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Comparison of FEC Types with Regard to the
Efficiency of TCP Connections over AWGN

Satellite Channels
Nedo Celandroni

Abstract— Optimizing the end-to-end throughput of a TCP
connection (goodput) over geostationary satellite links is a chal-
lenging research topic. This is because the high delay-bandwidth
product, together with a non-negligible random loss of packets,
is a condition that considerably differs from the environments
TCP was originally designed for. As a result, TCP performance
is significantly impaired by the channel bit error rate. The
literature is full of suggestions for improving TCP goodput, most
based on modifications of the protocol itself. We only investigated
the application of different FEC (forward error correction)
types for TCP goodput optimization, leaving the end-to-end
protocol unaltered. Using a method midway between analysis and
simulation to evaluate the goodput of TCP long-lived connections,
we first studied the influence of packet loss rate, introduced by
errors on the channel, on the TCP goodput. We showed that, in
some cases, the packet loss rate does not need to be negligible
with respect to that caused by congestion, as it is widely-held
opinion. We then applied physical-level FEC techniques, such
as convolutional encoding/Viterbi decoding, Reed Solomon, link-
level erasure codes and their combinations, over a wide field of
signal to noise conditions of the satellite channel. For each FEC
type, we found the FEC rate that maximizes the TCP goodput,
in each channel condition. We finally compared the results of
all FECs used between them, and presented the case of multiple
TCP connections sharing the same link as well.

Index Terms— Satellite link, TCP goodput, AWGN channel,
FEC, BER, random packet loss.

I. INTRODUCTION

THE transmission Control Protocol (TCP) is a connection-
oriented, end-to-end, reliable transport protocol working

between hosts in packet-switched networks of any possible
topology. TCP is designed to operate over a wide spectrum
of communication systems, ranging from wired to wire-
less and satellite networks. However, TCP performance may
be severely impaired in environments where a high delay-
bandwidth product is associated with a non-negligible packet
loss due to data corruption. This occurs, for example, in satel-
lite networks. Research in this area has long since highlighted
this problem, and the literature is rich in both the performance
evaluation area and in suggestions for improvement (see [1]–
[7]) and in general the work carried out by the PILC IETF
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Working Group).

The performance problems of TCP over satellite links are
becoming increasingly important as satellites become more
widespread and their capacity increases. We foresee a growing
importance of satellite connections in the future, due to some
of their intrinsic advantages over wired links, such as: ease
of scalability (new user installations), resilience to terrestrial
damage, and multicasting efficiency.

Transmitting TCP traffic over satellite links rises a problem
that seldom appears on terrestrial links. TCP behaviour is very
sensitive to packet loss, which is interpreted as a congestion
signal, and consequently as a reason to throttle the data rate.
The task of the data link is to discard corrupted packets,
which are not made available to the superjacent TCP/IP stack.
This means that the TCP/IP stack cannot distinguish losses
due to data corruption from losses due to other reasons that
are interpreted as congestion signals. In order to increase
the efficiency of TCP over satellite links, where improv-
ing the error rate is generally expensive (when possible),
a number of techniques are commonly used. These include
various types of spoofers, which may or may not preserve
the TCP end-to-end semantics [8], with relative drawbacks
[5]. Other techniques concern automatic repeat request (ARQ)
[9]. These techniques, each operating at different levels of the
protocol stack, exploit local knowledge of the satellite link
characteristics in order to add a shorter delay control loop
underneath the end-to-end control loop in the TCP connection.
This gives a quicker reaction to packet loss and consequently
improves the end-to-end performance at the expense of local
buffering of packets to retransmit in case of loss and increased
complexity. Methods have been proposed for a number of
different techniques operating at different levels. For example,
link-level forward error correction (FEC) [10] operates below
TCP. Some methods, such as explicit loss notification (ELN)
[11], which make the TCP stack aware of packet losses due
to link errors, need some sort of cross-layer actions between
TCP and the link level, and require TCP modifications at the
end points. Other methods proposed involve changing the TCP
stack at one or both end points, for example TCP Westwood
[12] and its variants or TCP-Peach [13].

Reference [14] describes a technique that operates at the
physical level, by trading the satellite channel bandwidth for
packet loss rate. It does not interfere in any way with the
normal behavior of the TCP stack, but simply entails that
the wireless link parameters be appropriately tuned at the
physical or link levels. In [14] it is argued that, given an
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available radio spectrum, antenna size and transmission power,
the selection of a modulation scheme and a FEC type allows
choosing both the bit error rate (BER) and information bit
rate (IBR) of the link that maximize the throughput of a TCP
connection, and thus the end-to-end transfer rate (also called
goodput). This optimization can be made for different channel
quality conditions whose variability is due, for instance, to the
variable atmospheric attenuation of the signal. The optimal
transmission parameters for each channel condition can be
stored in look-up tables and dynamically applied in an adaptive
fashion.

In the numerical example reported in [14], a 1/2 rate
convolutional encoding/Viterbi decoding technique is used,
with puncturing in order to obtain more coding rates. The
modem has the ability to switch between BPSK (binary phase
shift keying) and Q (quadrature)PSK. A similar approach is
followed in [10], where the FEC is performed at link-level by
using a block erasure code and packet losses both independent
and correlated [15] are considered. In this paper we assume,
as in [14], to be in the presence of additive white Gaussian
noise (AWGN) so that we can consider independent packet
losses. This assumption is reasonable when operating with
geostationary satellite links and fixed user antennas. Here
we extend the results obtained in [14], by introducing Reed
Solomon, erasure codes and mixed techniques (concatenated
codes). A comprehensive scenario of the various techniques,
including the one used in [10], is produced for different
channel quality conditions, and the relevant comparison is
thus made possible. In other words, we wanted to discover
which FEC type and rate, among some widely used ones,
make the millions of TCP installations perform better on
various conditions of satellite links. The results obtained can
be helpful both in designing new network architectures and
in improving already existing ones; for example, by adding
an outer code, such as an erasure type one, which can be
implemented even by software at link layer. The case in which
multiple TCP connections share the same link was presented
as well. In order to evaluate the goodput of TCP connections,
we developed a fluid simulator tool, which is described in
Section II. In Section III we give an overview of the FEC
types used, and the TCP performance obtained by using them
are shown in Section IV. Conclusions and the evolution of the
present work are illustrated in Section V.

