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Abstract

Grid computing is a broadly accepted paradigm for sharing resources like processing power, or 
storage space. However, the grid is based on such a broad concept that it can do more than just 
integrating computing facilties. For example, it can be used to access expensive and thus not so 
easily available instruments. However, the middleware for instrument integration is not as well-
polished as the middleware which is available for integrating computing facilities.

This document gives an overview of the the solutions which are available, or are currently 
emerging, for remote instrumentation. Since remote instrumentation is a topic currently heavily 
under research, there are not many solutions available. Thus, this document concentrates on the 
solutions which are available, such as CIMA, as well as competing projects, such as GridCC. It 
also  gives  some  use  cases  which  help  identify  weak  spots  in  the  currently  available 
technologies.
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1. Introduction

1.1. Definition of Middleware
Middleware provides an abstraction layer which encapsulates common services and tasks in a 
standard interface. When the implementation of a service changes, the software stack utilizing 
the service does not need to change because of the standardized interface. The middleware hides 
unimportant differences of software and hardware while preserving its core characteristics. This 
definition of middleware is the same whether one takes traditional grid computing into account, 
or remote instrumentation over the grid ― a relatively new topic ― is considered. However, for 
instrument middleware further considerations are necessary, which are described in detail in the 
next section.

Middleware is a term coined by d'Agapeyeff in 1968. Back then it was not part of the grid 
infrastructure but  was seen as  a  general concept  for allowing application programs to use 
operating system routines (see figure 1.1.1). Therefore, in a grid context middleware is defined 
as  those  parts  of  the  grid  infrastructure which  lie  between the  operating  system and the 
individual grid applications. In a more general definition, middleware seeks to connect not only 
an application to the operating system, but two or more applications together so that they can 
exchange data.

Figure 1.1.1: d'Agapeyeff's inverted pyramid.

In the grid context, middleware helps with the organization of distributed resources. Therefore, 
it has specifically the following tasks:

● perform scheduling and authentication

● make computational resources consistent and dependable

● provide network services discovery and binding (using remote procedures calls)

● provide access to data resources (specifically, see the DAI chapters in this document)

1.1.1. References
Naur, Randell (eds.), "Software Engineering", Report on a conference sponsored by the NATO science committee, Garmisch, 

Germany, October 1968.
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1.2. What Differentiates Instrument Middleware from Other 
Middleware?

Scientific instruments (as  well  as  sensor  networks)  are  absolutely  necessary for  scientific 
advancement. There are some devices, which are very expensive and therefore only one or just 
a few pieces of this device exist worldwide. This is for example true for big radio astronomy 
telescopes. As a consequence, scientists who want to perform experiments on these devices 
have to take major exertions in order to travel to the instrument in question, if they are able to 
afford the journey, and they are welcome in the foreign country where the instrument is located. 
These are obstacles not everybody can overcome. One possible solution we are looking at is to 
integrate these devices into the grid infrastructure, so these devices can be operated remotely. 
This is where special instrument middleware comes in.

Why is instrument middleware so special? Data from instruments are seldomly used in a raw 
form but often have to be corrected, normalized, calibrated or annotated with some metadata. 
As data which is used in the grid normally does not have to undergo these steps (most of the 
time it is already in a form similar to what is needed), data from instruments have to be treated 
in a special way ― as a consequence also the instruments require special treatment, i. e. special 
middleware. Additionally, large instruments often produce large amounts of data, which can 
pose a problem for networked computers, so data processing from these instruments need to be 
integrated into the grid infrastructure as well. This is especially true for sensor networks, a type 
of instrument where a multitude of sensors are being connected together in order to gain some 
relevant data (cf. earthquake sensors).

As already outlined, instruments are often geographically dispersed, and they are often unique 
or one of only a few. This as well as the real-time nature of some instruments shape the way 
middleware has to be architectured: It is not economic to create a distinct middleware stack for 
each  of  the  devices.  Not  only  that  it  will  be  very  difficult  to  access  devices  when  the 
middleware is  different for each one, but it  would be also nearly impossible to modify or 
upgrade instruments. Instead, it is desirable to reuse existing software with new hardware as 
much as possible.

Instruments are characterized by intrinsic and extrinsic parameters. Instrinsic parameters are 
inherent  in  the  instrument,  they  cannot  be  changed by  better  hardware, but  are  instead 
determined by the scientific use. Extrinsic characteristics are determined by hardware design 
and can be changed as soon there is scientific progress or more money is available to build 
better instruments [1].

Intrinsic Characteristics Extrinsic Characteristics

Number of data sources. There exists a wide 
variety of instrumens, some are comprised of 
only one data source, other instruments have 
hundreds or even more sensors which provide 
data. On the one side of the spectrum lies for 
example an electron microscope which gives 
only  one  single  picture over  possibly  large 
timespan, on the other side of the spectrum 
are sensor networks comprised of thousands 
of  sensors  which  are  used  to  measure 
earthquakes. The number  of data generating 
sources determines how the data is handled. 
When  designing  an  infrastructure  for 
instruments comprised of many data sources 
one has also to think of scalability and data 

Bandwidth availability. The  availability  of 
bandwidth increases as time passes. However, 
some instruments  inherently  have high data 
rates, and so different techniques have to be 
used to reduce the data rate if it exceeds the 
bandwidth available. Among those techniques 
are  data  compression,  data  reduction  or 
preliminary analysis.

Processing power. Depending on the goal set 
for  an  experiment,  one  either  needs  a 
supercomputer for  doing  the  postprocessing 
and data analysis, or one may look at the raw 
data and  find  the  results.  Processing  power 
can  always  be  increased,  and  so  more 
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Intrinsic Characteristics Extrinsic Characteristics

routing.

Data rate. There are instruments which take 
days, weeks or even months to complete one 
single  experiment.  Other  instruments  have 
much faster data rate, such as video producing 
instruments  or  instruments  like  the  Large 
Hadron Collider.

Value  of  a  sample/timeliness. Instruments 
with  only  one data source provide valuable 
data, i. e. the experiment is useless if a sample 
is lost. This is not the case for all experiments, 
for example one could still make predictions 
about an earthquake when one out  of 1000 
sensors did not deliver its data in time.

complex experiments can be conducted.

Memory  availability. As  memory  density 
increases, instruments are equipped with more 
and  more  memory.  This  allows  for  more 
complex or more precise experiments.

A closer association of the experimental data and the instrument from which the data originated 
will yield a tighter feedback loop between the experiment, the instrument and the scientists who 
are in charge of the experiment. This allows for experiment steering, saving time and resources, 
while getting better experimental setups. It is more probable that the data collected has some 
value.

Scientists can interact with remote devices in a number of ways:

● Pure  data  collection. The  scientist  accesses the  remote instrument's data  without 
exerting  control  over  the  instrument  while  the  experiment is  conducted.  All  the 
parameters are set up in advance, then the experiment is started.

● Maintenance  control. The  scientist  has  some  means  to  interact  with  the  remote 
instrument, but  the interaction is  limited during an experiment. Such an interaction 
could be calibrating the instrument before the experiment starts.

● Person-in-the-loop. The scientist has significant control over the instrument while the 
experiment is running. However, the scientist cannot control the instrument directly, but 
all operations are supervised by a local technician who takes care that no dangerous 
actions are carried out. This is the kind of remote operation the RINGrid project wants 
to deal with.

● Remote control. The scientist  controls  the  remote instrument directly,  without  any 
middleman. In this case the middleware has to take into account that there possibly exist 
dangerous operations, i.  e.  operations  that can harm people  who are located in  the 
vicinity of the instrument. Such operations have to be detected and disallowed.

The kind of instrument access has to be considered when creating an instrument middleware.

To sum it up, this is what the user of remote instruments expects from remote instrumentation 
middleware:

1. real-time data processing, interactivity for visualization (therefore low latency and jitter)

2. collaboration tools (which in turn asks for good scalability for a large userbase)

3. enough storage space for digital libraries, and either high-volume data transmission, or 
the ability to understand multiple protocols within one system to adjust the data rate 
accordingly

4. end-to-end reliability and fault tolerance

RINGRID-WP3-D3_2-JKU-
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5. scalability for single, large instruments, as well as thousands of small sensors

6. online data reduction and analysis

1.2.1. References
[1] Bramley at al, "Instruments and Sensors as Network Services: Making Instruments First Class Members of the Grid", 

Technical Report TR588, Indiana University Department of Computer Science, December 2003.

1.3. How is This Deliverable Organized?
Web Services (WS) and Open Grid Services Architecture (OGSA) as basic building blocks of 
grid middleware. No grid infrastructure can exist without considering these specifications. It is 
necessary  to  understand  these  basic  technologies  since  several  pieces  of  a  remote 
instrumentation solution are still missing, and projects deploying the remote instrumentation 
idea have to implement these missing parts. (The missing parts are identified in WP4.)

Workflow management is most important if experiments are conducted remotely. The reason for 
that lies in the fact that data cannot be managed locally, on the scientist's workstation, but 
instead need to be copied from or to the remote instrument's data storage, and shared between 
collaborating  scientists.  A  part  of  the  web  service  specification  deals  with  workflow 
management, the corresponding standard is called "Business Process Execution Language for 
Web Services" (BPEL4WS).

In the third chapter of this document, middleware projects and components are presented. Most 
important is to look at what other organizations are doing in this respect, so the "Instrument 
Middleware Project", the "Common Instrument Middleware Architecture" (CIMA) as well as 
the (more basic, thus contained in  the second chapter) "Interchangeable Virtual Instrument 
Specification" (IVI Specification) are presented. Of special interest is the CIMA, since it is a 
working example on how a remote instrumentation architecture could be implemented. CIMA is 
a project rooted in the US with the goal to build a consistent and reusable framework for shared 
instrument resources.

The fourth chapter presents two projects, which have been readily deployed and are using some 
components for remote instrumentation. One project presented is GridCC, which has developed 
an Instrument Element, similar to the classic Storage or Computational Elements. The other 
project  presented  is  VLab,  which  has  developed some  methodologies  for  workflow and 
interactive job manipulation.

The next two chapters give examples what requirements the user expects the middleware to 
fulfill,  and of some projects, which could benefit of better instrument middleware. The last 
chapter concludes this document by pointing out what we have learned from looking at current 
technologies and emerging standards with regards to remote instrumentation.
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2. Supporting Technologies

2.1. Web Services Architecture
According to the W3C Working Group, a web service is

"a software system designed to support interoperable machine-to-machine interaction 
over  a  network.  It  has  an  interface  described  in  a  machine-processable  format 
(specifically  WSDL).  Other  systems  interact  with  the  web  service  in  a  manner 
prescribed by its description using SOAP messages, typically conveyed using HTTP 
with an XML serialization in conjunction with other Web-related standards".

Therefore, web services provide a standard means of interoperating between different software 
applications,  running  on  a  variety  of  platforms  and/or  frameworks.  The  Web  Service 
Architecture (WSA) provides a conceptual model and a context for understanding web services 
and the relationships between the components of this model.

In particular, the architecture does not attempt to specify how web services are implemented 
and imposes no restriction on how web services might be combined. The WSA describes both 
the minimal characteristics that are common to all web services and a number of characteristics 
that are needed by many, but not all, web services.

The web  services  architecture  is  an  interoperability  architecture:  it  identifies  those global 
elements of the global web services network that are required in order to ensure interoperability 
between web services.

2.1.1. Service-Oriented Architecture
A  service-oriented  architecture  is  essentially  a  collection  of  services.  These  services 
communicate with each other. The communication can involve either simple data passing or it 
could involve two or more services coordinating some activity.  Some means of connecting 
services to each other is needed.

Service-oriented architectures are not a new thing. The first service-oriented architecture for 
many people in the past was with the use of DCOM or Object Request Brokers (ORBs) based 
on  the  CORBA specification.  In  the  grid  context,  the  term  web  services  refers  to  the 
technologies that allow for making connections. Services are what you connect together using 
web services. The combination of services ― internal and external to an organization ― make 
up a service-oriented architecture.

Services. A service is a function that is well-defined, self-contained, and does not depend on the 
context or state of other services.

Figure 2.1.1: Definitions for web service creation.
RINGRID-WP3-D3_2-JKU-
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Services are connected together using web services. A service is the endpoint of a connection. 
Also, a service has some type of underlying computer system that supports the connection 
offered. The following web service specifications have been introduced:

● Web  Services Description Language (WSDL) is  a  format for  describing a  web 
services interface. It is a way to describe services and how they should be bound to 
specific network addresses. Figure 2.1.1 shows the relationship among the three basic 
parts (definitions, operations, service bindings) of WSDL.

● Web Services Policy Framework (WS-Policy) provides a general purpose model and 
corresponding syntax to describe and communicate the policies of a web service.

● Web  Services Dynamic Discovery  (WS-Discovery) defines  a  multicast  discovery 
protocol to locate services.

● Web Services Metadata Exchange (WS-MetadataExchange) defines three request-
response message pairs to retrieve three types of metadata: one retrieves the WS-Policy 
associated  with  the  receiving  endpoint  or  with  a  given  target  namespace, another 
retrieves either the WSDL associated with the receiving endpoint or with a given target 
namespace,  and a  third retrieves the XML Schema with a  given target  namespace. 
Together these messages allow incremental retrieval of a web service's metadata.

● Web Service Endpoint Language (WSEL) is an XML format for the description of 
non-operational  characteristics  of  service endpoints,  like  quality-of-service,  cost,  or 
security properties.

Connections. The technology of web services is  the most  likely connection technology of 
service-oriented architectures. web services essentially use XML to create a robust connection.

Figure 2.1.2 illustrates a basic service-oriented architecture. It shows a service consumer at the 
right sending a service request message to a service provider at the left. The service provider 
returns a  response message to  the service consumer.  The request and subsequent response 
connections are defined in some way that is understandable to both the service consumer and 
service provider. A service provider can also be a service consumer.

Service Request

Service Response

Service
Provider

Service
Consumer

Figure 2.1.2: Service-oriented architecture.

2.1.2. Using the Web Services Description Language (WSDL)
The Web Services Description  Language (WSDL) forms the  basis  for  web services. The 
following figure illustrates the use of WSDL. At the left is a service provider, at the right is a 
service consumer. The steps involved in providing and consuming a service are:

1. A service provider describes its service using WSDL. This definition is published to a 
directory of services. The directory could use Universal Description, Discovery, and 
Integration (UDDI). Other forms of directories can also be used.
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2. A service consumer issues one or more queries to the directory to locate a service and 
determine how to communicate with that service.

3. Part of the WSDL provided by the service provider is passed to the service consumer. 
This tells  the service consumer what the requests and responses are for the service 
provider.

4. The service consumer uses the WSDL to send a request to the service provider.

5. The service provider provides the expected response to the service consumer.

XML service request based on WSDL

XML service response based on WSDLService
Provider

Service
Consumer

Directory

Service Description
using WSDL

Directory
Queries

Query responses
using WSDL

1
2

3

4

5

Figure 2.1.3: Consumption of a web service using WSDL.

2.1.3. Using Universal Description, Discovery, and Integration (UDDI)
The directory shown in the above figure could be a UDDI registry.  The UDDI registry is 
intended to eventually serve as a means of "discovering" web services described using WSDL. 
The  idea  is  that  the  UDDI registry  can  be  searched in  various  ways  to  obtain  contact 
information and the web services available for various organizations. An alternative to UDDI is 
the ebXML Registry.

2.1.4. Using SOAP
All the messages shown in the above figure are sent using SOAP (SOAP at one time stood for 
Simple Object Access Protocol. Now, the letters in the acronym have no particular meaning).

SOAP essentially  provides  the  envelope for  sending  the  web  services  messages. SOAP 
generally uses HTTP, but other means of connection may be used.

The next figure provides more detail on the messages sent using web services. At the left of the 
figure is a fragment of the WSDL sent to the directory. It shows a CustomerInfoRequest that 
requires the customer's account to object information. Also shown is the CustomerInfoResponse 
that provides a series of items on customer including name, phone, and address items.
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XML service request based on WSDL

XML service response based on WSDLService
Provider

Service
Consumer

Directory

Service Description
using WSDL

Directory
Queries

Query responses
using WSDL1

2

3

4 5

<element name=”CustomerInfoRequest”>

 <element name=”account” type=”string”/>

<element>
<element name=”CustomerInfoResponse”>

<element name=”name” type=”string”/>
<element name=”phone” type=”string”/>
<element name=”street1” type=”string”/>
<element name=”street2” type=”string”/>
<element name=”city” type=”string”/>
<element name=”state” type=”string”/>
<element name=”code” type=”string”/>
<element name=”country” type=”string”/>

</element>

<element name=”CustomerInfoRequest”>

 <element name=”account” type=”string”/>

<element>
<element name=”CustomerInfoResponse”>

<element name=”name” type=”string”/>
<element name=”phone” type=”string”/>
<element name=”street1” type=”string”/>
<element name=”street2” type=”string”/>
<element name=”city” type=”string”/>
<element name=”state” type=”string”/>
<element name=”code” type=”string”/>
<element name=”country” type=”string”/>

</element>

<m:Get=CustomerInfoResponse...>

<name>Barry&Associates, Inc </name>
<phone>123-456-789 </phone>
<street1>1234 5th Avenue </street1>
<street2></street2>
<city>New York</city>
<state>MN</state>
<code>23146</code>
<country>United States</country>

<m:Get=CustomerInfoResponse>

<m:Get=CustomerInfo...>

 <account>1000</account>
<m:Get=CustomerInfo>

Figure 2.1.4: A typical WS message exchange.

At the right of this figure is a fragment of the WSDL being sent to the service consumer. This is 
the same fragment sent to the directory by the service provider. The service consumer uses this 
WSDL to create the service request shown above the arrow connecting the service consumer to 
the service provider. Upon receiving the request, the service provider returns a message using 
the format described in the original WSDL. That message appears at the bottom of the figure.

2.1.5. Using XML with WSDL
WSDL uses XML to define messages. XML has a tagged message format. This is shown in the 
above figure. The tag <city> has the value of "New York" and </city> is the ending tag 
indicating the end of the value of city. Both the service provider and service consumer use these 
tags. In fact, the service provider could send the data shown at the bottom of this figure in any 
order. The service consumer uses the tags and not the order of the data to get the data values.

2.1.6. WS-DAI
The  Web  Service  Data  Access  and  Integration (WS-DAI)  family  of  specifications  is  an 
extension to the web services (WS) architecture that defines web service interfaces to data 
resources, such as relational or XML database. Developed by a working group of the Global 
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Grid  Forum (GGF),  it  can  be  used  both  independently  and  integrated in  a  wider  grid-
architecture. In the specifications are included properties that can be used to describe the data 
service or the resource itself that is being provided, and the message patterns used to both 
access and execute queries and  modifications. The representation of data is  specified in a 
model-independent way and is realized in two inner specifications, the WS-DAIR and the WS-
DAIX, that allow to define properties and operations for, respectively, relational and XML-
based databases. Currently, it is anticipated that future specifications will be given to support 
access to  RDF and object databases  as well. Since the WS-DAI specifications define web 
services, the Web Service Description Language (WSDL) is used for the definition, while the 
messages are modelled using the Simple Object Access Protocol (SOAP). In a service-oriented 
grid-architecture environment, WS-DAI is likely to be used with further WS extension like WS-
Security,  WS-ResourceFramework  and  WS-AtomicTransaction,  for  security,  resource 
identification and data transaction aspects, respectively.

WS-DAI specifies properties,  messages and  a  set  of  interfaces  that  a  web  service  could 
implement to become a data service that mediates the access to a particular data resource. An 
application interacting with this web service to access the data is called consumer.

Data resources. A data resource represents any system that can act as a source or sink of data 
and is logically divided in two categories by the way it is managed: externally or by service. An 
externally managed data resource models an existent DataBaseManagementSystem (DBMS) 
that actually stores the data: in this case, operations for carrying out database administration on 
the DBMS are not  specified; instead, methods to  access the  data  are  provided. A service 
managed data  resource is  a  data  resource that  is  strictly  related  to  the  service-oriented 
middleware implementing WS-DAI specifications: its existence and lifetime is limited to this 
environment and it is accessed and totally managed through the DAIS specified functions.

Data resources are identified with names created according to the OGSA naming schemes: these 
names could be both abstract and concrete. An abstract name is a location-independent and 
persistent identifier like a URI, while a concrete name specifies the physical location of the 
resource, using both a combination of service address plus abstract name or a reference defined 
following the WS-Addressing or WS-ResourceFramework specifications.

Data  services. A web  service  that  implements  the  interfaces  specified  by  the  WS-DAI 
extensions is defined as data service and exposes some properties that make possible to the 
consumer to interrogate the service, to determine whether the service is suitable for use in a 
given setting and obtain the information required to enable valid requests to be sent to the 
service.

These properties are specified by the WS-DAI and are organized, on request, in a specifications 
compliant XML document.

While  extended  properties  can  be  introduced by  further  specialized sub-set  of  WS-DAI 
specifications, the general properties that all the data services must support are:

● DataResourceAbstractName: URI representing the abstract name of the data resource.

● ParentDataResource: If this resource was derived from another, this is the abstract 
name of the parent data resource.

● DataResourceManagement: An  enumeration  indicating  if  the  data  resource  is 
ServiceManaged or ExternallyManaged .

● DatasetMap: A mapping between the QName of a message and the URI of a dataset 
type representing the result types supported for the messages.

● ConfigurationMap: A mapping between the Qname of a message and the URI of an 
expression language (example XPath Version 1.0 or 2.0).
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● LanguageMap: A mapping between the QName of  a  message and the URI of  an 
expression language.

● DataResourceDescription: A human readable description of a data resource.

● Readable/Writeable: These properties indicate whether or not the data resource is able 
to be read from or written to by the data service.

● ConcurrentAccess: Has the value true if a data service is able to process more than one 
message concurrently, otherwise it has the value false.

● TransactionInitiation: Describes under what circumstances a transaction is initiated in 
response to messages. The values are as follows:

○ NotSupported: does not support transactions;

○ Automatic: transaction initiated automatically for the duration of each message;

○ Manual Transaction: context under control of the consumer, for example using an 
existing transaction specification, such as WSAtomicTransaction.

● TransactionIsolation: Describes how transactions behave with respect to other ongoing 
transactions.

● ChildSensitiveToParent/ParentSensitiveToChild: Indicates whether a parent or child 
data resource is sensitive to changes made to the other.

Access. The  WS-DAI  relies,  for  data  access  operations,  on  the  existing  facilities  of  the 
integrating DBMS: A data service specified by WS-DAI could be seen as a wrapper for the 
DBMS in the middleware. The specifications support two patterns for obtaining the results of 
requests directed at a data resource, referred to as direct data access and indirect data access.

Direct data access follows the typical web service type of interaction, where a consumer expects 
the data or status of a query in the response to a request. For direct data access, the WS-DAI 
specification only defines a single query-language-independent message (Generic Query), and a 
template for realizations to follow in defining language-dependent operations.

Indirect data access essentially implements the factory pattern, whereby the result of a request is 
not returned directly to the user, but rather made available as a Service Managed Data Resource 
in its own right, for access through a data service. The consumer thus gets a reference in the 
response message through which the data may be accessed. The WSDAI specification does not 
define any generic indirect access operations, but it defines a template that must be implemen-
ted by WS-DAI specialized extensions.

WS-DAI family specifications provide several benefits to the development of databases through 
exposing a standard way to access the data, thanks to the WS definition layer. This way an 
extension of database availability is easy, cutting the needs of client-side software deployment 
and the possibility of integrations with other web service standards enabling extended features 
like security, transaction management and data movement. The major benefit, obviously, is in a 
service-oriented grid middleware, where a systematic and composite access to data could really 
result in improving cost effectiveness of the system.

2.1.7. References
Mario Antonioletti, Amy Krause, Norman W. Paton, Andrew Eisenberg, Simon Laws, Susan Malaika, Dave Pearson, Jim 

Melton The WS-DAI Family of Specifications for Web Service Data Access and Integration

2.2. Open Grid Services Architecture
Grid systems and applications aim to integrate, virtualize and manage resources and services 
within distributed, heterogeneous, dynamic "Virtual Organizations" (VO) [Grid Anatomy, Grid 
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Physiology]. The realization of this goal requires the disintegration of the numerous barriers 
that normally separate different computing systems within and across multiple organizations, so 
that computers, application services, data and other resources can be accessed as and when 
required, regardless of physical location. To the realization of this grid vision, standardization is 
a  key  requirement, so  that  the  different  components  that  make up  a  modern computing 
environment can be discovered, accessed, allocated, monitored, accounted for, billed for and, 
more in general, managed as a single virtual system, even if they are provided by different 
vendors  or  operated  by  different  organizations.  Standardization  is  fundamental  to  create 
interoperable, portable, reusable components and systems. Moreover, standardization can also 
contribute to the definition of secure, robust and scalable grid systems, by facilitating the use of 
good practices.

The Open Grid Services Architecture (OGSA) is  a service-oriented architecture, developed 
within the Global Grid Forum (GGF) to satisfy this need for standardization, by defining a set 
of core capabilities and behaviours that address key concerns in grid systems. These concerns 
include issues such as discovering of services, negotiation and monitoring of service level 
agreements,  management  of  membership  and  communication  within  VOs,  hierarchical 
collection of services so as to deliver reliable and scalable service semantics, integration of data 
resources into computations, monitoring and management of services collections.

Figure 2.2.1: OGSA and WSRF history.

OGSA is based on several other web service technologies, notably WSDL and SOAP, but it 
aims to be largely agnostic in relation to the transport-level handling of data.

Briefly, OGSA is a distributed interaction and computing architecture based around services, 
assuring interoperability on heterogeneous systems so that different types of resources can 
communicate and share information. OGSA has been described as a refinement of the emerging 
web services architecture, specifically designed to support grid requirements. OGSA has been 
adopted as a grid architecture by a number of grid projects including the Globus Alliance.

2.2.1. OGSA Features
According to the OGSA Roadmap document [REF], we have to distinguish three different 
areas, which are all essential to maintain coherence between OGSA and grid standards:
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● An architectural process, managed by the GGF's OGSA Working Group, which collects 
requirements  and  maintains  a  set  of  informational  documents  that  describe  the 
architecture.

● A set of normative specifications and profiles that document the precise requirements 
for  a  conforming hardware or  software  component.  In  particular,  a  specification 
documents the  technical requirements, typically  including interfaces, protocols  and 
behaviors, for  a  conforming  hardware or  software  component. An  OGSA Profile 
identifies a set of broadly adopted normative technical specifications that collectively 
capture  current  understanding  of  what  software  must  do  to  operate  and  manage 
interoperable grid environments.

● Software components that  adhere to the OGSA specifications and profiles,  enabling 
deployment of grid solutions that are interoperable even though they may be based on 
implementations from multiple sources.

2.2.2. OGSA Requirements
The  definition  of  OGSA 1.5  [REF] is  driven  by  a  set  of  functional  and  non-functional 
requirements, which resulted from a selected set of use-cases [OGSA Use Cases] [OGSA Use 
Cases  Tier  2],  covering  infrastructure and  application  scenarios  for  both  scientific  and 
commercial areas.

These use-cases include Commercial Data Centre, Severe Storm Modelling, Online Media and 
Entertainment, National  Fusion Collaboratory,  Service-Based Distributed Query Processing, 
Grid Workflow, Interactive Grids, Grid Lite, Reality Grid, etc.

Functional and non-functional requirements that appear both important and broadly relevant are 
the following:

● Interoperability and support for dynamic and heterogeneous environments: resource 
virtualization,  common  management  capabilities,  resource  discovery  and  query, 
standard protocols and schemas

● Resource  sharing across organizations:  global  name space, metadata services,  site 
autonomy, resource usage data

● Optimization

● Quality of Service assurance: SLA (Service Level Agreement), service level attainment, 
migration

● Job execution: support for various job types, job management, scheduling, resource 
provisioning

● Data services: policy specification and management, data storage, data access, data 
transfer, data location management, data update, data persistency, data federation

● Security: authentication and authorization, multiple security infrastructures, perimeter 
security solutions, isolation, delegation, security policy exchange, intrusion detection, 
protection and secure logging

● Administrative  cost  reduction: policy-based  management,  application  contents 
management mechanisms, problem determination mechanisms

● Scalability: management architecture scaling, High-throughput computing mechanisms

● Availability: disaster recovery mechanisms, fault management mechanisms

● Ease of use and extensibility

RINGRID-WP3-D3_2-JKU-
Middleware.odt

PUBLIC Page 17 / 149



RINGrid  Status of Grid Middleware Standards―  
for Sharing Scientific Instruments

2.2.3. Capabilities
OGSA is intended to facilitate the seamless use and management of distributed, heterogeneous 
resources. The utility provided by such an architecture is realized as a set of capabilities. Figure 
2.2.2 shows the logical, abstract, semi-layered representation of some of these capabilities. 
Three major logical and abstract tiers are envisioned in this graphical representation.

Figure 2.2.2: OGSA capabilities.

The first (bottom) tier depicts the base resources, which are the resources supported by some 
underlying entities or artifacts (physical or logical) and that have some relevance outside of the 
OGSA context.

The second (middle) tier represents a higher level of virtualization and logical abstraction. The 
virtualization and abstraction are directed toward defining a wide variety of capabilities that are 
relevant to OGSA grids. It should be noted that the capabilities shown in the diagram are only a 
subset of the complete set of OGSA capabilities.

At the third (top) tier in the logical representation, there are the applications and other entities 
that use the OGSA capabilities to realize user and domain oriented functions and processes, 
such as business processes.
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Figure 2.2.3: OGSA framework.

Figures 2.2.3 and 2.2.4 show the OGSA framework. In particular, cylinders represent individual 
services,  built  on  web  services  standards  with  semantics,  additions,  extensions  and 
modifications that are relevant to grids.

2.2.4. Infrastructure Services
OGSA capabilities  share  and  build  on  a  number  of  common components.  The  primary 
assumption is that OGSA builds on, and is contributing, to the development of, the collection of 
technical specifications that form the emerging Web Services Architecture. Indeed, OGSA can 
be viewed as a particular profile for the application of core WS standards. This choice of web 
services as  an  infrastructure  and framework means that  OGSA assumes that  systems and 
applications are structured according to service oriented architecture principles and the service 
interfaces are defined by the Web Services Description language (WSDL). Moreover, XML is 
used for description and representation purposes and SOAP is the primary message exchange 
format for OGSA services. Since WS standards, as currently defined are not able to meet all 
grid requirements, OGSA architects have been involved in the definition of WSDL 2.0, too. In 
addition to "Web Services Foundation", the other infrastructure services are naming (naming 
scheme and naming  policy), security  services, representing  state,  notification,  transactions, 
orchestration, profiles to ensure interoperability.
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Figure 2.2.4: OGSA service dependencies.

2.2.5. Execution Management Services
These services are concerned with the problems of instantiating and managing, to completion, 
units of work, such as OGSA applications or legacy (non-OGSA) applications. The issues to 
deal with, when an application needs a service (e.g. a cache service), range from the choice 
between the use of an existing service and the creation of a new one, the placement of the new 
service, its configuration, the provision of the adequate resources, the service agreements to 
establish and the required agreements. More formally, Execution Management Services (EMS) 
address problems with executing units of work, including their placement, provisioning and 
lifetime management. Therefore, it is necessary to find execution candidate locations, select 
execution  location,  prepare for  execution,  initiate  the  execution  and,  finally,  manage the 
execution.

The solution consists  of a set of services that decompose the EMS problem into multiple, 
replaceable components. There are three broad classes of EMS services:

● Resources, which model processing, storage, executables, resource management and 
provisioning.

● Job management.

● Resource selection services that collectively decide where to execute a unit of work.

EMS interact with other parts of OGSA, such as the deployment and configuration service, 
naming, information service, monitoring, fault-detection and recovery services, logging.
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2.2.6. Data Services
These services concern with the management of, access to and update of data resources, along 
with the transfer of data among resources. They also provide the capabilities needed to manage 
the metadata that describes this data and, in particular, the origin of the data itself.

