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Abstract

Trajectory datasets are becoming more and more popu-
lar due to the massive usage of GPS devices. In this paper,
we address privacy issues regarding the identification of in-
dividuals in static trajectory datasets. We provide privacy
protection by (1) first enforcingk-anonymity, meaning every
released information refers to at leastk users/trajectories,
(2) then reconstructing randomly a representation of the
original dataset from the anonymization. We present a util-
ity metric that maximizes the probability of a good repre-
sentation and propose trajectory anonymization techniques
to address time and space sensitive applications. The ex-
perimental results over synthetic trajectory datasets show
the effectiveness of the proposed approach.

1. Introduction

Data publishing is essential for providing resources for
research and for the transparency of government institu-
tions and companies. However, data publishing is also
risky since published data may contain sensitive informa-
tion. Therefore, the first step before data publishing is to
remove the personally identifying information. But it has
been shown that removing personally identifying informa-
tion is not enough to protect the privacy. This is due to
the fact that the released database can be linked to pub-
lic databases through a set of common attributes which are
called quasi-identifiers. For example in US the combina-
tion of zip code, and birth date is unique for 87% of the
citizens[21]. This figure increases as more attributes are
added to the combination. Sweeney et al showed that they
could re-identify the supposedly anonymous health records
via linking them to voters registration list that can be pur-
chased from, and they were actually able to recover the
health records of the government of Massachusets. This
striking result increased the concerns and research efforts
for privacy and anonymization in published databases. The
problem of linkage becomes even more complicated in our
highly connected world as the number and variety of data

sources increase.

One of the important data sources in todays ubiquitous
environments are mobile devices and RFID tags. Mobile
service providers can now predict the location of mobile
users via triangulation with a high precision. Coupled with
applications such as location based services that are enabled
by GPS enabled mobile devices, it is now very easy to track
the location of individuals voluntarily or non-voluntarily
over a period of time. The time and location information
of a person (or a moving object in general) collected over a
period of time forms a trajectory which can be thought of as
a set of spatio-temporal data points spanning a time interval.
Trajectory data sets contain valuable information which can
be harvested by data mining tools to obtain models for ap-
plications such as city traffic planning, or determining emer-
gency evacuation routes. However, time and location is also
very sensitive information, therefore personally identifying
information needs to be removed from trajectories before
they can be released. Even after de-identification, trajec-
tory data sets are still prone to linkage attacks since space
and time attributes are very powerful quasi-identifiers. For
example, for a trajectory that starts at a specific location ev-
ery weekday in the morning and reaches another location in
an hour, it is very easy to infer that the starting location in
the morning is home, and the location reached after an hour
is the work place. What an adversary can do is to look at
a phone directory to search for home addresses and work
addresses to link the trajectories with their owners.

The solution in general to prevent linkage attacks in de-
identified data sets is anonymization [21, 20].k-Anonymity
was proposed as a standard for privacy which can be sum-
marized as safety in numbers and ensures that every entity
in the dataset is indistinguishable fromk − 1 other enti-
ties. Achieving optimal k-anonymity was proven to be NP-
Hard, therefore heuristic algorithms have been proposed in
the literature to k-anonymize data sets. In case of spatio-
temporal trajectories the problem of anonymization is even
harder since consecutive points in a trajectory are depen-
dent to each other. Therefore anonymization should con-
sider every trajectory as a whole when anonymizing. In this
paper, we concentrate on spatio-temporal trajectories. We



first extend the notion of k-anonymity for trajectories and
then describe a heuristic method for achieving k-anonymity
of trajectories. Trajectories are published by only releasing
a representative trajectory to further protect the privacy.

2. Related Work

2.1. k-Anonymity and Privacy over
Databases

Addressing privacy concerns when releasing person spe-
cific datasets is well studied in the literature. [20, 15, 3,
14, 17] Simply removing uniquely identifying information
(SSN, name) from data is not sufficient to prevent iden-
tification because partially identifying information (quasi-
identifiers (QI); age, sex, city . . . ) can still be mapped to
individuals by using external knowledge[21].k-Anonymity
is defined in [20], to protect against identification of indi-
viduals in person specific datasets.