II. TCP GOODPUT EVALUATION

An analytical model for TCP is here presented, which is
valid for high delay-bandwidth products and for one or more
connections that share the same link. The purpose of the
model is to develop a fast fluid simulator that we called TGEP
(TCP goodput evaluation program). TGEP has been useful
both to make the huge number of simulation runs, required to
obtain the desired results, in a reasonable time, and to have
one more tool, other than ns2, in order to validate results.
We chose the Reno version of TCP. Other versions, such as
TCP NewReno and TCP SACK, perform better in recovering
multiple losses per RTT (round trip time); however, for the
purpose of our study, that is the maximization of the goodput,
the field of interest is relative to high TCP efficiency and in
these conditions we found (by using ns2 simulator) that all

the three versions have practically the same behaviour. TCP
Reno, new Reno and SACK together are the majority of all
TCP implementations in the world.

The TCP Reno congestion control mechanism description
can be found in [14], [16] and [17].

A. TCP Model

The following fluid model is valid for high delay-bandwidth
product links, i.e. for connections with an average flight size
of at least 10 segments. We suppose segment losses are
due to both congestion and data corruption. We consider
a Reno TCP implementation without the SACK [18] and
with the Window Scale [19] options, so that the receiver
advertised window (rwnd) never limits the flight size, and
the transmission window is always equal to the congestion
window cwnd. The analysis considers long-lived connections
where the length of the Slow Start phase is negligible with
respect to the length of Congestion Avoidance phases. Further
assumptions are that the transmitting side always has data
to transmit, and that all packet loss detections occur as the
result of receiving three duplicate ACKs, never because of a
retransmission timeout.

As in [16], in our system a buffer of capacity B is asso-
ciated with the bottleneck link, whose transmission rate is
μ segments/s. Denoting by T the minimum round-trip delay
between a segment sending and the reception of the relative
ACK, which consists of the double link latency τ plus the
segment service time; we have T = τ + 1/μ. We also define
the normalized buffer size β = B/(μT ) and denote by ω
the congestion window size cwnd expressed in segments. We
define a flow control cycle as the system evolution between the
beginning of two consecutive Congestion Avoidance phases;
during such a cycle, ω goes from a value ωs to a value
ωe that is reached when a segment loss is detected; that is,
when a set of four equally-numbered ACKs is received. If we
neglect the temporary cwnd inflation during the Fast Recovery
phase [17], we can observe that ω reaches the value μT + B,
that we denote by ωmax, when the segment loss is due to
congestion, while it reaches lower values when the loss is due
to (random) data corruption. In the steady-state analysis of the
TCP behavior, we consider only the Congestion Avoidance and
Fast Retransmit/Recovery phases. This limitation is allowable
when connections are long enough and timeout events are rare.

1) Single connection per link: In Congestion Avoidance,
the window size ω is increased by the TCP sender by a
value 1/ω on each ACK reception. Denoting by b the number
of segments acknowledged by each ACK (b = 2 if the
delayed ACKs algorithm is used) we have [20] the following
approximated relation:

dω(t)
dt

=
1
ω

da

dt

where da/dt is the arrival rate of the ACKs. If ω ≤ μT ,
da/dt = ω/(bT ), otherwise da/dt = μ/b. Thus, we have

dω(t)
dt

=
{

1/(bT ), ω ≤ μT
μ/(bω), ω ≥ μT

In the absence of data corruption losses, the bottleneck link
buffer remains empty during the first phase (linear window-
growing phase); then the buffer starts filling up to the value
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B, when a segment is lost due to buffer overflow (congestion);
after that, the window is halved, according to the AIMD
(additive increase multiplicative decrease) congestion control.

2) Multiple connections per link: Let us make all calcula-
tions for the general case in which multiple TCP connections
share the same link. We consider they have the same link
latency τ and segment loss rate q. We also assume that all
links between TCP senders and the common bottleneck buffer
have a much higher capacity than that of the bottleneck link,
and all connections have the same segment size. In this case,
we denote by N the number of TCP connections and by ω the
value of the aggregated cwnd, which is the sum of the cwnds
of all connections, while we add the index i to the variables
denoting the values relevant to each individual connection. The
single connection case is deducible by setting N = 1 and the
indexed variables equal to the non-indexed ones.

Let us consider the B ≤ μT (β ≤ 1) case. For ω ≤ μT ,
the window evolution of the connection i is

dω(i)(t)
dt

=
1

ω(i)

da(i)

dt
=

1
ω(i)

ω(i)

bT
=

1
bT

(1)

Relation (1) produces

ω(i)(t) = ω(i)
s + t/(bT ) (2)

and adding up both sides of (2) for all connections, we get

ω(t) = ωs +
N

bT
t. (3)

As ω segments are sent in each interval T , denoting by n(t)
the total number of segments sent from the beginning of the
cycle by all connections, and considering (3), we have

n(t) =

t∫
0

ω(z)
T

dz =
ωs

T
t +

N

2bT 2
t2 (4)

which, inverted, gives

t(n) = bT
(√

ω2
s + 2nN/b − ωs

)
/N. (5)

Analogously, starting from relation (2), the number of seg-
ments sent by the sender i is

n(i)(t) =
1
T

t∫
0

ω(i)(z)dz = ω(i)
s t/T + t2/(2bT 2). (6)

Substituting t, given by (5), in (6) we get the number of
segments sent by the sender i when n segments are totally
injected into the bottleneck link.