The heterogeneous nature of the grid implies that many different data types must be supported, 
such as flat files, streams, DBMS, catalogues, derivations, data services that are data resources 
for  other  services (e.g.  sensor devices, measurement instruments, programs).  Figure 2.2.5 
illustrates the basic entities of the data architecture. Resources are managed by services that 
may have interfaces for data access, for acting as sources or sinks for data transfer operations 
and for describing the resources via properties. Since some resources are storage-based (e.g. 
file-systems, database, etc.) the architecture also includes interfaces for managing that storage.

Figure 2.2.5: Basic entities of the OGSA data architecture.
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The architecture fits  with non-OGSA data resources and access mechanisms, thus enabling 
OGSA functionality  to  augment  existing  and  future  data  infrastructures. Indeed,  OGSA 
guarantees transparency and  virtualization,  client  API,  extensible  data  types  support  and 
operation.

The functional capabilities provided by the OGSA data services include: data transfer, storage 
management, simple access, queries, federation, location management, update, transformation, 
security mapping extensions, resource and service configuration,  metadata catalogues, data 
discovery, provenance.

2.2.7. Resource Management Services
Resource management performs several forms of management on resources in a grid. In an 
OGSA grid, there are three types of management that involve resources:

● Management of the physical and logical resources themselves (e.g. rebooting a host, 
setting VLANs on a network switch, etc.).

● Management of  the  OGSA grid  resources exposed through service  interfaces (e.g. 
resource reservation, job submission and monitoring, etc).

● Management  of  the  OGSA grid  infrastructure,  exposed  through  its  management 
interfaces (e.g. monitoring a registry service).

Different types of interfaces realize the different types of management in an OGSA grid. These 
interfaces can be classified into three levels, as shown in table 2.2.6.

Type of Management Level of Interface Interface

management of the physical and 
logical resources

resource level CIM/WBEM, SNMP, etc.

infrastructure level WSRF, WSDM, etc.

management of OGSA grid resources

mgment. of OGSA grid infrastructure
OGSA functions level

functional interface

specific manageability 
interfaces

Table 2.2.6: OGSA interface types.

2.2.8. Security Services
These services facilitate  the  enforcement of  the  security-related policy  within  a  VO. The 
functional capabilities and the corresponding security services are the following:

● authentication

● identity mapping

● authorization

● credential conversion

● audit and secure logging

● privacy
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2.2.9. Self-Management Services
Self management services aim to support service-level attainment for a  set of services (or 
resources, depending on the taxonomy), with as much as automation as possible to reduce the 
costs  and complexity  of  managing the  system.  In  an  operational  environment, it  is  often 
necessary to control various aspects of the behaviour of a solution component in a manner that 
cannot be determined a priori by the component developer.

The collection of attributes needed for various stages of self-management include service level 
management, policy, service level manager model.

The functional capabilities, based on mechanisms for self-configuration, self-healing and self-
optimizing are the following:

● service level management (monitoring, analysis and projection, action)

● policy and model management

● entitlement

● planning

● capability management

● provisioning

● analytics

2.2.10. Information Services
The following functional capabilities have been defined:

● discovery

● message delivery

● logging

● monitoring

● general information and monitoring services

As of late 2006 an updated version of the OGSA architecture document and several associated 
documents have been published, including the first of several planned normative documents, the 
OGSA WSRF Basic Profile, Version 1.0. Development of conformant software is expected to 
follow rapidly once a critical mass of normative documents have been published.

2.2.11. OGSA-DAI
The "Open Grid  Service Architecture  ― Data  Access and  Integration"  (OGSA-DAI) is  a 
project,  extending  the  Open  Grid  Service  Architecture  (OGSA),  aimed  to  develop  an 
infrastructure capable to provide a uniform way of collecting and manipulating data.

This project has started with the intention to realize a reference implementation for the WS-DAI 
standards elaborated by Database Access and Integration Services Work Group (DAIS-WG) 
from the Open Grid Forum (OGF). This work is based on the specifications released in 2003 
and is currently occurring in parallel with the development of WS-DAI, with several reciprocal 
influences.

Being based on the web service technology for the presentation layer, OGSA-DAI achieves a 
high degree of programming languages neutrality, allowing the developer to extend the core 
web-service for application-specific purposes.
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Currently, two popular specifications are supported: Web Services Inter-operability (WS-I) and 
the Web Services Resource Framework (WSRF).

The two specifications have been implemented in versions compatible with other widely used 
implementations, like: UK OMII for the WS-I, and Globus Toolkit for the WSRF.

Architecture  and  functionalities. Rather  than  creating  a  new  grid  enabled  database 
management system, OGSA-DAI follows the approach of integrating some of the most widely 
used database technology through the use of Data Resource abstraction: this layer is realized by 
two components,  the  Data Resource Accessor  and the  Data Service Resource,  that  make 
possible to expose the functionality of the physical resource in the OGSA-DAI environment.

Data  Resource Accessors take  care  of  performing access  and  operation on  the  physical 
resources:  to  maintain  a  high  degree  of  portability  they  are  currently  written  in  Java 
programming  language and  currently  support  relational  (MySQL,  Microsoft  SQL Server, 
Oracle,  IBM  DB2,  PostGres,  HSQL),  XML  (eXist,  Xindice)  and  file  system  based 
(SwissPROT, OMIM, text, binary) databases.

Figure 2.2.7: Database support in OGSA-DAI.

The duty of Data Service Resources, that compose the core of the OGSA-DAI functionalities, is 
to manage the activity session, to perform them, to manage the aggregation and delivery of the 
data and to expose the information about the managed resource.

Another key aspect of OGSA-DAI infrastructure is the Data Service component that manages 
the various Data Service Resources and performs the intermediation between them and Clients.

As mentioned before, operations to be performed on data are called Activities in the OGSA-
DAI architecture: they could be relative to the specific database (relational, XML based, etc.) or 
realize operations like data transformation, enabling the use of various formats for data view 
presentation,  data  compression/decompression, resource  construction  using  several patterns 
(DataServiceResource, MultiResource for  aggregate data  from several  physical  databases, 
FactoryResource) and  destruction,  data delivery,  using several technologies,  like  HTTP or 
SOAP, to different consumers like clients or other OGSA-DAI structures or, finally, data storage 
using a technology like GridFTP.
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Figure 2.2.8: Performing activities by document exchange.

OGSA-DAI, as noted in the previous figure, also offers a complete layer that enforces security 
policies  at  several  levels  in  the  architecture:  access  to  data  can  be  regulated using  the 
authorization framework, the execution of activities can be controlled and restricted through a 
permission mechanism and security techniques can be applied to both message-level and data 
transport-level.

Extensibility. The current implementation of OGSA-DAI models the introduced abstractions 
using Java technology that allows developers to extend the behavior and functionalities of the 
OGSA-DAI parts: new Data Resource Accessors can be developed to support other databases, 
the available activities can be extended to perform application-specific operations on data, and 
the security layer can be adapted to model particular application scenarios' needs.

OGSA-DAI offers an out-of-the-box solution to integrate databases in the grid environment 
using the core functionalities offered or extending them to meet the application scenarios. Being 
based on WS-DAI specifications, it  offers both  coherence  of  design and transparence and 
portability characteristics, while allowing an easy, time-saving way to integrate the support for 
data manipulation and management in grid based projects.

2.2.12. References
[1] The OGSA-DAI project, http://www.ogsadai.org.uk/

[2] The Open Grid Forum, http://www.ogf.org/

[3] Open Grid Forum―Database Access and Integration Services Working Group, http://forge.gridforum.org/projects/dais-wg/

[4] Web Service Interoperability Organization, http://www.ws-i.org/

[5] Web Service Resource Framework, http://www.globus.org/wsrf/

[6] The Open Middleware Infrastructure Institute UK, http://www.omii.ac.uk/

[7] Mario Antonioletti, Malcolm Atkinson, Rob Baxter,Andrew Borley, Neil P. Chue Hong, Brian Collins,Neil 
Hardman,Alastair C. Hume, Alan Knox,Mike Jackson, Amy Krause, Simon Laws,James Magowan, NormanW. 
Paton,Dave Pearson,Tom Sugden, PaulWatson and Martin Westhead The design and implementation of Grid database 
services in OGSA-DAI

2.3. Resource State Management
Generic resource management for instrument resources is not greatly different than that for 
computing and storage resources, when it comes to typical management such as brokering, 
scheduling, monitoring and accounting. However, state management is of particular importance 
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when the resources are instruments. While computing and storage resources can be handled in a 
trial-and-error fashion  (making  requests  and  handling  failures),  this  is  not  the  case  with 
instruments. Instruments are much more sensitive to poor operation, and prone to hardware 
failure if they are stressed over their limits. As such, we need to be able to verify their state 
under all circumstances, and refrain from operating them beyond their recommended limits. The 
GridCC project middleware, described later in this document, has implemented a state machine 
within the "Instrument Element" abstraction, exactly for this reason.

Web services are the technology of choice for Internet-based applications with loosely coupled 
clients and servers. That makes them the natural choice for building the next generation of grid-
based applications.  However,  web services do  have certain limitations.  In  fact,  plain web 
services are unable to manage state of resources. The "Web Services Resource Framework" 
(WSRF) improves several aspects  of  web services to  make them more adequate for  grid 
applications. Essentially, we need to define conventions for managing state so that applications 
discover, inspect, and interact with stateful resources in standard and interoperable ways. The 
WS-Resource  Framework  defines  these  conventions  and  does  so  within  the  context  of 
established  web  services  standards.  The  WSRF  supersedes  the  "Open  Grid  Services 
Infrastructure" (OGSI), which defined non-standard WSDL extensions for this reason.

In this section we'll take a brief look at the different parts of the WSRF specification. However, 
before doing that, we need to take a close look at the main improvement in WSRF: Statefulness.

2.3.1. State Management
Plain web services are usually stateless (even though, in theory, there is nothing in the web 
services Architecture that says they can't be stateful). This means that the web service cannot 
"remember" information, or keep state, from one invocation to another.

The fact that web services do not keep state information is not necessarily a bad thing. There are 
plenty  of  applications  which  have  no  need  whatsoever  for  statefulness.  However,  grid 
applications do generally require statefulness. So, we would ideally like our web service to 
somehow keep state information.

The  resource  approach  to  statefulness. Giving  web  services  the  ability  to  keep  state 
information while still keeping them stateless seems like a complex problem. Fortunately, it's a 
problem with a very simple solution: simply keep the web service and the state information 
completely separate.

Instead of putting the state in the web service (thus making it  stateful, which is  generally 
regarded as a bad thing) we will keep it in a separate entity called a "resource", which will store 
all the state information. Each resource will have a unique key, so whenever we want a stateful 
interaction with a web service we simply have to instruct the web service to use a particular 
resource. A web service can have access to more than one resource.

One might wonder how exactly does the client specify what resource must be used. A URI 
might be enough to address the web service, but how do we specify the resource on top of that? 
There are actually several different ways of doing this. As we'll see later on, the preferred way 
of doing it is to use a relatively new specification called WS-Addressing which provides a more 
versatile way of addressing web services (when compared to plain URIs).

A pairing of a web service with a resource is called a WS resource. The address of a particular 
WS-Resource is called an endpoint reference, in WS addressing terminology.

RINGRID-WP3-D3_2-JKU-
Middleware.odt

PUBLIC Page 26 / 149



RINGrid  Status of Grid Middleware Standards―  
for Sharing Scientific Instruments

Figure 2.3.1: WS resource.

Separation of service and stateful resources. Any discussion of state in a web or grid service 
brings up the question, "Do we really want all the overhead and restrictions of placing state 
directly within such a service?" The immediate answer is no. Placing that entire encumbrance 
on web services standards would do a mighty disservice to the hundreds and thousands of 
existing web services that neither need nor use statefulness as part of their modus operandi. For 
example,  many web services are mere interfaces for querying information about inventory 
levels, as in the popular Amazon.com web service. Request goes in, response comes out, and 
this is the only requirement.

So there is no need to embed state directly into a grid or web service. A better approach is to 
keep  grid/web  services  interfaces  stateless,  and  let  them  interact  with  separate  stateful 
resources. That way, one's grid/web service can be restarted and it will reconnect with any of 
the outside components that provide state information.

This is precisely what the underlying WSRF tools do. They allow a grid or web service to 
extract and modify state information, regardless of the kind of resource being used to store that 
information ― XML documents, relational database tables, object code in a server session or 
EJB, and so on. This stateful information can then be uniquely identified and inserted into the 
message stream used by the  service, just  like any other  part  of  the  XML documents. It's 
important to note here that what we are dealing with is not the stateful resource itself, but a 
reference to that stateful resource.

Because this reference has a unique identifer, it allows us to execute such actions as immediate 
or scheduled destruction of that reference ― which in turn disallows further messages in that 
sequence from being acted upon.

2.3.2. WSRF: The Specification
WSRF is a family of specifications published by OASIS. Major contributors include the Globus 
Alliance and IBM. As previously explained, it provides a set of operations that web services 
may implement to become stateful; web service clients communicate with resource services 
which allow data to be stored and retrieved. When clients talk to the web service they include 
the identifier of the specific resource that should be used inside the request, encapsulated within 
the WS-Addressing endpoint  reference.  This  may be a  simple URI address, or  it  may be 
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complex XML content  that  helps  identify  or  even fully  describe the  specific  resource in 
question.

Alongside the notion of an explicit resource reference comes a standardized set of web service 
operations to get/set resource properties. These can be used to read and perhaps write resource 
state, in a manner somewhat similar to having member variables of an object alongside its 
methods.  The  primary  beneficiaries of  such  a  model  are  management tools,  which  can 
enumerate and view resources, even if they have no other knowledge of them. This is the basis 
for Web Services Distributed Management (WSDM).

The  WSRF specification includes  mechanisms to  describe views on  the  state,  to  support 
management of the state through properties associated with the web service, and to describe 
how these mechanisms are extensible to groups of web services. It defines the means by which:

● Web services can be associated with one or more stateful resources (named, typed, state 
components).

● Service  requestors  access  stateful  resources  indirectly  through  web  services  that 
encapsulate the state and manage all aspects of web service based access to the state.

● Stateful resources can be destroyed, through immediate or time based destruction.

● The type definition of a stateful resource can be associated with the interface description 
of a web service to enable well-formed queries against the resource via its web service 
interface.

● The state of the stateful resource can be queried and modified via web service message 
exchanges.

● Endpoint references to web services that encapsulate stateful resources can be renewed 
when they become invalid, for example due to a transient failure in the network.

● Stateful resources can be aggregated for domain-specific purposes.

2.3.3. Component Specifications
WS-Resource defines a WS-Resource as the composition of a resource and a web service 
through which the resource can be accessed.

WS-ResourceProperties describes an interface to associate a set of typed values with a WS-
Resource that may be read and manipulated in a standard way.  This defines how the data 
associated with a stateful resource can be queried and changed using web services technologies. 
This allows a standard means by which data associated with a WS-Resource can be accessed by 
clients. The declaration of the WS-Resource's properties represents a projection of or a view on 
the WS-Resource's state. This projection represents an implied resource type which serves to 
define a basis for access to the resource properties through web service interfaces.

WS-ResourceLifetime describes an interface to manage the lifetime of a WS-Resource. This 
defines  two  ways  of  destroying  a  WS-Resource: immediate  and  scheduled.  This  allows 
designers flexibility to design how their web services applications can clean up resources no 
longer needed.

WS-BaseFaults describes an extensible mechanism for rich SOAPFaults. This defines an XML 
Schema type for a base fault, along with rules for how this fault type is used by web services. A 
designer of a web services application often uses interfaces defined by others. Managing faults 
in such an application is more difficult when each interface uses a different convention for 
representing common information in fault messages. Support for problem determination and 
fault management can be enhanced by specifying web services fault messages in a common 
way. When the information available in faults from various interfaces is consistent, it is easier 
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for requestors to understand faults. It is also more likely that common tooling can be created to 
assist in the handling of faults.

WS-ServiceGroup describes an interface for operating on collections of WS-Resources. This 
defines a  means by which web services and WS-Resources can be aggregated or grouped 
together for a domain specific purpose. In order for requestors to form meaningful queries 
against the contents of the ServiceGroup, membership in the group must be constrained in some 
fashion. The constraints  for  membership  are  expressed  by  intension  using  a  classification 
mechanism. Further, the members of each intension must share a common set of information 
over which queries can be expressed.

2.3.4. Related Specifications
WS-Notification is another collection of specifications that, although not a part of WSRF, is 
closely related to it. This specification allows a web service to be configured as a notification 
producer, and certain clients to be notification consumers (or subscribers). This means that if a 
change occurs in the web service (or, more specifically, in one of the WS-Resources), that 
change is notified to all the subscribers (not all changes are notified, only the ones the web 
services programmer wants to).

WS-Addressing. As  mentioned  before,  the  WS-Addressing  specification  provides  us  a 
mechanism to address web services which is much more versatile than plain URIs. In particular, 
we can use WS-Addressing to address a web service + resource pair (a WS-Resource).

The phrase "implied resource pattern" describes the way WS-Addressing is used to associate a 
stateful resource with the execution of message exchanges implemented by a web service. A 
WS-Addressing EndpointReference that follows the implied resource pattern must include a 
ReferenceProperties child  element  that  identifies  the  resource  to  be  associated with  the 
execution of all message exchanges performed using this EndpointReference. A web services 
message that follows the implied resource pattern must be sent to a web service referred to by 
an  EndpointReference  that  follows  the  implied  resource  pattern,  and  must  include  the 
ReferenceProperties information from that EndpointReference, as specified by WS-Addressing. 
A web service that follows  the implied resource pattern must  use the ReferenceProperties 
information from a message that follows the implied resource pattern in order to identify the 
resource to associate with the execution requested by that message.

2.3.5. The WSRF Specification Compared to OGSI
OGSI (Open Grid Services Infrastructure) is an old standard, proposed by the Global Grid 
Forum in 2003. It has been superseded by the WSRF Specification.

2.3.6. Value of WSRF to Customers and Software Developers
The single most valuable aspect of WSRF is that it effectively completes the convergence of the 
web service and grid computing communities.

Grid customers will benefit from the increased quality and variety of web service environments 
supporting the capabilities  required for grid computing. The grid  developer,  likewise, will 
benefit from a wider selection of development tools.

Web services customers will benefit from the availability of implementations of the powerful 
resource management primitives embodied in WSRF.

2.3.7. WSRF Relations to Other Web Services Standards
WSRF specifications build directly on core web services standards, in particular WSDL, SOAP, 
and XML, and exploit capabilities provided by WS-Addressing. WSRF specifications introduce 
mechanisms that we expect to be applicable to emerging specifications such as those being 
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developed within the GGF Data Access and Integration Services (DAIS) working group and the 
OASIS Web Services Distributed Management (WSDM) technical committee.

2.3.8. Implementations
Implementing the basic property get/set semantics of WSRF resources is relatively simple. The 
hardest problem is  probably returning faults  as WSRF Base Faults  where the specification 
requires it,  because SOAP stacks themselves prefer  to  raise  SOAPFault  faults.  Managing 
resource lifetimes is harder, but this is optional, as is WS-Notification, which is the hardest to 
test.

● The Globus Toolkit version 4 contains Java and C implementations of WSRF; many 
other Globus tools have been rebuilt around WSRF.

● WebSphere  Application  Server  version  6.1  provides  a  WSRF environment  which 
supports both simple and clustered, highly available WSRF endpoints.

● The Apache Foundation has a Muse 2.0 project which is a Java-based implementation of 
the WSRF, WS-Notification, and WSDM specifications.

● WSRF::Lite is a perl-based implementation that makes exclusive use of the Address 
element of the endpoint reference, thus making WS-Resources identifiable via URIs. In 
addition, WSRF::Lite provides a mapping of HTTP verbs to WSRF operations, making 
it possible to use WS-Resources in a REST architectural style.

● WSRF.NET is a .NET based project about WSRF specs from a research team of the 
University of Virginia.

2.3.9. Conclusions
We  have presented  the  WS-Resource framework, a  set  of  web service specifications and 
conventions designed to standardize representation of, and access to, stateful resources in a 
distributed environment. This framework identifies and standardizes the patterns by which state 
is represented and manipulated, so that a web service can describe the stateful resources to 
which it provides access, and a service requestor can discover the type of this pairing of web 
service and stateful resource ("WS-Resource") and use standardized operations to read, update, 
and query values of its state, and to manage its lifecycle. The definition of the WS-Resource 
framework facilitates the construction and use of interoperable services, by making it possible 
for different service providers and service consumers to describe, access, and manage their 
stateful resources in standard ways. Equally importantly, the framework introduces support for 
stateful  resources without compromising the ability to implement web services as stateless 
message processors. The framework also addresses issues of renewable references, grouping, 
notification, and fault reporting.
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2.4. Data Management
Instruments, especially expensive  ones  with  large  scale  in  size  and  high  performance in 
observation  resolution,  produce  large  amounts  of  data,  and  a  large  number  of  remote 
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instrumentation applications require access to large amounts of data with varied quality of 
service  requirements  and  network  conditions.  For  such  applications,  data  sources  (the 
instruments) generate a large amount of data, and users who require access to the data are 
geographically dispersed in many cases. The data management, especially data acquisition, 
becomes the key issue that affects the overall performance of applications. Data movement is a 
fundamental operation among storage systems and between programs and data storage, and 
provides the foundation for replication, caching, and bulk data access. Replication acts as a 
high-level service that is built using basic data movement function. It creates replicas to reduce 
access latency and network bandwidth consumption, maintain local control over transient and 
necessary data, and improve reliability and load balancing.

2.4.1. Data Movement Basic
Data movement is the basic service for data management, and has been widely studied. A 
variety of protocols manage the movement of data among data sources. Among those protocols, 
two types of protocols can be categorised, low level transfer and higher level transfer.

Low Level Transfer in Grid Environment. Low level transfer focuses on actually shifting 
data between machines in the grid environment. Files, especially bulk files,  are frequently 
required to transmit among remote servers. The Internet provides end-to-end data transmission 
protocols such as FTP and HTTP. However,  it  is inefficient to make the data flow via the 
machine orchestrating the transfer for the following reasons:

1. The management machine might be a low performance machine (e.g. laptop or PDA) on 
a poor network connection;

2. A triangle transmission might happen where excessive transmissions have been done to 
pass through the orchestrating machine.

In order to solve the drawback, tools such as GridFTP, supporting the third party transfers 
between remote sites, have been proposed in addition to traditional file transfer protocols. As 
illustrated in  figure  2.4.1, by  enabling  the  third party transfer function,  control flows are 
decoupled from data that follow. Control channels are set between the management machine 
and data servers. Data transmissions  can be organised directly  from the source storage to 
destination storage.

Source 
Storage 

Destination 
Storage

User

Control Flow

Data Flow

Source 
Storage 

Destination 
Storage

User

Control Flow

Data Flow

(a) Without third party transfers. (b) With third party transfers.

Figure 2.4.1: Third party transfer in grid.
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Higher Level Transfer in Grid environment. However, even though the data transmission 
enabling the third party transfer function exhibits performance improvement, there is a problem 
when the user computer itself initiates the transfer. In this case, the user computer still holds 
information about the state of the transfer. It means that the data transmission between source 
storage and destination storage might fail or be terminated if the user lost connection with to the 
network during data transmission. More importantly, when data transfers are initiated at the 
client level, there is no notion of the global state of data transfers between two sites. This can 
lead to a number of problems [Ste06]:

● Storage elements can be overwhelmed with transfer requests;

● Clients  can attempt to replicate the same file simultaneously onto the same storage 
element;

● Sites have little control over the use of their network resource.

Then, a service-based architecture is proposed. By providing a stateless interface, users organise 
and monitor data transfer through a stateless connection with a data transfer service, in this 
case, through web-service.

User  

Control Flow

Data Flow

Source 
Storage

Destination
Storage

Source 
Storage

Data Transfer 
Service

SOAP

GRID 
Environment

Figure 2.4.2: Architecture of Data Transfer 
Service

Figure 2.4.2 gives a basic architecture of the so called higher level data transfer in the grid. A 
web-based file transfer service is exposed to users. A user submits a transfer request, specifies 
quality  of  service  requirements,  monitors  status,  or  terminates transfer  through a  HTTP 
connection to the web service. Therefore, management information is not directly passed back 
to the user end, but maintained within the grid environment, which brings improvements in the 
following aspects:

● Important information is not held in user end. Data transfer will be continued even when 
the user is disconnected. Robustness is improved;
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● Detailed network information might not  be  passed to  the  user end. End users are 
allowed to interact with data transfer by using pre-agreed services. Security is improved;

● Web-service can be used by several users simultaneously, which makes it possible in 
coordinating data  transfers to  reach an  optimum transmission  resource distribution. 
Also,  parallel  transferring is  possible  where data  is  obtained from data replicas  in 
different locations. This will be addressed in the remainder of this section.

This architecture has been widely used in grid middleware developments. An OGSI-compliant 
Reliable File Transfer (RFT) included in the Globus Toolkit [RTF] presents a stateless web 
service to users in clients. To submit a transfer request to RFT, users use SOAP over HTTPS, 
giving a list of source and destination, and specifying transfer parameters. Another example is 
the gLite File Transfer Services (FTS) [FTS]. It also presents a web service interface to its 
users. When clients submit file transfer requests, they submit a list of source URLs, destination 
URLs and related parameters.

2.4.2. Data Replication and Access
Data  replication  is  a  key  component for  large-scale  distributed systems such  as  Content 
Distribution Networks (CDNs) and peer-to-peer based file sharing applications. When we want 
to get a kind of data from a distributed system, it may well happen that more than one storage 
element within the distributed system are able to provide the data needed. As in the case shown 
in figure 2.5.2, there are two source storage elements that can meet the requirement of the 
destination storage element. The advantages of having replica data in a distributed system are as 
follows:

● When multiple data sources exist in the distributed system, robustness of the system is 
significantly improved. In case any data source fails or be damaged, the data service can 
still  operate  properly  thanks  to  replica  data  stored  in  physically  different  storage 
elements.

● With replica service, selected data can be duplicated to a storage element close to the 
destination. Such effort can reduce the transmission delay significantly. Evermore, in 
case more than one data destinations are located closely,  replicate data to a nearby 
storage element can significant reduce long-haul data transfer, which again increase the 
transmission efficiency.

● When a type of data resource is supplied by multiple storage elements spread across the 
distributed  system,  its  scalability  improves in  two  aspects.  First,  with  more  data 
suppliers,  the  transmission  and  I/O  bottleneck  of  source storage elements can  be 
eliminated. Second, destination element can obtain data from multiple data sources, 
which provides the possibility of increasing the throughput of data transmission.

Although data replication brings benefits in terms of robustness, scalability, and performance, 
there are some difficulties in applying replication in the distributed system. Location of replica 
data is one of them. Replicate data location mechanism is needed to search and locate data. It is 
to identify qualified replicas and their location, respectively. Also, mechanisms dealing with the 
creation, registration,  consistency of  replica  data are  needed. In  addition,  the  performance 
optimisation  issues  and  security related issues  are  also  to  be  considered  in  proposing  a 
replication service.

In the situation where a file is stored in different sites across the Internet, how to access them 
becomes complex. As depicted in figure 2.4.2,  in case a data transfer request is  submitted 
through HTTP+SOAP, the data transfer service has to identify a) what data to be moved; and 
b) where is the source (destination) storage place. A simplified process for data transfer with 
replicas in grid environment is shown in figure 2.4.3. A user that requires data access sends a 
message to data management service. Data management service begins by querying metadata 
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attributes with specifications of the characteristics of the desired data. Associations between key 
characteristic specifications and logical files are maintained and updated when needed. Then, 
exact logical files can be identified by applications based on their  requirements.  Once the 
logical file has been identified, the replica location service is used to locate all replica locations 
containing physical file instances of this logical file. Physical locations are consequently being 
used to decide which data resource provides best transmission performance based on network 
performances. Then, suitable data movement plan is decided and passed to transmission service 
based on certain criteria.
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Figure 2.4.3: Data access in grid data transmission.

The design of data management system is modular with several independent services interacting 
via the data management service. Metadata Catalog service maintains associations between 
logical files and their representative characteristics. By providing representative characteristics, 
the service replies with its logical file identification. Replica location service serves as registries 
to locate where replicas exist by defining a mapping between a data logical description and the 
service that can provide access to the data object. With the replication location services, replicas 
are not constrained as "bit-wise" copies. Replica selection service locates the best replica to 
access based on performance and consistency considerations. In some cases, it is extended and 
named as  optimisation  service.  Data  transfer  service  is  underlying  transport  service  and 
provides basic mechanisms for accessing and managing the data located in storage systems. 
These  mechanisms  provide  abstractions  for  uniformly  creating,  deleting,  accessing  and 
modifying  file  instances across storage systems. Network  Monitor,  e.g.  Network Weather 
Service (NWS), is an external service and collects network operation information and passes it 
to replica selection service to assist their decision making.

2.4.3. Consistency Service
In a data management system with replicas, multiple replicas are spread in different physical 
locations. In general, consistency and synchronisation problems of replicas are not a major 
problem if  those distributed files are  set  as  read-only.  However,  a  problem appears when 
applications might require modifying the replica data. All  replicas are obliged to  make an 
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update with the same up-to-date replicas when the original file is modified. In order to allow the 
data management system deliver correct data, which is critical for data in any system, keeping 
the consistency over widely distributed replicas is an important issue. Therefore, if transmission 
error in replication process is put into consideration, the update synchronisation of multiple 
replicas of a logical file becomes the main concern of replica consistency.

To deal with the challenge, many solutions have been proposed, and some of them have been 
integrated to the grid system. In [Dul01], the authors discuss the concept of data consistency 
service for the grid environment. A strict approach guarantees that all replicas are always fully 
synchronised and thus fully consistent. Due to the locking overhead of keeping huge amounts of 
distributed data in synchronisation, complete consistency is a very impractical solution for the 
grid environment. Thus, if knowledge about the data and user requirements is available, one can 
relax this  strict  consistency requirement and allow certain parts of  the  data to  be  out  of 
synchronisation for a particular amount  of time. For instance, a site A in a data grid may 
explicitly define that newly created files at other sites B, C, and D have to be transferred to the 
site A within two days. This means the replica creation process can be done within a 48 hours 
time frame. Within this period the state of physical files can be inconsistent. Another example is 
that writeable replicas have to be updated and synchronised every 10 minutes. The authors have 
propose that  a  grid consistency service should support different levels of data consistency, 
which could be exploited by users. [Cig06]

The update scenario for data grid consistency also varies. Two protocols, named lazy-copy and 
aggressive copy are proposed in ref [Sun04]. Replicas are only updated as needed if someone 
accesses it in the lazy-copy based protocol. It can save network bandwidth resources without 
transferring up-to-date replicas every time when some modifications are made. However, lazy-
copy protocol has to pay the penalties for access delay when inter-site updating is required. For 
the aggressive-copy protocol, replicas are always updated immediately when the original file is 
modified. In other words, full consistency for replica is guaranteed in aggressive-copy, whereas 
partial consistency is applied to lazy-copy. Compared with lazy-copy, access delay time can be 
reduced by the aggressive-copy based mechanism without  suffering from long update time 
during each replica access. Nevertheless, full consistency with frequent replicas updates could 
exhaust considerable amount of network bandwidth resources. Furthermore, some updates may 
be invalid and inefficient because it is probable that it will never be used [Cha06].

2.4.4. Movement Planning and Bulk Data Movement Prediction
Movement planning is a key function for the replication selection service. As shown in figure 
2.4.3, when the physical locations of a data file has been reported in step 5, obviously, since 
data can be obtained from more than one storage element and network conditions of each 
replica vary, a correct selection can result in performance improvements, or vice versa. The 
selection  of  replica  can  apply  various  rules.  However,  in  a  data  grid  without  special 
requirements (such as data ownership or security etc.), file transfer time is always considered as 
the only criterion.

Obtaining accurate predictions of file transfer times between storage elements is of benefit to 
movement planning. Due to  the  shared nature of  devices in  the  path (e.g. ethernet), their 
performance might vary in unpredictable manner. Since numerous devices are involved in the 
end-to-end path, achieving an accurate prediction can be challenging.

