
Splitting Cubes: a Fast and Robust Technique for Representing Cuts with
Mesh-free Methods

Anonymous

ABSTRACT

This paper presents a novel technique to represent cuts on de-
formable models implemented with mesh-free methods. Mesh-free
methods have become a popular choice for modeling deformable
objects. Unfortunately, among their many good properties, they do
not explicitly represent the surface of the object and it seems quite
a difficult task to enable real-time cutting on these models. Our
method uses a regular decomposition of the space in cubic cells
and encodes the surface using only the intersections with the edges
of the cubes and handling implicitly all the changes on topology.
Furthermore a new way to update the physical model is introduced
which is easily implemented by the graphics hardware.

Keywords: Deformable Objects modeling, Cut simulation, Frac-
ture simulation.

Index Terms: K.6.1 [Management of Computing and Information
Systems]: Project and People Management—Life Cycle; K.7.m
[The Computing Profession]: Miscellaneous—Ethics

1 INTRODUCTION

Real Time animation of deformable objects is a need in many areas
of computer graphics animation, for example to generate realistic
behavior of clothes, fluids,bodies on games or in other applicative
areas such as surgery simulation. Especially in the latter case, the
model should allow the user to interact with the object, possibly
displaying topological changes during the simulation, e.g. if the
object is cut with a scalpel or tore away.

If the deformable object is modeled with a mesh, either to repre-
sent the surface or the volume, several methods exists to handle the
mesh so to implement contact, cuts and lacerations. In these cases,
the visual representation of the surface of the object is provided by
discretization used for the physical simulation. Less has been said
aboutmesh-freemethods, where the object is modeled as a set of
samples, calledphyxelsthat interact to implement the physical be-
havior of the object and whose properties (including position and
velocity) implicitly describe its surface.

This paper presents an efficient and robust solution to represent
cutting and tearing on mesh-free methods. The major contribution
is twofold:

• theSplitting Cubesalgorithm to provide a dynamic triangula-
tion of an implicit surface under cuts and lacerations;

• a general solution to handle phyxel-phyxel interaction to cor-
rect the physical behavior of the object when cutting or tearing
occur.

Although the ideas presented in this paper apply to the whole
class of mesh-free methods, we detailed and implemented them for
the model proposed in [13], for which some work on this problem
already exists [18, 4].

The remaining of the papers proceeds as follows:in Section 2 we
briefly review the approaches proposed so far related to the problem

of cutting and tearing; Section 3 gives some formal definitions of
the type of models to which our solution can be applied and explains
the basic ideas of splitting cubesand transparency masks, which are
detailed in 6.3 and Section 7.2, respectively. Results and future
works are finally reported in Section 9.

2 PREVIOUS WORK

Figure 1: Different approaches to perform cuts on tetrahedral
meshes: a)removing intersected primitives. b)Adapting the shape
of the mesh by moving vertices c)Adapting the shape of the mesh by
local re-meshing.

Most of the methods for real time interaction with deformable
objects in literature use amesh-basedrepresentation of the de-
formable body. Since the refresh rate of the physical system is
linearly related to the number of primitives of the mesh and the
stability of dynamic solvers is strongly influenced by the quality
of the elements in the mesh, cutting/fracturing algorithms tries to
avoid the creation of unnecessary or bad shaped primitives. Instead,
many methods are focused on how to produce an accurate repre-
sentation of the cut/laceration minimizing the number of primitive
created and creating new primitives with good aspect ratios. Figure
1 illustrates three common types of approach:

1. Removing primitives;

2. Adapting the shape of the mesh to the cut by moving vertices;

3. Adapting the shape of the mesh to the cut by re-meshing in-
tersected primitives.

The first method has been proposed in [2] for operating a cut with
a scalpel on a tetrahedral complexes and it is quite straightforward:
the tetrahedra intersected by the scalpel are removed from the mesh.