For ω ≥ μT (second phase) the window evolution of the
connection i is

dω(i)(t)
dt

=
1

ω(i)

da(i)

dt
=

1
ω(i)

μ

b

ω(i)

ω
=

μ

bω
. (7)

In fact, the total ACK arrival rate is μ/b and ω(i)/ω is the
share that arrives at the sender i. Adding up both sides of 7)
for all connections we get dω/dt = Nμ/(bω), which yields:

ω(t) =
√

ω2
s + 2Nμt/b, and ω(n) =

√
ω2

s + 2Nn/b. (8)

In (8), ωs is the initial value of the window in the second
phase, while t and n are the time and the number of segments

injected into the bottleneck link from the beginning of the
phase, respectively. When the second phase follows the first
one (i.e. the cycle begins in the first phase), ωs = μT . In the
second phase, the rate of segment sending is μ, so the number
of segments sent is

n(t) = μt. (9)

Denoting by ta and tb the temporal durations of the first
and second phases when the cycle begins with ωs ≤ μT ,
respectively, by setting in (3) ω(ta) = μT , we get ta =
bT (μT −ωs)/N , and from the first of (8), by setting ω(tb) =
ωmax = μT (1 + β), we get tb = bμT 2β(2 + β)/(2N).
Denoting by na and nb the number of segments sent in the
first and second phase, respectively, we get na from (4) as
na = n(ta) and nb from (9) as nb = n(tb). Substituting ω(t)
given by the first of (8) in (7), after integration we get:

ω(i)(t) = ω
(i)
s +

(√
ω2

s + 2Nμt/b − ωs

)/
N

= ω
(i)
s + Δω(t)/N, where Δω =

√
ω2

s + 2Nμt/b − ωs, and
ω(i)(n) = ω

(i)
s +

(√
ω2

s + 2Nn/b− ωs

)/
N

= ω
(i)
s + Δω(n)/N

(10)
from which we see that the increment of the aggregated

window, denoted by Δω, is evenly spread over all connections.
Denoting by Q the number of segments in the buffer, the
number of segments sent by each connection can be computed
as

n(i)(t) =

t∫
0

ω(i)(z)
T + Q(z)/μ

dz = μ

t∫
0

ω(i)(z)
ω(z)

dz (11)

Then, substituting the first of (8) and (10) in (11), after
integration and considering (9), we get

n(i)(n) =
(

n +
Δω

Nμ
(Nω(i)

s − ωs

)/
N (12)

Let us consider the case in which the packet loss is due to
congestion only. All cycles are equal and the starting value of
the window in each cycle is ω

(c)
s = ωmax/2 = μT (1 + β)/2;

thus, if B ≤ μT (β ≤ 1), from (3) we get the duration of the
first phase

t(c)a = μT 2(1 − β)/(2N).

The average goodput can be computed as the sum of segments
sent in a cycle divided by the temporal length of the cycle
itself. Denoting by λc the goodput for congestion losses we
have

λc =
n

(c)
a + nb

t
(c)
a + tb + N/μ

=
3b(1 + β)2μ3T 2

4(2N2 + b(1 + β + β2)μ2T 2)
(13)

where n
(c)
a = n(t(c)a ) is obtained from (4) with ωs = ω

(c)
s .

The term N/μ in the denominator of (13) takes into account
the time spent to resend the segments lost as a result of
congestion. In fact, when congestion occurs, during an entire
round-trip time, all connections experience a loss because,
when the buffer is full, the ACK that triggers the transmission
of two segments back-to-back causes an overflow, and it
occurs for all connections.
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Denoting by qc the segment loss rate due to congestion, and
imposing n

(c)
a + nb = (1 − qc)/qc, we get

qc =
8N

8N + 3b(1 + β)2μ2T 2
. (14)

If B ≥ μT (β ≥ 1), the linear window-growing phase does
not occur, because ωs ≥ μT ; thus, relation (13) becomes

λc =
3b(1 + β)2μ3T 2

8N2 + 3b(1 + β)2μ2T 2
,

while the relation (14) is valid for any value of β.
We emphasize the importance of the buffer presence. In

fact, from relation (13) we see that the normalized goodput
λc/μ, for a single connection, no delayed ACKs and a value
of τ = 0.5s, which is typical for a geostationary satellite, is
about 71% without the buffer (β = 0). Instead, a value of
β = 0.8 is enough to reach 97% of the link rate (98% with
β = 1), even for values of μ as low as 10 segments/s.

When the loss is due to data corruption, it occurs before
ω reaches ωmax, and each cycle still begins with a value of
ωs, which is half the value attained in the previous cycle.
In order to compute the average goodput in this case, we
wrote a program (TGEP) whose source is available written
in MathematicaTM language [21]. TGEP is a fluid simulator
in that it draws the number of packets between two successive
losses and computes analytically all system variables as they
were continuous, without simulating packet by packet.

We assume the packet loss follow a binomial distribution
with average loss rate q and denote by nmax the max. number
of segments in each cycle; nmax = na + nb if ωs < μT ,

nmax =
b
(
μ2T 2(1 + β)2 − ω2

s

)
2N

otherwise. Starting with the value ωs at the beginning of each
cycle, we draw the number n of successful segments between
two successive losses and we check in which case it falls. We
can have n < nmax, or n ≥ nmax. In the first case, the cycle
is prematurely ended by a random loss; otherwise, the cycle
is ended by a congestion loss. In the first case, in order to
discover which connection experienced the loss, we consider
that the loss probability of each connection is equal to ω(i)/ω.
So we draw the connection i that experienced the loss and
halve the value of its window only. If n falls in the second
case, the cycle is ended by a congestion loss; thus, during the
next round-trip time period, all connections experience a loss.
In this case we halve the windows of all connections.