Definition 1 (k-Anonymity) A table T ∗ is k-anonymous
w.r.t. a set of attributesQI if each record inT ∗[QI] ap-
pears at leastk times.

k-Anonymity property ensures that a given set of quasi
identifiers can only be mapped to at leastk entities in
the dataset. The most common technique being used to
anonymize a given dataset is value generalizations and sup-
pressions. In multidimensional space, the counter part of
these operations is replacing a set of points with the min-
imum bounding box that covers the points. It should be
noted thatk-anonymization preserves the truth of the data.

Entities in trajectory datasets are more complex
than those studied by classical k-anonymity approaches.
Anonymization of complex entities was proposed in [19]
where data about private entities reside in multiple datasets
of a relational database. Even though trajectory datasets can
be represented in relational databases, order of points over
a given trajectory matters due to the linear time property.
Work in [19] does not assume any ordering between points.
Also applications over trajectory databases are very specific
and require different cost metrics and different anonymiza-
tion techniques.

2.2. Privacy-preserving Location-based Ser-
vices and Trajectories

There has been many work on privacy issues regarding
the use of LBSs by mobile users. Most work defined the
privacy risk as linking of requests and locations to specific
mobile users. Works in [7, 12] used perturbation and ob-
fuscation techniques to deidentify a given request or a lo-
cation and they differ from this work in the privacy con-

straints they enforce. Anonymization based privacy protec-
tion was used in [8, 4, 9, 10]. In [10], anonymity was en-
forced on sensitive locations other than user location points
or trajectories. In [8, 9], individual location points be-
longing to a user is assumed to be unlinked and points of
the users are anonymized other than the trajectories. The
work in [4] is the closest work to trajectory anonymization.
Anonymization process enforces points refering to same set
of users to be anonymized together always. However work
assumes anonymization per request other than whole trajec-
tory anonymization and heuristic to specify groups of users
is quite simple.

To the best of our knowledge, all of the proposed privacy
preservation methods on LBSs so far assume a dynamic,
real-time environment and methodology being used is based
on local decisions. This work differs in this respect since we
address the privacy concerns when publishing static trajec-
tory databases and we make use of global decisions. Also
no previous work measured the level of distortion due to
anonymization in the context of trajectory mining applica-
tions which we believe to be the real purpose in data pub-
lishing.

3. Problem Formulation

3.1. Notation

We assume the space is discretized intoǫs× ǫs size grids
and apoint in our domain is actually a grid or set of grids.
All space measurements are in units ofǫs. We assumetime
is also discretized into buckets of sizeǫt and domain of time
is finite. So datasets act as the snapshots of the world in
many time instances. Datasets with continuous time and
space domains can be fit into this assumption by the use
of interpolations. The level of granularity in discretization
does not affect the efficiency of the proposed methodology.

We define a trajectory database in an object-oriented
way. A trajectory datasetT is a set of private entities or
trajectories(e.g.,T = {tr1, · · · , trn}). Each private en-
tity tri is an ordered set of spatio-temporal 3D volumes
(e.g., points) composed of time, x, and y dimensions (e.g.,
tri = {p1, · · · , pm} wherepk =< tk, xk, yk >). We as-
sume that theti, xi andyi components are range of values
defined asti : [t1i−t2i ] xi : [x1

i −x2

i ] andyi : [y1

i −y2

i ]. Each
tri is ordered by their subtime componentt1i . tris refer to
the individuals and each triplet specifies the area location
of the individual at some time in the corresponding time
interval. We use the following notation for components to
express their length;|xi| = |x

1

i−x2

i |, |yi| = |y
1

i −y2

i |, |ti| =
|t1i − t2i |. We also use ‘·’ operator to refer to a specific com-
ponent of a bigger set. (e.g.,tri.pj : jth point of theith
trajectory)



We say a trajectorytr1 is asubsetof another trajectory
tr2 and writetr1 ⊂ tr2 if for each pointpj ∈ tr2, we have
some uniquepi ∈ tr1 such thatt1i ≤ t1j , t2i ≥ t2j , x1

i ≤ x1

j ,
x2

i ≥ x2

j , y1

i ≤ y1

j , y2

i ≥ y2

j . We say a trajectorytr is
atomic if |xi| = |yi| = |ti| = 1 for everypi ∈ tr. We use
the notationBBP for the 3D point with minimum volume
that covers all points inside setP (e.g., minimum bounding
box).