This this method avoids the creation of new primitives, but the vi-
sual feedback as well as the loss of volume are serious drawbacks.
In the second method mesh is locally modified in order to have
the faces that separate adjacent primitives in correspondence of the
separation path. Finally nodes on the separation path are dupli-
cated, creating the discontinuity in the mesh. In [11] and [16, 15]
this method is implemented using a Finite Element model based on
tetrahedral cells. This method, like the previous one, avoids the cre-
ation on new elements. The third approach groups a wide family of
methods essentially based on the concept of local re-meshing. For
each combinations of splitting of six edges of a tetrahedron a new
set of tetrahedra in inserted to represent the cut. Since the inter-
section of edges can occur very close to the original mesh vertices,
it is possible to create degenerate tetrahedra. This solution, first
proposed in [1] for tetrahedral cells, offers the most pleasant visual
results, even if the strategy used to find the new set of tetrahedra
causes a high fragmentation of the mesh.
A wide kind of variations of this methods are proposed in literature:
in [3] this method is extended using extra nodes on tetrahedrons
faces in order to increase the degrees of freedom during the cut. In
[10] propose to perform real-time simplification by edge collapse in
order to erase degenerate tetrahedra. In [9] a multiresolution frame-
work for tetrahedral meshes maintain constant the level of detail of
the mesh in case of cuts or lacerations.
Another family of methods to simulate physically based deformable
objects aremesh-lessmethods. Often present in simulation of fluids
and viscous materials [6] [5]mesh-lessmethods models the inter-
action between a set of elementary particles,also calledphyxels. In
mesh basedapproaches, such as the Finite Element Method (FEM),
the volume is divided into elements of finite size. In contrast, in
mesh freemethods the volume is sampled at a finite number of point
locations without connectivity information and without the need of
generating a volumetric mesh.

3 OVERVIEW

Our framework define a general solution for representing cuts on
mesh free methods. A mesh free method represents the volume of
the object withphyxels(see Figure 2.(a), which are particles with
a set of physical properties to represent a portion of the volume
during the animation: mass, position, velocity etc. Each phyxelin-
teractswith the phyxels in its neighborhood, typically found as the
phyxels closer than a given radius of influence. The interaction con-
sists of reciprocally influence their physical properties (a straight-
forward example is the gravitational force among particles) and can
be more or less complex depending on the specific model. Letx0
andP0 be the position of the pointx and the position of the phyxels
at rest shape, respectively. The position of the same point at timet,
xt is determined by the position of the phyxelsPt by some function
F(x0,Pt). More specifically, the phyxels determiningxt are those
including x0 in their radius of influence, referred in the following
as thekernelof x. The functionF is used when the surface of the
model is represented explicitly, for example with a triangle mesh
or a surfelization, to compute the positions of the points of the sur-
face in the current configuration. In these terms a cut is a function
Cut(cs,s,F) = s′,F ′ wherecs is the surface of cutting over which
F becomes discontinuous (see Figure 2.(b)).
Representation of the surface
In the solution proposed in [18, 19] the surface is dynamically sam-
pled with surfels represented with oriented elliptical splats. In or-
der to show sharp features, the surfels overlapping a crease can be
clipped against a plane lying on the other side of the crease [19].
This is crucial to represent cut because a cut always generates sharp
features. In their model a crack is codified by sequence of phyxels
(calledcrack nodesin the paper) which represent the propagation
front of the crack. For cracks starting from the surface (like when a
cut is being made), the first and last node of the sequence lie on the