Some researchers use the statistics of data in data movement prediction. Those mathematical 
functions can be grouped as follows [Vaz02]:

Mean-Based Model. Mean-based, or averaging, techniques are a standard class of predictors 
that use arithmetic averaging (as an estimate of the mean value) over some portion of the 
measurement history to estimate future behaviour. The general formula for these techniques is 
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the sum of the previous n values over the number of measurements. Mean-based predictors vary 
with the amount of history information used in their calculations and the amount of weight put 
on each value. For example, a total average uses the entire set of history data with each value 
weighted equally, but if more recent behaviour has better predictive value, then a subset of the 
data is used. We discuss these variations in the subsequent section.

Median-Based Model. A second class of standard predictors is based on evaluating the median 
of a set of values. Given an ordered list of t values, if t is odd, the median is the (t+1)/2 value; if 
t  is  even, the median is  half  of the t/2  value added with the (t+1)/2 value.  Median-based 
predictors are particularly useful if the measurements contain randomly occurring asymmetric 
outliers that are rejected. However, they lack some of the smoothing that occurs with a mean-
based method, possibly resulting in forecasts with a considerable amount of jitter.

Auto-Regression Model. A third class of common predictors is auto-regressive models. They 
use  an  Auto-regressive  Integrated  Moving  Average  (ARIMA)  model  technique  that  is 
constructed using the equation:

Yt = a + bYt-1,

where Yt is the prediction for time, t, Yt-1 is the previous data occurrence and a and b are the 
regression coefficients that are computed based on past occurrences of Y. The standard equation 
includes a shock term, which is not needed in this case. This approach is most appropriate when 
there are at least 50 measurements and the data is measured with equally spaced time intervals. 
The main advantage of using an ARIMA model is that it gives a weighted average of the past 
values of the series thereby possibly giving a more accurate prediction. However it needs a 
larger data set than the previous techniques to achieve a statistically significant result, and can 
have a much greater computational cost.

2.4.5. Replica Placement
Replica placement optimises the performance of the data management system from another 
angle, which starts from where to  create and maintain replicas. It  is  also important to the 
performance of the data management system. Place replica close to the data consumer can 
greatly reduce the usage of bandwidth resource in transmission and eliminate transmission 
delays. Given a certain amount of space and location to construct replicas, an optimal replica 
placement problem occurs.

Optimal replica placement problem has been studied extensively in the literature. The same 
problem has different names in different research areas. For example, it is refereed to as p-
median problem in  operations research, or  database location problem on  Internet and file 
allocation  problem in  computer science. Wolfson and Milo  proved that  replica placement 
problem is NP-Complete for general graphs when read and update cost  are simultaneously 
considered.  They also provide optimal solutions for special topologies, including complete 
graph, tree, and ring. Tu and Xu study the secure data placement problem in the same model 
and provide a heuristic algorithm for general graphs. Krick et al. consider read, update and 
storage cost simultaneously in general graph, and provide a polynomial time approximation 
algorithm that has a constant competitive ratio. They also provide an optimal solution for tree 
topology in the same paper. Kalpakis, Dasgupta and Wolfson consider read, update and storage 
cost under tree topology. Their algorithm could cope with the situations even when servers have 
capacity limits. They describe an O (n3p2) dynamic programming algorithm for p replicas placed 
in n uncapacitated servers, and an O (n3p2^max

2) algorithm for capacitated servers, where ^max 

denotes the maximum capacity among all servers. Unger and Cidon provide a more efficient 
algorithm to find the optimal placement under the same model, with only O (n2) time, where n 
is the number of servers [Wan06].

RINGRID-WP3-D3_2-JKU-
Middleware.odt

PUBLIC Page 36 / 149



RINGrid  Status of Grid Middleware Standards―  
for Sharing Scientific Instruments

2.4.6. Example of Grid Data Management System
The architecture shown in figure 2.4.3 and functions elaborated above are adapted to many 
projects with  slight  amendments. The  European DataGrid project heavily  involves  in  the 
replication management and implements  the data  replication  service as  follows. The main 
components of the EU DataGrid data are as shown in figure 2.4.4.

Figure 2.4.4: Replica Management Service's main design, components in EU DataGrid.

As reported in [Bos03], the Replica Management Service (RMS) acts as a logical single entry 
point to the system, and interacts with the other components of the system. The core component 
provides the main function of RMS, and interacts with third party modules. The optimization 
component is to improve the performance of the RMS by access appropriate replicas. This 
structure is implemented using the Java J2EE framework and SOAP remote procedure call. The 
client interface is provided via Java API.

2.5. Workflow Description: The "Business Process Execution 
Language for Web Services" (BPEL4WS) Standard

Scientific experiments, as well as other kinds of applications with multiple actors and logical 
activities, require the application of the workflow concept. A workflow can be defined as a 
construct which denotes the way information is being exchanged between the different actors 
within  the  context  of  an  application,  and  indicates  their  temporal  or  other  kinds  of 
dependencies. Essentially, a workflow shows how tasks are structured within a process, what 
activity follows another and what activity retrieves input from another. In the grid context, 
workflow languages are necessary as the components of applications are loosely coupled and 
are typically (re-)composed to create new applications from the same structural blocks.

In  the  last  decades, there have been numerous efforts to  define and implement  workflow 
languages, which can describe adequately a workflow and its actors. Some of them are geared 
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specifically towards  web services, while  others are more generic. We are listing the more 
important such efforts below, focusing on the ones which are standardized or :

● The XML Process  Definition Language (XPDL) is  a  format standardized by the 
Workflow Management Coalition (WfMC) to interchange Business Process definitions 
between different workflow products like modeling tools and workflow engines. XPDL 
defines a  XML schema for  specifying  the  declarative  part  of  workflow.  XPDL is 
designed to  exchange the process design,  both the graphics and the semantics of a 
workflow business process. XPDL contains elements to hold the X and Y position of the 
activity nodes as well as the coordinates of points along the lines that link those nodes. 
This distinguishes XPDL from BPEL which is also a process definition format, but 
BPEL focuses exclusively on the executable aspects of the process. BPEL does not 
contain elements to represent the graphical aspects of a process diagram [XPDL].

● Yet  Another Workflow Language (YAWL) is  a  workflow language based on  the 
Workflow patterns. The language is supported by a software system that includes an 
execution engine and a graphical editor. The language and its supporting system were 
originally developed by researchers at  Eindhoven University of Technology and the 
Queensland  University  of  Technology.  Subsequently,  several organizations  such  as 
InterContinental  Hotels  Group,  first:telecom and ATOS Worldline have  joined this 
initiative and the YAWL system is now available as an Open source software under the 
LGPL license [YAWL].

● Business Process Execution Language (BPEL) for web services is an XML-based 
language designed to enable task-sharing for a distributed computing or grid computing 
environment ― even across multiple organizations ― using a  combination of web 
services.  Written  by  developers from  BEA Systems,  IBM,  and  Microsoft,  BPEL 
combines and replaces IBM's WebServices Flow Language (WSFL) and Microsoft's 
XLANG specification. (BPEL is also sometimes identified as BPELWS or BPEL4WS.). 
It aims to enable programming in the large. The concepts of programming in the large 
and programming in the small distinguish between two aspects of writing the type of 
long-running asynchronous  processes that  one  typically  sees  in  business  processes 
[BPEL].

● Business Process Modeling Language (BPML) is a meta-language for the modeling of 
business processes, just as XML is a meta-language for the modeling of business data. 
BPML was a proposed language, but now the BPMI has dropped support for this in 
favor of BPEL4WS [BPML].

● Web Services Flow Language (WSFL) is  an XML language proposed by IBM to 
describe the  composition  of  web  services.  WSFL has  been  superseded by  BPEL 
[WSFL].

● Wf-XML is  a  business  process management  standard developed by  the  Workflow 
Management Coalition (WfMC). Wf-XML is designed and implemented as an extension 
to  the  OASIS  Asynchronous Service  Access  Protocol  (ASAP).  ASAP provides  a 
standardized way that a program can start and monitor a program that might take a long 
time to  complete.  It  provides the capability to monitor the running service,  and be 
informed of  changes in  its  status.  Wf-XML extends  this  by  providing  additional 
standard web service operations that  allow sending and retrieving the "program" or 
definition of  the service which is  provided. A process  engine has  this  behavior of 
providing a service that lasts a long time, and also being programmable by being able to 
install process definitions [WfXML].

BPEL has  become the  de-facto standard  flow language to  support  the  notion  of  Service 
Oriented Architecture where multiple web services are combined in a predefined scenario in 
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order to build higher level services. More and more implementations of the language appear, 
due to its generic constructs which allow for short and long running processes, as well as the 
fact that it can be expanded with abstract definitions attached to BPEL documents.

2.5.1. Service Oriented Architecture
Programming an application is becoming more and more complex over the years creating the 
need for new programming patterns in order to simplify the process of writing software. For 
example,  object  oriented programming  appeared as  a  programming pattern  that  provides 
reusable code between applications. However, in today's environment were distributed software, 
application integration, varying platforms, varying protocols, various devices, the Internet etc 
come into account, there are issues that need to be addressed in application development.

SOA is a new programming pattern/architecture for building applications. It is more than a 
particular set of technologies, such as web services; it transcends them, and, in the best-case 
scenario, is totally independent of them. Within a business environment, a pure architectural 
definition of a SOA might be something like "an application architecture within, which all 
functions are defined as independent services with well defined invokable interfaces which can 
be called in defined sequences to form business processes". The key components of a SOA are:

● All functions are defined as services. This includes purely business functions, business 
transactions  composed of  lower-level  functions,  and system service functions.  This 
brings up the question of granularity, which will be addressed later.

● All  services are  independent.  They operate as  "black boxes";  external components 
neither know nor care how they perform their function, merely that they return the 
expected result.

● In  the  most  general sense,  the  interfaces  are  invokable and  more specifically  are 
dynamically invokable; that is, on an architectural level, it is irrelevant whether they are 
local  (within  the  system)  or  remote  (external  to  the  immediate  system),  what 
interconnect scheme or protocol is used to effect the invocation, or what infrastructure 
components are required to make the connection. The service may be within the same 
application, or in a different address space within an asymmetric multiprocessor, on a 
completely different system within the corporate Intranet, or within an application in a 
partner's system used in a B2B configuration.

● Another factor is the dynamic discovery of the services.

In the world of web services the above are addressed by SOAP for the interface, WSDL for 
dynamic invocation, and UDDI for discovery.  web services also have the feature of being 
independent of each other. That is why web services are an excellent candidate for a Service 
Oriented Architecture.

In all this, the interface is the key, and is the focus of the calling application. It defines the 
required parameters and the nature of the result; thus, it defines the nature of the service, not the 
technology used to implement it.  It  is the system's responsibility to effect and manage the 
invocation of the service, not the calling application. This allows two critical characteristics to 
be realized: first, that the services are truly independent, and second, that they can be managed. 
Management includes many functions, including:

● security: authorization of the request, encryption and decryption as required, validation, 
etc.

● deployment: allowing the service to be redeployed (moved) around the network for 
performance, redundancy for availability, or other reasons

● logging: for auditing, metering, etc.
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● dynamic rerouting: for fail over or load balancing

● maintenance: management of new versions of the service

By defining SOA we have seen that the general idea is to build new services by using existing 
ones. To do this we need to link the services together into a business process by defining the 
workflow of  that  process.  The  Business  Process  Execution  Language for  Web  Services 
(BPEL4WS) represents the emerging standard for describing business processes in the world of 
web  services.  BPEL4WS combines the  best  of  both  WSFL (support  for  graph  oriented 
processes) and XLANG (structural constructs for processes) into one cohesive package that 
supports the implementation of any kind of business process  in a very natural manner.  In 
addition to being an implementation language, BPEL4WS can be used to describe the interfaces 
of business processes as well ― using the notion of abstract processes.

2.5.2. BPEL4WS Concepts
BPEL4WS supports two distinct usage scenarios:

1. Implementing executable business processes.

2. Describing non-executable abstract processes.

As an executable process implementation language, the role of BPEL4WS is to define a new 
web service by composing a set of existing services. Thus, BPEL4WS is basically a language to 
implement such  a  composition.  The  interface of  the  composite  service  is  described  as  a 
collection of WSDL portTypes, just like any other web service. The composition (called the 
process) indicates how the service interface fits into the overall execution of the composition. 
Illustration 1 outlines this outer view of a BPEL4WS process.

Figure 2.5.1: Input-output operation in a BPEL4WS process.

The composition primitives found in BPEL4WS come primarily from many years of experience 
in  workflow and business  process integration,  hence its  positioning as  a  business process 
composition language.
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2.5.3. Implementing the service
What's  in  the  cloud  in  the  figure  above?  Unlike  a  traditional  programming  language 
implementation of a WSDL service, each operation of each portType does not map to a separate 
piece  of  logic  in  BPEL4WS. Instead,  the  entire  type  of  the  service  (that  is,  the  set  of 
portTypes of the service) is implemented by one single BPEL4WS process. Thus, specific 
"entry-points" corresponding to  external users invoking  the operations of  the interface are 
indicated  within  the  BPEL4WS description.  These  entry  points  either  consume  WSDL 
operations' incoming messages from input-only or input-output operations. In the latter case, the 
process must also indicate where the output message is generated. BPEL4WS only uses and 
supports  input-only  and  input-output  (request-response) operations  of  WSDL; output-only 
(notification) and output-input (solicit-response) operations are not required nor supported.

The BPEL4WS process itself is basically a flow-chart like expression of an algorithm. Each 
step in the process is called an activity. There are a collection of primitive activities: invoking 
an operation on some web service (<invoke>), waiting for a message to operation of the 
service's interface to be invoked by someone externally (<receive>), generating the response 
of an input/output operation (<reply>), waiting for some time (<wait>), copying data from 
one  place  to  another  (<assign>),  indicating  that  something  went  wrong  (<throw>), 
terminating the entire service instance (<terminate>), or doing nothing (<empty>).

These primitive  activities  can  combined into  more  complex algorithms  using  any  of  the 
structure activities provided in the language. These are the ability to define an ordered sequence 
of  steps  (<sequence>),  the  ability  to  have  branching  using  the  now  common "case-
statement" approach (<switch>),  the ability  to  define a  loop (<while>),  the ability  to 
execute one of several alternative paths (<pick>), and finally the ability to indicate that a 
collection of steps should be executed in parallel (<flow>).  Within activities executing in 
parallel, one can indicate execution order constraints by using the links.

BPEL4WS allows you to recursively combine the structured activities to express arbitrarily 
complex algorithms that represent the implementation of the service.

2.5.4. Interacting with Others: Partners
As a language for composing together a set of services into a new service, BPEL4WS processes 
mainly consist of making invocations to other services and/or receiving invocations from clients 
(the users of the service in illustration 2.5.1). The prior is done using the <invoke> activity 
and the latter using the  <receive> and  <reply> activities. BPEL4WS calls these other 
services that interact with a process partner. Thus, a partner is either a service the process 
invokes (invoked partners) as an integral part of its algorithm, or those that invoke the process 
(client partners).

The first kind of partners is obvious  ― the process must clearly invoke other services to do 
things. The <invoke> activity indicates the partner to invoke and what operation of which of 
the partner's portTypes to invoke on that partner. However, invoked partners may end up 
being clients as well ― it may be the case that the process invokes an operation on the partner 
to request some service. Later on, the partner may invoke an operation on the process to provide 
the desired data.

The reason for treating clients of the process as partners may not be so obvious. There are 
actually two reasons for it: the first is that sometimes the process may need to invoke operations 
on one of its client partners. This is primarily how asynchronous interaction is supported: the 
client  invokes an operation on the process to  request some service. Upon completion, the 
process invokes an operation on the client partner. At that point, there is no distinction between 
a client partner and an invoked partner.
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The second reason is that the service offered by the process may be used (as a whole or in parts) 
by  more  than one client.  In  addition,  the  process may wish to  distinguish  between these 
different users of the service. For example, a process representing a loan servicing system offers 
a single web service, but only parts of it are accessible to the customer applying for the loan, 
other parts for the customer service representative and finally the entire service to the loan 
underwriters. Depending  on  whether  an  operation  is  invoked by  the  customer or  by  the 
underwriter, the returned behavior may be quite different. Furthermore, the approach of using 
partners to model clients allows the process to indicate that certain operations may only be 
invoked by certain clients.

So, partners are one of the following:

● only services that the process invokes,

● only services that invoke the process,

● or services that the process invokes and invoke the process (where either may occur 
first).

The first two are straightforward invoked partners and client partners, respectively. Consider the 
relationship between the process and the service for the third case when the process invokes the 
service first. That means that the service provides (or publishes) a portType (PT1) and the 
process invokes an operation of that portType. Also, the process must provide a portType (PT2) 
that the service invokes an operation out of. Thus, from the point of view of the process, the 
process requires the portType PT1 from the service and provides the portType PT2 to the 
service. Looking at the same relationship from the point of view of the service leads to opposite 
statement: The service offers the portType PT1 to the process and requires the portType PT2 
from the process. The situation is the same whether the process invokes the service first or vice-
versa.

2.5.5. Partner Link Types
Modeling the third kind of services is what gives rise to partner link types. Instead of defining 
the relationship between the service and the process from the point of view of one of these 
participants, a partner link type represents a third party declaration of a relationship between 
two (or more, potentially) services. A partner link type defines a collection of roles, where each 
role indicates a portType. The idea is  that when two services interact with each other,  the 
partner link type is a declaration of how they interact ― essentially what each party offers.

Basically, a partner is defined by giving it a name and then indicating the name of a partner link 
type and identifying the role that the process will play from that partner link type and the role 
that the partner will play. In the pure invoked partner and pure client partner cases, the partner 
link type will have just one role in it and, hence, only one is indicated at partner definition time. 
The partner name is  then  used in  <receive>,  <reply> and  <invoke> activities  to 
indicate the desired partner.

2.5.6. Endpoint References
How does a partner work at runtime? In order for it to work at runtime, the partner must resolve 
to an actual web service. Thus, a partner is really eventually just a typed endpoint reference, 
where the typing comes from the partner link type and the roles. The BPEL4WS process itself 
does not indicate how a partner is bound to a specific endpoint; that is considered a deployment 
time or runtime binding step that must be supported by the BPEL4WS implementation.
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2.5.7. Dealing with Problems
Developers need ways to handle and recover from errors in business processes. BPEL4WS has 
exceptions (faults) built into the language via the  <throw> and  <catch> constructs. The 
fault concept on BPEL4WS is directly related to the fault concept on WSDL and in fact builds 
on it.

In addition, BPEL4WS supports the notion of compensation, which is a technique for allowing 
the process designer to implement compensating actions for certain irreversible actions. For 
example,  in a  travel reservation process, once a reservation has been confirmed, one must 
perform  some  explicit  operations  to  cancel  that  reservation.  Those  actions  are  called 
"compensating actions" for the original action.

Fault handling and compensating is supported recursively in BPEL4WS by introducing the 
notion of a scope, which is essentially the unit of fault handling and/or compensation.

2.5.8. Lifecycle of Services
What about the lifecycle of these services? Web services implemented as BPEL4WS processes 
have an instanced life cycle model. That is, a client of these services always interacts with a 
specific instance of the service (process). So how does the client create an instance of the 
service?

Unlike traditional distributed object systems, in  BPEL4WS instances are not created via  a 
factory pattern. Instead, instances in BPEL4WS are created implicitly when messages arrive for 
the service. That is, instances are identified not by an explicit "instance ID" concept, but by 
some  key  fields  within  data  messages. For  example,  if  the  process  represents an  order 
fulfillment system, the invoice number could be the "key" field to identify the specific instance 
involved with the interaction. Thus, if  a matching instance isn't  available when a message 
arrives at  a  "startable" point  in  the  process, a  new instance is  automatically  created and 
associated with the key data found in the message. Messages can only be accepted at non-
startable points in a process after a suitable instance has been located; that is, in these cases the 
messages are in fact always delivered to specific instances. In BPEL4WS, the process of finding 
a suitable instance or creating one if necessary is called message correlation.

2.5.9. Example
The following example has been retrieved from [FlowsWithBPEL4WS] to illustrate the basic 
parts of a BPEL document that describe a business process.

The PayFlow business flow example is comprised of a client initiating a request to a BPEL 
process and ending with the process calling back the client with the result  of the payment 
request (receipt).  The process includes use  of  <receive> and  <invoke> activities  for 
interacting with the outside world, which includes the client (request) and a partner (payment 
processor service).  XML Variables  are  used for  holding messages exchanged between the 
process and the partners. To make this example interesting, the payment processor service is 
asynchronous and can take anywhere from several minutes to several days before the service 
calls  back the  process. Another  interesting  element demonstrated by  this  example is  the 
handling of exceptions and managing of timeouts. These constructs are instrumental to enable a 
BPEL process to deliver reliable business flows.
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Figure 2.5.2: BPEL example.

The client initiating the PayFlow process specifies a transfer amount in dollars. The PayFlow 
process receives the transfer request and leverages an asynchronous payment processor to carry 
out the fund transfer. The payment processor is asynchronous because it  requires a manual 
review prior to returning the result to the process (note though, that this fact is opaque to the 
PayFlow process that  uses  the  service; PayFlow just  knows that  PaymentProcessor is  an 
asynchronous and potentially long-running service).

The payment processor service, as implemented, will return a normal result if the amount is less 
than $500. Otherwise, it  will  return a "transfer refused" fault,  which will be handled as an 
exception by the PayFlow BPEL process. PayFlow also handles an "insufficient funds" fault, 
which may be thrown by the service. In addition, the PayFlow process specifies a timeout 
period and terminates if the payment processor takes more than 2 days (the timeout limit) to 
return a digital receipt indicating a successful fund transfer.

2.5.10. Conclusions
Adopting a Service Oriented Architecture for building software has many advantages in terms 
of distributed systems, scalability, reusability etc., as seen in previous chapters. Web service are 
an  excellent  candidate technology  for  supporting  a  SOA especially  with  the  support  of 
workflow language for describing business flows between the services. BPEL is currently the 
dominant standard for describing workflows and many tools are appearing that support this 
specification.
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2.6. Interchangeable Virtual Instrument Specification
IVI is a consortium founded to promote specifications for programming test instruments that 
simplify  interchangeability,  provide  better  performance,  and  reduce  the  cost  of  program 
development and maintenance.

In today's world, two factors hinder efficient test system setup and support: 1) the high cost of 
developing and maintaining test system software and, 2) rapidly evolving technology. The IVI 
Foundation addresses these needs through new driver technology:

● IVI drivers define a new level of quality, completeness, usability, and functionality that 
reduces the cost of test system development and ownership.

● IVI  drivers  simplify  upgrading or  replacing  components in  complex test  systems 
intended to be used over a long period of time;

2.6.1. Goals of the IVI Foundation
Hardware Interchangeability: Simplify the task of replacing an instrument from a system 
with a similar instrument. Preserve test software when instruments become obsolete. Simplify 
test code reuse from design validation to production test.

Quality: Improve driver quality. Establish guidelines for driver testing and verification.

Software  Interoperability: Provide an architectural framework that  allows users to  easily 
integrate software from multiple vendors. Provide standard access to driver capabilities such as 
range checking and state caching. Simulate instruments and develop test system software when 
instruments are  not  physically  available.  Provide  consistent  instrument control  in  popular 
programming environments.

2.6.2. IVI Class Specifications
To enable interchangeability, the foundation creates IVI class specifications that define the base 
class capabilities and class extension capabilities for some of the most popular instrument 
classes. There are currently eight instrument classes defined:

1. DC power supply

2. digital multimeter (DMM)

3. function generator & arb
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4. oscilloscope

5. power meter

6. RF signal generator

7. spectrum analyzer

8. switch

Future work includes defining additional class specifications and extending the scope of current 
specifications to cover more instrument functionality.

2.6.3. IVI Driver Architecture
IVI drivers provide many inherent capabilities that go beyond those of traditional instrument 
drivers. The IVI specifications have been developed to enable drivers with a consistent and high 
standard of quality, usability, and completeness. The specifications define advanced features 
such as instrument simulation, state caching, automatic range checking, and multithread safety. 
In  addition,  IVI  Foundation  members  have  cooperated  to  provide  common  software 
components that ensure multi-vendor system compatibility. IVI custom specific drivers support 
only these inherent capabilities and instrument specific capabilities that are not standardized 
upon by the foundation and that are unique to a particular instrument.

In addition to  these inherent capabilities, IVI drivers can comply with an instrument class 
specification to support the foundation's goal of instrument interchangeability. These drivers 
include:

● Base class  capabilities common to most instruments in  a  class (e.g.,  edge-triggered 
acquisition on a scope);

● Class extension capabilities that represent more specialized features of an instrument 
class (e.g., TV or width trigger on a scope).

IVI class-compliant specific drivers contain inherent capabilities, base class capabilities, as well 
as class extension capabilities that the instrument supports. To achieve interchangeability, users 
program to an IVI class interface available through an IVI class-compliant specific driver or a 
separate IVI class driver.
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Figure 2.6.1: Typical use of IVI framework.

To support all  popular programming languages and development environments, IVI drivers 
provide either a C or a COM API. Driver developers may provide both interfaces as well as 
interfaces optimized for specific development environments.

All IVI drivers communicate to the instrumentation hardware through an I/O Library. The VISA 
library is used for the GPIB and VXI buses, while other buses can either utilize VISA or another 
library.

Future work includes Measurement and Stimulus Subsystems and Signal Interfaces to provide 
interchangeability in more specialized and complex situations where the current architecture is 
insufficient. Additional efforts are underway to pursue the use of IVI drivers in Microsoft .NET 
environments.

IVI Conformance. IVI drivers that conform to and are documented according to the IVI 
specifications may display the IVI conformance logo for easy identification. Instruments or 
software applications may display the standard IVI logo to indicate conformance with the IVI 
specifications. A product that does not display an IVI logo is non-conformant.

Figure 2.6.2: IVI logo.
Driver API. To support all popular programming languages and development environments, 
IVI drivers provide either a IVI-C or an IVI-COM API. Driver developers may provide both 
interfaces, as well as wrapper interfaces optimized for specific development environments.

RINGRID-WP3-D3_2-JKU-
Middleware.odt

PUBLIC Page 47 / 149



RINGrid  Status of Grid Middleware Standards―  
for Sharing Scientific Instruments

Instrument I/O. All IVI drivers communicate to the instrumentation hardware through an I/O 
Library. The VISA library is used for the GPIB and VXI buses, while other buses can either 
utilize VISA or another library.

2.6.4. IVI Driver Specifications
The IVI Foundation currently standardizes on two interface technologies: COM and ANSI-C. 
IVI drivers conform to the IVI-COM architecture, the IVI-C architecture, or both. IVI driver 
suppliers choose which architectures to support based on the needs of their customers. As 
computer and software technology evolves, other interface technologies may become popular 
within the instrument control community. As this change occurs, new interfaces may be defined 
to incorporate new capabilities.

Revision Notes. The first draft of the IVI Driver Architecture Specification was released in July 
2000. The latest revision number is 1.6, released in January 11, 2007.

2.6.5. IVI-COM Driver Architecture
COM (Component Object Model) technology in the Microsoft Windows-family of Operating 
Systems enables software components to communicate. COM is used by developers to create 
re-usable  software components,  link  components  together  to  build  applications,  and  take 
advantage of Windows services. The family of COM technologies includes COM+, Distributed 
COM (DCOM) and ActiveX® Controls.

Target Operating Systems. IVI-COM drivers work on  the following Microsoft  operating 
systems: Windows 2000,  Windows XP,  Windows Vista  32,  and Windows Vista  64 (32-bit 
applications only). In principle, IVI-COM drivers can be developed for other operating systems 
on which COM is available, including Sun Solaris and Linux.

For  the  minimum service pack level  required  to  use  the  IVI shared components on  each 
operating  system,  refer  to  the  download  page  on  the  IVI  Foundation  web  site, 
www.ivifoundation.org.

Target Languages and Application Development Environments. IVI-COM drivers work in 
Microsoft  Visual  C++,  Microsoft  Visual  Basic,  Microsoft  Visual  Basic  for  Applications, 
National Instruments LabVIEW, and National Instruments LabWindows/CVI. In principle, IVI-
COM drivers can work  in  other  development environments in  which COM is  supported, 
including Borland C/C++.

2.6.6. IVI-C Driver Architecture
Target Operating Systems. IVI-C drivers work on the following Microsoft operating systems: 
Windows 2000, Windows XP, Windows Vista 32, and Windows Vista 64 (32-bit applications 
only). IVI-C drivers can also work on any other operating system if the following conditions are 
met:

● A compiled version of the IVI-C driver is available, or source code is available and an 
ANSI-C compiler is available for that operating system.

● The C shared components are compiled and available for that operating system.

● An I/O library that the IVI-C driver uses is available for that operating system.

● Any other support libraries that the driver uses are available for that operating system.

To enable use on other operating systems, IVI-C drivers should avoid making operating system 
specific calls.
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For  the  minimum service pack level  required  to  use  the  IVI shared components on  each 
operating  system,  refer  to  the  download  page  on  the  IVI  Foundation  web  site, 
www.ivifoundation.org.

For an example of driver developments on other operating systems look at "Porting IVI-C 
Specific Drivers and Applications to Linux" http://zone.ni.com/devzone/cda/tut/p/id/3809

Target Languages and Application Development Environments. IVI-C  drivers work in 
Microsoft  Visual  C/C++,  National  Instruments  LabVIEW,  and  National  Instruments 
LabWindows/CVI. In principle, IVI-C drivers can work in other ADEs that allow calls to 32-bit 
dynamic link libraries, such as Borland C/C++, MathWorks MATLAB, and Agilent VEE.
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3. Middleware

3.1. Globus Toolkit
Globus Toolkit, currently at version 4, is an open source toolkit for building computing grids 
provided by the Globus Alliance.

It is the most widely diffused enabling technology for the "grid". It includes software services 
and  libraries  for  resource monitoring,  discovery,  and  management,  plus  security and  file 
management.

It is packaged as a set of components that can be used either independently or together to 
develop applications. Its core services, interfaces and protocols allow users to access remote 
resources preserving local control over who can use resources and when.

The open source Globus Toolkit is a fundamental enabling technology for the "grid," letting 
people share computing power,  databases, and other tools securely online across corporate, 
institutional,  and  geographic  boundaries  without  sacrificing  local  autonomy.  The  toolkit 
includes software services and libraries for resource monitoring, discovery, and management, 
plus security and file management. In addition to being a central part of science and engineering 
projects that total nearly a half-billion dollars internationally, the Globus Toolkit is a substrate 
on which leading IT companies are building significant commercial grid products.

The toolkit  includes software for security,  information infrastructure, resource management, 
data management, communication, fault detection, and portability. It is packaged as a set of 
components that can be used either independently or together to develop applications. Every 
organization has unique modes of operation, and collaboration between multiple organizations 
is hindered by incompatibility of resources such as data archives, computers, and networks. The 
Globus Toolkit was conceived to remove obstacles that prevent seamless collaboration. Its core 
services, interfaces and protocols allow users to access remote resources as if they were located 
within their own machine room while simultaneously preserving local control over who can use 
resources and when.

The Globus Toolkit has grown through an open-source strategy similar to the Linux operating 
system's, and distinct from proprietary attempts at resource-sharing software. This encourages 
broader,  more rapid adoption and leads to  greater technical innovation, as the open-source 
community provides continual enhancements to the product.

Essential background is contained in the papers "Anatomy of the Grid" by Foster, Kesselman 
and Tuecke and "Physiology of the Grid" by Foster, Kesselman, Nick and Tuecke.

The Globus Toolkit is an implementation of the following standards:

● Open Grid Services Architecture (OGSA)

● Open Grid Services Infrastructure (OGSI)  ― originally intended to form the basic 
"plumbing" layer for OGSA, but has been superseded by WSRF and WS-Management.

● Web Services Resource Framework (WSRF)

● Job Submission Description Language (JSDL)

● Distributed Resource Management Application API (DRMAA)

● WS-Management

● WS-BaseNotification

● SOAP
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● WSDL

● Grid Security Infrastructure (GSI)

Figure 3.1.1: Globus Toolkit components.