3.2. Problem Definition

We assume that prior to release, the trajectory database
is complete and static. No uniquely identifying information
is released. However we assume that we have adversaries
that may

• already know some portion of the trajectory of an indi-
vidual in the dataset and may be interested in the rest.
(e.g., adversary knows that a particular person lives in
a particular house. He also knows that she leaves the
house and comes back home at specified times. He is
interested in finding the locations she visited.)

• already know the whole trajectory of an individual but
be interested in some sensitive information about the
individual. This is a concern if some sensitive info is
also released, as part of the database, for some of the
spatio-temporal triplets or for some individuals. Sen-
sitive info may be in the form of the requests done by
the individual to location based services.

We protect privacy of the individuals against the above
adversary by using the following techniques

• k-Anonymity: anonymize the dataset so that every tra-
jectory is indistinguishable fromk − 1 other trajecto-
ries.

• Reconstruction: release atomic trajectories sampled
randomly from the area covered by anonymized tra-
jectories.

k-Anonymity limits adversary’s ability in linking any in-
formation to an individual. Reconstruction further prevents
leakage due to anonymization. Both techniques are dis-
cussed in Sections 4 and 5.

Since reconstruction is just sampling from anonymized
data, the amount of privacy-utility depends only on the
anonymization. As an anonymization is required to satisfy
the privacy constraints, it also needs to maximize the uti-
lization. An anonymization with a reconstruction that better
explains the data is considered to be highly utilized. How-
ever the amount of utilization also depends on the target
applications. Although there may be many classes of target
applications, in this work, we consider two of them:

Time Sensitive Applications:This class covers the ap-
plications in which the time component is crucial compared
to space components. Trajectories that have similar paths
in space, but occur in different time periods are considered
to be far away from each other. Such applications include
mining traffic data to monitor traffic jams, anomaly detec-
tion when timely access control constraints are in place, etc.

Space Sensitive Applications:Similarities are calcu-
lated w.r.t. space.Time shiftedtrajectories or trajectories
with different velocities can be considered to be close. Tar-
get applications include mining the world for region popu-
larity to make business decisions, measuring road erosion
caused by vehicles for maintenance, etc.

Section 5 discusses that some anonymizationtr∗ of tr
minimizing the following equation (log cost metric) also
maximizes the probability of generating the exact dataset.

LCM(tr∗) =
∑

pi∈tr∗

[ws(log |xi|+ log |yi|) + wt log |ti|]

+(|tr| − |tr∗|) · (ws log S + wt log T ) (1)

where ws and wt are weights to adjust sensitivity to
space and time respectively and,S and T are universal
space and time according to their domain.

From now on, our objective is to minimize Equation 3
while respectingk-anonymity in anonymizations.

4. k-Anonymity in Trajectory Databases

In this section, we redefine thek-anonymity notion for
sets of trajectories. Next, we use a condensation based
approach to form groups ofsimilar trajectories. Last, we
show how tok-anonymize trajectories in a given group.
Anonymization process will be dependent on the selection
of metric parameters being used for grouping.

4.1. k-Anonymity for Trajectory Databases

Original k-anonymity prevents an adversary from iden-
tifying a given QI to be in a set with less thank elements
in the anonymized dataset. Since we assume adversaries
know about all or some of the spatio-temporal points about
an individual, the set of all points corresponding to a tra-
jectory becomes the quasi identifiers in our domain. To en-
forcek-anonymity against such an adversary, we require the
following property to hold in a given anonymizationT ∗ of
trajectory datasetT :

|{tr∗ ∈ T ∗ | tr ⊂ tr∗}| ≥ k ∀ tr ∈ T

This implies that a given trajectory in the original db can
at best be linked to at leastk trajectories in the anonymized
db. It can be shown easily that the following definition for



k-anonymity satisfies the requirement and also preserves
the truth of the original dataset:

Definition 2 (k-Anonymity for Trajectory Databases) A
trajectory databaseT ∗ is ak-anonymization of a trajectory
datasetT if

• for every trajectory inT ∗, there are at leastk−1 other
trajectories with exactly the same set of points.