Figure 2: (a) Definition of an abstract mesh-free method (b) definition
of a cut

surface while for cracks generating inside the volume the front in
circular. Every time a new crack node is added to the sequence, i.e.
every time the front propagates, new surfels are added to represent
the two new pieces of surface. This technique avoids the problems
related to remeshing of the mesh based methods, i.e. fragmenta-
tion and degeneracies. On the other hand the crack fronts can split
and merge and will ultimately reduce to a single point, and all these
events need to be handled explicitly to maintain the topology of the
object consistent. In [4], the surface is represented by a triangle
mesh. When a cutting tool penetrates the object, the surface swept
by the tool, calledcut surfaceis triangulated and used to update the
current object’s surface with the new pieces of sheets. These new
sheets are given by triangulating the portion of the splitting surface
inside the volume, triangle by triangle. As for the previous solution,
they have to handle explicitly the branching and merging of crack
fronts. Compared to the point sampled method described above,
the use of a triangle mesh may give some advantages in term of
rendering speed, but, like similar approaches, if multiple cuts are
executed in the same region, triangle fragmentation and degenera-
cies will occur, causing performance degradation and possibly in-
stabilities of intersection tests, upon which depends the robustness
of the approach.
Adapting the physical model
Both the approaches use the same way to update the functionF by
acting on the weights to the reciprocal influence of the phyxels and
modifying such weights in term of the euclidean distance between
phyxel, even if with different implementations.

The major contributions of this paper are:

1. A novel method for representing cut with fragmentation of
the mesh with an implicit handling of topology, i.e. no need
to know when and if to front merge.

2. A novel method to update the physical model efficiently and
consistently.

TheSplitting Cubesalgorithm is a new technique to represent ex-
ternal surfaces of deformable bodies that implicitly represent topo-
logical modification like cuts or laceration. Each cubes represent a



part of volume of the deformable bodies and it can be considered
as an independent entity that can represent the subpart of volume
surface that it enclose.
We also propose a new technique,calledocclusion disk, a simple
way to to smoothly realize discontinuities on material’s shape func-
tions while new surface is being created.

4 MESHLESS SIMULATION OF DEFORMABLE BODIES

We give a brief introduction to the problem of animating de-
formable models and of the point based frameowrk used in this pa-
per. For further details see [13], [8] or [20].
We callrest spacethe space represented by object volume at initial
state when any deformation is introduced and total elastic energy is
equal to zero. Given a solid in a 3-dimensional space let call call
u a function that map each pointx of the solid fromrest shapeto
the corresponding position ofdeformed shapeat world coordinate.
Deformed shape is defined asx+u, whereu is a 3D displacement
vector fieldu = (u,v,w)T . Shape deformation is quantified using
Green-Saint-Venant strain tensor:

ε =
(∇u+∇uT +∇u∇uT)

2
(1)

Elastic stressσ is linearly related to strainσ =Cε whereC is a rank
four tensor that defines the constitutive law of the material. Strain
energy density is defined as:

U =
1
2
(εσ) (2)

Now having energy definition we can derive the elastic force as:

f = −σ∇uε (3)

In mesh free methods, this equation is solved by sampling the
volume in a finite set of elements. Each element calledphyxelrep-
resents a portion of the volume and relative physical quantities as
the positionxi , the displacementsui , the velocitiesvi , the density
ρi , the strainεi , the stressesσi and the massmi . In order to express
strain we must find a good estimation of first order derivative of
displacement function (as states equation 1 ). To obtain a continu-
ous estimation of displacement derivative themoving least squares
methodcan be used (see [?] and [14] for details). Each phyxelphi
has itssupport radius hi , which is determined adaptively depending
on the local density of nodes, and determines which other phyxels
are taken into account to compute the derivative of the displace-
ment function inphi . For each one of theseneighboring phyxels nj
there is a weight valuewi j that is related to distance vectorxi j from
phyxel phi to phyxelphj . Displacement derivative in the neighbor-
hood of phyxelphi is finally estimated as:

∇u|xi = A−1(∑
j
(u j −ui)xi j wi j ) (4)

The matrix A = ∑ j xi j xT
i j wi j ) is a 3x3 matrix that can be pre-

computed and inverted. Having displacement derivative he can es-
timate strainε and stressσ and finally calculate elastic force, we
also introduce in our framework strain state variables to model plas-
ticity (see [13] and [7] for details). For each surfel is defined the
initial position at rest shapexs f l and a set of neighboring phyxels
with relative positionxi , displacement vectorui and displacement
derivative∇ui estimated using MLS. Then surfel displacementus f l
is updated each time step as:

us f l =
1

∑i wi
∑
i

wi(ui +∇uT
i (xs f l −xi)) (5)