Each cycle begins with the linear or the second phase
according to ωs ≤ μT or ωs > μT , respectively. We compute
the time duration of each cycle by using relation (5) for the
linear window-growing phase and relation (9) for the second
phase, respectively. The cycle duration is incremented by the
time required to resend one or N lost segments in the event
of random or congestion loss, respectively. All cycle durations
and the total number of segments sent in relevant cycles
are accumulated in the variables ttot and ntot, respectively;
then the average aggregated goodput λ is computed as λ =
ntot/ttot. The number of segments sent by each connection is
accumulated in the variables n

(i)
tot, by using relations (6) and

(12), and the average individual goodputs are then computed

TABLE I

GOODPUT OF A SINGLE CONNECTION – ns2, RELATION (15)

AND TGEP COMPARISON

TCP normalized goodput (β=0.8, τ=0.5s, μ=100 seg./s, delayed ACKs,

no SACK). ns2 and TGEP output conf. intervals = ±1% at 99% level

q ns2 ns2 Relat. (15) Relat. (15) TGEP

Reno NewReno T0=1s T0=2s

10−1 0.034 0.036 0.030 0.022 0.058

10−2 0.158 0.165 0.161 0.154 0.162

10−3 0.546 0.554 0.534 0.532 0.547

10−4 0.955 0.955 1.697 1.697 0.957

10−5 0.988 0.989 - - 0.991

as λ(i) = n
(i)
tot/ttot. In order to determine the confidence

interval for the mean of the random variable λ, a number of
independent tests are repeated until the mean falls within the
desired interval, which is computed using parameters given by
the Student-t distribution.

B. TGEP validation

TGEP allows the estimation of the goodput within a chosen
confidence interval at a chosen confidence level. The limit
of TGEP is that it does not consider TCP timeouts and it
does not model multiple losses within an RTT, but in cases in
which q � 1, which are significant cases when the delay-
bandwidth product is high, TGEP performs satisfactorily.
Unless otherwise specified, all results of TGEP in the rest
of the paper have been obtained with a confidence interval
of ±1% at 99% level and by using the parameter b = 2
(delayed ACKs). In order to obviate the non-consideration of
TCP timeouts, we can assume the expression (15), in which
the relation that gives the sending rate for unlimited bandwidth
links, taken from [22], is divided by μ for normalization and
is multiplied by (1 − q) to better approximate the goodput.

Tg =
1 − q

μ

[
τ
√

2bq
3 + To min

(
1, 3

√
3bq
8

)
q(1 + 32q2)

] (15)

where T0 is the value of the timeout. In Table I we report
the comparison of TGEP, relation (15), and ns2 simulation
outputs, for a single connection; in relation (15) the value of
T0 has been set to both 1s and 2s. In Table II we report the
comparison of TGEP, relation (15) (for both T0=1s and 2s) and
ns2 simulation for five connections. We can observe a good
agreement between ns2 and relation (15) for low values, and
between ns2 and TGEP for high values of the goodput; this
agrees with our expectations, because relation (15) considers
TCP timeouts and unlimited bandwidth, while TGEP considers
the bottleneck rate of the link and does not take timeouts into
account. A suitable goodput threshold to use when selecting
one or the other procedure can be assumed equal to 50% of
the bottleneck rate, even if TGEP agrees with relation (15),
and with ns2, for much lower values of the goodput as well.

C. TCP goodput with congestion and random losses

By using TGEP, we have computed the average normalized
goodput λ/μ as a function of the ratio q/qc, i.e. the ratio
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TABLE II

GOODPUT OF 5 CONNECTIONS – ns2 AND TGEP COMPARISON

TCP Reno (no delayed ACKs) goodput of 5 connections sharing a link with a bottleneck rate μ=455 segments/s, τ=0.5s, β=0.8.

Confidence intervals are at 99% level.

ns2 simulations

q Connect. #1 Connect. #2 Connect. #3 Connect. #4 Connect. #5 Total Relation (15) T0=2s

10−4 0.198± 3.1% 0.199±2.5% 0.199±0.5% 0.196±2.2% 0.202±2.3% 0.994±0.03% 2.677

10−3 0.165±2.4% 0.169±2.6% 0.164±4.3% 0.169±5.3% 0.169±1.3% 0.836±0.67% 0.839

10−2 0.047±0.64% 0.047±2.3% 0.047±1.5% 0.047±3.1% 0.047±1.6% 0.235±0.4% 0.243

10−1 0.009±3% 0.009±0.8% 0.009±0.7% 0.009±0.6% 0.009±2% 0.045±4% 0.035

TGEP outputs

q Connect. #1 Connect. #2 Connect. #3 Connect. #4 Connect. #5 Total Relation (15) T0=1s

10−4 0.199±3.5% 0.198±0.6% 0.199±5.8% 0.199±3.7% 0.199±1.89% 0.994±0.1% 2.678

10−3 0.169±5.1% 0.168±7.7% 0.166±8.2% 0.171±7.5% 0.171±7.2% 0.845±1% 0.843

10−2 0.050±5.1% 0.051±14% 0.052±8.4% 0.049±6.7% 0.049±5.8% 0.250±1% 0.254

10−1 0.015±1.3% 0.016±1.7% 0.016±1.6% 0.015±1.5% 0.016±1.9% 0.078±1% 0.048
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Fig. 1. TCP normalized goodput versus q/qc ratio and τ = 0.5s, for a single connection (a) and for 10 connections sharing the same link and buffer (b).
Different values of the link rate μ and the normalized buffer size β are considered. Relation (15) outputs are also included for comparison.

between the loss rate due to segment corruption and the loss
rate due to congestion only, given by (14).