• there is a one to one relation between the trajectories
tr ∈ T and trajectoriestr∗ ∈ T ∗ such thattr ⊂ tr∗.

Following definitions show how to create anonymization
of a set of trajectories.

Definition 3 (Point Link and Matching) A point link be-
tween a set of trajectoriesTR = {tr1, · · · , trn} is an or-
dered set of pointsPL = {p1, · · · , pn} such thatpi ∈ tri.
An ordered set of point links between trajectories inTR,
PM = {PL1, · · · , PLm}, is a point matching between
the trajectories if for alli < j and all possiblek, PLi.t

1

k <
PLj.t

1

k.

Figure 1.d shows a point matching between trajectories
tr1, tr2, andtr3. Note that point links are ordered, do not
overlap and there may be unmatched points in any of the
trajectories.

Theorem 1 LetTR = {tr1, · · · , trn} be a set of trajecto-
ries andPM = {PL1, · · · , PLm} be a valid point match-
ing between them. LetTR∗ = {tr∗

1
, · · · , tr∗n} be another

set such thattr∗
1
.pi = · · · = tr∗n.pi = BBPLi

. ThenTR∗

is ann-anonymization ofTR.

Proof 1 Since all then elements inTR∗ are the same, the
first requirement of anonymity trivially holds. Since each
point in tr∗j is a bounding box for some point intrj ; trj ⊂
tr∗j . The second requirement also holds.

Figure 1.c shows the 3-anonymization oftr1, tr2, and
tr3 through the point matching in d. Unmatched points are
suppressed in the anonymization.

Theorem 1 states that any matching between the points
of a given set of trajectories can be used to anonymize the
trajectories. Although there are many possible matchings,
the aim of the anonymization is to find the one that will
minimize the log cost of the output anonymization.

4.2. Trajectory Grouping

Although there are numerousk-anonymity algorithms
proposed for single table datasets, a grouping based ap-
proach is discussed to be more suitable for the anonymiza-
tion of complex structures, due to the direct identificationof

private entities (trajectories in our case) being anonymized
[19]. Most clustering algorithms can easily be modified
for k-anonymity by enforcing that the size of the clusters
should be more thank [2, 18, 6, 1]. The only challenge
at this stage is to define a distance metric between trajecto-
ries. Since our objective is to minimize the log cost metric,
we can define the distance of two trajectories as the cost of
their optimalanonymization. Having said that the problem
reduces to finding the cost optimal anonymization given two
trajectories.

Finding the optimal anonymization of two trajectories is
the same as finding the point matching between the two tra-
jectories such that anonymizing the trajectories through the
matching minimizes the log cost. A similaralignmentprob-
lem is well studied for strings (where the goal is to find
an alignment of strings such that total pairwise edit dis-
tance between the strings is minimized) in the context of
DNA comparisons. Alignment problem for two trajecto-
ries is polynomial and can be solved by using a dynamic
programming approach. The equation that solves the align-
ment problem for optimizing against a given incremental
functionσ is given in Table 1. The log cost function is also
incremental and definesσ as follows:

σLCS(p1, p2)

{

log U, p2 =⊥;
log BB{p1,p2}, otherwise.

whereU is the volume of the universal space. So the
distance between two trajectoriest1 andt2 is given by

DST (t1, t2) = OPTσLCS
(t1, t2)

In this work, we adapted and slightly modified the con-
densation based grouping algorithm given in [1] for trajec-
tory k-anonymity. Algorithmmulti TGA, in each iteration,
creates an empty groupG, randomly samples one trajec-
tory tr ∈ TR, putstr into G, sets the group representative
repG = tr. Next, the closest trajectorytr′ ∈ TR − G to
repG is specified (line 6).tr′ is added intog and group rep-
resentativerepG is updated as the anonymization ofrepG

andtr′ (line 8). Update ofrepG andG with new trajectories
continues untilG containsk trajectories. At the end of each
iteration, a new group ofk trajectories is formed, and is re-
moved fromTR. Trajectories in every group is anonymized
with each other (details are in the next subsection.). Itera-
tion stops when there are less thank trajectories remaining
in TR.