5 OUR APPROACH

The key idea of our approach is that the object surface is entirely de-
fined by the intersection points of the object surface with the edges
(and relative normals) of a regular decomposition of the space.
Each cell with at least one edge crossed by the surface is associ-
ated with a small triangulation inside the cell. This resembles the
Marching Cubes [12, 23] but our data structure, from now on re-
ferred to as theSplitting Cubes, holds the significant difference that
the configuration of the cell is not given by the in/out sign of the
nodes but directly by the intersections with the edges (in this sense
it is more resembling of the Marching Intersections algorithm [21]).
More important, the Splitting Cubes considersall the 212 possible
configurations and defines triangulations of the surface consistently.
Every time the surface is updated, we also update the weights of the
contribution of each phyxel to the state of its neighbors. Instead of
estimating the shortest path connecting every couple of phyxels we
estimate how visible they are to each other by taking advantage of
the graphics hardware.

6 THE SPLITTING CUBES ALGORITHM

The goal of a splitting cube is to represent the portion of object’s
surface crossing a cellandto encode the functionF inside the cell.
We first consider the case in 2 dimension where the cells are quadri-
laterals.
Let us consider aninternal cell, i.e. a cell with all nodes inside
the volume and without edge intersection (see Figure 3).(A). In this
case there is no surface and the functionF is continuous inside the
cell. We simply defineF inside the cell by an interpolating its value
at the cell nodes.
Now suppose that the cut surface crosses two opposite edges as in
(D). We want to represent the fact that the cell volume has been
split in two parts, so we create the two surfacescs0 andcs1 in the
same location ascsat rest shape. Now the functionF is not contin-
uous acrosscs: in particular its value will be interpolated only by
the two left nodes in the left portion of the cell and by the two right
nodes in the right part of the cell. Note that we are interested in the
value ofF only in the two surfaces since it will be used to move the
vertices on their tessellations.
We define each surface with a simple triangulations and for each
vertex we store which nodes and relative interpolation parameters
are used to compute its position in the deformed shape. Figure 3)
illustrates all the 6 configurations for a face. In the left column the
cell with cut surface at rest shape, in the center column the same
configuration in as hypothetical deformation where the dependence
of the vertices on the nodes is illustrated by an arrow.

You may note that the vertex in the middle of a face its neces-
sary only in the configuration (B). In all the other cases it could
be avoided, however in the cases (E)(F) this would cause a loss of
volume and in all cases a rougher approximation of the real cut sur-
face.
The 3D version of this decomposition scheme derives directly from
the 2D case. In fact, the configurations shown in Figure 3 are those
used in the 6 faces of the cube, and the configuration of the cube de-
pends un-ambiguously on the configuration of its faces. These 212

configurations are procedurally found as follows. The cube is vis-
ited node by node. For each node, the three edges connected to the
node are visited to check if they are intersected by the cut surface. If
an edge is intersected a quad is built, whose vertices are the vertex at
the intersection with the edge, the two vertices in the middle of the
two faces sharing the edge and acenter vertexinside the cube. The
dependence of the face vertices is then found by visiting the face
edges and accessing the corresponding configuration. To define the
dependence of each instance of the central vertex, we visit all the
nodes by starting from the node examined. The instance of the cen-
tral vertex depends on all the nodes reachable without crossing the
cut surface.



We do not use this procedural approach during the simulation,
instead we run over all the possible permutations once for all and
store the result, i.e. the surface created and dependence of its ver-
tices, in a look up table.

For the sake of completeness we observe that there are cases
where the splitting cubes algorithm produces non manifold sur-
faces, like in the unlikely situation shown in Figure 4 (bottom right)
where the surface is not homomorphic to a disk in the center vertex.
Fortunately, even when this happens there are no consequences on
our framework.