3.1.1. Acclaim for the Globus Toolkit
From version 1.0 in 1998 to the 2.0 release in 2002 and now the latest 4.0 version based on new 
open-standard grid services, the Globus Toolkit has evolved rapidly into what The New York 
Times  called  "the  de  facto  standard" for  grid  computing.  In  2002  the  project  earned  a 
prestigious R&D 100 award, given by R&D Magazine in a ceremony where the Globus Toolkit 
was named "Most Promising New Technology" among the year's top 100 innovations. Other 
honors include project leaders Ian Foster of Argonne National Laboratory and the University of 
Chicago, Carl  Kesselman of  the  University  of  Southern California's Information  Sciences 
Institute (ISI), and Steve Tuecke of Argonne being named among 2003's top ten innovators by 
InfoWorld magazine, and a similar honor from MIT Technology Review, which named Globus 
Toolkit-based grid computing one of "Ten Technologies That Will  Change the World." The 
Globus Toolkit  also won the 2003 Federal Laboratory Consortium award for excellence in 
technology transfer, in recognition of its widespread adoption by industry.
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3.1.2. Genesis of the Globus Project
In  late  1994 Rick Stevens, director of  the  mathematics and computer science division  at 
Argonne  National  Laboratory,  and  Tom  DeFanti,  director  of  the  Electronic  Visualization 
Laboratory at  the  University  of  Illinois  at  Chicago, proposed establishing temporary links 
among 11 high-speed research networks to create a national grid (the "I-WAY") for two weeks 
before and during  the  Supercomputing '95 conference.  A small team led by Ian Foster  at 
Argonne created new protocols that allowed I-WAY users to run applications on computers 
across the country.  This successful experiment led to funding from the Defense Advanced 
Research Projects  Agency (DARPA, and 1997 saw the first version of the Globus Toolkit, 
which was soon deployed across 80 sites worldwide. The U.S. Department of Energy (DOE) 
pioneered the application of grids to science research, the National Science Foundation (NSF) 
funded creation of the National Technology Grid to connect university scientists with high-end 
computers, and NASA started similar work on its Information Power Grid.

3.1.3. Widespread Adoption of the Globus Toolkit
Grids first emerged in the use of supercomputers, as scientists and engineers across the U.S. 
sought access to scarce high-performance computing resources that were concentrated at a few 
sites. Begun in 1996, the Globus Project was initially based at Argonne, ISI, and the University 
of Chicago (U of C). What is now called the Globus Alliance has expanded to include the 
University of Edinburgh, the Royal Institute of Technology in Sweden, the National Center for 
Supercomputing Applications, and Univa Corporation. Project participants conduct fundamental 
research and development related to the grid. Sponsors include federal agencies such as DOE, 
NSF, DARPA, and NASA, along with commercial partners such as IBM and Microsoft.

The project has spurred a revolution in the way science is conducted. High-energy physicists 
designing the  Large  Hadron  Collider  at  CERN are  developing  Globus-based technologies 
through the European Data Grid, and the U.S. efforts like the Grid Physics Network (GriPhyN) 
and Particle Physics  Data Grid. Other large-scale e-science projects relying on the Globus 
Toolkit include the Network for Earthquake Engineering and Simulation (NEES), FusionGrid, 
the Earth System Grid (ESG),the NSF Middleware Initiative and its  Grids Center,  and the 
National Virtual Observatory. In addition, many universities have deployed campus grids, and 
deployments in industry are growing rapidly.

Much as the World Wide Web brought Internet computing onto the average user's desktop, the 
Globus Toolkit is helping to bridge the gap for commercial applications of grid computing. 
Since 2000, companies like Avaki,  DataSynapse, Entropia, Fujitsu,  Hewlett-Packard, IBM, 
NEC, Oracle, Platform, Sun and United Devices have pursued grid strategies based on the 
Globus Toolkit. This widespread industry adoption has brought a new set of objectives, with the 
cardinal purpose being to preserve the open-source, non-profit community in which the Globus 
Project has thrived, while seeding commercial grids based on open standards.

2004 saw the formation of Univa Corporation, a company devoted to providing commercial 
support for Globus software, and 2005 the creation of the Globus Consortium by a group of 
companies with an interest in supporting Globus Toolkit enhancements for enterprise use.

3.1.4. Examples of the Globus Alliance's Impact
The Globus Alliance and the Globus Toolkit have enabled many exciting new scientific and 
business applications. The images here showcase just a few of the advances that have been 
helped by Globus technology.
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Computational scientists at Brown University 
are using the Globus Toolkit and MPICH-G2 
to simulate the flow of blood through human 
arteries.  This  image,  prepared  at  Argonne 
National  Laboratory,  shows  velocity  (red 
arrows) and pressure (surface color) within a 
branched, three-dimensional arterial structure. 
The simulation was conducted using Nektar 
(software developed at Brown University) and 
was the first high-performance simulation to 
run in a distributed fashion using systems at 
multiple TeraGrid sites.

Globus  Toolkit  driven  grid  computing  is 
central  to  management  of  large  datasets 
generated by colliders such as those at CERN. 
This simulation shows two colliding lead ions 
just after impact, with quarks in red, blue, and 
green and hadrons in white.

The  Southern  California Earthquake Center 
uses Globus software to visualize earthquake 
simulation  data.  Scientists  simulate 
earthquakes by calculating the effect of shock 
waves  as  they  propagate  through  various 
layers  of  a  geological  model.  SCEC 
simulations cover a very large space with very 
high resolution and can generate up to 40TB 
of data per simulation run. This image shows 
earth movement from San Joaquin Valley CA, 
to  Mexico,  across  the  Los  Angeles  basin, 
moments after a simulated rupture. Blue and 
red lobes depict motion in opposite directions 
caused by shock waves along the fault.

Scientists  in  the  National  Fusion 
Collaboratory are learning to use the Access 
Grid and Globus web services to participate 
remotely in pulsed plasma fusion experiments. 
The  remote  interface  provides  sensor 
readings,  data  analysis,  audio,  and  video 
available in the control room and allows the 
team  to  discuss  what  is  happening.  The 
Access Grid is  integrated with grid services 
and  applications  using  the  Globus  Toolkit's 
security and communication libraries.
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The  Southern  California Earthquake Center 
uses Globus software to visualize earthquake 
simulation  data.  Scientists  simulate 
earthquakes by calculating the effect of shock 
waves  as  they  propagate  through  various 
layers  of  a  geological  model.  This  image 
shows the velocity of motion from a simulated 
earthquake  through  a  uniform  earth.  The 
image is provided in stereo so that it can be 
viewed in 3D.

The  Globus  Toolkit  supports  scientific  data 
visualization on the TeraGrid. This image is 
part of a sequence that reveals the progression 
of  Hurricane Isabel  in  September  2003.  A 
desktop application uses the Globus Toolkit to 
launch parallel visualization tasks on multiple 
TeraGrid  graphics  nodes.  The  application 
allows users to connect to and interact with 
these  tasks.  Data  provided  by  the  National 
Center for Atmospheric Research.

Physicists  used  the  Globus  Toolkit  and 
MPICH-G2 to harness the power of multiple 
supercomputers to  simulate the gravitational 
effects  of  black  hole  collisions.  The  team, 
which  included  researchers  from  Argonne 
National  Laboratory,  the  University  of 
Chicago, Northern Illinois University, and the 
Max Planck Institute for Gravitational Physics 
in  Germany,  was  awarded  a  prestigious 
Gordon  Bell  prize  for  its  work.  Image 
courtesy  of  Max  Planck  Institute  for 
Gravitational Physics.

Scientists in the Earth System Grid (ESG) are 
producing, archiving, and providing access to 
climate data that advances our understanding 
of global climate change. This image displays 
data  from  ESG  and  shows  sea  ice  extent 
(white/gray),  sea  ice  motion,  sea  surface 
temperatures (colors),  and  atmospheric  sea 
level  pressure  (contours). ESG uses Globus 
software  for  security,  data  movement,  and 
system  monitoring.  Image  provided  by 
UCAR.
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3.2. Instrument Middleware Project
Instrument Middleware [IM] is working on several projects to make scientific instruments and 
sensors more accessible and to integrate them in to data and compute grids. The Common 
Instrument Middleware  Architecture (CIMA) project,  supported  by  the  National  Science 
Foundation Middleware Initiative, is aimed at "grid enabling" instruments as real-time data 
sources to improve accessibility of instruments and to facilitate their integration into the grid. 
The main motivations of the Common Instrument Middleware Architecture (CIMA) project are 
to provide methodology for interacting with instruments and sensors in real-time from grid 
applications. Moreover, some abstraction of sensor and instrument functionality is needed to 
make grid applications that use them more robust and flexible. Additional, Virtual organizations 
that share instruments and sensors need location, authentication, and authorization mechanisms. 
In reality, Data collection needs to be interactive. Results of data analysis may be used to decide 
whether more data needs to be collected or what other data needs to be collected, and these 
cannot be achieved if  instruments are kept offline.  The figure below shows a  simple 2-D 
analysis of instrument taxonomy.

X-Ray Crystallography

Radio Telescope

Traffic Sensors

Mote Wireless Sensor

Ground Motion Sensor

Bandwidth 
per Sensor

Number of Sensors /Real-time Application

Electron 
Microscope

Figure 3.2.1: A simple 2-D analysis of instrument taxonomy.

General notions  of  the Instrument Middleware project  are  in  order to  improve instrument 
utilization, better integration with compute and storage elements, address control aspects of 
instruments, reduce overhead for users, reach a broader set of users, and standard interface 
methodology across a broad range of instrument types. Integration of instruments/sensors into 
the rest of the processing pipeline implies (as figure 3.2.2 shows):

● A uniform mechanism for locating and interacting with individual instruments or groups 
of sensors

● A scheme for maintaining investments in acquisition and analysis software as sensor 
design and engineering evolves
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● A straightforward  mechanism for  fusing  data  from  several  types  of  sensors,  i.e. 
leveraging sensor hardware investments by different groups in cooperative research

Transport (IP or Other Network)

Network Middleware

Instrument A Instrument B

Controller

Sensors
Controller

Sensors

Instrument 
Middleware

Data 
Acquisition 

Code

Reduction 
Code

Analysis 
pipeline

Storage
 (Data and 
Metadata)

Figure 3.2.2: Integration of instruments/sensors into the 
processing pipeline.

The Instrument Middleware Project encompasses several projects aimed at improving access to 
scientific instruments and sensors.

CIMA. CIMA middleware is based on platform independent standards such as web services. 
Emphasis is placed on supporting a variety of instrument and controller types. CIMA promote 
interdisciplinary  collaboration  by  facilitating  compatibility  between  applications  and 
instruments.

X-Ray Crystallography. The IU Molecular Structures Center is a major collaborator in CIMA. 
The goal is to remotely manage data collection from a high-intensity beamline located at a 
facility like the Argonne Advanced Photon Source.

MMSF Automated Observatory. CIMA Applications in robotic telescopes and astronomy.

3.2.1. Common Instrument Middleware Architecture
The daily work of researchers in many scientific and engineering fields is dominated by the 
need to handle large-scale data. While ten years ago number-crunching resources were the 
limiting factor, now the ability to represent, locate, organize, securely access, and move data is 
often the bottleneck in the overall scientific process. This is exacerbated by new opportunities 
for  sharing and  collaborating  which  the  Web  and  its  associated  tools  provide.  Scientists 
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increasingly want to have the same ready access to distributed resources and each other that 
current desktop tools provide in business computing. The situation is further complicated by the 
need for many groups in global collaborations to analyze and add value to raw data collected 
from many sites with similar functions, e.g. synchrotron X-ray sources, electron microscopes, 
telescopes, HEP experiments, etc. Furthermore, the increasing speed and sophistication of wide-
area networks and storage systems has outpaced the ability of software to effectively utilize 
distributed data from many sources. The problem: How to bring instruments, sensors and other 
real-time data sources into a grid computing and storage environment. The Common Instrument 
Middleware Architecture  (CIMA)  project,  supported  by  the  National  Science Foundation 
Middleware Initiative, is  aimed at "grid enabling" instruments as real-time data sources to 
improve accessibility  and  throughput  in  instrumentation  investment and  to  facilitate  their 
integration into the grid computing environments through a  Service Oriented Architecture. 
CIMA middleware is based on current grid implementation standards and accessible through 
platform independent standards such as the Open Grid Services Architecture (OGSA) and the 
Common Component Architecture (CCA). Emphasis will be placed on supporting a variety of 
instrument and controller types including creating a small implementation that can be used with 
tiny wireless controllers such as the Berkeley Mote sensor package, as well as embedded PC-
104 and VME-based controller systems. The CIMA project is addressing basic issues in sensor 
interaction design to simplify remote access, tele-presence and data management for instrument 
facilities. CIMA puts instruments and sensors "online" in a standards based way using web 
services. Web services interfaces can be wrapped in WS-RF to provide these as grid services. 
Also, to do these while collaborating with scientists in academia and industry in a broad range 
of disciplines who either develop instruments or whose work depends on the details of using 
them. CIMA-enabled instruments fit naturally into the scientific workflow and portals provide a 
useful "GUI" for real-time instrument-driven experiments based on CIMA. CIMA is being used 
to  bring  users  and  instruments  together  through  a  federation  of  Indiana,  Midwest  and 
international X-ray diffraction labs.

Rationale. Scientific instruments and  sensors  are  crucial to  scientific  advancement. They 
provide  the  raw  observations  used  to  develop,  verify,  and  falsify  theories.  Data  from 
instruments typically have an extensive lifecycle, which includes corrections and calibration, 
annotation, and then storage in a database or file system. Researchers are working on every 
transitional data phase listed above, except for the earliest stage where the instrument provides 
its data as output, e.g. while database systems have had large scale convergence on a few API 
standards, instruments vary widely in their architecture, construction, and external interfaces. 
The  Instrument  Middleware  Project  proposes  a  single  virtualization  layer  to  hide  this 
complexity,  and present  a  relatively  simple web service interface to  the  rest  of  the  data 
pipeline[IM].

Architecture. The  figure  below  illustrates  the  components  of  a  typical  instrument (blue 
background) and the added Common Instrument Middleware Architecture (yellow background). 
The instrument consists of a sensor or sensors (bottom) connected to a controller package, 
typically a CPU, memory and analog to digital or digital to analog converters. In addition to the 
hardware there is programming to implement basic functions such as setting parameters or 
taking readings (the "native call  interface"). The controller package communicates with the 
world through an interface using a protocol. To this CIMA (in yellow) adds uniform ways of 
determining the characteristics of the instrument and interacting with it  through W3C web 
services.  The  Proteus  communications  library  allows  the  instrument  to  select  the  most 
appropriate protocol to talk to the data acquisition application [IM].
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Figure 3.2.3: CIMA architecture.

Common Instrument Middleware Architecture Elements. Service implementation works for 
accessing  the  instrument's  functionality  and  metrics  using  industry  standard  service 
implementation  methodology  (web  services).  There  are  two  components: one  is  Plug-in 
modules are used to interface to hardware and the other one is Channel service that provides a 
network interface via web services to WS-RF grid service. Functions to register with a directory 
service (e.g. UDDI), authenticate users, provide access control to instrument controls and data, 
and  co-schedule the  instrument into  a  grid  computing  and  storage context.  Schemata  for 
representing instrument functionality in WSDL and OWL-DL with instances (RDF) built into 
the instrument; Model for representing instrument function, metrics, and calibration. A small, 
high  performance  web  services  stacks  (Java  and  C++)  including  Proteus  support  for 
multiprotocol, multimodal transport.

Applications. CIMA implementation two types of targets:

● Large scientific  instruments ― very large systems, few elements (e.g. Synchrotron 
beamline, APS/ALS)

● Embedded sensors and controllers ― very small systems, many elements (e.g. PC104 
industrial controller board, MICA Mote wireless sensor/controller board).

Currently, CIMA are applying to a range of instrument types, including crystallography using 
high brilliance X-ray sources, network performance monitors, and ultra-small wireless sensors 
such as the MICA MOTE. The CIMA abstraction layer reduces the dependence of acquisition 
and analysis software on the details of the hardware design, and facilitates the integration of 
instruments into the grid. Instrument users can reuse existing software when instruments are 
modified or upgraded. By offering CIMA interfaces to their products, instrument manufacturers 
can take advantage of a broader range of control application and data sinks (data fusion and 
analysis  software).  CIMA also  facilitates  interaction between research  groups  working  at 
different places in the value chain of scientific inquiry.

RINGRID-WP3-D3_2-JKU-
Middleware.odt

PUBLIC Page 58 / 149



RINGrid  Status of Grid Middleware Standards―  
for Sharing Scientific Instruments

3.2.2. X-Ray Crystallography
Several applications were chosen to evaluate CIMA design and implementation. One of the 
more fully developed applications is in X-ray crystallography [Mc05a].

In 1950's, precession cameras were used to take undistorted pictures of the "reciprocal lattice". 
Each point in the reciprocal lattice corresponds to a plane within the crystal. Images of the 
reciprocal lattice obtained from Precession photographs were used to determine the symmetry 
and cell dimensions for the crystal. Weissenburg cameras were used to measure intensities of 
each of the reciprocal lattice points. Typical exposure of several hours to several days that a few 
dozen to  perhaps over  100 films per crystal.  A Distorted view of  the reciprocal lattice is 
obtained in each Weissenburg image, and each of the spots seen corresponds to a particular 
plane within the crystal. Intensities were estimated visually using an intensity scale obtained by 
taking different exposure times for a given reflection.

In  1970's, Single-crystal  Diffractometers greatly  increased the speed and accuracy of  data 
collection. The crystal and a detector were positioned so that the intensity of diffraction from 
each plane in the crystal could be measured automatically. The single crystal diffractometer 
increased the accuracy of measurements by probably an order magnitude, and allowed much 
larger (and more complex) structures to be studied. Although it was computer controlled, it was 
limited by the serial nature (i.e. it could only measure one data point at a time). Typical crystals 
could require anywhere from a few days to months to be completely characterized.

In 1990's, Bruker-AXS SMART 6000 CCD system located in the Indiana University Molecular 
Structure Center at Indiana University. The CCD detector consists of a fluorescent screen and a 
fiber optic bundle to increase the area being surveyed. In this view of a Bruker SMART6000 
CCD the 4K x 4K CCD chip is located behind the circular beryllium window. The operator's 
console will allow the researcher to orient the crystal and view the resulting CCD images.

CIMA applications in crystallography labs and at synchrotron light sources. CIMA is used for 
remote  monitoring  of  X-ray crystallogrpahy instruments  in  labs  and  at  synchrotron light 
sources.  The  software  architecture  is  shown  in  the  figure  above.  There  are  four  main 
components:

1. The  Instrument  Representative  that  implements  the  CIMA interface  between  the 
diffractometer CCD detector and several sensors related to it,

2. MyManager, a data manager that provides location-independent storage of CCD frames 
and sensor data from the detector,

3. A web service, the Data Manager Web Service (DM-WS) through which applications 
can access data acquired from the data manager, and

4. A portal and set of application-specific portlets that use the DM-WS to find and present 
data.

CIMA can be used to create a  federation of labs with  complementary capabilities sharing 
instruments and expertise. In the figure below three labs share a common portal and computing 
infrastructure for analysis.

In the current lab federation the Indiana University Data Capacitor is used as a high speed high 
capacity network data cache to receive detector CCD frames from all labs in the federation. The 
cached frames are then processed in to the MyManager data management system shown in the 
figure above, and metadata entries are created to help users find their data on multiple storage 
facilities.

The figure below shows schematically how labs are typically provided with a CIMA proxy 
service that sends data from the lab's diffractometer and other sensors in the lab. This streaming 
data consisting of CCD frames and lab environmental conditions is received by a data manager 
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hosted by IU (or possibly by the lab itself) and is stored first in a short term sample cache and 
later archived on long term storage media. A portal and crystallography-specific portlets for 
viewing and managing data is used by crystallographers and sample providers to track the 
acquisition of data and to review the quality of the data during collection [Mcm06].
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Figure 3.2.4: Typical CIMA applications in X-ray crystallography.

The GridSphere portal shown in figure 3.2.5 illustrates instrument sharing and remote access to 
a group of CIMA-enabled diffraction labs.
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Figure 3.2.5: Remote access to a group of CIMA-enabled diffraction labs.

3.2.3. MMSF Automated Telescope
CIMA Applications in robotic telescopes and astronomy. The Morgan-Monroe Station (MMS) 
of the Geothe Link Observatories is situated in the Morgan-Monroe State Forest (MMSF) about 
12  miles north  of  the  Indiana University  campus and is  moderately protected from light 
pollution. The system has 33 distinct "sensors", 12 controllers. The MMS site houses a 16-inch 
automated telescope known as RoboScope and a new 50-inch automated telescope known as 
SpectraBot. These are active research facilities that operate most clear nights, and both are used 
for photometric studies. Each telescope has a separate dome. RoboScope is devoted to long-
term monitoring of cataclysmic variable stars and related objects, typically obtaining one or two 
4-minute exposures of about  100 objects every clear night. SpectraBot will  be devoted to 
automated long-term monitoring  (both  CCD  imaging  and  spectroscopy)  of  time-variable 
sources. The guide camera attached to it may also be used for other scientific observations. 
Roboscope has  been  in  near-continuous  usage  since  1990  and  Spectrabot  is  still  being 
developed. The MMS is valuable for CIMA because it provides a large range of instruments, 
from weighing scales for a liquid N2 container to CCD cameras producing FITS formatted 
image fields [NM]. The system architecture is shown in figure 3.2.6.
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Figure 3.2.6: Data architecture for MMS and crystallography.
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3.3. Common Instrument Middleware Architecture
The Common Instrument Middleware Architecture (CIMA) is the product of the Instrument 
Middleware  Project  for  integrating  instrumentation  with  the  grid  and  making 
instruments/sensors a first-class citizen within the grid ecosystem. It is a framework for making 
instruments and sensors network accessible in uniform way, and for interacting remotely with 
instruments and the data they produce. Essentially, CIMA is a set of standards and software 
components, which are researched and developed towards the aforementioned goal. It is based 
on the emerging Open Grid Services Architecture (OGSA) and makes extensive use of newer 
technologies and standards such as WSRF, OWL-DL, and RDQL. CIMA is analogous to the 
GridCC effort of the European Union, although it  follows a slightly different approach by 
customizing instrument interfaces with respect to the specific instruments, while GridCC has a 
uniform instrument interface.

3.3.1. Requirements and Design Goals
Grid computing has brought a degree of coherence to the development effort in large-scale 
computing projects, and has enhanced the ability to focus distributed computing and storage 
resources on a single large-scale application. Instruments, however, have been either treated on 
an ad hoc basis or are proxied by the files they generate. CIMA aims to bring instruments within 
the  grid  as  first  class  participants  via  a  middleware architecture that  interoperates both 
syntactically  and  semantically  with  grid  standards,  yet  still  satisfies  the  performance, 
compatibility, and reliability demands of the underlying hardware it mediates.

CIMA addresses the following requirements [McMullen05]:

Functional Transparency. The grid interfaces must completely and accurately represent each 
function of the instrument. Grid applications must be able to develop a complete operational 
model of the instrument from minimal knowledge.

Resource-oriented stateful services. Instrument control and acquisition details are typically 
represented procedurally in the instrument's API, or in the user interface of control application. 
Representational State Transfer (REST is a hybrid style derived from several network-based 
architectural styles and combined with additional constraints that define a uniform connector 
interface) provides an alternative to a procedural API that is more interoperable, extensible, and 
scalable. The REST approach defines a small number of operations such as the HTTP actions 
PUT and GET on a large number of resources (e.g., URLs in the analogy to HTTP). OGSI has 
adopted some REST tenets in the form of Service Data Elements (SDEs). CIMA uses SDEs or 
resource property constructs to expose an instrument's characteristics as metadata so that an 
application can discover not only the existence and network address of an instrument, but also 
the channels provided to the application, their meaning, metrics, and use.

Protocol independence. Though SOAP is used as the common protocol, it is not appropriate 
for every situation. Performance is modest and may be limiting, so middleware must be able to 
use other protocols. Also, it may be the case that the middleware is connected to the instrument 
via a wire protocol of some kind other than IP, in which case, a standard way of incorporating 
vendor-specific  protocols  into  the  acquisition  software  is  needed,  without  making  the 
acquisition software vendor-specific.
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Efficient communication. For situations requiring high communication throughput, the variety 
of  message-exchange  patterns  provided  by  message-oriented  middleware  may  be  more 
appropriate than a remote procedure call approach. For the most demanding applications even 
messages may incur too much overhead since each message is typically treated as a datagram 
and separately routed in the middleware layer. In situations where each message is small, but 
the rate is high a more efficient approach is to use data channels modeled after the virtual circuit 
concept. Data is streamed through the channel, with much of the per datum overhead shifted to 
the relatively infrequent channel set-up and tear-down steps.

CIMA wishes to be usable for all kinds of equipment, from large-scale scientific apparatus, 
down to small standalone sensors. Significant to the design of CIMA is the difference between 
the two similar, but distinct scenarios: Remote access and distributed operation. Remote access 
allows a scientist working off-site to access the instrument. Distributed operation, on the other 
hand, is a more profound development in scientific instruments. In distributed operation, the 
functions of the conventional instrument site itself are distributed within a virtual organization. 
By applying the appropriate grid technologies, each user can interact with the instrument as if 
she were the sole user, and explore innovations that in a conventional, centralized setting would 
have an unacceptable impact on other users.

This requirement for distributed operation sets the following design goals [Devadithya05]:

Boot-strappable. A central design requirement is  that CIMA applications  must be able to 
develop an operational model of the instrument from a minimum of external knowledge, which 
requires that  each function  of  the instrument is  completely and  accurately  described. This 
requirement will encourage the kind of loose-coupling that promotes inter- operability, thus 
reducing the burden of managing and administering a large variety of instruments.

Interoperable. In  scientific  collaborations one  research group  would  need access to  grid-
enabled instruments maintained by another group. In order to achieve this, the specification of a 
sensor should  be  complete enough so  that  third  party  applications  can  access it  without 
additional information. Also, minor changes to sensor functionality should not require deep 
code changes. Making the functionality independent of the data structures as much as possible 
would increase interoperability.

Efficient data transfer. Some  instruments and sensors, especially  when aggregated, may 
generate data at high rates. If the data rate is higher than the rate at which the system can 
transfer them, then there could be data loss or system crashes. Even though buffering could be 
used to handle mismatches between the data rates for a short period, it will not be possible to 
operate indefinitely.

Lightweight. Sensors may need to be deployed at locations subject to electrical and processing 
power constraints. For example, a seismic sensor located underwater in deep sea will have all 
these constraints in addition to bandwidth limitations. While it is unlikely that a computer will 
be associated with each of such sensors, a computer should be present as closely as possible. 
The computer located in such a remote area may have limited processing power and memory. 
Therefore,  CIMA implementations  should  require a  minimum of  computing, storage, and 
network  resources.  Although  the  usual  limiting  resource  is  power,  network  bandwidth 
constraints or intermittent connectivity may create secondary requirements for additional short 
term or persistent storage at the sensor. This creates tradeoffs in memory allocation between 
data buffers and program address space.

Support for intermediaries: Intermediaries are important for signal processing or buffering 
functions between a sensor and the consumer (figure 3.3.1). This off-loads the work of serving 
multiple consumers from the sensor to an intermediary. The intermediary can have one input 
stream from the sensor and multiple output streams for the consumers. Intermediary also can act 
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as security gateways for the sensor node by allowing only particular intermediaries to connect 
to it. Also, filters can be implemented at the intermediate nodes.

Figure 3.3.1: Intermediary between sensor and consumers

3.3.2. Approach
In  order to  cover for  the  requirements  and design  goals  elaborated upon in  the  previous 
paragraph, CIMA has followed a modular, hierarchical approach. The following subsections 
provide more details on the exact approach [Devadithya05].

Layered specification. To provide reusability  and interoperability  of instrument interfaces, 
CIMA strives for layered specifications. For example, a lower-layer specification corresponding 
to a pressure sensor should be reusable with that corresponding to a temperature sensor, with 
minimal modifications. Then an application written for one sensor would have a fair degree of 
functionality (i.e., require minimal code changes) even with another sensor. The ultimate goal of 
this approach is to promote the reuse of code components between applications.

Plug-ins. While  the  sending and receiving of  data  is  consistent  among different types of 
instruments, different instruments and sensors may require specific processing to read; and the 
construction and interpretation of data messages would be specific to each of them. Plug-ins are 
used to perform these specific functions at the data source as well as at the data consumer. An 
intermediary that needs to perform some processing of the message, such as calculate the 
average of data values and send only the result would also need to have a plug-in to perform 
such tasks.

Loose coupling. Loose-coupling encourages interoperability by minimizing the dependencies 
between the system components, such as sensor, data consumer, and intermediaries. This is 
achieved  by  implementing  a  document-oriented  message-passing  model.  Each  message, 
whether data or control, would be an XML document containing the data along with some 
meta-data required to interpret them. CIMA calls this message a "parcel".

Ontology. One shortcoming of instruments and sensors is that the applications that use them 
(e.g., data acquisition codes) must have a complete operational model of the instruments and 
sensors they work with built-in as lines of code. This makes maintaining investments in these 
codes difficult and expensive when the underlying instrument hardware is improved. A primary 
design goal for this project is to externalize the instrument description so that applications can 
build  an  operational  model  "on  the  fly".  This  approach  makes  it  possible  to  preserve 
investments in data acquisition codes as instrument hardware evolves, and to allow the same 
code to  be used with  several similar types of  instruments  or  sensors.  This  is  particularly 
important in situations where the instrument or sensors and the related acquisition and analysis 
codes are in their early stages of development and undergoing rapid change.

Hierarchical. Instruments are hierarchical in nature. Client applications are simplified if they 
can access one stream of data as opposed to multiple streams. This could be achieved if the top 
level instrument can aggregate the data from lower level instruments. The parent instrument 
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should be able to provide information about its children, such as their interfaces and data rates, 
to client applications. In CIMA, instruments may be arranged hierarchically where a parent 
instrument is considered to be composed of multiple child instruments in a nested manner, with 
no limit to the depth of nesting or to the actual location of the child components.

Push and pull models. Data messages may be "pulled" on demand at the cost of a request-
response cycle, or they can be directly "pushed" when scheduled (or as available) from the 
sensor to the receiver using one-way messages. Both models are useful,  depending on the 
requirements, with the pull model usually being more convenient, and the push model more 
efficient. Since the push model does not require a request-response, multiple messages can be 
batched into a single call. CIMA supports both models. In the push model, the consumer has to 
maintain an endpoint to which the sensor can stream-out data. A pull-model is more suitable if 
the consumer is only interested in receiving the current reading from the sensor.

3.3.3. Architecture
Instrument model. CIMA's instrument model is shown in figure 3.3.2. An instrument consists 
of one or more sensors. Each sensor may serve zero or more consumers. A consumer can 
receive data from one or more sensors. The communication between a sensor and a consumer 
forms a virtual link, which is called a channel. An instrument is allowed to aggregate data from 
several sensors and send them via one channel. This is shown in the communication between 
Instrument A and Consumer A in figure 3.32. This approach is largely similar to the GridCC 
one. In the latter case, the sensors are handled by the Instrument Element's (IE) Instrument 
Managers (IMs), in a similar hierarchical fashion. However, in GridCC, the control plane is 
distinguished from the data plane, and they use separate communication channels.  As it  is 
shown in figure 3.3.3, a single (architectural) channel is enclosing all traffic, while in GridCC 
the two channels are architecturally distinct.

Figure 3.3.2: Instrument model.