The costly operation in the grouping algorithm is find-
ing the closest trajectory to the group representative (line
6). This nearest neighbor operation needs to be done|TR|
many times and it is difficult to speed up each operation
by indexing (this is because our distance metric does not
satisfy triangular inequality). To decrease the number of
operations, we also try another version of algorithm 1 (fast



Figure 1. Anonymization Process
a. trajectories tr1,tr2, and tr3; b. anonymization tr∗ of tr1 and tr2; c. anonymization of tr∗ and tr3;
d. point matching

Table 1. Optimal Alignment Optimizing Against Metric σ

OPTσ(tr1, tr2)







































∑

pi∈tr1

σ(pi,⊥), |tr2| = 0;

∑

pi∈tr2

σ(pi,⊥), |tr1| = 0;

min{OPTσ(tr1 − tr1.p1 , tr2 − tr2.p1) + σ(tr1.p1, tr2.p1),
OPTσ(tr1 , tr2 − tr2.p1) + σ(tr2.p1,⊥),
OPTσ(tr1 − tr1.p1 , tr2) + σ(tr1.p1,⊥)}, |tr1|, |tr2| > 0.

TGA) by skipping the update of group representative (e.g.,
removal of line 8). In this case,k − 1 closest trajectories
to the group representative can be found in one pass so the
number of nearest neighbor operations will be|TR|

k
. The re-

sultant algorithm is faster by a factor ofk but expected to be
less utilized since it does not directly optimize against log
cost function. We will experiment the time/utility relations
between fast and multi TGA algorithms in Section 6.

4.3. Anonymization of Trajectories

Once the groups are formed, the trajectories inside each
group needs to be anonymized. As mentioned before, the
anonymization process needs to specify the optimal point
matching that will minimize the log cost. Finding the opti-
mal matching between two trajectories is easy. Algorithm
specifies the point pairs between the trajectories by trac-
ing OPTσLGM

and anonymize the paired points w.r.t. each
other (by replacing the points with the minimum bounding
box that covers the points). Any unmatched points are sup-
pressed.

The real challenge is to find the optimal point matching
betweenn > 2 trajectories. Similar versions of the prob-

Algorithm 1 multi TGA(TR, k)
Require: Set of trajectoriesTR, integerk > 1, the log

distance metric
Ensure: returnk-anonymization of the trajectories inTR.

1: repeat
2: Let G be an empty group with group representative

repG

3: Let tr ∈ TR be a randomly selected trajectory.
4: G = {tr}, repG = tr.
5: repeat
6: Let tr′ ∈ TR−G be the closest trajectory torepG.
7: G+ = tr′,
8: repG = anonTraj(repG, tr′).
9: until |G| = k

10: anonTraj(G)
11: TR− = G
12: until |TR| < k
13: Suppress remaining trajectories inTR.

lem on strings were proved to be NP-Hard [13]. Trajec-
tory alignment and its complexity is not yet studied. We,
now, formalize and prove the NP-Hardness of the trajectory



Figure 2. NP-Hardness Reduction Construc-
tion

alignment problem:

Definition 4 (Decision Trajectory Alignment (DTA))
Given a set of trajectoriesTR = {tr1, · · · , trn} for
arbitrary n > 2, is there a point matchingPM between
the trajectories inTR such that the log cost (with arbitrary
weightsws andwt) of anonymizingTR throughPM is at
mostc?(i.e., isDTA(TR) ≤ c?)

Theorem 2 DTA problem is NP-Hard

Proof 2 We first assume the log cost function has param-
etersws = 1,wt = 0. We extend the proof for cost func-
tions with arbitrary weight parameters at the end. We re-
duce DTA to longest common subsequence problem (LCS)
which is proved to be NP-Hard for a sequence alphabet of
size 2 [16]:

Definition 5 (Decision Longest Common Subsequence (LCS))
Given an integerℓ and a set of sequencesSQ =
{sq1, · · · , sqn} where eachsqi = {s1, · · · , sm} is an
ordered set of strings from the alphabet

∑

= {0, 1}; is
there a common subsequence of sequences inSQ with
length at leastℓ? (i.e., isLCS(SQ) ≥ ℓ?)

For an instance(ℓ, SQ) of LCS, we create the set of input
trajectoriesTRSQ = {tr1, · · · , trn} for DTA, as follows:
setting|tri| = |sqi|

tri.pj =

{

< [j − j + 1], [0− 1], [0− 1] >, sqi.sj = 0;
< [j − j + 1], [1− 2], [1− 2] >, sqi.sj = 1.