Figure 3: The 6 configurations for a face of the splitting cube. In the
left column the configurations at rest shape; in the center column at
a hypothetical deformed shape and in the right column the configu-
ration is the face vertex was not used.

6.1 Position of the vertices
The surface created by the splitting cubes algorithm has three type
of vertices: edge vertices, face vertices and center vertices. The
position of these vertices should be chosen so to approximate the
cut surface. For the edge vertices the position is obviously the
intersection point of the surface with the edge. For the other two
type there are many choices, none of which leads to best result for
all cases. Our solution is illustrated in Figure 5. For the case (B)

Figure 4: The three quads (6 triangles) that can be created process-
ing thenode n0. In the top right configuration the visit of the nodes to
find out the dependences of the central vertex is shown with dashed
arrows. In the bottom right a configuration resulting in a non manifold
surface.

Figure 5: How the face vertex is derived by the edges vertices.

the face point is placed at the middle way from the corresponding
edge vertex to the intersection of the tangent with another edge
of the cube. For the case (C) and (D) (the most common) we first
compute the intersection between the two tangent lines: if the
intersection of the two tangents is outside the cube we clamp the
intersection point inside the cube and then move it in the barycenter
of the triangle formed by the clamped point with the two edge
vertices. Once the point is calculated we distinguish two cases: if
the normals form an angleθ greater than a predefinedα then we
decide that the cut surface has a sharp angle and place the vertex at
the computed point; otherwise we use the two edge vertices and the
calculated point to define a Bezier curve and we place the vertex
in the middle of the curve. For the case(E) we solve for the two
opposite edge vertices as in case (D) and then if the tangent line of
the remaining edge vertex intersects the surface generated so far,
such intersection point is taken. Finally for the case(F) we use the
intersection point of the two segments connecting opposite vertices.

6.2 Data structures for the Splitting Cubes
The data structure for the Splitting Cubes is all in the grid nodes.
Every node stores 6 couples (scalar,normal), one for each edge leav-
ing the node on directions−x,x,−y,y,−z,z. If the scalar value is



the special value−1 there is no intersection with the relative edge,
otherwise the couple stores the barycentric coordinate of the inter-
section point and relative normal of the cut surface at that point.
The value of the normal is not necessary to find out the proper con-
figuration but, as explained before, it is used to place the vertices
on the faces of the cubes and it will be used for shading the surface.
Furthermore every node stores, for each of the 8 cells that share
it, the piece of surface created for that cell (at most 6 triangles per
cell).

In order to find out the dependence of the vertices, we need to
visit the cell walking on the edges, therefore for each node we need
to find its 6 adjacent nodes. Since that the subdivision is regular
the connectivity is implicit and the neighbors of the node(i, j,k)
are the nodes at distance 1 in the grid. However a constant time
random access to the grid would require to store all the nodes, while
we need only those having at least one incident edge intersected by
the cut surface. Therefore we use a hash table containing only the
nodes instantiated and use a hash function of their position on the
grid as suggested in [22].

6.3 The algorithm

The Splitting Cubes algorithm consists of processing a single type
of event, that is, an edge is intersected by the cut surface. When
this happens, the two nodes at the extremes of the intersected edge
are processed to generate the respective surfaces, and all the other
nodes in the 4 cells sharing the edge are reprocessed to recompute
the dependence of the vertices of their surfaces. As previously men-
tioned, we use a look-up table to store the triangulations and the
dependences of the vertices. So the look-up table has one entry for
each configuration and for each node of the cell (212∗8 entries).

7 PHYSICAL RESPONSE TO CUTTING

In the previous section we introduced the Splitting Cubes
algorithm, which enables the representation of cuts and the discon-
tinuity in the shape functionF inside a cell. This is a sort ofsmall
scalediscontinuity since that we did not modify the functionF at
the nodes of the grid. This further step is more dependant on the
specific model adopted. If, for example, Free Form Deformations
was used to animate the object then the splitting cubes would be
enough as it is, while is the grid was a set of masses connected by
springs, we should remove the springs corresponding to intersected
edges and so on. The case of mesh free method is slightly more
complex because the functionF (both at the grid nodes and at the
phyxels) is determined by a group of phyxels.