We have reported the results in Fig. 1, for a single con-
nection and ten connections that share the same link, τ=0.5,
b=1 and for different values of β and μ; the values given by
relation (15) are shown as well. The scenario depicted in Fig. 1
provides an insight into the question of a suitable limit for the
packet loss rate due to data corruption in TCP connections
with geostationary satellite links. The results show that the
widely-held view in discussions about TCP performance on
satellite links (see e.g. [2] and [7]), which entails making the
packet loss rate due to data corruption always negligible with
respect to loss due to congestion, should be partially reviewed.
In fact, while in the single-connection case the goodput is
always a decreasing function with the packet loss rate q,
this is not true for multiple connections. In this case, the
goodputs exhibit a maximum for values of q that are higher
than the one relative to congestion only (q/qc > 1). This
is explained by the fact that in case of congestion, during
a complete round trip, all connections experience a loss that
halves all congestion windows (synchronization effect), with a
consequent reduction in the aggregated goodput if the window

values preceding the halving were not sufficiently high, i.e.
for small buffer sizes. A moderate random loss rate, in this
case, improves the situation because losses occur for a single
connection at a time, before congestion can take place; thus,
the aggregated congestion window remains at high values on
average. It is worth noting that a similar benefit is obtained
by using RED (random early detection) [23] instead of drop-
tail as drop policy to discard packets in the bottleneck buffer.
However, for a single connection, a noticeable degradation of
the goodput is caused by a random loss rate that is higher
than the congestion loss rate if the buffer is sufficiently large
( β ≥ 1 in the figure, β ≥ 0.8 in practice). We point out
that lowering the random loss, which means lowering the bit
error rate (BER) over the link, is always expensive in terms
of energy and/or information rate, that is the bottleneck rate
itself. However, it is easy to infer that the calibration of the
BER, i.e. the choice of the FEC and the modulation scheme
to maximize the TCP goodput, admits an optimum value of
the BER for each channel quality condition [14]. Figure 1
also highlights the approximation error of relation (15), which
is often used, limited to 1, to evaluate the TCP throughput.
The error relative to this approximation is lower for multiple
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connections and decreases with the buffer size.

III. PERFORMANCE OF VARIOUS FEC TYPES

In this section we show the performance of several of the
most widely-used FEC types in terms of segment error rate
(SER), as a function of the signal-to-noise ratio available
at an earth station receiver. We assume operating over an
AWGN channel and a negligible inter-symbol interference, so
we can assume that erred bits on the channel are independent.
This hypothesis is widely accepted for users of geostationary
satellites, equipped with fixed and directive antennas, while
the user or satellite (in low earth orbits) mobility generally
produces bursts of errors due to multi-path fading and/or
shadowing.

A. Convolutional Coding

We used the characteristics of a convolutional coder/Viterbi
decoder over BPSK/QPSK modulated symbols relative to the
standard NASA 1/2 rate with constraint length 7 [24] and
derived punctured codes, while the average error burst length
(ebl) was obtained by using simulation. We refer to reference
[14] for the complete set of data (BER and ebl) that is plotted
versus Ec/N0, that is, the ratio of channel bit energy to the
one-sided noise spectral density.

B. Reed Solomon Coding

The Reed Solomon (RS) codes [25]– [28] are linear block
codes with an alphabet size of A = 2m, m being the number
of bits in a symbol. An RS code is specified as RS(n, k),
which means that k m-bit symbols of information are added
to r = n − k parity symbols to form an n-symbol codeword.
The block (codeword) maximum length is n = A−1 symbols
[26], but it can be extended to A and A + 1 [25]. If an RS
code has r redundant symbols, the code is able to correct
any pattern of t symbol errors and s symbol erasures for
which 2t + s < d = r + 1. An erasure occurs when the
position of an erred (or missing) symbol is known, and d is
the minimum Hamming distance between codewords. Thus,
this code is able to correct up to t0 = r/2 errors when there
are no erasures and up to s0 = r erasures when there are
no errors. The rate of an RS code is k/n; anyway, codes
can be shortened by assuming sending a number z of zeroes
(that are not obviously transmitted) and reinserting them at the
decoder. This allows reducing the coding rate at will, which
becomes (k− z)/(n− z). Large values of r strongly decrease
the block error rate, but require high computational power.
Reed Solomon codes are particularly advantageous when used
in the presence of error bursts as occurring on the output
of a Viterbi decoder [14]. This is because an error burst
of length ebl can corrupt si (the integer part of ebl/m) or
si + 1 symbols at maximum. This makes the concatenation
of RS (outer codes) with convolutional codes (inner codes)
a very powerful FEC technique. The performance of such
concatenated codes is enhanced by inserting (between the two
coders) a symbol interleaver/de-interleaver, which reduces the
correlation of the erred symbols. In this subsection we refer
to unknown positions of erred symbols (RS codes), while we

will analyze in the next Subsection the case of known positions
of erred symbols (erasure codes). Denoting by ps the symbol
error probability, the block error probability pb, in case of
independent erred symbols (infinite interleaver depth), can be
easily computed as

pb = 1 −
t0∑

j=0

(
n
j

)
pj

s(1 − ps)n−j . (16)

When erred bits can be considered as independent, e.g. in
the case of an AWGN channel, the symbol error probability
can be computed as ps = 1 − (1 − p)m, p being the bit error
probability (BER). In case of error bursts, such as at the output
of a Viterbi decoder, simulation is required to estimate pb. In
the past, RS coding was always implemented in hardware;
however, the computing power of today’s machines allows
software implementations as well [26].