Channels and plug-in modules. The application consists of channels and plug-in modules. A 
channel provides a generic framework for the communication while the plug-ins implement 
application-specific  functionalities.  As  shown  in  figure  3.3.3,  the  channel  handles  the 
communication between the sensor and the data consumer. Specific plug-in modules, both at the 
sensor-end and the consumer-end, implement the sensor-specific behavior. The Channel has two 
modes of operation, namely the Source (sensor-end) and the Sink (consumer-end). Each mode 
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runs a grid service instance for receiving messages (control and data) from the other.  The 
Channel Source's grid service mainly handles control information from the data consumer, such 
as registering with the sensor to receive sensor data and un-registering to stop receiving data. It 
also responds to one-time requests for sensor data. The grid service at the Channel Sink receives 
streaming data and status messages such as "sensor data not available" from the sensor. A data 
consumer can  choose  to  receive  a  single  data  value  (request-response  or  pull  model) or 
continuously receive data values (streaming or push model). In the pull model, the consumer 
sends a request  for sensor data and the sensor responds with the current value of its data. 
However, in push model, first the consumer registers with the sensor to receive data, indicating 
the data rate required and the port number on which it wants the data to be sent to. The sensor 
then starts a thread, which will continuously poll its sensor data at the requested rate and send 
them to the requested port at the consumer. The thread will continue to run until it receives an 
un-register request from the consumer or after a given number of attempts to send data fails.

Figure 3.3.3: Communication via a channel.

Communication protocols. SOAP is  currently used,  since it  is  the most widely accepted 
standard for web services. The current implementation of the channel uses gSOAP to handle the 
serialization/deserialization  of  SOAP messages and the  communication.  While  by  default, 
gSOAP (the main toolkit used by CIMA) uses HTTP as the transport layer, prototype systems 
that use Antelope [Antelope] and Binary XML for Scientific Applications (BXSA) have been 
developed as HTTP alternatives.

Parcel. Different sensors generate data in different formats. To address this issue, CIMA came 
up with the "parcel" concept. A parcel may contain the following elements:

● Type is a URN that uniquely identifies the type of the parcel. Application-level parcel 
handlers will recognize the type of the parcel, and unwrap it.  Register message and 
temperature data would be examples for this field.

● ID of the parcel is given as a URI.

● Location indicates where the actual data is located. If the data is contained within the 
parcel, it is indicated as inline.

● Encoding of the data helps recipients to interpret them. Binary is one encoding.
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● Body contains the actual parcel data (if the location is inline).

All the fields except those for location and body are optional. Parcels encapsulate a description 
which makes consumers capable of performing the data acquisition.

Sensor ontology. A key objective of the CIMA approach is to make the instrument or sensor 
self-describing and to push the production of meta-data about what the instrument is producing 
as  far  toward  the  instrument  as  possible.  The  former  objective,  self-description,  assists 
components downstream in  the  data  acquisition  and  reduction process to  understand and 
manage the instrument or sensor effectively. The latter objective, annotating the data coming 
from  an  instrument,  provides  information needed  for  proper  handling  of  the  data.  The 
development of these components is based on a CIMA ontology for instruments and sensors, 
which is based on the OWL Description Logic formalism.
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3.4. The Storage Resource Manager, Broker and the Internet 
Backplane Protocol

3.4.1. The SDSC Storage Resource Broker
The  Storage Resource Broker (SRB),  developed at  the  San  Diego Supercomputer Center 
(SDSC), supports shared data collections that can be distributed across multiple organizations 
and heterogeneous storage systems. The SRB can be used as a Data Grid Management System 
(DGMS) that provides a hierarchical logical namespace to manage the organization of data 
(usually files).

The SRB software infrastructure can be  used to  enable Distributed Logical  File  Systems, 
Distributed Digital Libraries, Distributed Persistent Archives, and Virtual Object Ring Buffers. 
The most common usage of SRB is as a Distributed Logical File System (a synergy of database 
system concepts and file systems concepts) that provides a powerful solution to manage multi-
organizational file system namespaces.

SRB presents the user with a single file hierarchy for data distributed across multiple storage 
systems.  It  has  features  to  support  the  management,  collaboration,  controlled  sharing, 
publication,  replication, transfer,  and  preservation of  distributed  data.  The SRB system is 
middleware in the sense that it is built on top of other major software packages (file systems, 
archives, real-time data sources, relational database management systems, etc). The SRB has 
callable library functions that can be utilized by higher level software. However, it  is more 
complete than many middleware software systems as it implements a comprehensive distributed 
data  management environment,  including  end-user  client  applications  ranging  from  Web 
browsers to Java class libraries to Perl and Python load libraries [1].

3.4.2. Data Grids
Data grids support massive terabyte scale data collections, with possibly millions of files, that 
are distributed across multiple institutions. Several data management systems are based upon a 
generic data management infrastructure, the Storage Resource Broker.
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The management of data has traditionally been supported by software systems that assume 
explicit  control over local storage systems (file systems) or that assume local control  over 
information records (databases). The SRB manages distributed data, enabling the creation of 
data grids that focus on the sharing of data, digital libraries that focus on the publication of data, 
and persistent archives that focus on the preservation of data. Data grid technology provides the 
fundamental management mechanisms for distributed data. This includes support for managing 
data on remote storage systems, a uniform name space for referencing the data, a catalog for 
managing information about the data, and mechanisms for interfacing to the preferred access 
method. Digital libraries can be implemented on top of data grids through the addition of 
mechanisms to support collection creation, browsing and discovery. The underlying operations 
include schema extension, bulk metadata load, import and export of metadata encapsulated in 
XML, and management of collection hierarchies. Persistent archives can be implemented on top 
of data grids by addition of integrity metadata needed to assert the invariance of the deposited 
material. The mechanisms provided by data  grids  to  manage access to  heterogeneous data 
resources can also be used to manage migration from old systems to new systems, and hence 
manage technology evolution. The Storage Resource Broker is being used as the underlying 
infrastructure for both digital libraries and persistent archives, and is a proof in practice that 
common infrastructure can be used for data management.

The data grid community defines "data" to be the strings of bits that comprise a digital entity. A 
digital entity might represent, for example, a data file, an object in an object ring buffer, a 
record in a database, a URL, or a binary large object in a database. Data are stored in storage 
repositories (file systems, archives, databases, etc.). Meaning is assigned to a digital entity by 
associating a semantic label. Information consists of the set of semantic labels that are assigned 
to strings of bits. The semantic labels can be used to assert a name for a digital entity, assert a 
property of  a  digital  entity,  and  assert  relationships  that  are  true  about  a  digital  entity. 
Information is  stored in information repositories (relational databases, XML databases, flat 
files, etc.). The combination of a semantic label and associated data is treated as metadata. 
Metadata are organized through specification of a schema and stored as attributes in a relational 
database. The digital entities that are registered into the database comprise a collection. The 
metadata in the collection in turn provides the context for interpreting the significance of the 
registered digital entities.

Grids manage distributed  execution  of  processes. The SRB data  grid  manages simulation 
results, observational data, and derived data products. Grids and data grids are complementary 
technologies  that  together  enable  the  creation and  management  of  data.  Digital  libraries 
organize information in collections.  Persistent archives preserve the information content of 
collections. Persistent archives manage the evolution of all components of the hardware and 
software infrastructure, including the encoding syntax standards for data models [2].

3.4.3. The Internet Backplane Protocol
The Internet Backplane Protocol (IBP) is middleware for managing and using remote storage. It 
was  invented  to  support  Logistical  Networking  in  large  scale,  distributed  systems  and 
applications. We define logistical networking as the global scheduling and optimization of data 
movement, storage and computation based on a model that takes into account all the network's 
underlying physical resources. This contrasts with more traditional networking, which does not 
explicitly  model  storage or  computation  resources  in  the  network.  We  call  this  approach 
"logistical"  because of  the  analogy  it  bears  with  the  systems  of  warehouses,  depots  and 
distribution channels commonly used in the logistics of military and industrial activity. IBP 
provides a mechanism for using distributed storage for logistical purposes.

It got its name because it was designed to enable applications to treat the Internet as if it were a 
processor backplane. Whereas on a  typical backplane, the user has access to  memory and 

RINGRID-WP3-D3_2-JKU-
Middleware.odt

PUBLIC Page 69 / 149



RINGrid  Status of Grid Middleware Standards―  
for Sharing Scientific Instruments

peripherals and can perform direct communication between them with DMA, IBP gives the user 
access to remote storage and standard Internet resources (e.g. content servers implemented with 
standard sockets) and can perform direct communication between them with the IBP API.

By providing a uniform, application-independent interface to storage in the network, IBP makes 
it possible for applications of all kinds to use logistical networking to exploit data locality and 
more effectively manage buffer resources. We believe it  represents the kind of middleware 
needed to overcome the current balkanization of state management capabilities on the Internet, 
so that any application that needs to manage distributed state can benefit from the kind of 
standardization,  interoperability,  and  scalability  that  have  made  the  Internet  into  such  a 
powerful communication tool [3].

3.4.4. Storage Resource Managers
A collaboration  involving the  EU DataGrid, Jefferson Lab, Fermi  Lab and the  Lawrence 
Berkeley National Laboratory is developing middleware components called Storage Resource 
Managers (SRMs). Storage Resource Managers (SRMs) are middleware software modules 
whose purpose is to manage in a dynamic fashion what resides on the storage resource at any 
one time. SRMs do not perform file movement operations, but rather interact with operating 
systems, mass storage systems (MSSs) to perform file archiving and file staging, and invoke 
middleware components  (such as  GridFTP) to  perform file  transfer operations. There are 
several types of SRMs: Disk Resource Managers (DRMs), Tape Resource Managers (TRMs), 
and Hierarchical Resource Managers (HRMs). We explain each next. Unlike a storage system 
that allocates space to users in a static fashion (i.e. an administrator's interference is necessary 
to change the allocation), SRMs are designed to allocate and reuse space dynamically. This is 
essential for the dynamic nature of shared resources on a grid.

Disk Resource Managers (DRM) manages dynamically a single shared disk cache. This disk 
cache can be a single disk, a collection of disks, or a RAID system. The disk cache is available 
to the client through the operating system that provides a file system view of the disk cache, 
with the usual capability to create and delete directories/files, and to open, read, write, and close 
files. However, space is not pre-allocated to clients. Rather, the amount of space allocated to 
each client is managed dynamically by the DRM. The function of a DRM is to manage the disk 
cache using some client resource management policy that can be set by the administrator of the 
disk cache. The policy may restrict the number of simultaneous requests by each client, or may 
give preferential access to clients based on their assigned priority. In addition, a DRM may 
perform operations to get files from other SRMs on the grid. This capability will become clear 
later when we describe how DRMs are used in a data grid. Using a DRM by multiple clients 
can provide an added advantage of file sharing among the clients and repeated use of files. This 
is especially useful for scientific communities that are likely to have an overlapping file access 
patterns. One can use cache management policies that minimize repeated file transfers to the 
disk cache for remote grid sites. The cache management policies can be based on use history or 
anticipated requests.

Tape Resource Managers (TRM) provide a middleware layer that interfaces to systems that 
manage robotic tapes. The tapes are accessible to a client through fairly sophisticated Mass 
Storage Systems (MSSs) such as HPSS, Unitree, Enstore, etc. Such systems usually have a disk 
cache that is used to stage files temporarily before transferring them to clients. MSSs typically 
provide a client with a file system view and a directory structure, but do not allow dynamic 
open, read, write, and close of files. Instead they provide some way to transfer files to the 
client's space, using transfer protocols such as FTP, and various variants of FTP (e.g. Parallel 
FTP, called PFTP, in HPSS). The TRM's function is to accept requests for file transfers from 
clients, queue such requests in case the MSS is busy or temporarily down, and apply a policy on 
the use of the MSS resources. As in the case of a DRM, the policy may restrict the number of 
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simultaneous transfer requests by each client, or may give preferential access to clients based on 
their assigned priority.

Hierarchical Storage Managers (HRM) are a TRM that have a staging disk cache for its use. 
Thus, it can be viewed as a combination of a DRM and a TRM. It can use the disk cache for 
pre-staging files for clients, and for sharing files between clients. This functionality can be very 
useful in a data grid, since a request from a client may be for many files. Even if the client can 
only  process one  file  at  a  time,  the  HRM can use  its  cache to  pre-stage the  next  files. 
Furthermore, the transfer of large files on a shared wide area network may be sufficiently slow, 
that while a file is being transferred, another can be staged from tape. Because robotic tape 
systems are mechanical in nature, they have a latency of mounting a tape and seeking to the 
location of a file. Pre-staging can help mask this latency. Similar to the file sharing on a DRM, 
the staging disk in an HRM can be used for file sharing. The goal is to minimize staging files 
from the robotic tape system.

The concept of an SRM can be generalized to the management of multiple storage resources at 
a site. In such cases, the site SRM may use "site-file-names" (directory path + file names) which 
do not reflect the physical location and file names. This gives the site the flexibility to move 
files around from one storage device to another without the site-file-names changing. When a 
client accesses a file using a site-file-name, it may be given in response the physical location 
and file name. The client can then use the physical file name to execute a file transfer.

In general, it is best if SRMs are shared by a community of users that are likely to access the 
same files. They can be designed to monitor file access history and maximize sharing of files by 
keeping the most popular files in the disk cache longer [4].

3.4.5. References
[1] The San Diego Supercomputer Center Storage Resource Broker (SRB), http://www.sdsc.edu/srb

[2] Digital Libraries and Data Intensive Computing, R. Moore, China Digital Library Conference , Beijing, China, September 
2004

[3] J. S. Plank, M. Beck, W. Elwasif, T. Moore, M. Swany, and R. Wolski. The Internet Backplane Protocol: Storage in the 
network. In NetStore '99: Network Storage Symposium. Internet2, October 1999.

[4] Storage Resource Management Working Group, http://sdm.lbl.gov/srm-wg/

3.5. GridFTP Middleware
The GridFTP protocol provides for the secure, robust, fast and efficient transfer of (especially 
bulk)  data.  The Globus Toolkit  provides the most commonly used implementation of  that 
protocol.  GridFTP provides  support  for  parallel data  transfer using  multiple  TCP streams 
between the source and the destination. GridFTP also provides support to transfer data that is 
striped across multiple hosts by using one or more TCP streams between m hosts on the sending 
side and n hosts on the receiving side. GridFTP allows an authenticated third-party to initiate, 
monitor and control a data transfer between storage servers. Checkpointing is used to provide 
fault tolerance. A failed transfer is restarted from the last checkpoint.  It  extends the partial 
transfer mechanism defined in the standard FTP to support transfers of arbitrary subsets of a 
file. GridFTP also allows manual or automatic control of TCP buffer size.

As mentioned previously, GridFTP uses TCP as the underlying transport mechanism. Therefore, 
TCP implementation and configurations will  have a fundamental impact on communication 
performance [5].

3.5.1. References
[5] GridFTP, http://www.globus.org/toolkit/data/gridftp/
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3.6. Gridge Toolkit
Gridge Toolkit is an open source software initiative developed by PSNC aimed to help users to 
deploy ready-to-use grid middleware services and create productive grid infrastructures. All 
Gridge Toolkit  software components  have  been integrated together and form a  consistent 
distributed system following the same interface specification rules, license, quality assurance 
and testing.

Gridge Toolkit  components have been successfully tested with different versions of Globus 
Toolkit TM as well as other core grid middleware solutions. The Gridge Toolkit software is 
available for free with a full commercial support. Additionally to the following services PSNC 
offers for its partners and users:

● technical support, consulting, training and development for Gridge Toolkit and Globus 
Toolkit,

● assistance in design, deployment and configuration of grid middleware software,

● on-site  installation  and  integration  of  Gridge  Toolkit  and  Globus  Toolkit  key 
components,

● workshop and hands-on training on "grid enabled" technologies.

3.6.1. Tools and services
Gridge Toolkit consists of the following tools and services:

● GridSphere Portal Framework (developed within Grid-Lab)

● Grid Service Provider (GSP) (developed within Progress)

● Grid Resource Management System (developed within GridLab)

● Grid Authorization Service (developed within GridLab)

● Grid Mobile Services (developed within GridLab)

● Grid Data Management System (developed within Progress)

● Migrating  Desktop  (developed  mainly  within  CrossGrid  and  continued  in  other 
projects).

● Grid Monitoring System (Mercure) (developed within GridLab)

● System level checkpointing library

All the pieces are integrated with each other and follow the same interface specification rules, 
license, quality assurance and testing, distribution, etc. The most important tools and services 
are described in the next subsections.

3.6.2. Grid Service Provider
The  user  access philosophy  in  Gridge  is  drawn  around the  concept of  enabling  multiple 
independent user access applications, such as web portals, standalone applications and mobile 
user interfaces for the utilization by the users of the grid infrastructure. In this philosophy each 
user may execute his grid work using any of the available user interfaces and may be doing any 
part of his work using any of these interfaces. Such an approach required a special attention 
concerning the quick delivery of important grid data such as application descriptions or job 
configurations and statuses, and concerning the construction of a single point of entry to many 
independent and sometimes also heterogeneous grid environments. This motivation led to the 
design of the Grid Service Provider (GSP) module. GSP is a set of high level grid services 
whose primary task is to support various types of grid user interfaces in quick and seamless 
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access to the data and information flowing in from the lower level services. Thanks to the 
introduction of GSP these data and information can be easily shared between heterogeneous 
user interfaces without having direct access to the lower level services. For example, it is not 
necessary to contact a grid execution engine to check the configuration of running grid jobs or 
to check their status: all this information is stored in the GSP database and can be quickly read 
and delivered to a user. GSP contains two high level services: the Job Submission Service and 
the  Application Management Service.  The  Job  Submission  Service delivers  functions  for 
computing job building, submitting them to the grid for execution and viewing the results. It 
allows  to  create jobs, configure their tasks and set  the requirements  for grid environment 
resources. The Job Submission Service features the grid resource broker plug-in mechanism, 
which allows it to cooperate with multiple independent grid infrastructures, thus allowing the 
users to submit exactly the same job to two different grid environments. The task of a grid 
resource broker plug-in is to communicate with the grid execution engine in the communication 
protocol used by that engine and to translate the job structure into the language used by that 
engine. For example, a plug-in for the Gridge Resource Management System is familiar with 
GRMS access interface and with the XRSL language used by that service. The Application 
Management Service manages the  Gridge  application  repository  that  can  also  be  shared 
between various independent user interfaces. An application descriptor contains a reference to 
the application's executable and a set of its available, required or optional arguments, required 
environment variables as well as input and output files. One executable may be referenced by 
many  applications,  and  different  application  configurations  are  viewed  as  independent 
applications.

Both  GSP services support  workflows:  The  Job  Submission  Service allows  to  configure 
workflow jobs and send them for the execution in the grid, and the Application Management 
Service allows to create descriptors for workflow applications and use them as the base for the 
creation of new job configurations.

3.6.3. Grid Portal
In Gridge, the portal access to grid services is organized with the use of the GridSphere portal 
framework. Created by the Portals Work Package in the GridLab Project, GridSphere leverages 
the most relevant standards, best-practices and technologies to offer a framework for developing 
grid portals. One of the most exciting standards to gain adoption by the general community is 
the  Portlet  Java Specification  Request  (JSR 168).  The Portlet  JSR defines  an  application 
programming interface (API) and model for packaging and presenting Web content as portlets. 
Portlets are Java classes that have a clearly defined interface and life cycle. Portlets are hosted 
by a portlet container and can be presented in a Web page in any manner supported by the 
portlet container. The Portlet JSR makes it possible to distribute and share Web applications 
more easily, creating a means for collaborating on Web portal development on a much larger-
scale. The GridSphere Project has also developed a generic framework for developing grid 
portal applications called Grid Portlets. Grid Portlets offers developers a collection of "portlet 
services" for performing tasks on the grid. These portlet services can be used to grid-enable any 
portlet  web  application.  Grid  Portlets  provides  a  collection  of  simple,  easy-to-use,  well 
integrated portlets that showcase the functionality offered in Grid Portlets, including portlets for 
retrieving  credentials,  monitoring  resources,  submitting  jobs  and  managing  remote  files. 
GridSphere can also be used as an environment to run specialized portlets cooperating with the 
services of the Grid Service Provider and of the Data Management System (DMS). These 
portlets, developed with the use of specially designed Portlet Framework that allows to run the 
portlets also in a standalone mode, utilize the high level functionality provided by GSP and 
DMS to organize more user-friendly access to grid services. The available portlets that allow to 
access the functionality of the GSP and DMS services include the "Applications" portlet, which 
allows to manage the Gridge application repository, "My computing Jobs" portlet, which allows 
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to create and submit grid jobs on top of any application available in the repository and "My 
data" portlet, which allows to manage data files stored by the Data Management System. In 
addition to these core portlets, several specialized application portlets have been developed as 
examples of user friendly portal interfaces to grid applications. The main motivation behind the 
introduction of the Portlet Framework was to create a solution that supports developers of 
specialized  user  interfaces  to  different  grid  applications.  Thanks  to  the  architecture and 
technology  used  by  the  framework  developers  of  specialized  application  portlets  gain 
opportunity to create new portlets and enable new grid applications through easy-to-use job 
configuration wizards on the portal within several days. The Portlet Framework together with 
the GridSphere portal container and the Grid Service Provider provide a flexible set of tools to 
construct web-based grid access environment. In simple scenarios, involving usage of a limited 
number of  simple applications,  a  GridSphere installation with  the Grid  Portlets fulfils  the 
requirements. When  the  user  access  involves  more  sophisticated  scenarios  with  multiple 
different applications utilized by multiple  different user  groups,  the Grid Service Provider 
module accessed via the portlets created with the use of the Portlet Framework acts as a high 
level support for the administrators, developers and users.

3.6.4. GRMS
The Gridge Resource Management System (GRMS) is an open source meta-scheduling system, 
which allows developers to build and deploy resource management systems for large scale 
distributed computing infrastructures. GRMS, based on dynamic resource selection, mapping 
and advanced scheduling methodology, combined with feedback control architecture, deals with 
dynamic grid environment and resource management challenges, e.g. load balancing among 
clusters, remote job control or file staging support. Therefore, the main goal of GRMS is to 
manage the whole process of remote job submission to various batch queuing systems, clusters 
or resources. Finally, GRMS can be considered as a robust system which provides abstraction of 
the  complex grid  infrastructure  as  well  as  a  toolbox which  helps  to  form and  adapts to 
distributing computing environments.

GRMS has  been designed as  an independent set  of  components  for resource management 
processes. It can take an advantage of various low-level core grid services, such as e.g. GRAM, 
GridFTP and Gridge Monitoring System, as well  as various grid middleware services, e.g. 
Gridge Authorization Service, Gridge Data Management Service and more. All these services 
working together provide a consistent, adaptive and robust grid middleware layer which fits 
dynamically  to  many  different  distributing  computing  infrastructures.  The  GRMS 
implementation requires Globus software to be installed on grid resources, and uses Globus 
Core Services deployed on resources: GRAM, GridFTP, MDS (optional). GRMS supports Grid 
Security Infrastructure by providing the GSI enabled web service interface for all clients, e.g. 
portals or applications, and thus can be integrated with any other middleware grid environment. 
One of the main assumptions for GRMS is to perform remote jobs control and management in 
the  way that  satisfies  Users  (Job  Owners)  and their  applications requirements as  well  as 
constraints and policies imposed by other stakeholders, i.e. resource owners and grid or virtual 
organization administrators. All users requirements are expressed within XML-based resource 
specification documents and sent to the GRMS as SOAP requests over GSI transport  layer 
connections. Simultaneously,  Resource Administrators (Resource Owners) have full  control 
over resources on which all jobs and operations will be performed by appropriate GRMS setup 
and installation. Note, that the GRMS together with Core Services reduces operational and 
integration costs for administrators by enabling grid deployment across previously incompatible 
cluster and resources. Technically speaking GRMS is a persistent service within a Tomcat/Axis 
container. It is written completely in Java so it can be deployed on various platforms. With the 
GAS, GRMS is  able  to  manage both  job  grouping  as  well  as  jobs  within  collaborative 
environments  according  to  predefined  VO  security  rules  and  policies.  With  the  Data 
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Management services from Gridge, GRMS can create and move logical files/catalogs and deal 
with  data  intensive experiments. Gridge Monitoring Service can be used by GRMS as an 
additional information system. Finally, Mobile service can be used to send notifications via 
SMS/emails about events related to users' jobs and as a gateway for GRMS mobile clients. 
GRMS is able to store all operations in a database. Based on this information a set of very 
useful statistics for both end users and administrators can be produced. All the data is also a 
source for further, more advanced analysis and reporting tools.

GRMS is composed of the following modules:

● Job Receiver Module. Provides GSI enabled web service interface for GRMS. In job 
submission this module is responsible for job description validation and putting proper 
job to a queue. For workflow jobs it creates graph representation of tasks and check its 
correctness.

● Job Queue. Stores jobs which are ready for execution. It is prepared for implementation 
of any queue management strategy and scheduling algorithms.

● Broker Module is the heart of GRMS. It steers the whole process of job submission: it 
gets jobs from queue, calls Resource Discovery Module to find appropriate resources, it 
evaluates resources to find "the best" one, it creates the environment for job execution 
by transferring input data, it calls the Job Manager Module to monitor status changes of 
a  job; after the job is  finished it  takes care on transferring output data to  location 
specified by a user.  It  also provides information about jobs and their history in the 
system.

● Resource Discovery Module. Finds resources that fulfil requirements described in Job 
Description. Resources are described in an XML document which contains parameters 
important from the job scheduling point of view. Resource Discovery Module can be 
configured to use many information sources. It can use e.g. Globus MDS, iGrid service, 
Mercury  Monitoring  Service,  Adaptive  Components  Service,  Testbed  Information 
Service.

● Job Manager Module. Responsible for monitoring of status changes of job, and for job 
control: job cancelling, suspending and resuming.

● Job Registry Module. Responsible for storing all information about jobs, and make it 
available for other modules.

An XML based GRMS Job Description (GJD) language was specified to allow users defining 
the computing jobs and resource requests. For each task there is a section in a job description 
document describing resource requirements and user preferences used for dynamic resource 
discovery. Another section defines the application: executable, input and output files required, 
arguments, environment, etc. One of the most interesting features of GRMS is its ability to deal 
with jobs defined as a set of tasks with precedence relationships (workflows). With just one call 
a  user can submit the whole  computational  experiment that  consists  of many independent 
application executions. Two ways of expressing the dependencies between tasks are possible. 
The first one is a direct way, based on the parent child relationship among tasks. In his case the 
execution of a child depends on the status change of its parents.

The second way of expressing dependencies is associated with a data flow between the tasks. 
Here a user can specify that an output of one task becomes the input for the other one. What is a 
beauty here is that a user does not have to specify the exact file locations. However, in such a 
case it is user's responsibility to define file dependencies correctly. GRMS will reject execution 
of the job where data dependencies contradict the parent-child relationship. As it was already 
mentioned the basic way of introducing dependencies between tasks is by defining the parent-
child dependencies. A very interesting and novel feature of GRMS which distinguishes it from 
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the other systems is that execution of a child task can be triggered by any status change of a 
parent task. So, not only a task termination can trigger following executions. This feature is 
very useful in many scenarios. For instance we can imagine that a user would like to execute 
some  application  as  soon  as  the  other  one  starts  running  ―  e.g.  for  client  server 
communication. The other example could be the flow of computation that depends on the 
failure of execution of one of the tasks (failover mechanisms).

3.6.5. GAS
The Gridge Authorization Service (GAS) is an authorization system which can be the standard 
authorization decision point for all components of a grid system. Security policies for all system 
components can be stored in  GAS. Using these policies GAS can return an authorization 
decision upon the client request. GAS has been designed in a way that makes it is easy to 
perform integration with external components and to manage security policies for complex 
systems. Full integration with the Globus Toolkit and many other grid services makes GAS an 
attractive solution for grid environments. As stated above an authorization service can be used 
for returning an authorization decision upon the user request. The request has to be described by 
three attributes: user, object and operation. The requester simply asks if the specific user can 
perform the operation on the specific object. Obviously, the query to an authorization service 
can be more complex and the answer given by such service can be complicated as well. By 
using the modular  structure of  GAS it  is  easy to  write  a  completely new communication 
module. The GAS complex data structure can be used to model many abstract and real world 
objects and security policies for such objects. For example, GAS has been used for managing 
security  policies  for  many  Virtual  Organizations,  for  services  (like  Gridge  Resource 
Management  Service,  iGrid,  Mobile  Services  and  other)  and  for  abstract  objects  like 
communicator conferences or HPC centres in Europe.

The  main  goal  of  GAS is  to  provide  a  functionality  that  would  be  able  to  fulfil  most 
authorization requirements of grid computing environments. GAS is designed as a trusted single 
logical point for defining security policy for complex grid infrastructures. As flexibility is the 
key requirement, it is to be able to implement various security scenarios, based on push or pull 
models, simultaneously. Secondly, GAS is independent of specific technologies used at lower 
layers. It should be fully useable in environments based on grid toolkits as well as other toolkits. 
The high level of  flexibility  is  achieved mainly  through the modular design of  GAS and 
efficient data model, with which one can define many scenarios and objects from the real world. 
It means that GAS can use many different ways for communication with external components 
and systems and many security data models and hold security policy on different types of 
storage systems. These features make GAS attractive for many applications and solutions (not 
only for those related with grids). GAS has to be the trusted component of each system in which 
it is used and brings about that the implementation of GAS was written in ANSI C. This choice 
makes GAS a very fast and stable component which consumes not much CPU power and little 
amount of memory.

The main problem of many authorization systems is their management. It is not easy to work 
with a complex system in a user-friendly way. Based on many experiences and the end user 
feedback  the  GAS  administration  portlet  (web  application)  is  provided,  which  makes 
management as easy as possible. Flexibility of this solution gives users a full possibility of 
presenting only these security policies which are important for them. The GAS management is 
possible in two other ways: by the GUI GTK client and by the command line client.

For Globus Toolkit users, GAS provides a set of plugins for Globus components, (for example: 
gatekeeper and job manager plug-in). These plug-ins communicate with GAS in a secure way 
and can ask GAS about an authorization decision.
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3.6.6. Monitoring: Mercury
The  Mercury Grid  Monitoring System provides  a  general and  extensible  grid  monitoring 
infrastructure. The Mercury Monitoring is designed to satisfy requirements of grid performance 
monitoring: it provides monitoring data represented as metrics via both pull and push access 
semantics and also supports steering by controls. It supports monitoring of grid entities such as 
resources and applications in a generic, extensible and scalable way. It is implemented in a 
modular way with emphasis on simplicity, efficiency, portability and low intrusiveness on the 
monitored system.

The aim of the Mercury Monitoring system is to support the advanced scenarios in a grid 
environment, such as application steering, self-tuning applications and performance analysis 
and prediction. To achieve this the general GGF GMA architecture is extended with actuators

and controls. Actuators are analogous to sensors in the GGF GMA but instead of gathering 
information, they implement controls and provide a way to influence the system.

The architecture of Mercury Monitor is based on the Grid Monitoring Architecture (GMA) 
proposed by Global Grid Forum (GGF), and implemented in a modular way with emphasis on 
simplicity, efficiency, portability and low intrusiveness on the monitored system.

The input of the monitoring system consists of measurements generated by sensors. Sensors are 
controlled by producers that can transfer measurements to consumers when requested. Sensors 
are  controlled by producers that  can transfer measurements to  consumers when requested. 
Sensors are implemented as shared objects that are dynamically loaded into the producer at run-
time depending on configuration and incoming requests for different measurements. In Mercury 
all measurable quantities are represented as metrics. Metrics are defined by a unique name such 
as host.cpu.user which identifies the metric definition, a list of formal parameters and a data 
type. By providing actual values for the formal parameters a metric instance can be created 
representing an entity to be monitored. A measurement corresponding to a metric instance is 
called metric value.

Metric values contain a time-stamp and the measured data according to the data type of the 
metric definition. Sensor modules implement the measurement of one or more metrics. Mercury 
Monitor supports both event-like (i.e. an external event is needed to produce a metric value) and 
continuous metrics (i.e. a measurement is possible whenever a consumer requests it such as, the 
CPU temperature in a host).

Continuous metrics can be made event-like by requesting automatic periodic measurements. In 
addition to the functionality proposed in the GMA document, Mercury also supports actuators. 
Actuators  are  analogous  to  sensors  but  instead  of  taking  measurements  of  metrics  they 
implement  controls  that  represent  interactions  with  either  the  monitored  entities  or  the 
monitoring system itself.