Surfels - Phyxels bounds
The kernel of a surfel consists of all those phyxels within a given
radius and such that the surfel is visible, i.e. the segment between
a phyxel in the kernel and the surfel does not intersect the surface.
We simply keep the connection updated performing the intersection
tests with the new piece of surface created by the splitting cubes
and creating the kernel for new surfels as in [19, 4]. This updating
only concerns the surfels closer thanr to the intersected edge,
wherer is the maximum radius among all the surfels of the object.

Phyxels - Phyxels bounds
As shown in [19], the visibility criterion introduced in [17], i.e. to
eliminate the bound among two phyxels is they cannot see each
other because of the surface, leads to excessive discontinuities
that can compromise the stability of the system. Instead they use
the method of transparency weights, which consists of weighting
the bound between two phyxels with an approximation of the
Euclidean distance between them. The same method with a more
approximated estimation is presented in [4]. In this case the
distance between two phyxels is computed on the connectivity
graph, i.e. a graph with one edge for each couple neighbor phyxels,

Figure 6: Left) the occlusion disk is sampled to see how many rays
intersect the surface. The intersection test is left to the graphics hard-
ware by rendering the surface twice and making the frustum equal to
each of the cones. Right) an example of rendering from pi

Figure 7: (a) the weight function when a cut surface (white line) is
introduced (b) the cut surface is complete (c) with two cut surfaces

as the length of the path between the two phyxels such that no edge
intersects the cut surface

We found these techniques not very practical for real time in-
teraction, because the intrinsic cost of computing the Euclidean
distance, and not free from tricky situations, like for example two
phyxels that can actually see each other through a little hole in the
cut surface.

7.1 Occlusion Disks
We chose to use a modified version of the visibility criterion, ob-
tained by replacing the segment between two phyxels with two
cones as shown in Figure 6. Consider the common base of these
two cones, that we callocclusion disk. From each point on this
disk we trace two rays, one for each phyxel and say that the point
is obscured if at least one of these two rays intersect the cut sur-
face. Then, assuming to sample the disk withn points, the weight
is obtained as:

w′(pi , p j ) = w(pi , p j )
˙#obscured
n

The intuition behind this choice is straightforward: we replace
the ”if” with ”how much” in the visibility criterion. Figure 7 shows
the variation of the weight around a phyxel close to a cut surface.
Note that, although it exhibits some discontinuities in the region
very close to the phyxel, it happens to be fairly smooth at the av-
erage distance at which the phyxels are placed (we emphasized the
isoline corresponding to such distance). In Figure 7.(c) the tricky
situation above mentioned is reproduced by putting two cut surfaces
without preventing the phyxels to directly see each other. Although
the discontinuities around the phyxel are more obvious, the weight
behind the hole is greatly reduced.

7.2 Implementing Occlusion Disks
The good thing of this method is that it can be entirely implemented
on the GPU. Letcs the cut surface potentially occluding the mask
betweenpi and p j and consider the smallest square enclosing the



occlusion disk. We associate a small single-channel texture to the
square, and therefore to the occlusion disk, that stores how many
samples of the disk have been obscured.
To update the texture we rendercs twice: one frompi towardsp j
and one in the opposite direction, always setting the far plane of the
projection in the mid way and setting the projection so that each
sample in the disk project on the same pixel for the two render-
ings. In a fragment shader, we discard those fragments projecting
on a pixel already written, so all the fragments that are written into
the buffer correspond to newly obscured samples. By using the
hardware occlusion query, we count these fragments and update the
weight as in the formulae.
The size of the texture influence both smoothness and performance.
A large texture would require a longer rasterization time but will
provide a smoother change of the weight and viceversa. Another
aspect to keep in mind is that we need one texture for each neigh-
bor phyxels. Considering an average number of neighbors of 10 we
need 10 by the number of phyxels textures.