One of the most popular codes is RS(255, 223) with m=8
and t0=16. Choosing a segment length of 1115 bytes, which
contains five 223-byte blocks, we evaluated the segment error
rate (Fig. 2), for different values of Ec/N0, and Eb/N0 (infor-
mation bit energy to the one-sided noise spectral density ratio),
by using RS alone, convolutional encoder/Viterbi decoder
with different coding rates, and concatenated RS/convolutional
codes. The last ones are used both with and without an
interleaver which, if present, is assumed to be ideal. An ideal
interleaver allows us to consider independent erred symbols
and relation (16) can be used.

An approximate evaluation of ps, which is good for low
values of p, is given by (see Appendix):

ps = p(ebl + m − 1)/ebl (17)

where ebl is the average error burst length. The SER is then
given by SER = 1 − (1 − pb)nb , nb being the number
of blocks in a segment. For the simulation of the case
without an interleaver we assumed (see [25] and reference
therein) that the error burst length has a geometric distribution
Pr {ebl = l} = pl(1 − pl)l−1; l = 1, 2, ..., pl = 1/ebl , and
the distance between error bursts has the empirical distribution
Pr {D = v} = pd(1−pd)v−K−1, v = K+1, K+2, ... , where
pd = 1/(D − K + 2) , D is the average distance between
error bursts, which can be assumed as D = p/ebl , and K is
the convolutional code constraint length. To compute the SER
when the segment is convolutionally encoded, for small values
of p, we can use the relation [14]: SER = 1 − (1 − p/ebl)l,
where l is the segment bit length.

The evaluation of the code that performs better in energetic
terms, given the SER value we want to achieve, is directly
made by looking at the diagram in Fig. 2, which gives the
SER versus Eb/N0. Relations that link bit rates and signal-
to-noise ratios are

R(i) = C(n) − E(b); R(c) = C(n) − E(c) (18)

where we denoted by R(i) and R(c) the information and
channel bit rates (expressed in dB), respectively, by E(b) and
E(c) the values of Eb/N0 and Ec/N0, respectively, and by
C(n) the value of C/N0 (carrier power over one sided noise
spectral density). From the first of (18) we see that, for a
certain SER value, a code that needs a lower Eb/N0 allows
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Fig. 2. SER versus Ec/N0 (a), and versus Eb/N0 (b), for different convolutional coding rates and for concatenated RS/convolutional codes, with and
without symbol interleaver.

a higher information bit rate with the same C/N0, if we
assume having an ideal modem that is able to vary the bit
rate continuously. As regards the spectrum efficiency, from the
second equation of (18), a code that needs a higher Ec/N0

allows a lower channel bit rate with the same C/N0 and
it occupies a narrower bandwidth. However, the comparison
makes sense if the same information bit rate is obtained.
Thus, introducing subscripts 1 and 2 for denoting two different
codes, we have: R

(c)
1 = C

(n)
1 −E

(c)
1 and R

(c)
2 = C

(n)
2 −E

(c)
2 ;

then: R
(c)
1 < R

(c)
2 if C

(n)
1 − E

(c)
1 < C

(n)
2 − E

(c)
2 . To get

the same R(i), C
(n)
1 − E

(b)
1 must be equal to C

(n)
2 − E

(b)
2 ;

then code1 requires a lower channel bit rate (lower spectrum
occupancy), with respect to code2 if E

(b)
1 −E

(b)
2 < E

(c)
1 −E

(c)
2 .

As an example, the RS code has a spectrum occupancy that
is lower than the 3/4 convolutional one, for a SER<0.001.

C. Erasure codes

The term erasure code refers to a block FEC that is able
to recover from a corruption or loss of some blocks of
information used for sending a data unit. An original piece
of information (e.g. a TCP segment) is divided into k blocks
and added to r = n − k redundant blocks; the resulting n
blocks are then individually sent in n frames. An erasure code
that is easy to understand, flexible and efficient to implement,
even on a common PC, is presented in [29], together with
its implementation performance. In [10], an analysis of TCP
throughput has been performed, by using FEC erasures over
a lossy channel that is assumed to follow the Gilbert model
[15]. Here, an AWGN channel is assumed with or without
convolutional coding.

In the case of independent block losses, the SER can be
computed by using relation (16) with ps equal to the block
loss rate (blr) and t0 = r. In order to do this, we must
know the position of the lost (or corrupted) blocks; thus,
a simple protocol is needed in this case. For each block
we assumed a cyclic redundancy check (CRC) field of 16
bits, a field to indicate the block sequence number inside
the packet, plus the last block information and some spare
bits for a 32 bit overhead. The performance of the erasure
code, which we evaluated for independent bit errors, refers
to 23, 46 and 92-byte block sizes and 48, 24 and 12 blocks
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Fig. 3. Erasure codes: Eb/N0, Ec/N0, and achievable bit rates versus
redundancy, for SER=10−4 and different block sizes.

per packet, respectively. Such metrics allows sending 1104-
byte segments, which is very close to the size used in RS
coding, thus allowing the performance comparison. In Fig. 3,
Eb/N0 and Ec/N0 versus redundancy are reported for the
three block sizes chosen and for a SER value of 10−4. The
same picture also shows both the channel and information bit
rates, which would be possible to achieve with the same C/N0,
normalized with respect to the bit rate of the uncoded channel.
For example, a segment sent with 48 23-byte blocks, with 16
redundant blocks, by using the same power as when sending
an uncoded 1104-byte segment, can be sent at a channel bit
rate of 3 times, and getting an information bit rate of 1.9 times,
with respect to the uncoded segment, in order to achieve the
same SER of 10−4. We can observe that the minimum Eb/N0
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is achieved in all cases with a redundancy of 1/3 and the 23-
byte block case exhibits the best performance. The same test
for different SER values gives similar results.