Figure 2 shows an example trajectory construction for a
given set of sequences.

Theorem 3 For a sequenceSQ = {sq1, · · · , sqn},
LCS(SQ) ≥ ℓ if and only if DTA(TRSQ) ≤ (t − n ·

ℓ) · log 4 wheret =
∑

i

|tri|

Proof 3 (
onlyif
← ) Supposesq′ = {s′

1
, · · · , s′ℓ} is one com-

mon subsequence, and letini
j returns the index ofs′i

in sqj . Observe thatPM = {PL1, · · · , PLℓ} where
PLi.pj = trj .pini

j
is a valid point matching forTRSQ.

Sincesq1.sini
1

= · · · = sqn.sini
n

= s′i; we have, using

the notation
S
= as an equality operator for points having the

same spatial components,PLi.p1

S
= · · ·

S
= PLi.pn for ev-

ery 1 ≤ i ≤ ℓ. This implies that every point in a point link
has the same spatial components. So anonymizingTRSQ

throughPM will match ℓ space-similar points. The final
anonymization will have a unit (1× 1) area inℓ positions.
Assuming the worst anonymization (in this case, an area of
2 × 2) for thet − n · ℓ points, we have a log cost at most
(t− n · ℓ) log 4 + n · ℓ log 1 = (t− n · ℓ) log 4.

(
if
→) Let PM = {PL1, · · · , PLr} be the point match-

ing resulting in at most(t − n · ℓ) log 4 log cost. Let

PM0 = {PLi ∈ PM | PLi.p1

S
= · · ·

S
= PLi.pn} and

PM1 = PM − PM0. (PM0 contains the point links that
connect space similar points. Every link inPM1 contains
at least two spatially different points.) Since we have only
two points in our domain, the points inPM1 will add a log
cost of the whole space (an area of2 × 2). The same cost
applies also for points unmatched (suppressed). However
the points inPM0 will have unit (1× 1) area. Since the
total number of points inPM0 is n|PM0|, we have;

LCM(TR∗
SQ) ≤ (t− n · ℓ) log 4

n|PM0| log 1 + (t− n|PM0|) log 4 ≤ (t− n · ℓ) log 4

(t− n|PM0|) log 4 ≤ (t− n · ℓ) log 4

|PM0| ≥ ℓ

This means that we have a possible matching of size at
least ℓ where the points linked to each other are space-

similar. The reverse construction of the (
onlyif
← ) proof states

that such a matching implies a common subsequence of
length at leastℓ.

We ignored the effect of time component in the log cost func-
tion (wt = 0) in the above construction. However, the proof
can be modified to prove NP-Hardness of any fixed log cost
function with any selection of weight parameters. The in-
tuition is to prevent the effect of time component on finding
the optimal matching. (The same matching needs to be op-
timal regardless of the value ofwt.) This can be done by
adjusting the domains of space and time components such
that increase in cost due to time generalizations will be neg-
ligible compared to the cost due to space generalizations.
(ws log S >> n ·wt log T whereS andT are the universal
space and time respectively.)

Given the similar nature of the string and trajectory
alignment problems, we adopted the string alignment



Table 2. Reconstruction trR of tr∗

Pr(trR = tr′) =

8

>

<

>

:

1
Y

pi∈tr∗

(|xi| · |yi| · |ti|)
, atomictr′ ⊂ tr∗;

0, otherwise.

heuristic given in [11](where an upper bound on the total
pairwise distance for the output alignment is guaranteed.)
for trajectory alignment problem. Algorithm given in Alg.
2 uses the following heuristic to come up with a possible
alignment of points. Algorithm first identifies the trajec-
tory trm whose total pairwise log cost distance with other
trajectories is minimum and markstrm as done. At each
step,OPTσLGM

finds the optimal matching between the
points of one unmarked trajectorytrnew and the current
anonymization of the marked trajectories, and markstrnew .
Each matching creates links between the points. Point sup-
pressions and generalizations are applied according to the
matching. (Figure 1 shows an example anonymization of
three trajectories.) In later sections, we show experimen-
tally that alignment heuristic works in practice.