8 RESULTS

The approach presented in this paper was implemented on a Win-
dows XP platform using C++ and OpenGL; the GPU code was
written in GLSL. The tests shown in the accompanying videos have
been run on a laptop Intel Centrino 1.7GH, 512 RAM equipped with
a nVidia GeForge 6800 GO. Figure??shows the data about the per-
formance of our method acquired during the video ”cut2.avi”. The
model consists of 800 phyxels and 2400 splitting cubes intersected
by the initial surface. The texture size for each occlusion disks is
16×16. The initial surface is obtained by the splitting cube algo-
rithm, by taking a (watertight) mesh and considering it as a big cut
surface. Once the cut is done, the surface bounding the empty space
is simply thrown away.
It can be seen that during the cutting the frame rate drops down
from 40 to 20, because of the time taken to generate the new tri-
angulations and to update the occlusion disks. The total number of
triangles grow linearly during the action from 8000 to 10000 and
does not affect the frame rate. Looking at the videos you can spot
the changing of the configuration of the splitting cube. As afore
mentioned, this depends on the way the vertices are placed in the
cell and, more important, by the size of the cell. There are two ways
out of this artifact: to reduce the cell size or to make the cell more
”informative”.
In the first case we should speed up the rendering phase, which is
currently much slower than we could make. This depends on the
need for updating the vertices position by interpolation from the
cell nodes which is done in the CPU. A possibility could be to pass
to a vertex shader all the data for interpolation, but it is not obvious
that it would result in a substantial speed up, since much of the work
is retrieving the data for the interpolation and that should be done
anyway. On the other side we could derive a more sophisticated
look-up table for each configuration. When an edge is intersected,
and a surface exists in one or more of the 4 cells sharing that edge,
we should avoid that the existent surface moves as it does in the
current version. This would requires a re-meshing algorithm to ap-
ply cell by cell, which should compose the new cut surface with the
existent one.

9 CONCLUSIONS

In this paper we presented a novel solution for representing cuts on
mesh free methods named Splitting Cubes Algorithm. In contrast
with the previous solutions to this problem, the splitting cubes han-
dles implicity all the changes of topology due to the cuts and it is
extremely robust and conceptually simple. The splitting cubes algo-
rithm always provides a well formed, watertight mesh which cannot
be fragmented by repeated cuts in the same region. The second con-
tribution of this paper is a novel scheme for a fast updating of the

Figure 8: Data collected during video ”Cut2.avi”.

Figure 9: Some snapshots of a sequence where a cylinder is cut out
of a cube like object.

physical system by introducing the occlusion disks, which provides
a good approximation of the correct change of shape function and
can be implemented entirely in the GPU.

Further work can be done on this approach, including incorpo-
rating state of the art solutions for the physical simulation, as re-
sampling the volume with new phyxels whenever a cut is done.
Without re-sampling, the object cannot be freely cut because phyx-
els that remain isolated easily leads to instabilities.

REFERENCES

[1] D. Bielser, V. Maiwald, and M. Gross. Interactive cuts through 3-
dimensional soft tissue.Computer Graphics Forum (Eurographics’99
Proc.), 18(3):C31–C38, Sept. 1999.

[2] H. D. S. Cotin and N. Ayache. A hybrid elastic model allowing real-
time cutting, deformations and force-feedback for surgery training and
simulation. InCAS99 Proceedings, pages 70–81, May 1999.

[3] B. D. and G. M. Interactive simulaiton of surgical cuts. InProceedings
of the Pacific Graphics, pages 116–125, 2000.

[4] M. G. Denis Steinemann, Miguel A. Otaduy. Fast arbitrary splitting
of deforming objects. InEurographics/SIGGRAPH Symposium on
Computer Animation (to appear), 2006.

[5] M. Desbrun and M.-P. Cani. Smoothed particles: A new paradigm for
animating highly deformable bodies. In R. Boulic and G. Hegron, edi-



Figure 10: Left: multiple cuts on a cube Right: torturing Santa Claus

tors,Eurographics Workshop on Computer Animation and Simulation
(EGCAS), pages 61–76. Springer-Verlag, Aug 1996. Published under
the name Marie-Paule Gascuel.