IV. TCP GOODPUT WITH DIFFERENT FECS AND
MODULATION SCHEMES

Let us now consider our original problem, which is to
find, for each channel condition, the code rate and modulation
scheme that give the maximum TCP goodput for the various
FEC types. It is worth noticing that the complexity of the
procedure to evaluate the TCP goodput point by point does
not significantly affect the applicability of the method. In fact,
any analytical, as well as simulation or measurement-based
methods, could be used to build look-up tables that will be
employed during normal operation. In the case of dynamic
bandwidth allocation, the optimization should be made both
for all possible values of C/N0 and for each possible per-user
allocation of the capacity.

A. Analytical Considerations

Let us assume that a portion of a satellite transponder
capacity is assigned to an earth station for a class of one
or more TCP connections. This portion consists of a carrier
that can be modulated, in phase and/or amplitude, at a rate
of B symbols/s. We consider the widely diffused M -ary PSK
or QAM (quadrature amplitude modulation) types. In these
modulation schemes, M is the number of points, in the phase-
amplitude space, relative to the constellation of the modulated
symbols. Typical values of M are 2, 4, 8, 16, 32, and 64;
BPSK and QPSK schemes correspond to M values of 2 and
4, respectively. We denote by cr the resulting rate of codes
applied to the base band bit stream and by ρ the actual portion
of the carrier that has been assigned. ρ=1 if the transponder
capacity is shared in FDMA (frequency division multiple
access) mode (also called SCPC–single carrier per channel)
and the whole carrier is thus assigned. Whereas, ρ ≤1 in the
case that the carrier is shared in TDMA (time division multiple
access) mode and a time portion ρ has been assigned. The
information bit rate, i.e. our bottleneck rate μ, is approximately
given by

μ = fcB̄ (19)

where we denoted by fc = ηcr the capacity factor, by
η = log2 M the spectrum modulation efficiency, and by
B̄ = ρB the bandwidth actually assigned. Given a value of
C/N0, which ensues from a certain channel condition, for a
modulation scheme and coding rate the operating Eb/N0 is
given by

Eb/N0 = C/N0 − 10Log10μ

according to the first of relations (18). Diagrams similar to
the one shown in Fig. 2b are then used to estimate the
SER, i.e. our q. Let us assume that each value of fc is
associated to the pair of parameters η ∈ [ηmin, ηmax] and
cr ∈ [crmin , crmax ] that produce the minimum value of q,
which thus monotonically increases with fc. In order to
analytically evaluate the maximum goodput, we would need
an expression that gives the goodput as a function of fc.
Even if such an expression is not obtainable, we could resort

to an interpolating function in the domain considered. Let
q̄(fc) be a continuous interpolating function that gives the
packet loss rate for a certain channel quality (C/N0), and
let Tg(μ̄, q̄) be the normalized goodput for fixed values of τ ,
buffer size and segment size, where μ̄ is given by relation (19)
for a certain bandwidth allocation. The actual goodput is thus
G = μ̄Tg(μ̄, q̄) and its maximum value will be for a capacity
factor (thus for a pair of η and cr) such that ∂G/∂fc = 0,
where the partial derivative can be assumed as the derivative
of one variable function, all other variables being fixed. As
an example, let us assume, for the normalized goodput, the
approximate expression (15) limited to the unity. For low
values of q, and for a given τ , the actual goodput is thus
inversely proportional to

√
q, and limited superiorly by the

bottleneck rate μ. Therefore, we have G = min
{
k/

√
q, μ

}
,

where k is a constant. As q monotonically increases with fc

and then with μ, for a given channel condition and allocated
bandwidth, the maximum goodput is obtained for the value of
fc such that μ̄ = fcB̄ = k/

√
q̄(fc).

However, bit and coding rates are not variable with con-
tinuity, in practice; therefore, the values found analytically
could not be used in most cases. Therefore, we prefer to
evaluate the goodput by using simulation, for all FEC rate-
modulation scheme pairs, then choosing the pair that produces
the maximum value. This is done in next Subsections.

B. Single TCP Connection per Link - Simulation

We now estimate the goodput of a single TCP connection,
for different channel quality conditions. We assume having
a modem, working at 2 Msymbols/s (Ms/s), which is able
to switch between BPSK and QPSK modulation schemes.
Thus, the channel bit rates are 2 and 4Mb/s, respectively.
This choice allows to represent a commonly used piece of
equipment and to operate with the same spectrum occupancy
in both cases. We also assume that the channel bandwidth is
shared in TDMA mode among the users and that the consid-
ered TCP connection received an assignment of one-half the
carrier capacity (ρ=1/2 ). The C/N0 ratio at the demodulator
ranges between 66 and 78 dB. C/N0 depends on the signal
attenuation, e.g. due to rain fading. The bit rate of uncoded
data is thus 2 or 1Mb/s using QPSK or BPSK, respectively.
The selection of the transmission parameters is made at the
earth station on the basis of the link quality. The modulation
scheme selection and convolutional coding/decoding is per-
formed at the physical level; RS coding/decoding is preferably
performed at the physical level (possibly by software at link
level), while erasure coding/decoding is performed at link level
[29]. If the satellite channel capacity is shared in FDMA mode
among the users, a modulation rate of 1 Ms/s gives the same
results as in TDMA mode. When a whole 2 Ms/s carrier is
assigned to the TCP connection, the results are still valid when
decrementing by 3 dB the range of C/N0 ratio (63-75 dB).