3.6.7. Data Management System
Data storage, management and access in Gridge environment is supported by the Gridge Data 
Management Suite (DMS). This suite composed of several specialized components allows to 
build  a  distributed  system  of  services  capable  of  delivering  mechanisms  for  seamless 
management of  large  amount of  data.  This  distributed  system is  based on  the  pattern  of 
autonomic agents using the accessible network infrastructure for mutual communication. From 
the external applications point of view DMS is a virtual file system keeping the data organized 
in a tree structure.

The usage of the DMS has been described in details in section 4.1 concerning VLab.
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Figure 3.6.1: Gridge Data Management System architecture.

3.6.8. Mobile User Support
Mobile software development in Gridge (see figure below) is focused on providing a set of 
applications that would enable communication between Mobile devices, such as cell phones, 
Personal Digital Assistants (PDA) or laptops and grid services on the other side. This class of 
applications is represented by clients running on mobile devices, mobile gateways acting as a 
bridge between clients and grid services as well as additional specialized middleware services 
for mobile users. The main goal of the services is to make use of small and flexible mobile 
devices that are increasingly used for web access to various remote resources.  The system 
provides grid access mechanisms for such devices. This requires adoption of the existing access 
technologies like portals for low bandwidth connectivity and low level end-user hardware. The 
mobile  nature  of  such  devices  also  requires  flexible  session  management  and  data 
synchronization. The system enhances the scope of present grid environments to the emerging 
mobile  domain.  Utilizing  new  higher  bandwidth  mobile  interconnects,  very  useful  and 
previously impossible scenarios of distributed and collaborative computing can be realized. To 
achieve this and taking into consideration some still existing constraints of mobile devices, the 
Access for Mobile Users group is developing a set of applications in the client-server model 
with the J2ME CLDC/MIDP-Java client, and portlet server working with GridSphere. This set 
allows  us  to  manage  end  user  grid  jobs  (steer  an  application)  or  view  messages  and 
visualizations produced by grid applications on device such simple as standard mobile phone. 
The second group of developed services is tightly connected with end user notifications about 
various events in grids. Events like: the information about user application is started or finished, 
the visualization is ready for viewing or waiting for new data, can be sent to end users using 
various notifications  way.  It  can  be  Email,  SMS,  MMS,  or  message of  one  of  Internet 
Communicators like AIM, Yahoo, ICQ, Jabber etc. (including most popular in Poland Gadu-
Gadu and Tlen). Mobile services gives also end users the possibility  to  start  a conference 
concerning the aforementioned event between users of the given virtual organization (including 
conferences between clients  of  different communicators). The unique possibility  of  giving 
access to grid resources for users of relatively weak devices is one of features that distinguish 
Gridge mobile applications from other grid systems. Moreover, the used technology, Java 2 
Micro Edition ― Mobile Information Device Profile (J2MEMIDP) applications (midlets) on 
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the client side allows to develop flexible, possibly off-line working programs that may be used 
on a  wide  range of  devices supporting  J2ME. Using  the  MIDP compliant  device  internal 
repository for storing data, gives the user possibility to use it later in offline state and prepare 
the data, to be sent in on-line state. The Mobile Command Center (MCC) that acts as a gateway 
between mobile client and grid services is  developed in  Java as a GridSphere portlet (see 
gridsphere.org) with separate "mobile" context. MCC automatically grabs the device profile 
(like device class, screen size, color depth, etc), this information is used during forwarding the 
request from mobile device to grid services (mainly GSI-enabled web services like Gridge 
MessageBox, Visualization Service for Mobiles or Gridge Resource Management System). 
Services that can be accessed from mobile device using MCC belong to two groups: the first 
group consists of grid services that were adopted to use with mobile devices, the second group 
are services developed for use only with mobile devices. The Visualization Service for Mobiles 
belong to second group and is used to view the application output in form of visualization 
prepared exactly according to the user's device capabilities. The advantage in this case is as 
follows: the large amount of data is not sent via weak GPRS connections to the device that 
cannot store it in the memory and cannot display it correctly. First group of services consists of 
Gridge Resource Management System and  Notification  and  Messenger Service.  The  first 
service can be used in 'Collaborative scenario' ― the user can steer the application (even not 
being an owner) from mobile device. He/she can get the jobs list, migrate, resume, suspend, 
cancel, edit, view history and submit new job on the basis of edited/modified description of 
already finished jobs. Using GRMS together with Notification service the user can register for 
user notifications related to the running jobs. In this way the user is notified about important 
events occurring in the grid (like jobs status changes, application output availability). These 
notifications can be sent as email, SMS or using an instant messenger (AIM, Yahoo, etc.) to the 
user. Using the messenger service it is possible also to make a conference between users of 
virtual  organization  defined  in  Gridge  Authorization  Service  even  if  they  use  different 
communicators.

Figure 3.6.2: Mobile services architecture.
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3.6.9. Accounting: VUS
Identification of users in any system is necessary for accounting and security reasons, e.g. in 
order to charge for used resources and tracing unfair behavior. On the grid level, the user is 
uniquely identified by the subject of his proxy certificate (the so called Distinguished Name, 
DN). The proxy may also contain some additional information related to the identification, like 
e. g. the name of a Virtual Organization on behalf which the user acts. On the other hand, on the 
operating system level,  the user is  identified by the user account, on which the processes 
performing user requests are run. Thus we face problem of mapping the global user identity 
(DN) to a local identity (account). The simplest solution is a 1-1 mapping, which means that the 
user must have a "personal" account on each node in the grid (this solution is implemented by 
the Globus gridmap file). This is not scalable: Bigger systems are hard to manage for obvious 
reasons. Another simple approach is the "n-1 mapping", where many users may be mapped to 
the same account. This is usually not sufficient, even if only users of the same organization are 
mapped to the same account. The mentioned accounting and security requirements are not 
fulfilled and moreover, the problem of unwanted interference of different users' jobs occurs.

The Virtual User System (VUS) addresses all these problems. VUS is an extension of Globus 
GRAM (gridmap callout) and allows running jobs without having a "personal" user account on 
a node. First, the user is authorized by querying set of authorization plugins. The example 
plugins  are  the  gridmapfile  (allows  for  backward  compatibility  with  standard  Globus 
mechanism) and GAS (allows for integration of VUS and GAS). The next step is the selection 
of a local account.

The "personal" accounts are replaced by "virtual" ones, which are mapped to users only for the 
time needed to fully process a job. The Account Manager assures that only one user is mapped 
to a particular account at any given time. The history of user-account mappings is stored in a 
database, so that accounting and tracking of user activities are possible.

The local VUS database was designed to store both standard and non standard accounting data 
types.  The  standard  accounting  may  be  periodically  gathered from  the  local  accounting 
(operating system or local scheduling system level) and merged with global user identity by 
Accounting Module scripts. Then, the accounting may be published via web service interface.

3.6.10. Summary
In  this  section  the  grid  toolkit  called Gridge, developed by  Poznan Supercomputing  and 
Networking Center has been presented. Gridge can be used as  a  whole,  including all  the 
services and tools, or a user may choose just these services and tools that are important for 
specific scenario. Gridge provides a flexible, secure and robust grid infrastructure. It is currently 
being used in many grid infrastructures, including Clusterix (http://www.clusterix.pcz.pl), VLab 
(http://vlab.psnc.pl), InteliGrid (http://www.inteligrid.com),  ACGT (http://acgt.ercim.org) and 
others.

3.6.11. References
[1] www.gridge.org

[2] http://gridlab.org

[3] GridSphere Project, http://www.gridsphere.org/

3.7. Visualization Middleware
With the advent of grid computing as a sensible tool for medium and large scale science over 
the last years the analysis of data produced by grid-enabled applications has become more and 
more crucial. One important aspect of this development is given by large-scale simulations in 
application domains  like high energy physics,  chemistry,  or life sciences. This  simulations 
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typically produce output data, which requires suitable visualization tools for supporting the 
scientist in understanding the result of the simulation.

Therefore several approaches for grid-based visualization solutions have been developed. They 
can be differentiated based on what user community they address, as well as the underlying 
technology applied.

Solutions, which hide the inherent complexity of the grid from the scientific end user, provide 
good  tools  for  visual  analysis.  A typical  class  of  applications,  which  are  fulfilling  this 
requirement, are Problem Solving Environments (PSEs). Within these enviroments the scientist 
can  design  in-silico  experiments  interactively,  which  are  subsequently  executed  on  a 
computional  grid.  An example PSE is  given by  VLAM-G [AFSVLA], which enables the 
scientist to interactively construct experimental configurations. The system also allows remote 
control of the experiments conducted as well as collaboration mechanisms. Typical application 
domains are biosciences and material sciences.

Another  important  category  of  grid-based  visualization  solutions  follows  the  remote 
visualization paradigm, which enables the user to observe a visualization which is executed on a 
remote grid resource. This approach enables the usage of powerful grid resources for rendering 
large-scale datsets while the user can observe the results from his local desktop computer. This 
approach is specifically sensible if the visualization can be executed on the same machine as the 
simulation or a machine nearby, thus reducing the amount of data which needs to be moved. An 
example integrated with OGSA-based webservices is presented in [BROAPP]. This approach 
applies the functionality of AccessGrid [CHIACC] for broadcasting the visualization, which is 
generated by the VISIT toolkit [EICSTE] to multiple remote observers. Another grid-based 
visualization solution, which is applying a portal-based user interface accessible with a web-
browser, is presented in [JANDEP]. The visualization functionality provided by the backend 
server includes parallel volume rendering, while the results are stored as images, which can be 
investigated using the web portal. For the data transfer between the backend rendering system 
and the  web portal  Globus services [FOSGLO] are  used.  Within  the  Patras/ITBL system 
[SUZVIS] remote visualizations are delivered to a client computer over the grid for monitoring 
as well as steering a simulation executed on a supercomputer. It also offers the possibility of 
postprocessing visualization by connecting it  to AVS/Express [UPSTHE]. The Visapult  tool 
[BETGRI] visualizes the results of a grid-enabled general relativity simulation involving the 
collision of black holes and the emission of gravitational waves. It is using services provided by 
Cactus [ALLTHE] and Globus [FOSGLO] to access the grid. The rendering itself is done by a 
parallel direct volume renderer based on MPI. In [NORENA] an approach using local volume 
rendering while transmitting the volume over the grid is presented. The ordering of the volume 
for transmission is done in a progressive manner based on visibility, which is determined on the 
clients side. Furthermore the volume data gets wavelet compressed before transmitted over the 
grid.  The  Distributed  Visualization  (Dv)  System  [AESPRE] is  a  grid-based  distributed 
visualization system mainly used for earthquake visualization. A central concept and the unit of 
work to be scheduled onto the grid is the active frame, a piece of data together with the program 
to be executed on it. The scheduling is done based on resource information delivered by the 
Remos [LOWDES] and Network Weather Service (NWS) [WOLTHE] systems. To improve the 
general usability of the system algorithms from AVS [UPSTHE] and the Visualization Toolkit 
(VTK) [SCHTHE] can be integrated. A distance tomography system operating on the grid and 
offering access to 3D patient data and visualization capabilities is described in [FOSDIS]. These 
visualization capabilities include geometry transmission for local rendering as well as video 
transmission of  readily  rendered images. In  [CZAPRA] an approach for distributed visual 
exploration  of  large  datasets  using a  data  reduction  pipeline  is  presented. The  pipeline is 
distributed over the grid and data is transmitted during the investigation of the previous dataset. 
SGI graphics hardware is partially exploited to speed up the rendering process.
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Regarding  the  integration  of  grid middleware  into  the  visualization  solution  the  approach 
presented in [NORENA] is rather loosely coupled with the grid middleware compared to the 
other grid-based approaches discussed above. In this solution the rendering is done at the client 
side  with  the  volume data  being progressively  transmitted  from the  server where it  was 
produced.

Considering the role of user interfaces for grid-based visualization solutions the situation has 
improved quite a bit over the last years in terms of usability. This is especially reflected by the 
usage of  web portals or  Java-based solutions  as  graphical  user interfaces, which are both 
reducing the software requirements on the clients side to a minimum. This flexibility regarding 
the user interfaces can be provided rather easily  since the grid  middleware libraries to  be 
integrated only provide basic services. A common user interface for grid applications is a web 
browser by using portal-based techniques such as in the approaches described in [JANDEP] and 
[SUZVIS]. An example for a Java-based grid user-interface is given by the Migrating Desktop 
(MD) [KUPMIG] which is supporting mobile usage due to its ability to be started from a web 
browser or Java Web Start.

3.7.1. General Considerations for Grid-based Visualization
A grid-based visualization solution commonly has to handle large scale input data. For such 
scenarios  parallel  rendering  techniques  as  described  in  [CROPAR]  are  commonly  well 
applicable. However within the heterogeneous grid environment the selection of appropriate 
visualization algorithms as well as the selection of resources is of significant importance. For 
supporting the design process of grid-based visualizations one can follow the reference model 
proposed by Haber and McNabb [HABVIS] as shown in figure 3.7.1.

Figure 3.7.1: Conceptual visualization model.

Within the first step the raw data provided by the simulation is filtered or enhanced to extract 
the part the user is interested in. The following visualization mapping stage decides which type 
of visualization will occur by selecting a visualization algorithm like for example isosurface 
extraction. After the Abstract Visualization Object representing the visualization algorithm has 
been selected the rendering part produces the final image.

This general model of the visualization pipeline can be used to design distributed and parallel 
visualization scenarios. For example each stage of the pipeline can be scheduled separately thus 
offering more possibilities for exploiting different types of machines available on the grid. This 
especially refers to the execution of parallel visualization algorithms which have to be selected 
based on the hardware resources available.

Two types of parallelism are applicable: Task Parallelism and Data Parallelism. Task Parallelism 
refers to the pipeline structure of the visualization which can be sensibly exploited for speeding 
up the visualization process in case of multiple datasets that have to be visualized consecutively, 
such as a timeseries. Data Parallelism refers to parallelization within the pipeline stages by 
distributing the data among multiple threads or processes.
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If a visualization is executed on the grid in a distributed and parallel manner it is commonly 
sensible to run the visualization job nearby the data to be visualized to save transmission time. 
In such a scenario the images as the final visualization output need to be transmitted to the local 
machine of the user.  However the bandwidth requirements are significant  if  uncompressed 
images are transmitted at a high framerate. A sensible solution is therefore using a video codec 
to transmit the visualization output to the client  without much loss of visual  quality while 
offering significant bandwidth savings.

Another problem which becomes evident when a visualization is being executed remotely on 
the grid is the requirement for interaction. The users commonly want to steer the visualization 
or investigate different parts of the data based on the insights which they are gaining while 
examining the data. In general grid middleware is designed for batch processing, meaning that a 
job  is  submitted to  a  grid  resource  is  running  there  until  it  finishes  and  the  results  are 
investigated  in  a  post-mortem mode.  Consequently  interactivity  has  to  be  provided  by 
additional tools such as glogin.

3.7.2. Glogin
Glogin is a tool for interactivity support on the grid, which can be applied for a wide variety of 
applications. It offers an interactive bi-directional channel between the grid and the users local 
desktop machine which can be applied for transmitting arbitrary data in and out of the grid.

The most important feature of glogin is its ability to interact with a grid application in a way 
similar to an application running on the local machine. This ability can be exploited for a lot of 
interactive applications since glogin itself can handle arbitrary network traffic.

Another distinctive feature is  given by its  light-weightness  compared to  deamon processes 
commonly offering interactive access services such as the ssh daemon.

Due to its generic nature glogin offers a lot of possibilities to the users. The functionality is 
generally comparable to SSH and includes features such as interactive shell  access to grid 
resources, TCP port forwarding, X11 forwarding, encryption, Virtual Private Networks, and 
transmission of generic low-level traffic, for example visualization data.

Shell Access. The most common usecase of glogin is the interactive shell access to remote grid 
resources. It is also the mode of operation where glogin is most "visible" to its users. It is used 
in way similar to ssh by invoking it from the command line:

hr@clio:~> glogin hydra

By using glogin in such a way, which is also shown in figure 3.7.2, one can log onto grid 
resources similar to using SSH while not needing a dedicated daemon being running on the 
server side. Another advantage is the fact that the user is identified by his grid certificate and 
thus is not required to enter a password upon login.

When invoked, glogin submits itself to the remote resource where it acts as a server instance. 
For transmitting the data of the shell session the GSH protocol is used, whose name was chosen 
because of the similarity to SSH.
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Figure 3.7.2: Glogin shell access.

TCP Port Forwarding. Using this functionality glogin enables access to grid worker nodes 
with private IP addresses. The port forwarding technique applied is comparable to the one 
provided by SSH. If glogin is used to access a worker node with a private IP another instance of 
glogin is executed on another node within the same private network which offers a public IP 
address. This glogin process forwards the network traffic to the node with the private IP address 
in a manner transparent to the application using the connection.

Besides accessing nodes with private IP addresses the port forwarding functionality of glogin 
can also be used for securing the network traffic of another protocol if the port forwarding 
functionality is used in combination with the communication encryption functionality of glogin.

X11  Forwarding. The  X11  forwarding feature  is  comparable to  port  forwarding.  In  a 
Unix/Linux  environment (what  is  commonly used for  grid  installations)  graphics  requests 
generated by local and remote applications are handled by an X server. This X server output can 
be  forwarded to  a  remote machine  using  "X11  forwarding". Glogin  enables this  type  of 
connectivity for nodes which are accessible over the grid.

This functionality is an important feature to enable the transmission of graphics output from 
grid nodes to the local desktop, where the user is able to view the output of an interactive grid 
job.

If somebody is only considering ordinary batch jobs, the job output is commonly analysed post 
mortem. But if a user is running an interactive job on the grid the forwarding of X11 traffic is an 
important feature.

Encryption. Security has  been an  important  consideration  throughout  the  development of 
glogin. Therefore arbitrary traffic sent over glogin can be encrypted without further problems. 
The generic security service (GSS) is applied for encryption of glogin traffic.

If one combines this functionality with port forwarding arbitrary grid traffic can be encrypted 
seamlessly.

Virtual Private Networks. Glogin can also be applied for the realization of virtual private 
networks (VPNs). Compared to the approaches mentioned above the VPN functionality offers 
the possibility of routing additional types of network traffic such as UDP or ICMP packages 
over a secured network.
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Low-Level Visualization Traffic. Applying glogin as a transport layer for visualisation data is 
an important usecase which has been applied within the scope of the CrossGrid project as well 
as the current int.eu.grid project.

However, from the point of view of glogin the transmission of visualization data is just an 
application, which makes use of the interactive capabilities of glogin. But since interactive 
visualization scenarios are very demanding in terms of network communication, they provide a 
good testcase for the capabilities of glogin.

Glogin Architecture. From the point of view of the middleware glogin is a simple grid job, 
which gets submitted by the resource management system. The requirement for an interactive 
bi-directional  channel  is  common  for  all  usecases  of  glogin.  However,  to  date  the  grid 
middleware is the limiting factor for the creation of interactive bi-directional connections. This 
is due to the Globus GASS cache, which buffers the output of a grid job and which is only 
flushed each ten seconds or when the job terminates. Glogin circumvents  this problem by 
applying the method outlined in figure 3.7.3.

Figure 3.7.3: Glogin operation.

At first the client instance of glogin submits itself as a grid job to the remote resource, which 
the user wants  to  access.  Upon startup  the  remote instance of  glogin  opens  a  connection 
endpoint for the client instance. In order to transmit the connection information to the remote 
client side it is written out and the server process forks itself. Now one instance terminates itself 
which leads to a flushing of the GASS cache, which subsequently enables the transmission of 
the connection information to the client side.

Upon receiving the information the client process can connect to the still running instance of the 
server process and thus generates an interactive bi-directional connection which can then be 
used for transmitting arbitrary traffic.

3.7.3. GVid
GVid is a grid-enabled video service, which is specifically useful in the context of grid-based 
visualizations. By using the GVid video streaming service a visualization can be rendered on 
the grid, while the user gets the visualization output delivered to his local desktop machine.
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By using GVid the visualization itself can be executed on a remote grid resource, which enables 
the usage of powerful grid resources for visualization tasks. This scenario is especially sensible 
when a large amount of data needs to be visualized, meaning that the visualization is becoming 
a sensible grid job of its own right.

The functionality of GVid addresses two issues: The transmission of the visualization output to 
the users desktop but also the communication of the interaction events back to the remote 
rendering part  running  on  the  grid  thus  enabling  a  fully  interactive  remote visualization 
scenario. In general the GVid protocol  can be realized over several different bi-directional 
communication channels. In the grid context, glogin offers itself as an ideal communication 
media since it  exactly provides the bi-directional communication  channel required. Within 
figure 3.7.4 the overall structure of GVid communicating over glogin is shown.

Figure 3.7.4: GVid structure.

GVid Architecture. For the communication of the visualization output from the rendering grid 
resource to the users machine the xvid video codec is used, which is commonly combined with 
an offscreen rendering library such as Mesa which enables graphics rendering on grid nodes 
without  graphics hardware capabilities.  On the  clients  side  an  interactive video player is 
required, which receives the video stream, decodes it and presents it to the user.

For enabling full interactivity for the remote visualization scenario user input events have to be 
sent back from the users local machine to the visualization running on the grid. This is done by 
using the GVid protocol,  which contains built-in support for common mouse and keyboard 
interaction events. Within the graphics application these events can be applied for handling 
basic interaction modes like rotation and zooming.

For cases where more sophisticated user interaction is required such as interaction with a GUI 
the GVid protocol offers the possibility of user events which can encode and transmit arbitrary 
application data over the grid.
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GVid offers several different input adapters for capturing the video stream as well as output 
adapters which are used to show the visualization to the user. Concerning the transmission 
protocol TCP socket communication or file transport can be used besides glogin.

One of the input adapters available enables grabbing its input directly from the X-server which 
is a rather generic approach. It offers the advantage that the visualization application does not 
need to be modified, while the efficiency of this approach is limited.

Another type of input adapter uses the RemoteGLUT library for offscreen rendering of an 
OpenGL application. Using this approach it does not require any graphics hardware on the grid 
worker nodes doing the rendering. Regarding the GVid output adapters two different clients 
have been developed, which are capable of displaying the incoming videostream and sending 
back the user input to the grid: One implementation is based on the SDL library, while the other 
one is a Java implementation.

3.7.4. An Example for Grid-based Remote Visualization
Within the int.eu.grid project a good example for an highly interactive grid-based visualization 
application  was  developed:  A  plasma  fusion  simulation,  which  calculates  the  particle 
trajectories within a fusion reactor. The simulation itself is done in parallel using MPI, while the 
master process of  the  parallel  application  also  visualizes the  simulation  results  using  the 
OpenGL Graphics API. The rendering is executed as offscreen rendering by the master process 
which is subsequently using GVid to encode the visualization output and transmit it over the 
grid to the user. The transmission of the video stream is done over a glogin connection.

Using glogin and GVid for transmitting the visualization of the int.eu.grid fusion application 
enables running the parallel simulation of the fusion process on the grid testbed while the user 
can investigate and steer the simulation from his desktop machine. The interaction possibilities 
include full mouse event  support including translation, rotation, and zooming of the scene 
displayed.

By submitting the fusion application together with glogin using the Migrating Desktop (MD) 
[KUPMIG] as user interface, glogin acts as communication channel between the parallel fusion 
application and the Roaming Access Server (RAS), which acts as interface between the MD and 
the grid middleware. The second part of the interactive connection is provided by a https stream 
interconnecting the RAS server and the MD running on the users machine. The whole scenario 
is illustrated in figure 3.7.5.

Figure 3.7.5: Interactive visualization architecture.
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The communication channel provided by glogin is interconnecting the user the master process 
of the OpenMPI-based fusion application, which is producing the OpenGL-based rendering.

The Java-based user interface provides two general types of  interaction:  On the one hand 
interaction with the rendering part of the fusion application enabling the usage of the mouse for 
rotating, translating and zooming the model of the fusion reactor shown, on the other hand a 
panel containing forms for setting simulation and visualization parameters, which are also 
directly  communicated to  the fusion application on the grid. If  the parameter change only 
affects the rendering the event is processed by the master node, while changes affecting the 
simulation are propagated to the simulation processes using MPI communication routines.

While the mouse events are propagated within the standard GVid protocol, the transmission 
protocol of GVid has been extended to support the transmission of the user interface events. 
This extension enables the GVid protocol to transmit arbitrary event data, which enables the 
remote steering of arbitrary applications.

Figure 3.7.6 shows the visualization output produced by the fusion application and transmitted 
over glogin together with the user interface plugin used to steer the remote simulation.

Figure 3.7.6: Fusion application in MD.
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3.8. gLite

3.8.1. The gLite Architecture
The Enabling Grids for E-sciencE project (EGEE), a European flagship research infrastructures 
grid project and the world's largest grid infrastructure of its kind (it involves more than 70 
partners from 27 countries, arranged in twelve regional federations, and provides more than 
20000 CPUs, almost 200 sites and 10 petabytes of available network storage), deploys the gLite 
middleware [3.8_18], a  middleware stack that  combines components  developed in  various 
related projects,  in  particular  Condor [3.8_7], Globus  [3.8_12], LCG [3.8_19], and  VDT 
[3.8_29], extended by EGEE developed services. This middleware provides the user with high 
level services for scheduling and running computational jobs, accessing and moving data, and 
obtaining information on the grid infrastructure as well as grid applications, all embedded into a 
consistent security framework.

The gLite grid services follow a Service Oriented Architecture [3.8_25], which will facilitate 
interoperability among grid services and allow easier compliance with upcoming standards, 
such as OGSA, that are also based on these principles. The services are expected to work 
together in a concerted way in order to achieve the goals of the end-user; however, they can also 
be deployed and used independently, allowing their exploitation in different contexts.
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Figure 3.8.1: gLite services.

Figure 3.8.1 depicts the high level services, which can thematically be grouped into 5 service 
groups: Security services encompass the Authentication, Authorization, and Auditing services 
which enable the identification of entities (users, systems, and services), allow or deny access to 
services and resources, and provide information for post-mortem analysis of security related 
events.  It  also  provides functionality  for  data  confidentiality  and  a  dynamic connectivity 
service, i.e. a means for a site to control  network access patterns of applications and grid 
services utilizing its resources. Information and Monitoring Services provide a mechanism to 
publish and consume information and to use it for monitoring purposes. The information and 
monitoring system can be used directly to publish, for example, information concerning the 
resources on  the grid.  More specialized services, such as  the  Job  Monitoring Service and 
Network Performance Monitoring services, can be built on top.

Job Management Services. The main services related to job management/execution are the 
computing  element, the  workload  management, accounting,  job  provenance, and  package 
manager services. Although primarily related to the job management services, accounting is a 
special case as it will eventually take into account not only computing, but also storage and 
network resources. The Computing Element (CE) provides the virtualization of a computing 
resource  (typically  a  batch  queue  of  a  cluster  but  also  supercomputers or  even  single 
workstations).  It  provides information about  the underlying resource and offers a  common 
interface to  submit and manage jobs on the resource.  The Workload Management System 
(WMS) is a grid level meta-scheduler that schedules jobs on the available CEs according to user 
preferences and several policies. It also keeps track of the jobs it manages in a consistent way 
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via the logging and bookkeeping service. The Job Provenance (JP) service provides persistent 
information on  jobs  executed  on  the  grid  infrastructure for  later  inspections,  data-mining 
operations,  and  possible  re-runs.  Finally,  the  Package  Manager  (PM)  service  allows  the 
dynamic deployment of application software. While the CE and WMS are part of the production 
gLite 3.0 release, the JP and PM are only available as prototypes.

Data Services. The three main services that relate to data and file access are:

● Storage Element

● file and replica catalog services

● data management

In all of the data management services described below the granularity of the data is on the file 
level. However, the services are generic enough to be extended to other levels of granularity. 
The Storage Element (SE) provides the virtualization of a storage resource (which can reach 
from simple disk servers to complex hierarchical tape storage systems) much as the CE does for 
computational resources. The catalog services keep track of the data location as well as relevant 
metadata (e.g. checksums and file-sizes) and the data movement services allow for efficient 
managed data transfers between SEs. The access to files is controlled by Access Control Lists 
(ACLs). Application specific metadata is expected not to be stored in the basic gLite services 
but in application specific metadata catalogs. All the data management services act on single 
files or collections of files. To the user of the EGEE data services the abstraction that is being 
presented is that of a global file system. A client user application may look like a Unix shell, 
which can seamlessly navigate this virtual file system, listing files, changing directories, etc. 
Note that the gLite architecture does not in general impose specific deployment scenarios (i.e. 
how many instances of a certain service are available to a user, if a service is replicated or 
distributed, etc.).

A Virtual Organisation (VO) comprises a set of individuals and/or institutions having access to 
computers, software, data,  and other  resources for  collaborative problem-solving or  other 
purposes. Virtual Organisations are a concept that supplies a context for operation of the grid 
that can be used to associate users, their requests, and a set of resources. Most importantly, 
service instances may serve multiple VOs will facilitate the scalability and performance of the 
grid system although a VO may require its own instance as well.
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3.8.2. Security

Figure 3.8.2: Security architecture components, and a user (agent) accessing a resource.

Figure 3.8.2 depicts an overview on how the components in the security architecture interact in 
the following typical request flow:

1. The user obtains grid credentials from a credential store (2), and the necessary tokens 
that assert the user's rights to access the resource (3). The credentials are short-lived and 
often derived from longer-term credentials, such as X.509 identity certificates issued by 
a Certification Authority (CA). EGEE uses myProxy [3.8_16] as credential store and the 
Virtual Organization Membership Service VOMS [3.8_22] as attribute authority. VOMS 
is also used to manage the membership of VOs.

2. The user and the service container authenticate identities to each other and establish a 
secure communication channel across the (open) network with integrity, authenticity 
and confidentiality protection, and over which a SOAP message payload is conveyed. 
By default, this is accomplished by use of HTTP over TLS. The established connection 
event is logged.

3. During the authentication in step 2 the authentication layer validates the user's identity 
with the trust anchors and credential revocation information, if such exists. The result of 
the validation is logged. The service container absorbs the payload and routes it to the 
correct service endpoint. In the case of message-level security, the authentication and 
integrity  checks happen here  (i.e.,  after  the  message has  been absorbed from the 
network).
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4. The authorization routines ensure that the user has permission to access the resource, by 
combining attribute assertions and the VO policy (sent with the request) with the local 
site policy and other sources of access control.

5. In the case that delegated credentials are used, the user delegates rights to the delegating 
resource to act on the user's behalf. Note however that delegation typically happens as a 
separate end-point invocation, and is part of the application-level message flow between 
the user and the service.

6. The service implementation gets invoked. The authorization routines may be used for 
additional evaluation and consultation.

7. The service interacts with the resource, which in turn may have delegated credentials at 
its disposal.

Sandboxing and isolation techniques limit the user's influence on the resource to within the 
expected boundaries, avoiding malicious or unintended usage or in the worst scenario a security 
breach. These include:

● operating the resource in a different user space than that of the service container

● consulting  the  Dynamic Connectivity  service in  order  to  temporarily enable direct 
inbound and/or outbound network connectivity to the resource

● providing  additional  protection  of  the  delegated  credentials  by  use  of  an  active 
credential store

This is also useful in the case of long-term use of a resource, where a renewal of the delegated 
credentials may be necessary.

3.8.3. Information and Monitoring Services
The gLite system for information and monitoring is  R-GMA [3.8_23,  3.8_14], which is  a 
Relational implementation of the Grid Monitoring Architecture [3.8_27] from the GGF [3.8_9]. 
R-GMA has been designed to be easy for end users to publish information (from a batch job or 
otherwise) and query that information in a grid environment.

Figure 3.8.3: R-GMA components.
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Figure 3.8.3 shows the principal components of R-GMA. Data is  written into the R-GMA 
virtual database by producers and read from it  by consumers. R-GMA is not a distributed 
database management system. Instead, it provides a useful and predictable information system 
built on a much looser coupling of data providers across a grid.

Defining the schema. The first task for the user is to define what needs to be published. This 
has to be one or more tables following the relational model. A common technique in design of a 
relational schema is to make use of "surrogate keys": a small integer, which can be used as a 
foreign key to establish a relationship. A traditional case would be to assign an departmentId to 
each department and then to include this as a column of the employee table. This works well for 
a single managed database with a mechanism to assign departmentId values, but it does not 
work in the grid. You should not assume anything about what anybody else is publishing. It is 
best to think of publishing a series of measurements of the same quantity but made at different 
times; all R-GMA tuples (records) have an associated timestamp and the R-GMA query types 
take advantage of this.