[6] M. Desbrun and M. Gascuel. Animating soft substances with implicit
surfaces. In R. Cook, editor,SIGGRAPH 95 Conference Proceedings,
Annual Conference Series, pages 287–290. ACM SIGGRAPH, Addi-
son Wesley, Aug. 1995. held in Los Angeles, California, 06-11 August
1995.

[7] O. J. F., B. A. W., and H. J. K. Graphical modeling and animation of
ductile fracture. InProceedings of SIGGRAPH, pages 291–294, Aug
2002.

[8] M. H. G. Fries T.-P. Classification and overview of meshfree methods.
Technical report, 2003.

[9] F. Ganovelli, P. Cignoni, C. Montani, and R. Scopigno. A multiresolu-
tion model for soft objects supporting interactive cuts and lacerations.
Computer Graphics Forum, 19(3), 2000.

[10] F. Ganovelli and C. O’Sullivan. Animating cuts with on-the-fly re-
meshing. EuroGraphics Short Presentations, 2001. (J. C. Roberts,
editor), 2001.

[11] A. Lamouret, M. Gascuel, and J. Gascuel. Combining physically-
based simulation of colliding objects with trajectory control.The Jour-
nal of Visualization and Computer Animation, 6(2):71–90, Apr.–June
1995.

[12] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolu-
tion 3D surface construction algorithm. InACM Computer Graphics
(SIGGRAPH 87 Proceedings), volume 21, pages 163–170, 1987.

[13] M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa.
Point based animation of elastic, plastic and melting objects. InPro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS Symposium on
Computer Animation, Aug 2004.

[14] A. Nealen. An as-short-as-possible introduction to the least squares,
weighted least squares and moving least squares methods for scattered
data approximation and interpolation. Technical report, 2004.

[15] H. Nienhuys. Cutting in Deformable Objects. Ph.d. thesis, Utrecht
University, 2003.

[16] H.-W. Nienhuys and A. F. van der Stappen. Supporting cuts and fi-
nite element deformation in interactive surgery simulation. Technical
report, Utrecht University, Institute for Information and Computing
Sciences, PO Box 80.089, 3508 TB, The Netherlands, June 2001.

[17] T. T. Organ D., Fleming M. and B. T. 1996. Continuous meshless
approximations for nonconvex bodies by diffraction and transparency.
In Computational Mechanics, volume 18, 1996.

[18] M. Pauly, R. Keiser, B. Adams, P. Dutr;, M. Gross, and L. J.
Guibas. Meshless animation of fracturing solids.ACM Trans. Graph.,
24(3):957–964, 2005.

[19] M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross. Shape modeling
with point-sampled geometry.ACM Trans. Graph., 22(3):641–650,
2003.

[20] L. G. R. Mesh-free methods. Technical report, 2002.
[21] M. Tarini, M. Callieri, C. Montani, C. Rocchini, K. Olsson, and

T. Persson. Marching intersections: An efficient approach to shape-
from-silhouette. In7th Int.l Fall Workshop on Vision, Modeling, and
Visualization 2002, pages 283–290, Erlangen (D), Nov. 20 - 22 2002.
IOS Press.

[22] M. Teschner, B. Heidelberger, M. M̈uller, D. Pomeranets, and
M. Gross. Optimized spatial hashing for collision detection of de-
formable objects. In T. Ertl, B. Girod, G. Greiner, H. Niemann, H.-P.
Seidel, E. Steinbach, and R. Westermann, editors,Proceedings of the
Conference on Vision, Modeling and Visualization 2003 (VMV-03),
pages 47–54, Berlin, Nov. 19–21 2003. Aka GmbH.

[23] G. Wyvill, C. McPheeters, and B. Wyvill. Data structure for soft ob-
jects.The Visual Computer, 2(4):227–234, 1986.