Algorithm 2 anonTraj(G)
Require: a (set) group of trajectoriesG.
Ensure: anonymize the trajectories insideG.

1: let trm ∈ G be the trajectory whose total pairwise dis-
tance with other trajectories is minimum.

2: let set of trajectoriesM contains initiallytrm.
3: repeat
4: let tr∗ be the anonymization of trajectories inM

through linked points.
5: let trnew ∈ G−M be a randomly chosen trajectory
6: run OPTσLCM

to find a min cost matching between
the points intrnew andtr∗

7: create links between the points matched by
OPTσLCM

.
8: suppress all unmatched points and all points directly

or indirectly linked to unmatched points.
9: M = M + trnew

10: until M = G
11: for all unsuppressed pointp of eachtr ∈M do
12: let PL be the point link containingp.
13: p = BBPL

14: end for

5. A Randomization Approach to Trajectory k-
Anonymity

Trajectory anonymization techniques preserve the truth
of the data while providing protection against certain ad-

Figure 3. Reconstruction Process

versaries. However the approach suffers from the following
shortcomings.

1. Use of minimum bounding boxes in anonymization
discloses uncontrolled information about exact loca-
tions of the points. (e.g., in the case of two trajecto-
ries, two non-adjacent corners give out the exact loca-
tions) This information may be critical for applications
where existence of a trajectory in a dataset is sensitive
(e.g.,δ-presence [17]).

2. It is challenging to take full advantage of information
contained in anonymizations. Most data mining and
statistical applications work on atomic trajectories

The first problem can be weakened by applying some
cloaking on the sides of the rectangle or by partitioning
the space into grids and returning set of grids covering all
points.

The second problem is more tricky as it is a common
problem for heterogenous anonymizations with large output
domain (most clustering based anonymity algorithms suffer
from the same problem.). One proposed technique to solve
this issue is reconstruction [18, 1] where an atomic dataset
is recreated from the anonymized dataset by uniformly se-
lecting atomic points from anonymized regions. It is exper-
imentally shown in [18] that reconstruction is sufficiently
successful in learning from anonymized data.

In this work, we adapt reconstruction approach as a
means for privacy protection (as in [1]) rather than infor-
mation retrieval and release reconstructed data rather than
anonymized data. The intuition behind is that reconstruc-
tion serves, to the best of our knowledge, as the only solu-
tion to learn from the heterogeneous anonymized datasets
and it also greatly weakens the first problem without re-
quiring a user input. We define the reconstructiontrR of
trajectorytr∗ in Table 2.

An example reconstruction is shown in Figure 3. The
output after reconstruction is atomic and suitable for any
trajectory applications.

The success of the anonymization heavily depends on the
success of the reconstructed data in explaining the original



data. Since we havetr ⊂ tr∗ between original trajectorytr
and its anonymizationtr∗, the probability of generating the
original trajectory is non-zero and given by the constant de-
nominator in Table 2 case 1. A good anonymization would
maximize this probability.

arg max
tr∗

∏

pi∈tr∗

1

|xi|
·

1

|yi|
·

1

|ti|

= arg min
tr∗

(
∑

pi∈tr∗

log |xi|+ log |yi|+ log |ti|) (2)

The Equation 2 equally weights the effects of time and
space on the reconstruction. This is not desirable if we have
the class of target applications given in Section 4. So in-
stead, we weight the log cost metric;

∑

pi∈tr∗

ws(log |xi|+ log |yi|) + wt log |ti| (3)

Since a given anonymizationtr∗ of tr does not contain
the points suppressed intr, Equation 3 does not add any
log cost regarding those suppressed points. However a sup-
pressed point can be safely thought as a point covering the
whole universal space. The final weighted log cost function
is given by;

LCM(tr∗) =
∑

pi∈tr∗

[ws(log |xi|+ log |yi|) + wt log |ti|]

+(|tr| − |tr∗|) · (ws log S + wt log T ) (4)

6. Experiments

We run a set of experiments on a trajectory dataset gen-
erated by using the state-of-the-art Brinkhoff generator1. It
contains 1000 spatio-temporal trajectories with an average
length of 70 points, for a total of 70118 spatio-temporal
points. The spatial projection of the dataset is shown in
Figure 4. For a qualitative understanding of the log dis-
tance behavior, we also show3 randomly-chosen groups of
trajectories obtained by usingk = 2. Trajectories in the
same group are clearly close in space and also similar in
length (although not shown, also time intervals are similar.)
Experiments focus on (1) measuring the amount of utility
preserved after anonymization and perturbation processes,
and (2) time performance.