Figure 4 (a − f ) reports the results relative to the various
coding types employed. All points lying on the envelope
represent the maximum goodput obtainable with the available
hardware for a given channel quality condition. In [14] it
is shown that the adoption of a different criterion, such as
the commonly-used one which keeps the BER below a given
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Fig. 4. TCP goodput versus C/N0 for different coding types/rates and modulation schemes.

threshold, produces results that may considerably differ from
optimality, even if the threshold is made variable with the link
capacity. Our point-by-point optimization is more complex
to estimate; however, the computation is made only once
and it does not add any overhead at the running time. Only
the combinations of coding rates and modulation schemes
that contribute to the envelope are reported (except for the
convolutional case), for the sake of pictures’ clarity. In the
RS case we used shortened codes which derive from the
RS(255, 223) code. The erasure code relative to 23-byte blocks
outperforms the 46-byte one if it is used alone (see Fig.
3). When the code is concatenated with the convolutional
one, the 46-byte code slightly outperforms the 23-byte one
without interleaving. We chose to represent both concatenated
codes without interleaving; the reason for that is justified
by the following considerations. As shown in Fig. 2, the
interleaver allows a gain of about one dB in a wide range
of SER values. As far as the TCP goodput is concerned,
the interleaver introduces an additional latency in the order
of d/μ, being d the segment depth of the interleaver. The
interleaving gain is thus lower than the one evidenced in
Fig. 2 [6]; furthermore, the interleaver increases the system
complexity. In order to make comparisons easier, in Fig. 5
we reported the envelope of all cases shown in Fig. 4 plus the
RS(239, 223) concatenated with convolutional codes. We note
that, as expected, the best performance is achieved by using
concatenated codes, in particular by using RS plus convolu-
tional codes. RS code outperforms the convolutional one only

at high C/N0 values, while its performance is worse at low
C/N0 values. Anyway, we underline that the implementation
of the convolutional/Viterbi technique is simpler than RS and
does not have any constraints on the packet length. Erasure
codes exhibit the worst performance; their most significant
peculiarity is that a number of redundant blocks in a packet
can not only be corrupted but may even be lost, still allowing
a successful segment delivery, and an AWGN channel does
not take sufficient advantage of this. On a channel that causes
very long bursts of errors (in the order of the block length),
even if an error burst corrupts an entire block or more, erasure
codes may recover the corrupted packet, while it is difficult
to do by using the other codes.

C. Multiple TCP Connections per Link - Simulation

When multiple TCP connections share the same link, it was
empirically observed in [16] (by making use of simulation)
that, if all connections have the same latency, they obtain an
equal share of the link bandwidth. This is what we observe in
our simulations as well (see Table II). We consider the case
in which all links have the same latency. By using the same
point-by-point optimization method, we made a comparison
between the goodput achieved by a single connection with
the aggregated goodput of eight TCP connections sharing
the same link and the same buffer. The comparison of the
envelope lines, which express the maximum values of the
goodput versus C/N0 for different coding types, is reported
in Fig. 6. The whole channel bandwidth is 4 or 2Mb/s for
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QPSK or BPSK modulation schemes, respectively. Figure 6
shows that the total goodput differs noticeably in the two
cases, for many of the C/N0 values considered and for all
coding types. The difference is null when the selection of the
transmission parameters only allows values of the SER that are
much lower than the necessary ones. We also simulated the
case in which there are eight TCP connections, each of which
has its own buffer and a separated link with a capacity equal
to 1/8 of the entire bandwidth, i.e. 512 (256) kb/s in QPSK
(BPSK) mode. The results obtained for the aggregated goodput
of all connections do not substantially differ from the one
obtained by considering eight connections sharing the same
link and buffer (reported in Fig. 6), provided that the buffer is
sufficiently large (e.g. β ≥0.8). This is a useful issue because it
allows reducing the number of look-up tables necessary to take
the optimum transmission parameters. In fact, different tables
for a different number of TCP connections are not required. It
is sufficient to divide the bandwidth allocated by the number
of connections and use the resulting value to enter the table
that gives the optimum transmission parameters as a function
of the bandwidth in the current channel condition (C/N0).

V. CONCLUSION

A fast simulation tool (TGEP) was developed to evaluate
the TCP goodput for one or more connections that share
a link with random and independent segment losses. The
program is modifiable to entail different loss distributions. We
then depicted a scenario that shows the maximum achievable
TCP goodput in a realistic situation, in which a bandwidth
portion of a geo-satellite transponder is assigned to a user
(e.g., in TDMA mode), for one or more TCP connections.
Several coding techniques, used for two different modulation
schemes (B/QPSK), have been applied to packets of TCP
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connections, in a wide range of the signal to noise ratio of
the channel, which is supposed to be corrupted by AWGN.
The transmission mode of data packets is chosen in the earth
station, according to the estimated signal to noise ratio and
the assigned value of the bandwidth, by making use of pre-
computed look-up tables. A better optimization is possible if
the number of TCP connections sharing the link is known
(see Fig. 6), thus allowing a further gain (over 1 dB in
some cases). However, this would require a sort of cross-
layer interaction, by inspecting network packets, which is not
always possible, e.g. when packets carry an encrypted payload
[6]. The comparison of the different coding techniques shows
the superiority of the convolutional/Viterbi code, concatenated
with RS codes, over the other ones. This is the result in an
AWGN channel. However, we think that the strong peculiarity
of erasure codes, which allow the recovery of a packet even
with missed blocks, can be better exploited when different
types of impairment affect the channel. Furthermore, software
implementations of erasure codes allow improvements of
existing systems.

The evolution of this work will be the analysis of various
codes, when both long and short-lived connections coexist, and
for different TCP versions (e.g. Vegas or Westwood), other
than the analysis in the presence of long bursts of errors.

APPENDIX I

Let us denote by si the integer part of the division ebl/m,
and by sr the remainder of such a division. If the probability of
error p is small, we can neglect the probability that the distance
between two error bursts is smaller than m [25]. We can also
assume that the probability of a burst of errors is equal to
p/ebl. For each event of burst of errors that occurs, the average
number of corrupted symbols is E{(si+1)(m−sr+1)+((si+
2)(sr − 1)}. We thus have ps = p/ebl E{sim+ sr +m− 1},
from which relation (17) derives.
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