offers
(PutSome) of operation i , and let VarGet and VarPut denote the corresponding
unions over operations.

Let Gi(Si , . . . ,S ′
i) be the predicate appearing under the GetAll keyword in

the body of operator Opi , i = 1, . . . , k . The dots in parentheses stand for the
variables denoting the requested objects.

Let Py(Sj , y ,S ′
j) be a predicate appearing under the PutSome keyword in

the body of some operator Opj , where y ∈ VarPut. We assume that all such
variables are different across the operations. It is notationally convenient to use
variable y itself as the index of this predicate.

Let F : {S1, . . . ,Sk} → Sets be the state valuation function that describes
the current global system state by associating a value – a set – to each local
state variable name Si of agent Agi .

Synchronization rule The operations Op = {Opi , . . . ,Opk} can successfully
engage in an atomic service exchange if there exists
– a nonempty set of objects O = {O1, . . . ,Oh}, called synchronization

objects,
– a valuation function f : Var → O , and
– a state valuation function F ′ : {S ′

1, . . . ,S
′
k} → Sets that associates values

to primed state variable symbols,
such that:
1. f is surjective (that is, each synchronization object is hit by at least one

variable);
2. f |VarGet is total (that is, each request is satisfied);
3. f |VarPut is partial (that is, not all offers are necessarily taken);
4. f |Vari is injective, for i = 1, . . . , k (that is, f is locally injective, and each

agent describes a set of distinct synchronization objects);

13

5. ∀Oi ∈ O : f −1(Oi) ∩VarPut 6= Ø (that is, each object is hit by at least
one variable denoting an offer);

6. ∀i ∈ {1, . . . , k} : {F , f ,F ′} |= Gi(S , . . . ,S ′) (that is, the current and
next state values, as espressed by F and F ′, and the values of the syn-
chronization objects, as expressed by f , satisfy all predicates associated
with object requests);

7. ∀y ∈ VarPut : [f (y) is defined ⇒ {F , f ,F ′} |= Py(Sj , y ,S ′
j)] (that is,

if function f associates an object to y , then, similar to the previous re-
quirement, the predicate associated with this variable must be satisfied).
2

The first five requirements characterize function f . In particular, requirement
5 is meant to guarantee that no synchronization object is created ’artificially’
without any agent being able to actually provide, via the PutSome construct,
a fully defined instance of it. The last two requirements put further constraints
on f , but also define the next global state, which is readily obtained by the
assignment

Si ← F ′(S ′
i), i = 1, . . . , k .

According to the above synchronization rule the next global state depends on
a composition of predicates including all the Gi ’s, and some of the Py ’s. No
conflict about the computation of the next state could arise if we only considered
the Gi ’s, since each of these predicates handles a separate portion of the global
state, namely a set Si . However, conflicts could arise when the Py ’s come into
play, since they express additional requirements on those state variables, and it
may also happen that some of them share the same local state variable Si ’s. The
specifier does not know at design time which bundle of Py predicates is going to
be ’activated’ each time the service is delivered; thus, in writing these predicates
one should conceive postconditions in isolation, one for each offer variable y ,
but in such a way that any potential grouping of these postconditions would be
feasible and meaningful.

Consider for example the two definitions of offer predicates:

Py1(y1) =def y1 ∈ Sj ∧ S ′
j = Sj \ {y1}

Py2(y2) =def y2 ∈ Sj ∧ S ′
j = Sj

that refer to the same state variable Sj . Note that, in line with the previous
TLA+ specifications, we have omitted the state arguments from the headers,
since these variables are global within the body of an agent and to its operations.
The two predicates express conflicting views about the next state value S ′

j , and,
if taken literally, cannot be simultaneously satisfied.

However, conflicts can be eliminated if (i) we insist that all the offer predi-
cates Py ’s be only of the two types of the example above, namely, they either
preserve the state set or remove one element from it, and (ii) we consider all
removal operations in parallel, while disregarding the individual conjuncts in-
volving the value S ′

j in the bodies of the predicates, be they conservative or

14

subtractive. Recall that, by condition 4 of the synchronization rule, all the syn-
chronization objects expressed by an operation are distinct, hence adding and
removing these objects to and from the local set are operations that can be
equivalently performed in any order or in parallel.

5 Conclusions

In this paper we have investigated some formalizations of service offer/request
descriptions, and the associated matching problem. Our solutions are rather
abstract, and are based on predicate logic. We expect this choice to be helpful
in:

– sorting out some of the key concepts in the SOC (Service-Oriented Comput-
ing) paradigm, which, despite the abundance of proposed technologies (e.g.
those related with the Semantic web), could still benefit, in our opinion, from
some brainstorming activity at the level of fundamental concepts;

– identifying useful informal description techniques, based on natural language,
that be usable by many of the actors that play some role in SOC, including
those with no skills in programming and formal specification;

– facilitating the integration with description logics, which is at the basis of
many current, ontology-based proposals for the Semantic Web.