1http://fh-oow.de/institute/iapg/personen/
brinkhoff/generator/

Figure 4. Map of the city with 3 groups each
containing 2 trajectories

6.1. Utility

We compared the anonymized datasets (by varyingk and
the anonymization heuristics) against the original one, mea-
suring how much different they are according to a number
of metrics.

Number of Removed Points. The anonymization step al-
lows suppression of points or trajectories, depending on the
cost associated to suppression. We used an high cost for
suppressions, but notice that since trajectories may have
different lengths, suppression may be required to enforce
k-anonymity. Figure 5 shows the results on two heuris-
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Figure 5. Points removed in the anonymized
dataset

tics used in our experiments:multi, i.e. logdistance com-
puted on multiple trajectories; andfast, where logdistance



has been always computed only on trajectory pairs. As ex-
pected, the number of removed points generally increases
with k. Notice thatmulti has a low distortion, with less than
9% of points removed even withk = 25. On the contrary,
fast heuristic needs to remove nearly twice or three times
the number of points removed bymulti2

Distortion on Clustering. We also analyzed the utility
of the anonymized datasets for mining purposes. We mea-
sured the deviation from the original clustering results,i.e.,
we compare clusters obtained from the original trajectory
dataset (reference partition) against the clusters obtained
from the sanitized dataset (response partition). For the ex-
periments, we used a bottom-up complete-link agglomer-
ative clustering algorithm, coupled with the ERP distance
metric [5], which has been specifically developed for tra-
jectories.

As the algorithm requires to specify the number of clus-
ters as input, we ranged from 2 to 60 clusters. Note that due
to the large number of experiments and the final complexity
of the clustering algorithm we used3 the whole comparison
process required days of computation.

We used a standard approach to evaluate clusters. We
considered every pair of trajectories and verified whether
both are in the same cluster in the reference partition and
whether they are in the response partition. We have there-
fore four case, namely: true positive (TP), true negative
(TN), false positive (FP), false negative (FN). Then we com-
puted the following standard measures:
• accuracy = (TP + TN)/(TP + FN + FP + TN);
• precision = TP/(TP + FP );
• andrecall = TP/(TP + FN).

The experiments in Figure 6 show the results computed
from the sanitization datasets, by using for different (pre-
arranged) number of clusters. Figures 6(a,b,c) show the be-
havior of themulti heuristic, while on the second row Fig-
ures 6(d,e,f) show a similar behavior for thefast heuristic.
In this set of experiments, we notice therefore that for clus-
tering purposes, fast heuristic has a nice behavior. In order
to better understand the values of each measure used in the
plots, we also show results of a “random algorithm”, i.e.
a randomly-selected reference partition of uniformly dis-
tributed clusters. For a reasonable number of clusters (e.g.,
up to 20) all the measures reported good results. We can
also notice that smallerk’s result in less distortion, although
there is not a tight monotonicity due to the randomization
steps.

2for k = 2 the two heuristics are equals, and the only small difference
is due to the randomization in the reconstruction of trajectories

3Our hierarchical clustering implementation requiresO(n3) distance
computations (wheren is the number of trajectories), and each ERP com-
putation requires, by using dynamic programming,O(l2) (wherel is the
longest trajectory).
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6.2. Time Performance

In Figure 7 we show a plot on time performance. As
we can see running time requirements depends linearly on
k for multi algorithm, whilefast is almost constant. Also
notice that multi required almost 3 hours fork = 25; for
datasets larger than 3K-4K trajectories, running time may
be infeasible formulti, while fastscales well.

7. Conclusions

We addressed privacy issues regarding the identification
of individuals for trajectory datasets sharing. We shiftedthe
notion of k-anonymity from tuples to sequences of spatio-
temporal points, and further preserved privacy by releasing
only a randomly generated set of representative trajectories.
Experiments show that the logdistance and the heuristics
proposed are effective for dataset sharing.
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