Producers are the data providers for the virtual database. Writing data into the virtual database 
is known as "publishing", and data is always published in complete rows, known as tuples. 
There are three classes of producer: Primary, secondary and on-demand. Each is created by a 
user application and returns tuples in response to queries from consumers. The main difference 
is in where the tuples come from. There are three ways considered here to for a job to publish 
data into R-GMA. The least intrusive is to use a job wrapper, which can publish information on 
the state of the job picked up by looking at stdout. This can be done without any modifications 
to the job itself, provided that useful information can be gleaned from stdout. The job wrapper 
will insert data into the R-GMA system by means of a primary producer which will have four 
important R-GMA calls:

● create primary producer with appropriate properties

● declare table with predicate: this information goes into the registry

● insert tuples into virtual database

● close primary producer

A second alternative is to insert R-GMA calls directly into the application code. This might be 
done using any of the supported APIs: C, C++, Java and Python. The code, from an R-GMA 
viewpoint, is identical to that used above in the job wrapper. A third approach is to use the 
native logging API (e.g. log4cxx or log4j). You will then need to run the program with an R-
GMA appender, which is provided for Java and C++. This takes the messages, which might 
otherwise have gone to the terminal or to syslog and sends them to an R-GMA producer. This is 
an  attractive  solution  in  that  it  requires  that  the  user  can  just  use  his  existing  logging 
mechanisms but has the disadvantage that it it is not possible to modify the schema. You may 
wish to collect information together into a secondary producer, which is capable of answering 
latest or history queries. If so you should probably set up two of them for some redundancy. For 
the sake of this example we will assume that you wish to store history so you create a secondary 
producer to answer history queries.

Consumers. In R-GMA, each consumer represents a single SQL SELECT query on the virtual 
database. The query is first matched against the list of available producers in the registry and a 
set  of  producers capable of  answering the  query is  selected. There are four query types: 
continuous, latest, history and static. They are all expressed by a normal SQL query though 
there are some restrictions on the continuous query as this simply acts as a filter on published 
tuples and so joins and aggregate functions are not permitted. If you issue a continuous query 
you will receive every tuple satisfying the query as it is published. Such a query has no natural 
end. The latest query only considers those tuples, which were most recently published. Tables 

RINGRID-WP3-D3_2-JKU-
Middleware.odt

PUBLIC Page 94 / 149



RINGrid  Status of Grid Middleware Standards―  
for Sharing Scientific Instruments

have a  primary key defined to  allow latest  tuples  to  be defined. You can then query the 
information ― if  you perform a  continuous query you will  be  connected to  the  primary 
producers but if you carry out a history query you will be connected to the secondary producer, 
which was created to answer history queries.

Command Line Tool. An easy to use command line tool (written in Python) is also provided 
with a built-in help system. This tool accepts short commands and provides defaults for as much 
as possible. For example:

rgma> SELECT Name, Endpoint FROM Service

where rgma> is the prompt, will issue a query using the current values of parameters such as the 
type of query, the timeout etc. The current values can be changed or displayed:

rgma> SET QUERY CONTINUOUS
rgma> SET TIMEOUT 3 minutes
rgma> SHOW MAXAGE

Command history and command completion are also provided.

Service Discovery. The approach taken to service discovery was an API hiding the underlying 
information system. The information system is linked in via a plug-in mechanism for which we 
currently support R-GMA, bdII and an XML file. APIs are provided in C and Java and allow a 
user (or another service) to select a suitable service.

To understand more of how to use R-GMA for monitoring and of how to use the Service 
Discovery APIs please consult the R-GMA documentation [3.8_14].

3.8.4. Workload Management Services
The Workload Management System (WMS) comprises a set of grid middleware components 
responsible for the distribution and management of tasks across grid resources, in such a way 
that applications are efficiently executed. The specific kind of tasks that request computation 
are usually referred to as "jobs". In the WMS, the scope of tasks needs to be broadened to take 
into account other kinds of resources, such as storage or network capacity.  This change of 
definition  is  mainly due  to  the  move from  batch-like  activity  to  applications  with  more 
demanding requirements for data access or interactivity, both with the user and with other tasks. 
The core component of the Workload Management System is the Workload Manager (WM), 
whose purpose is to accept and satisfy requests for job management coming from its clients. 
The other fundamental  component is  the Job Logging and Bookkeeping Service, which is 
described below. For a computational job there are two main types of request: submission and 
cancellation.  The status  request is  managed by the  Logging and Bookkeeping Service. In 
particular the meaning of the submission request is to pass the responsibility of the job to the 
WM. The WM will then pass the job to an appropriate CE for execution, taking into account the 
requirements and  the  preferences expressed in  the job description. The decision  of  which 
resources should  be  used  is  the  outcome of  a  matchmaking  process between submission 
requests and available resources. The availability of resources for a particular task depends not 
only on their state, but also on the utilization policies that the resource administrators and/or the 
administrator of the VO the user belongs to have put in place.

gLite Job Description Language. A job passed to the gLite WMS needs to be described in a 
specific language, the gLite Job Description Language (JDL). The JDL used for gLite, and 
originally developed for the EU DataGrid project, is based on the Condor ClassAd language 
[3.8_24]. Its  central construct  is  a  record-like  structure, the  classad,  composed of  a  finite 
number of distinct attribute names mapped to expressions. An expression contains literals and 
attribute references composed with operators in a C/C++ like syntax. These ads conform to a 
protocol that states that every description should include expressions named Requirements and 
Rank, which denote the requirements and preferences of the advertising entity.  Two entity 
descriptions match if  each ad has  an attribute, Requirements, that evaluates to  true in  the 
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context of the other ad. The main advantages of this framework can be summarized by the 
following three points:

● it uses a semi-structured data model, so no specific schema is required for the resources 
description, allowing it to work naturally in a heterogeneous environment

● the language folds the query language into the data model. Requirements (i.e. queries) 
may be

● expressed as attributes of the job description

● ClassAds are first-class objects in  the model, hence descriptions can be arbitrarily 
nested, leading to a natural language for expressing resources and jobs aggregates (e.g. 
DAGs) or co-allocation requests

The gLite JDL defines specific attributes to specify:

● batch or interactive, simple, MPI-based, checkpointable and partitionable jobs;

● aggregates of jobs with dependencies (Directed Acyclic Graphs);

● constraints to be satisfied by the selected computing and storage resources;

● data access requirements: appropriate  conventions  have been established to  express 
constraints about the data that a job wants to process together with their physical/logical 
location within the grid;

● preferences for choosing among suitable resources (ranking expressions)

As mentioned, the JDL is semi-structured and extensible. A set of predefined attributes have a 
special meaning for the underlying components of the Workload Management System. Some of 
them are mandatory, while others are optional. The set of predefined attributes [3.8_13] can be 
decomposed in the following groups:

● Job attributes: representing job specific information and specifying actions that have to 
be performed by the WMS to schedule the job

● Data attributes: representing the job input data and Storage Element related information. 
They are used for selecting the resources from which the application has the best access 
to data

● Requirements and Rank: allowing the user to specify respectively which are the needs 
and preferences, in term of resources, of their applications.

The  Requirements  and  Rank expressions  are  built  using  the  Resources Attributes,  which 
represent the  characteristics  and  status  of  the  resources and  are  recognizable in  the  job 
description as they are prefixed with the string "other". The Resources attributes are not part of 
the predefined set of attributes for the JDL as their naming and meaning depends on the adopted 
Information Service schema [3.8_10] for publishing such information. This independence of the 
JDL from the resources information schema allows targeting for the submission resources that 
are described by different Information Services without any changes in the job description 
language itself.

WMS User Interfaces. After having created the descriptions of their applications, users expect 
to be able to ignore the complexity of the grid resources and to be enabled to submit them to the 
Workload Management System and monitor their evolution over the grid.

The functionalities the WMS provides include the following:

● Job (including DAGs) submission for execution on a remote Computing Element, also 
including:
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○ automatic resource discovery and selection,

○ staging of the application input sandbox,

○ restart of the job from a previously saved checkpoint state,

○ interactive communication with the running job,

● Listing of resources suitable to run a specific job according to job requirements,

● Cancellation of one or more submitted jobs,

● Retrieval of the output files of one or more completed jobs,

● Retrieval of the checkpoint state of a completed job,

● Retrieval of jobs bookkeeping and logging information.

All this functionality is made available through a command line interface and an API providing 
C++ and Java bindings. GUI components have been developed on top of the Java API.

The WMS client API supplies the client applications with a  set of interfaces over the job 
submission and control services made available by the gLite WMS through a web service based 
interface. The API provides the corresponding method for each operation published in  the 
WSDL  description  of  the  WMProxy  Service  (http://egee-jra1-wm.mi.infn.it/egee-jra1-
wm/wmproxy). The request types supported by the WMProxy Service are:

● job: a simple application

● DAG: a directed acyclic graph of dependent jobs

● collection: a set of independent jobs

Jobs in turn can be batch, interactive, MPI-based, checkpointable, partitionable and parametric. 
The specification of the JDL for describing the request types is available at [3.8_13]. Besides 
requests  submission,  the  WMProxy  also  exposes  additional  functionality  for  request 
management and control such as cancellation, job files perusal and output retrieval. Requests 
status follow-up can be instead achieved through the functionality exposed by the Logging & 
Bookkeeping (LB) service [3.8_17]. The documentation describing the WMProxy Client API 
providing C++, Java and Python bindings can be found at [3.8_32].

The Logging and Bookkeeping service (L&B) [3.8_17, 3] is used by WMS internally to gather 
different information on running jobs and provide the user with an overall view on the job state. 
The  service collects  events  in  a  non-blocking  asynchronous  way  with  a  robust  delivery 
mechanism. The job state is computed on the fly at the bookkeeping database, using a state 
machine  that  tolerates  even  out  of  order  event  delivery.  Besides  gathering  the  "system" 
information on  running jobs,  the service can also  collect user information in  the form of 
arbitrary "name = value" tags (annotations) assigned to a job, both from a running application or 
independently. The job status information gathered by the LB is made available through the 
gLite user-interface commands. In addition to this simple querying mechanism, the user can 
pose simple or more complex queries with the public L&B API (available in C and C++ or as a 
web-service interface). Examples of such queries are:

● state of a concrete job,

● details on all user's running jobs,

● jobs that are running on a concrete computing element,

● user's jobs that returned exit code between e.g. 2 and 7,

● user's jobs resubmitted in last two hours,
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● user's jobs, annotated as green or red color, that started execution in the first week of 
January,

● user's failed jobs that were marked as red first, and then re-colored to green,

● red-colored jobs, heading to a computing element at which the user's job have recently 
failed.

The list of more or less random examples presented here demonstrates the strength of the L&B 
API. The user can also register for receiving notifications when a job enters a state matching 
conditions  specified in  a  similar  way.  Job  state  information  is  also  fed  into  the  R-GMA 
infrastructure to provide yet another way of accessing the job bookkeeping information. More 
detailed  examples  of  use  of  the  LB service  are discussed in  detail  in  [3.8_17], including 
appropriate code fragments.

3.8.5. Data Management Services
Storage. gLite relies on storage systems exposing an SRM [3.8_11] interface. Current systems 
supported include Castor (http://cern.ch/castor), dCache (http://www.dcache.org/) and the gLite 
Disk Pool Manager (DPM). The DPM has been developed as a lightweight solution for disk 
storage management offering much of the functionality of dCache but avoiding its complexity. 
DPM is security enabled, providing ACL based authentication to file access. In addition to the 
SRM interface, DPM offers an rfio interface for posix like data access and GridFTP [3.8_6] for 
data transfer. This is also the mechanism the gLite file transfer service described below, is 
using. In order to shield the user from the differences the current storage systems expose in their 
posix-like access libraries, gLite provides a Grid File Access Library (GFAL), a C API posix-
like interface that provides methods such as gfal open, gfal read, etc. GFAL interaces with the 
different SRM implementations (including their native posix access mechanisms) and GridFTP.

Catalogs. gLite  provides a  catalog,  named LFC, to  store the location(s) of their files and 
replicas. LFC will map LFNs or GUIDs to SURLs. It is a high performance file catalogue that 
builds on the experiences gathered from the EGEE user communities. The LFC supports Oracle 
and Mysql  as database backends, and is  integrated with the GFAL interface.  It  shares the 
codebase with the name service part of the DPM, discussed above. Similarly to the DPM, the 
LFC exposes methods to the user through the GFAL interface that, in turn, interacts with the 
SRM implementations and GridFTP. The LFC client has a POSIX-like command line interface 
with commands such as lfc-chmod,lfc-ls,lfc-rm.

Data Movement. The gLite File Transfer Service FTS is a low level data movement service, 
responsible for moving sets of files from one site to another while allowing participating sites to 
control the network resource usage. This control includes the enforcement of site and usages 
policies such as fair-share mechanisms on dedicated network links. It is designed for point to 
point movement of physical files. The FTS has dedicated interfaces for managing the network 
resource and to display statistics of ongoing transfers. The FTS is also able to communicate 
with external Grid File Catalogs, i.e. the file to be transferred can also be specified using an 
LFN. The FTS has  three interfaces that  can be used for  programming. The  File Transfer 
Interface is used to submit File Transfer jobs, get status on current jobs, list requests in a given 
job state, cancel transfers, set priority of transfers; and to add, remove and list VO managers. 
The Channel Management Interface can be used to add, list and delete channels for the FTS 
instance, and set  channel parameters. It  has  also methods to add, remove and list  channel 
managers and to apply policies for jobs that need manual intervention, such as being in HOLD 
state. Finally, the Status Interface can be used to list or summarize the channel and VO activity, 
and to list all running background Transfer Agent processes. There is a set of command line 
tools available that interact with these interfaces, performing these tasks by contacting the FTS. 
All the FTS interfaces come with WSDL descriptions and the user can actually use the WSDL 
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to generate clients for any language needed. The gLite distribution includes a set of client APIs 
for Java, C/C++ and Perl. As a secure connection is used to talk to the FTS web service, a valid 
GSI proxy is necessary. The VOMS extensions are needed if the client wants to contact for 
example the Channel Management interface. VO and site managers, who should have an extra 
"admin"  group  membership signed  by  VOMS,  should  only  use  this.  The  FTS  Transfer 
Interface's transferSubmit method takes as input a TransferJob object, which consists of:

● an array of TransferJobElements each describing an individual file transfer within the 
job (source and destination pairs),

● a list parameters (key, value pairs) for transfer layer specific paramaters that are applied 
to each file transfer (e.g. GridFTP parameters), and

● the credential that is used by the transfer system to retrieve the appropriate proxy for the 
transfer.

The rest of the FTS Transfer Interface, the Channel Management Interface and Status Interface 
methods are simple and straightforward setters and getters very much in Java style, that can 
easily be used like any other RPC call through SOAP. The detailed syntax for the API and all 
command line tools is described in the user guide [3.8_4].
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4. Infrastructure

4.1. Virtual Laboratory
In general, the Virtual Laboratory is a distributed environment, providing a remote access to the 
various kind of  scientific  equipment and computational  resources. The Virtual  Laboratory 
(VLab) has  been developed in  Poznań Supercomputing  and Networking  Center since  the 
beginning of the year 2002. Users can submit their tasks in form of Dynamic Measurement 
Scenario ― the set of experiments and computational tasks of different kind. These tasks form a 
dependency graph describing the connections between them and all possible flow paths ― the 
actual flow path is determined upon run-time ― based on results obtained on each stage. The 
tasks are scheduled on one-by-one (or on group) basis, after the appropriate results from the 
preceding tasks are obtained. The Virtual Laboratory is not a standalone system. It was designed 
to cooperate with many other grid systems, providing only the purpose-specific functionality 
and relying on well known and reliable grid solutions. The most important system the VLab 
cooperates with is the Globus Toolkit, in the scope of scheduling computational tasks, software 
services and libraries for resource monitoring, discovery, and management. All computational 
tasks submitted in the VLab system are transferred to the Globus via the GRMS module ― an 
important part  of  the GridLab project. Among other external systems used by the Virtual 
Laboratory are:  VNC,  a  data  management system, an  authentication  module  and  a  RAD 
authorization system.

4.1.1. The Virtual Laboratory Architecture
The Virtual Laboratory system has a modular architecture. The modules can be grouped into 
three main layers. The general diagram is presented below in the figure 4.1.1.

Figure 4.1.1: General architecture of the Virtual Laboratory.
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An Access Layer is  the top layer of  this  structure.  Basically,  it  contains  all  modules and 
components responsible for a VLab user access and graphical interface to the system (including 
a web portal), and data input interface. Below there is a grid layer, which communicates with 
external grid  environment. It  is  responsible for user  authorization and authentication, data 
management, general task scheduling. Modules from this layer also handle the transfer of the 
computational tasks to the Globus system, and gather feedback data and the computed results. 
The Monitoring Layer consists of lower-level modules, such as hardware dedicated schedulers, 
system monitoring, accounting data gathering etc. All the physical scientific devices are located 
in the Resources Layer, as well as modules responsible for their direct control.

On the grid environment side the most important element is the Globus system, with all its 
components (GRMS, GridFTP etc). Globus also allows to execute computational tasks (batch 
and interactive) on a wide variety of grid applications.

4.1.2. Task Scheduling in the Virtual Laboratory
In the Virtual Laboratory there are two basic types of tasks: computational and experimental. 
Experiment is the specific task type for the VLab itself. It is scheduled to be run on scientific 
hardware and create a very challenging set of difficulties which need to be addressed (see p. 
6.3). In this paragraph, we will focus on computational tasks, batch and interactive. Interactive 
tasks need a definitely more sophisticated approach. The time in which the application GUI 
performing the task is presented to the user (or in other words: task execution time) has to be 
known in advance, and synchronized with user time preferences. The mechanism responsible 
for displaying the interface has to be carefully designed, to address authorization and security 
issues. All operations performed on batch and interactive tasks are presented in the paragraphs 
below.

4.1.3. Batch Jobs
A general diagram describing the flow path of batch computational tasks is presented in figure 
4.1.2.

Figure 4.1.2: The batch computational tasks processing 
in the Virtual Laboratory system.
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The computational task is created in the Scenario Submission application (figure 4.1.3) ― a 
part  of  the  VLab portal,  responsible  for  creating  Dynamic Measurements  Scenarios. The 
dynamic scenario is submitted to the Scenario Management Module (SMM). At the appropriate 
time, during the scenario execution phase, the SMM sends the task to the Grid Gateway module 
via the Global Scheduler (not shown on the diagram). Grid Gateway sends the task description 
to  the  GridLab  Resource  Management System ―  an  external  meta  scheduling  system, 
responsible for scheduling and executing the task using the grid computational resources. The 
input data are passed as references to the Data Management System ― the same system is used 
for uploading the computational results. The online task monitoring and status notification is 
handled by the GRMS, which contacts the Grid Gateway with the updated information about 
submitted tasks status.

Figure 4.1.3: Scenario Submission application.

4.1.4. Interactive Tasks
Handling the interactive tasks is more complicated than the batch ones. Different phases need to 
be specified here. They are described below.

Task submission. Interactive tasks are submitted into the system just as the batch ones. Each 
consecutive step on the diagram was marked. The detailed description is as follows:

1. A task  (as  a  one  element  of  the  measurement scenario)  is  sent  to  the  Scenario 
Management module from the web portal (Scenario Submission application).

2. Task is added to the database (via the Monitoring module).

3. At the appropriate time task is sent to the Global Scheduler (GS).
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4. GS authorizes the user in the grid authorization module.

5. GS checks with Accounting whether the user has not exceeded the limit and can submit 
the task.

6. Task cannot be submitted: Inform Monitoring module. Task can be scheduled: Send it to 
the Grid Gateway (GG).

7. Task is transferred to the GRMS, which schedules the task and sends the information 
about the results (success/failure) to the Grid Gateway. The GG sends a query about the 
chosen server, and signs up for notifications concerning the scheduled task. If a task 
cannot be submitted, inform the Monitoring module.

Figure 4.1.4: Interactive tasks submission.

VNC session scheduling. In the previous  step the interactive task was submitted into the 
GRMS. Now the GRMS has to decide where the interactive task should be executed. It also 
reserves a slot for VNC session. Information about the session schedule is returned back to the 
Grid Gateway (as notifications), which in turn sends it to the Monitoring module. The detailed 
operations are described below:

1. The GRMS contacts the MDS system to gather information required for the connection 
preparation (maximum number of open VNC sessions, etc.).

2. It also contacts a VNC Session Database to check the actual sessions state. Taking all 
those information into account it will reserve a VNC session slot for interactive task 
invocation and update the database.

3. Scheduling information is  passed as notification to the GG, which updates the task 
status, via the Monitoring module (see figure, point 4).
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Figure 4.1.5: VNC session scheduling for interactive tasks.

Establishing a secure connection. The interactive task has been submitted to the system and 
the VNC session has been scheduled. The next step is to prepare the proper environment for the 
given task, launch it and wait for connection establishment from the VLab user.

1. The GRMS launches its scheduled task. The task is defined as an instance of the VNC 
Manager which looks up the available port, runs the VNC server and the application.

2. The Grid Gateway is notified that everything has been prepared and the session can be 
established.

3. VNC Manager reports the port number in use and dynamically-generated password to 
the Grid Gateway.

4. The Grid Gateway propagates all gathered information to the Monitoring system.

5. The VLab user  starts  the  SVNC Viewer with  all  the  connection  parameters taken 
automatically (and transparently) from Monitoring (and therefore has a full access to the 
application).
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Figure 4.1.6: Establishing a secure VNC connection.

Prolonging the session. The interactive task can be scheduled for the certain amount of time. 
The time period is specified by the user during task definition and submission. It may happen 
that the reserved time slot is too short to complete the data processing. When the reservation 
period is about to expire, the VLab system displays the appropriate warning and the user is 
given the possibility to request the session prolongation. After evaluation the actual session state 
(VNC Session Database) the prolonged access is granted or the request refused.

Prolonging the VNC session step by step:

1. Request is forwarded to the Global Scheduler.

2. Global Scheduler authorizes the request in the Grid Authentication Module (GAM).

3. GS checks the user limits in the Accounting module.

4. Verification failed: Monitoring is informed that the session extension has failed and the 
process ends. Verification positive: Extension request can be sent to the Grid Gateway.

5. Request (authorized in the VLab system) is sent to the GRMS.

6. Next, the actual  sessions state is  looked up in the VNC Session Database and new 
session slot is reserved (if available).

7. Response is sent back to the Grid Gateway (as notification). GG updates the Monitoring 
with the new information (point 8 in the figure).
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Figure 4.1.7: Prolonging the VNC session.

Finishing the VNC session by the user or by the system. The VLab user has the ability to end 
an active VNC session at any time after the session has been started. The procedure is explained 
below:

1. The request is forwarded to the Grid Gateway.

2. The GG sends it to the GRMS.

3. The GRMS system sends the  appropriate signal  to  the  instance of  VNC Manager 
responsible for a given application. Application is closed and resources are freed.

4. The GRMS updates the VNC Session Database ― registration is removed.

5. The GRMS sends the result of this operation to the Grid Gateway as an notification.

6. The Grid Gateway updates monitoring information.

Furthermore, an active VNC session can be terminated by the VLab system (and GRMS) when 
the reservation period expires, or for any other reason. The procedure is very similar to the 
described above, with the difference that points 1 and 2 are replaced by:

1. After the reservation time expires, GRMS sends a signal to end the application (via 
VNC Manager)

2. Then points 3–6 from the description above.
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Figure 4.1.8: Ending the VNC session by the user.

4.1.5. Digital Science Library
The  VLab Digital  Science Library  (DSL) is  used  to  store  and  share  experiment results, 
publications and manage computational data between scientists.  DSL is  based on the Data 
Management System (DMS) developed under the Progress project.

Current  VLab installation implements DSL for Nuclear  Magnetic Resonance Spectroscopy 
(storing data from NMR experiments, such as spectra, compounds, shifts etc.).

DMS is considered as an internal service supporting grid computing. The main task of this 
system is storing and managing the computational data. One of the additional functions is proxy 
to other databases and data accessed from the Internet. The next function is mirroring the whole 
or a part of the external database. DMS consists of three logical layers. The highest layer of the 
DMS is a metadata repository that keeps information about the data managed by the system. 
The second layer consists of the Data Broker and the Mirror & Proxy. The Data Broker is an 
interface between the external client and DMS. The client (e.g. external service) can be a grid 
broker or special software DMS client e.g. computational web portal. The Data Broker can also 
arrange several  replicas  of  data.  The  mirror  and  Proxy is  responsible  for  accessing  and 
mirroring external databases. The main purpose of this module is to grant access to various 
external objects in a unified way. The lowest layer is the Data Storage. This layer is responsible 
for the physical storage of data.  This  module can store data in  several ways:  in  computer 
filesystems, in databases or on tape storage systems.

The whole system uses the "web services" approach to co-operate between all modules and 
other components of the grid. Great emphasis was placed on the design system according to 
other data management systems and the proposed standards from the international bodies. The 
described structure is shown in figure 4.1.9.
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Figure 4.1.9: Logical architecture of the DMS.

Metadata Management and repository. The Metadata Management module (MD) is one of 
the most important modules. You can think of the repository as a place where metadata are 
stored.  The  Metadata  Management  module  is  responsible  for  storing  and  manipulating 
metadata. The data are described with attributes and access rules. In fact the metadata are stored 
in an object database in a "property = value" format. This format can be defined by user or 
chosen from the predefined formats like the Dublin Core (DC) standard. We decided to run the 
MD module as a single instance service. This decision was made because of complexity with 
handling metadata information which is stored in the MD module. Running multiple instances 
would  generate  issues,  which  concern  problems  with  data  consistency  and  reliability. 
Consistency and reliability of metadata can be provided by a replication mechanism in the 
underlying database system.

Data Broker and Mirror and Proxy module. The Data Broker (DBR) is an access point of the 
DMS  system.  The  key  functions  of  this  module  are:  serving  the  client  requests  with 
authorization and managing of replicas in DMS. DBR module is the access point for all other 
services or users requesting data operations. This module can be run in multiple instances to 
assure reliability and good scalability. All kinds of requests addressed to the DMS system flows 
through the DBR module. The system can use multi instances of this module. This approach 
provides the system with efficient data processing. Because of a need for client authorization 
procedures in the DBR module it is possible to create local system access polices for users. 
Polices are managed by organizations which runs the DBR module on their resources. The DBR 
module manages data replicas that are stored in Data Storage modules. The main function of the 
Proxy module is to relay communication between a client and shared resources in the Internet. 
This module caches frequently accessed resources and offers uniform interface. This module 
stores the cashed data with special attributes in the Data Storage module. The basic functions of 
the Mirror module are to care about the consistency of data and mirror the earlier defined set of 
data. This module can use the remote resources through the proxy module.

Data Storage. The Data Storage module enables access to physical data. The data are arranged 
in data containers and can be stored on all media types and accessed by uniform interface. The 
data can be organized as files on generic filesystems, BLOBs in databases or files on data tapes. 
In the distributed scheme Data Storage modules can store data in one or more media. The most 
important functions  of  this  module are: reading  and writing data,  providing  data security, 
sharing data via  protocols:  GASS,  GridFTP and FTP.  The DMS system can use multiple 
instances of the DS module. This approach enables uninterrupted data accessibility even in case 
of network connection failure or system crash on which the DS module operates. This module is 
also capable of finding optimal DS module for client connection.

4.1.6. References
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4.2. GridCC

4.2.1. Architecture
The GridCC EU project [GRIDCC] was launched in September 1st 2004 and lasts for 3 years, 
aiming at integrating scientific instrumentation and other equipment with the grid. The project's 
main contribution is  the Instrument Element (IE),  an abstraction similar to the Computing 
Element and the Storage Element of the classical grid. Additionally to that, the project studies 
methods to provide QoS guarantees to service consumers of IEs (or other resources, when that 
is possible) and to enable building and execuring complex scientific workflows which are QoS-
enabled. It also comes with a novel Multipurpose Collaboration Environment (MCE) which 
includes an integrated Virtual Control Room (VCR) for the control of remote instrumentation. A 
host of applications are being developed based on the GridCC middleware (or ported to it), as 
part of the project.

Figure 4.2.1: GridCC architectural overview.
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A rough illustration of the GridCC m/w architecture is available in figure 4.2.1 [GRIDCC-
ARCH]. The GridCC m/w contains a number of new components:

● The  Virtual Control  Room is  the GridCC user interface.  It  allows users to  build 
complex workflows which are then submitted to the Execution Services (ES) though the 
Workflow Management System (WfMS) entry point. The VCR can connect to resources 
directly and be used to control instruments in real time. It also extents human interaction 
with grid resources through its Multipurpose Collaborative Environment. The VCR is an 
instance of the MCE for a specific GridCC application.

● The Instrument Element consists of a coherent collection of services which provide on 
their own all the functionality to configure, partition and control the physical instrument 
behind the IE. In reality an instrument can actually consist of a logical collection of 
instruments and it is the responsibility of the instrument owner to decide how to group 
their instruments. Within the IE it is possible to have a Local Problem Solver (LPS) that 
is capable of diagnosing and reacting to error conditions in such a way as to protect the 
physical instrument from harm. The performance Information and Monitoring Service 
(IMS) is critical to the successful operation of the IE.

● The Compute and Storage Elements (CE and SE) within GridCC are similar to those 
within other grid projects. However these are extended to encompass the quality of 
service requirements that are central to GridCC.

● The  Execution Services (ES) are at  the heart of  GridCC. The Execution Services 
include:  the  Workflow Management System for  workflow execution  and  lifecycle 
management, the Workload Management System (WMS) for service discovery,  job 
submission, logging and book-keeping, and the Agreement Service (AS) for reservation 
management. The ES control the execution of the workflows defined by the user in the 
VCR  and they  maintain the  status  of  the  tasks  that  make up  the  workflow.  This 
information is passed to the user in the VCR upon request. The ES also control the 
quality of service,  as  required, by making resource reservation agreements with the 
resources available to it whether these be IEs, CEs or SEs.

● GridCC requires an all  pervasive  Information and Monitoring System (IMS). The 
performance of this service is critical to the successful operation of the instruments 
within the GridCC grid. The IMS is eventually expected to work using a publish and 
subscribe model, passing information to the different components as they require them. 
The IMS also passes information between the different services that make up IE. As 
well as IMS there is a need within GridCC for an Information Service (IS) that passes 
less time critical information. This is to be used by the ES (and the VCR) to discover 
available and appropriate resources.

● Problem Solvers. Automated problem solving in a grid environment is a feature of the 
GridCC project. Two levels of problem solver can exist within the GridCC grid: the first 
local to a given IE, the Local Problem Solver (LPS). The second global to the entire 
system,  the  Global Problem Solver (GPS).  The  LPS solve  problems related to  the 
function of a given instrument and are embedded within that IE, whereas the GPS solve 
problems related to the whole system.

● Security System. The GridCC applications have strict security requirements. Yet the 
security system is constrained both to being light-weight, so that the QoS requirements 
can be met, and to inter-operate with security systems of other grid systems. In order to 
satisfy these two requirements, GridCC has decided to use a split security system. When 
interacting with the components of other grid projects the GSI security will be used and 
the user identified by their X.509 proxy certificate, however when interacting with the 
IE the user will be identified by a Kerberos ticket. The level of security provided by 
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both systems is equivalent, however the symmetric Kerberos ticket based model can 
function much more rapidly. The roles that any individual can take at any given time 
will depend upon which Virtual Organizations (VO) they are members of.