A primary concern in our atomic service synchronization rules is to try and
combine precise information about the local state with fuzzy information about
potential remote offers and requests. In viewing things under this light we have
been largely inspired by the work of Hausmann, Heckel and Lohmann [4], who
propose a combination of UML and graph transformation rules for expressing
service requests and offers. A transformation rule consists of two object dia-
grams, representing a partial view of a portion of the ’world’ respectively before
and after service fruition. The service provider rule may be different from the
service requestor rule, reflecting their partial mutual knowledge. Formal con-
ditions are then identified for two rules to successfully match. One feature of
these transformation rules is that only effects that are observable as structural
changes (i.e. deleted or created objects or links) can be expressed. The use of log-
ical formulae, as illustrated by our TLA+ specifications, can clearly offer higher
expressiveness, and we believe that the integration of the two approaches could
be profitably investigated.

Although we are concerned with Service Oriented Computing, we may view
our atomic service exchanges simply as generic interaction mechanisms, and
assess them under this light. In this respect, our proposal appears much more
in line with a shared-event policy (also called ’rendez-vous’, or ’hand-shake’),
than with a shared-variable policy, since the synchronization objects described
by the interacting parties are not persistent, but exist only within the scope of
an instantaneous interaction.

We can therefore appropriately compare our interaction mechanisms with
those adopted by process algebras such as CSP [5] and LOTOS [1], which in
particular support multi-party synchronization.

15

For example, LOTOS does support, in its own way, the expression of a mix of
precise and fuzzy information about the components of an interaction. Assume
three agents (LOTOS processes P , Q and R) want to synchronize at some board
(a LOTOS ’gate’), say GateA. This is expressed by the parallel composition of
the three processes, with synchronization at GateA:

P |[GateA, ...]| Q |[GateA, ...]| R

In the expressions that characterize the individual behavior of these processes
one would then write some action prefix referring to the shared gate, each giving
a partial view of the synchronization event. In the example below, the interac-
tion event has two parameters, and each process expresses a different view about
them. Each action prefix thus expresses two value offers, that must be under-
stood as parallel, not sequential, each following a punctuation mark (’?’ or ’ !’).
The question mark identifies an open offer, while the exclamation mark offers a
single, precise value. The matching rule is purely positional, and variable names
are irrelevant for the synchronization (but are used by each process for capturing
the values established by the synchronization): synchronization is possible when,
position by position, the conjunction of the constraints individually expressed
by the processes admit a solution.

process P := ... GateA ? x: Nat ! 35; ...
process Q := ... GateA ? x: Nat ! H+K [x < 10]; ...
process R := ... GateA ! 8 ? y: Nat [IsEven(y)]; ...

In the example above the first parameter of the interaction can only have value
8, while no solution exists for the second parameter, regardless of the value of
expression ’H+K’, since the only offer from P is an odd number, while R only
admits even numbers. As a consequence, the whole interaction is unfeasible.

The analogy between this mechanism and the synchronization policy de-
scribed in this paper is clear, with synchronization objects in the latter corre-
sponding to interaction parameters in the former. But a crucial difference is that
in LOTOS the number of synchronization objects must be established precisely
at specification time, while a major goal of our proposal has been exactly to
introduce more flexibility in the expression of interaction object sets.

How complex can a service be, if we insist in describing it by a single atomic
interaction as done in this paper? And is it always possible to decompose a service
of higher complexity into a (natural) sequence of steps that can be individually
handled by our technique?

References

1. Ed Brinksma and Tommaso Bolognesi. Introduction to the ISO specification lan-
guage LOTOS. Computer Networks and ISDN Systems, 14(1), 1987.

2. Ian Horrocks Franz Baader and Ulrike Sattler. Description logic. In R. Studer
S. Staab, editor, Handbook on Ontologies, chapter 1. Springer, 2004.

3. B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Com-
bining logic programs with description logic, 2003.

16

4. J.H. Hausmann, R. Heckel, and M. Lohmann. Model-based development of web
service descriptions: Enabling a precise matching concept. International Journal of
Web Services Research, 2(2):67–84, 2005.

5. C. A. R. (Tony) Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
6. Michael N. Huhns and Munindar P. Singh. Service-oriented computing: Key con-

cepts and principles. IEEE Internet Computing, 09(1):75–81, 2005.
7. Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2002.

8. S. McIlraith, T. Son, and H. Zeng. Semantic web services. IEEE Intelligent Systems
(Special Issue on the Semantic Web), 16(2), 2001.