4.2.2. Identified Use Cases
The GridCC project has four major use cases [GRIDCC-TA]:

1. Compact Muon Solenoid application

2. PowerGrid

3. meteorology

4. accelerator facility

4.2.3. Compact Muon Solenoid (CMS) Application
This application involves the use of the grid in a real-time environment to control and monitor 
remote large-scale detectors. This application will make use of a High-Energy Physics (HEP) 
experiment, the CMS detector which is currently under construction at the future LHC collider 
at CERN. CMS consists of 20,000,000 electronics channels that will be read out by a complex 
distributed data acquisition (DAQ) system feeding a large processor farm charged with filtering 
an input rate of up to 100 kHz down to only ~100 Hz of physics events. The DAQ system 
involves a very large number (a few thousand) of intelligent modules and computers, with data 
throughputs of ~100 Gbytes/s. These characteristics, along with the selectivity of one event in 
1,000, are unprecedented in the field, and introduce requirements on the control and monitor of 
the experiment's data-taking.

The so-called "Run Control" and "Detector Control Systems" of the experiment are charged 
with supervising the full configuration of the detector, but also with monitoring the data read 
out, their analysis and on-line interpretation. Both systems are of paramount importance for the 
correct operation of the experiment. Monitoring this detector, and potentially changing settings 
as a result of analysis on the monitoring data, is a complex task shared by a few hundred people 
distributed in geographically distributed laboratories. This task requires continuous analysis and 
display of large amounts of data generated by the detector and in  the past  was  done in  a 
counting room near to the detector. In the context of GridCC, this application will be made to 
run in a completely distributed fashion, over the grid.

4.2.4. PowerGrid
In  electrical utility  networks (or  power  grids),  the  introduction  of  very large  numbers of 
'embedded' power generators often using renewable energy sources, creates a severe challenge 
for utility companies. Existing computer software technology for monitoring and control is not 
scalable and cannot provide a solution for the many thousands of generators that are anticipated. 
GridCC technology would allow the generators to participate in a Virtual Organization, and 
consequently to be monitored and scheduled in a cost-effective manner.

A specific testbed application will  be built and demonstrated within the GridCC project by 
means of computer simulation and emulation. Existing software at Brunel University will allow 
the real-time simulation of a representative power network and the associated generators. New 
software will  be created to interface the generator simulations to the GridCC environment. 
Distributed generator scheduling algorithms will be modified to utilize GridCC technology. The 
test bed will demonstrate the performance of the emulated system under various conditions, 
ranging from light power system loading (where energy economics is most important) to power 
system  emergency  conditions  (where  overloaded  power  circuits  necessitate  co-ordinated 
generator control to avoid power black-outs).
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4.2.5. Meteorology
"Ensemble  Forecasting"  has  been  used  at  large  meteorological  centers  worldwide  (e.g. 
ECMWF, NOAA/NCEP, UK-Met Office, METEO France) with promising results. However 
"Ensemble Limited Area Forecasting" is still  in its infancy. The main reason for this is the 
demanding requirements for computing resources. These resources are nowadays both available 
and manageable on the grid. With real-time extensions, Limited-Area Forecasting can become a 
common tool.

Ensemble weather forecasting  on  a  limited area is  a  near real-time application because it 
requires the forecasting products to be ready in a few hours, at most, after the collection of the 
necessary observational  data  and  initial  guess  fields  (preparation  of  initial  and  boundary 
conditions). The application being developed and tested in the context of GridCC is a direct 
real-time port of this  data,  its  analysis and the presentation of the results  in an interactive 
fashion.

4.2.6. Accelerators
Far remote operation of an accelerator facility (i.e. the Elettra Control Room in Italy) involves 
the  planning  of  accelerator  operations,  the  maintenance  of  the  accelerator  and  its 
troubleshooting,  the  repair of  delicate  equipment, understanding  and pushing performance 
limitations, performing studies, performing commissioning and set ups and routine operations. 
All these activities are based on large amounts of information, which are at present accessible 
only at the accelerator site.

Far remote operation combines elements of immersive (i.e. providing the feeling to be present 
at the remote location) communication and cooperation technology. This includes video and 
audio presence, allowing the simultaneous operation of the same instruments, having access to 
the same accelerator controls and the relevant data,  meeting easily and spontaneously and 
providing full awareness of the presence of the collaborators.

The security and networking  issues include adequate  user  management,  session and floor 
control, and secure, synchronous and reliable data transmission and distribution.

4.2.7. Details of Special Interest
The GridCC middleware, being by definition focused on connecting scientific instrumentation 
on the grid, is very important to RINGrid and extracting results  for our studies.  The most 
important contribution of GridCC is the Instrument Element abstraction and the work on QoS 
(QoS-enabled workflows, resource reservations, predictive QoS for web service invocations). 
The tools provided by  the MCE for collaboration among scientists  handling sensitive and 
expensive equipment are also important for unifying instrumentation with the grid.
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Figure 4.2.2: Instrument Element architecture.

Figure 4.2.2 displays the architectural details of the IE. The general idea is one typical in the 
case of device control, where properties can be set and then operations be called to use those 
properties. The IE offers a secure entry point (kerberos-enabled) to access the set of services. At 
the other end of this component, there is the Instrument Manager to interact with the real, 
physical instruments. The IM is one part of the software that needs to be modified depending on 
the application and the device to be used, as it needs to interact directly using a vendor-specific 
API. Each instrument manager is composed of four subcomponents:

● Command Gateway to interpret control requests,

● Monitor Manager to collect monitoring data and provide it to the IMS and the LPS,

● Data Collector to collect domain-specific data from the instruments and possibly pass 
them on to the Data Mover,

● Finite State Machine to reflect the collective state of the instruments controlled by the 
specific IM.

There also exist  a  set  of  complementary services  within  the  IE  for  problem solving and 
predictive  functionality  on  a  local  level  (Local  Problem Solver,  LPS),  for  movement  of 
instrument  data  to  storage  or  computing  elements (Data  Mover,  DM),  for  delegation  of 
monitoring data to external interested parties (Information and Monitoring System, IMS), for 
managing the catalogue of instruments (Resource Service, RS) and for parsing control requests 
(in collaboration with the RS) to be delegated to the appropriate IM (VIGS).

The  QoS-related part  of  the  middleware, handled  to  the  largest  extent  by  the  Execution 
Services, comprises of a a repository to hold performance data for remote service operation 
calls, a QoS-aware Workflow Management System (WfMS) and a service to perform resource 
reservations  in  a  uniform  manner.  The  repository  (not  described within  the  architecture 
document) keeps performance information for the different stages in the lifetime of a remote 
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operation's call. Although this has been built with web service calls in mind, it can be adapted to 
other types of remote calls. A statistical methodology has been applied to experimental data and 
has successfully provided upper bounds for operation executions, thus allowing for soft QoS 
guarantees. Performance  data  is  collected  by  clients,  services and  network  probes.  Such 
information is to be utilized by the WfMS, in combination with the Agreement Service (AS), 
for hard QoS guarantees through resource reservation. The AS provides a single web service 
interface for requesting reservations, although there are different domain-specific languages 
used to  describe the  reservation terms. Storage and  instrument (element)  reservations  are 
already available, with computing element reservations being designed and planned for the 
future. The WfMS will  be the main client of the AS, alongside the Workload Management 
System (WMS), which is the broker of submitted single (atomic) tasks. An overview of the 
Execution Services and how it fits with the VCR and the IS is provided in figure 4.2.3.

Figure 4.2.3: Execution Services architecture.
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5. User Requirements

5.1. Introduction
So far this document discussed in detail  middleware components and related infrastructure 
which should be possibly used when sharing scientific instruments via international networks. 
However there is little evidence how useful the middleware is. To get that information, one has 
either to look at the instruments and find out what technical requirements have to be met so that 
they can be operated successfully. This is the path WP2 has taken to some degree. However, this 
is a cumbersome process because there are so many instruments available and one or the other 
instrument will always be missed. So, we are proposing to do it the other way round: We choose 
several  typical  applications  of  these  instruments  and  try  to  derive  some  constraints  the 
middleware has to fulfill. When taking this approach, it could happen that we find out that some 
instruments cannot be operated successfully with the current technology. This is what WP4 is 
for: WP4 tries to fill the gaps we are pointing at so that WP6 can achieve the overall project's 
goals. Figure 5.1.1 shows how WP2's approach can be mapped to our approach.

Figure 5.1.1: WP2 domains and WP3 user requirements.

5.1.1. Criteria for Successful Middleware Selection
Remote instrumentation has very distinct requirements, as laid out in section 1.2. In particular, 
the next four sections give an detailed explanation what the user expects in each of the scenarios 
with respect to:

● data rate (several thousand per second, one sample every hour, cf. sensors)

● timeliness (real-time processing required because of emergency responses or analysis at 
a later time possible?)

● value (of each individual measurement, is loss of a sample critical?, depends more or 
less on the number of data sources)

● storage space (how much space is needed, have distributed filesystems to be utilized?)

● interactivity for visualization of experimental data or the control interface (latency and 
jitter are probably critical)

● collaboration tools (are they scalable for a large user base?)

● high-volume data transmission (also see deliverable 3.1 for this)

5.1.2. Selection of Representative Applications
In order to get representative conclusions, the applications have to be chosen carefully. It is best 
when applications fulfill  all  of  the criteria mentioned in  the previous section to  a  varying 
degree.  If  this  is  the case, most  of the possible applications  are present  for determing the 
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suitability of a certain middleware component. We have identified the following application 
areas:

● measurement, control and automation (MC&A)

● large-scale physics and astronomy

● sensor networks

● nuclear magnetic resonance (NMR) spectroscopy

As it is shown by different color codes in table 5.1.2, the applications are highly different as far 
as their requirements are concerned.

measurement, 
control and 
automation

large-scale 
physics and 
astronomy sensor networks

NMR 
spectroscopy

processing 
power

some ("smart") high moderate (RISC 
microprocessors)

high

operated 
manually/ 

automatically
manually manually

automatically 
(ad-hoc multihop 

network)
manually

cost per element small-medium expensive low-moderate expensive

number of data 
sources

relatively high singular large singular

operation mode near real-time to 
real-time

real-time normal (not 
critical)

normal (not 
critical)

data rate low-moderate high low-moderate moderate

data value relatively low very high low high

Table 5.1.2: Chosen applications and selection criteria.

In the following four sections, the requirements for each of the identified applications  are 
evaluated.

5.2. Requirements for Measurement, Control and Automation 
Equipment

The category of instrumentation classified in commercial terms as MC&A refers to test and 
measurement equipment that can be broadly defined as the bulk of instruments and sensors used 
to test, measure, analyze, control, calibrate, display and record data in laboratory and other 
testing  situations  (http://testequipment.globalspec.com/ProductFinder/Labware_Test_Measure-
ment).  This  includes measuring instruments  (temperature, pressure, flow,  level  and  other 
parameters); chemical analysis instruments; recording and display instruments; controllers and 
control systems; supervisory and communications systems; process control software products; 
testing and maintenance instruments.

Among  the  characteristics  of  this  type  of  instrumentation  that  can  be  useful  to  define 
requirements in broad terms, as regards networking and middleware functionalities for their 
remote control, a few are particularly noteworthy:

RINGRID-WP3-D3_2-JKU-
Middleware.odt

PUBLIC Page 117 / 149



RINGrid  Status of Grid Middleware Standards―  
for Sharing Scientific Instruments

● In the majority of cases, the devices that are involved belong to a small-medium scale 
(as  compared, for  instance,  with  large-scale scientific  equipment,  such  as  particle 
accelerators and radio-telescopes); however, they exhibit  processing capabilities to a 
certain extent or, in other terms, they are "smart" instruments, as opposed, at another 
extreme, to simple sensors;

● In the majority of cases, they are manually operated or supervised;

● Their cost  is at  a medium to small level (again, as opposed to large-scale scientific 
instrumentation), but their number is relatively high;

● Their operation often requires real-time or quasi-real-time interaction.

When developing middleware for any category of equipment, it is important to identify some 
preliminary design characteristics. In fact, instruments form a diverse category of machines, 
with widely varying aspects. Thus, it is not possible to completely decouple the design of the 
middleware from the development of the overall structure itself. Specifically,  when talking 
about MC&A systems, the following characteristics (intrinsic as well  as extrinsic ones) [1] 
should be looked at:

Number of sources. The number of sources impacts the design of the information system 
supporting the  instrument and also  reflects in  manageability.  However,  a  huge number of 
sources is not a major issue with most MC&A, except when in the presence of sensor networks 
as pervasive acquisition devices.

Data rate is not a critical issue in MC&A.

Real time. Some instruments output data, or some automated process can rely on data to be 
analyzed later. Others require real-time processing of data. This might be because researchers 
are using the instrument interactively, or because a control loop must be closed to control a 
plant. This is the classical case of tele-controlling remote plants by using remote controller. 
Most MC&A instrumentation must be carefully considered from this point of view.

Degree of accuracy. in some experiments or plants, the data of each individual source may be 
extremely valuable. In others, like in massive sensor networks, the loss of some readings is not 
catastrophic. Middleware for handling valuable data may need to incorporate fault-tolerance or 
redundancy into its design.

Besides intrinsic characteristics, other factors can affect the design of information systems for 
instruments. These factors are determined by the hardware design, and are termed extrinsic 
characteristics.  Extrinsic  characteristics  may  change  as  the  hardware  changes  and  the 
middleware must take care of it, by providing information hiding features. This is mandatory in 
order to minimize the need of rewriting important portions of code when the device technology 
varies. In other words, the effort needed to tweak the middleware as the underlying device 
technology (and not the task itself) varies must be minimized. Specifically:

Processing  power. Systems  based  on  MC&E instrumentation  must  perform a  variety  of 
computational tasks, ranging from participating in network protocols to numerical analysis. 
These tasks may be divided among a variety of nodes. Some nodes may consist of little more 
than an analog-to-digital converter. Others may be powerful special-purpose computers. Taking 
inspiration from overlays available in P2P networks, the next generation of middleware must 
provide a proper degree of device independence, e.g., by providing a proper service of load 
distribution and data collection.

Heterogeneity of resources. Each device may have a varying amount of storage, while some 
instruments  may  have  very  little  bandwidth  available.  In  situations  where  there  is  little 
bandwidth headroom, a proper portion of the controlling middleware must accommodate the 
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required data rate, perhaps by techniques such as compression, which will in turn require more 
processing power.

With such requirements, next generation middleware will be a complex piece of software. In 
addition, in order to have a feasible development cycle and a maintainable code base, future 
middleware must be modularized. Then, different components will  perform different tasks. 
Nevertheless, to foster the interaction among different communities (e.g., scientist, physicist, 
software engineers, …) modules must be based on solid standards and communicate through 
well-known protocols (e.g., the Session Initiation Protocol, SIP).

In more details, future middleware must be:

Independently deployable. A middleware component can depend on another component for 
correct operation, but it still must be possible to install and upgrade it individually. Furthermore, 
this deployment should not require programming skills.

Reusable by third-parties. Components can be reused in different applications by the end user. 
Such interchangeability is crucial to making them effective at coping with rapid change.

Connectable by third-parties. Components  can be connected to  one another in  a  fashion 
similar  to  stereo  components,  or  hardware  modules.  This  allows  the  end  user  to  solve 
completely new problems from existing components.

Large granularity. A component generally encapsulates more functionality than an object. 
Most components will be implemented internally with many objects.

Inherently distributed. Remote operation is an inherent characteristic of components. This 
means that local operation is a special case of normal operation, rather than vice versa. This 
characteristic forces a degree of encapsulation that often makes components easier to use even 
in the local case.

Taking also inspiration from ongoing projects (previously cited in  this  document), we can 
summarize the requirements for future middleware for MC&A equipment as follows:

1. Support processing of data in real-time across a variety of timescales.

2. Support different rates of data production under varying available bandwidth. This will 
probably  require the ability  to  integrate multiple protocols within  one system or  a 
variety of coders/encoders.

3. Provide end-to-end reliability and fault tolerance.

4. Support IPv6 natively.

5. Support large numbers of sensors or at least being able to interact with sink nodes in 
order to switch from fine-grained to coarse-grained measurements and vice-versa.

6. Support integrated representations of instruments, comprising disparate sensor types.

7. Support real-time fusion of heterogeneous information from many sources to create one 
data stream.

8. Provide functional transparency; each function of the instrument must be completely 
and accurately accessible.

5.2.1. References
R. Bramley, K. Chiu, J. C. Huffman, K. Huffman, D. F. McMullen, "Instruments and sensors as network services: making 

instruments first class members of the Grid," Indiana University CS Department Technical Report 588, 2003.
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5.3. Large-Scale Physics and Astronomy
We are exploring issues related to remote control of SOAR science programs to maximize 
productivity:

1. Optimal subdivision of bandwidth between video and data by dis/re-connecting video 
conferencing under software control. Reconnection takes less than 5 seconds.

2. Minimizing  real-time  data  rates  from  large  detector  mosaics  by  first  sending  a 
compressed rendition with sufficient fidelity for the remote observer to define regions of 
interest (ROI) that are then sent at full bit resolution before the rest of the image is 
refined.

3. Integration of telescope and site status telemetry into tactical displays for the remote 
observer and the telescope operator. Several of these are based on the PROAS package, 
written by N. Cardiel at IAS (Canary Islands).

4. Remote, low latency use of instrument control GUI's.

5.3.1. Masks and Data Rates
A powerful functionality of JPEG2000 is to send first ROI's with lossless compression, and then 
progressive compressions of the rest of the image. While the astronomer is interacting with data 
in the small ROI's (e.g. measuring the sky brightness or the object PSF, or taking a power 
spectrum to assess background noise), the lossy compressed full image is arriving at a rate that 
does not impede the fidelity of the video conferencing link. Useful masks to define ROI's are 
those set by levels of image brightness (e.g. "all pixels brighter than X-times the mean local 
sky"), connection to previous ROI's, and wavelength/spatial ranges of interest in multislit or 
integral field  spectra.  Note that the entire image may eventually arrive, but SOAR always 
archives the lossless compressed version in Chile for later access.

Data  rates  from 1st-generation SOAR instruments will  average about  4.6  GB/night  (1.6 
TB/year), peaking at about 8.5 GB/night. Assuming 2:1 (50%) lossless compression, a night's 
data can be retrieved to La Serena on the 75 Mbps link in 10-20 minutes using only 1% of link 
capacity to preserve the rest for others. In La Serena, data will be retained in a "disk farm" 
running as a  software level-1 (disk mirroring) RAID array.  Firewire-interface disks are so 
cheap/GB that the entire SOAR archive can grow online by adding less than 10 disks over a 
year. Sending a night's data to the U.S. will require 3.3-6.9 hours on the AURA dedicated 4 
Mbps Abilene link (taking 16-30% of the link capacity,  so several video conferencing/data 
transfer  sessions  by  other  observatories can  also  be  ongoing).  The  disk  archive will  be 
replicated somewhere in the U.S. and in Brazil, and its contents eventually ingested into the 
National Virtual Observatory.

With the telecom bubble's glut  of optical fiber,  we can transmit data more efficiently than 
astronomers and "observe remotely". With data compression, less than half of the 6 Mbps 
bandwidth shared currently by SOAR and CTIO is enough to enable a high-fidelity observing 
presence for SOAR partners in North America, Brazil, and Chile. We discuss access from home 
by cable modem/DSL link.

Currently,  high-end  VC  hardware  tops  out  at  ~3.5  Mbps.  The  standard  H.263  video 
compressor/decompressor (codec) is supported in hardware sold by Polycom, Tandberg, and 
Vcon among others for upward of $1000. We have also obtained excellent results from software 
codecs: a PC with at least a 1 GHz Pentium III CPU can run Vcon's vPoint. Windows software 
to  connect  to  another  H.263-equiped system at  whatever speed is  required. This  software 
controls remote camera pan and zoom if available, gives excellent monaural sound, and allows 
multiple parties to connect to your PC (which acts as a Multi-Conference Unit, MCU). It works 
with any USB-connected camera.  We use the Logitech Laptop Pro camera  ― it  has good 
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resolution and color fidelity. It cannot zoom or auto focus, but can be panned over a 30° arc by 
the remote site or locally by its excellent and accurate face-tracking software.

We have maintained a 768 kbps wireless VC to SOAR on a notebook computer carried around 
the UNC Physics &Astronomy Dept.

The quickest way for a distant user to control an instrument or telescope system has been to 
export the entire instrument console to their desktop. This has been done for more than 15 years 
with  the  X11-window  system,  and  now  even  Windows  XP Pro  supports  remote  logins. 
However,  these connections  require more than 5  Mbps  burst  bandwidth;  otherwise mouse 
cursor and window redraw latencies become too irritating or unreliable. Latencies are shorter at 
similar bandwidth in newer packages such as VNC.

Remote panels  also add  another layer of  security  and confidentiality  by  hiding the  other 
resources and directories of the executing computer.  To prepare for their  observing block, 
several users can connect to a  single panel without degrading performance. The Goodman 
spectrograph control system is an example of a LabVIEW application that is fully compliant 
with remote panels.

5.3.2. Data Transfer
Our LabVIEW-coded Remote Display Tool (RDT) now incorporates capabilities provided by 
the latest version of IMAQ Vision. We now use the commercial Kakadu JPEG 2000 codec 
(http://www.kakadusoftware.com)  instead  of  the  freeware  Jasper  package 
(http://www.ece.uvic.ca/~mdadams/jasper).  Kakadu supports  SIMD optimizations,  doubling 
speed over Jasper. With a P4 2.2 GHz PC, we compress 500-fold a typical SOAR 4K2 16-bpp 
image in 4.5 sec. Kakadu uses modem coding standards (C++ classes rather than C typedefs), 
and is supported by its author as a commercial product for $100 for academic users. RDT is 
coded in LabVIEW with the IMAQ library, but its executable requires only a local runtime 
license ($100 for academic license, Windows only). Once the IMAQ runtime license is active, 
the RDT can be downloaded from SOAR, and auto-installs on the user's machine. Linux or 
Solaris users cannot use neither RDT nor Starry Night. We program with Microsoft's .NET 
compilers and those in the Minimalist GNU tree (www.mingw.com). We store data on the dual-
processor PC with RAID array that runs the projected display under Windows XP. This machine 
is linked by AFS to archive facilities and to the observer's notebook computer (which typically 
runs IRAF under Linux).

After experiments, we have tuned the bandwidth of each thread to maximize total upload speed. 
Little may change in our view of the SOAR control room, so much less of the low latency video 
bandwidth allocation is often used (e. g. figure 6.1.1). This gives the remote user attached by 
CM/DSL opportunities  for  simultaneous data  retrieval, receipt of  telescope telemetry,  and 
instrument control. In typical use, a 768 kbps maximum VC with two upload and instrument 
control threads active saturates a 3 Mbps link (half these numbers for CM/DSL access). With 
lossless compression, a 4K2 image is retrieved from SOAR in 100 seconds (twice this for 
CM/DSL). By then, our next exposure is usually well underway. The combination of multiple 
threads and queued retrieval of compressed data is so effective that we do not bother to interrupt 
VC during data retrieval.

5.4. Sensor Networks
Recent advances in  Microelectromechanical Systems, tiny  microprocessors  and low power 
radio technologies have created low-cost, low-power, multi-functional miniature sensor devices, 
which  can  observe  and  react  to  changes  in  physical  phenomena  of  their  surrounding 
environments. When networked together over a wireless medium, these devices can provide an 
overall  result  of  their  sensing  functionality.  Wireless  sensors  are  equipped  with  a  radio 
transceiver  and  a  set  of  transducers  through  which  they  acquire  information about  the 
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surrounding environment. When deployed in large quantities in a sensor field, these sensors can 
automatically organize themselves to form an ad hoc multihop network to communicate with 
each other and with one or more sink nodes. A remote user can inject commands into the sensor 
network via the sink to assign data collection, processing and transfer tasks to the sensors, and it 
can later receive the data sensed by the network through the sink. Use of this  technology 
appears to be limited only by our imagination and ingenuity. A diverse set of applications for 
sensor  networks  encompassing  different  fields  have  already emerged  including  medicine, 
agriculture, environment, military, inventory monitoring, intrusion detection, motion tracking, 
machine malfunction, toys and many others.

A wireless  sensor  is  characterised  by  its  small  size,  its  ability  to  sense  environmental 
phenomena through a set of transducers and a radio transceiver with autonomous power supply. 
Current  low-end  sensors  employ  low  cost  Reduced  Instruction  Set  Computer  (RISC) 
microcontrollers with a small program and data memory size (about 100 kb). An external flash 
memory with large access times may be added to provide secondary storage and to alleviate the 
application size constraints imposed by the on-chip memory. Common on-board I/O buses and 
devices include serial lines such as the Universal Asynchronous Receiver- Transmitter (UART), 
analog to digital converters and timers. Two approaches have been adopted for the design of 
transducer equipment. The most general and expandable approach, as pioneered by Crossbow 
[5.4_28], consists in developing transducer boards that can be attached (and possibly stacked 
one on top of the other) to the main microcontroller board through an expansion bus. A typical 
transducer  board  from  Crossbow  provides  light,  temperature, microphone, sounder,  tone 
detector, 2 axis accelerometer and 2 axis magnetometer devices. Alternatives include low cost 
versions that provide a reduced set of transducers or more expensive versions that boast GPS, 
for  instance. Special boards are  also  available  that  carry no  transducers but  provide I/O 
connectors that  custom developers can use to  connect their  own devices to  the Crossbow 
sensors. The other approach (followed by Moteiv [5.4_86]) is to put transducers directly on the 
microcontroller board. Transducers are soldered or can be mounted if needed but the available 
options are very limited and generality and expandability is affected. On the other hand, these 
on-board transducers can reduce production costs and are more robust than transducer boards 
which may detach from the microcontroller board in harsh environments. By means of the 
transceiver circuitry a sensor unit communicates with nearby units.  Although early projects 
considered using optical transmissions [5.4_117, 5.4_54], current sensor hardware relies on RF 
communication. Optical communication is cheaper, easier to construct and consumes less power 
than RF but requires visibility and directionality, which are extremely hard to provide in a 
sensor  network.  RF  communication  suffers  from a  high  path  loss  and  requires complex 
hardware but is a more flexible and understood technology. Currently available sensors employ 
one of two types of radios. The simplest (and cheaper) alternative offers a basic Carrier Sense 
Multiple Access (CSMA) Medium Access Control (MAC) protocol, operates in a license free 
band (315/433/868/916 MHz) and has a  bandwidth in  the range 20–50 kbps.  Such radios 
usually offer a simple byte oriented interface that permits software implementations of arbitrary 
(energy efficient) MAC protocols. Newer models support an 802.15.4 radio operating in the 2.4 
GHz band and offering a 250 kbps bandwidth.
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Table 5.4.1: Comparison of various sensor architectures.

The latter offers the  possibility  of  using an internal (i.e.,  on-board) antenna which makes 
sensors more manageable and self-contained with respect to an external whip antenna. The 
radio range varies with a maximum of about 300 m (outdoor) for the first radio type and 125 m 
for the 802.15.4 radios. Sensors are powered by batteries, usually a couple of standard AA 
standard batteries that can be replaced upon expiration. (This is important since the day of 
cheap, disposable sensors is yet to come.) Battery size usually determines the size of the sensor, 
so existing hardware is roughly a few cubic centimetres in size.

An exception is represented by the Crossbow mica2dot mote [5.4_28] which uses a coin cell 
about the size of a quarter dollar but is also more resource constrained than larger sensors. 
Studies  are  currently  under  way  to  replace/integrate battery  sources  with  some  power 
scavenging methods such as solar cells but there are some doubts about the actual effectiveness 
of such methods. Solar cells, for instance, do not produce much energy indoor or when covered 
by tree foliage. A final matter is  the operating system i.e.,  the basic system software that 
application programmers  can  use  to  interact  with  the  sensor  hardware.  TinyOs  [5.4_122, 
5.4_44] is  a  widely used simple lightweight  event-based operating system written in nesC 
[5.4_39] (it is used on Crossbow motes, Moteiv motes and similar devices).

Table 5.4.2: Radio front-end and physical layer specification.

RINGRID-WP3-D3_2-JKU-
Middleware.odt

PUBLIC Page 123 / 149



RINGrid  Status of Grid Middleware Standards―  
for Sharing Scientific Instruments

It  supports  the  task  concept:  An  execution  entity  that  runs  to  completion without  being 
preempted by other tasks and can post other tasks. Only interrupt service routines can interrupt 
a running task. Lengthy operations like reading from a transducer or sending a radio message 
are  split-phase:  The  requesting  task  invokes  a  command  that  starts  the  operation  and 
immediately returns. When the operation completes code from interrupt or TinyOs routines 
posts a notification task. Such task calls (signals) an event routine that collects results and does 
other  chores  in  user  space.  The  command/event  nature  of  TinyOs  renders  application 
programming rather complex and error prone. An interesting alternative comes from the Nut/OS 
operating  system  [5.4_95]  that  runs  on  Btnodes  [5.4_20].  It  offers  non  preemptive 
multithreading where  a  scheduled  thread  maintains  processor control  until  it  voluntarily 
relinquishes it, terminates or blocks on a lengthy I/O operation. Table 5.4.1 compares some 
existing sensor node architectures. For IEEE 802.15.4 based sensors data rate and other physical 
layer specification are given in table 5.4.2.

Concerning middleware  architectures  tweaked  for  sensor  networks,  [L1]  presents  many 
innovative guidelines and solutions for middleware development, that are partially aimed at 
filling  some  gaps  as  regards  the  communication  paradigm  and  signaling  strategies  of 
middleware-based architectures. Besides, another interesting  issue of  wireless  architectures 
concerns the  capability  of  the  nodes of  self-organizing and self-configuring.  The possible 
scenarios where sensor networks may be deployed cover a wide range of applications: from 
simple monitoring purposes to possible "backup backbones" for Mobile Ad-hoc NETworks 
(MANETs) [L2].

Furthermore,  with  the  introduction of  the  support  of  mobility,  sensor  networks  could  be 
deployed for tracking moving entities, such as robots exploring a hostile environment. Wireless-
based sensor networks could be exploited to monitor a zone for a short/medium time, in order to 
gather environmental data  to  be  conveyed to  Geographical  Information Systems (GIS)  or 
Decision Support Systems (DSS), which represent useful tools to prevent and manage hydro-
geological hazards.

Clearly, such kind of networks can greatly benefit from the fact that they do not rely on a fixed 
infrastructure.  Consequently,  one  of  the  key  problems is  related to  the  topology-building 
procedure that represents the first step to develop any routing algorithm.

Regarding topology-related problems, interesting studies were carried out and many others are 
still ongoing. Algorithms devoted to build clustered topologies are presented in [L3], while [L4, 
L5] offers a survey of the most popular routing strategies. In addition, even if devoted to mobile 
networks, [L6] offers an exhaustive survey about cluster-based algorithms.

Nevertheless,  the  increasing  availability  of  cost  effective  and  low  consuming  storage 
technologies, increased the dual role of sensors both as a "collector" and part of a distributed 
storage framework. In this perspective, both the Cougar [L7] and SINA [L8] systems provide a 
distributed database interface to the information from a sensor network with database-style 
queries. Power is managed in Cougar by distributing the query among the sensor nodes to 
minimize the energy consumed to collect the data and calculate the query result. To support the 
database  queries,  SINA incorporates low-level  mechanisms for  hierarchical clustering  of 
sensors for efficient data aggregation as well  as protocols that limit the re-transmission of 
similar information from geographically proximate sensor nodes.

AutoSec [L8], Automatic Service Composition, manages resources in a sensor network by 
providing access control for applications so that quality of service requests are maintained. This 
approach is similar to middleware for standard networks because resource constraints are met 
on a  per-sensor basis,  but  the techniques for collecting the current resource utilization are 
tailored to the sensor network.
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Furthermore, DSWare [L9] provides a similar kind of data service abstraction as AutoSec, but 
instead of the service being provided by a single sensor, it can be provided by a group of 
geographically close entities. Consequently, DSWare can transparently manage sensor failures 
as long as enough sensors remain in an area to provide a valid measurement. While these 
middleware for sensor networks focus on the form of the data presented to the user applications, 
Impala  [L10],  designed  for  use  in  the  ZebraNet project,  considers  the  application  itself, 
exploiting mobile code techniques to change the functionality of the middleware executing at a 
remote sensor. The key to energy efficiency for Impala is for the sensor node applications to be 
as modular as possible, enabling small updates that require little transmission energy.

Although each of these middleware components is designed for efficient use of the wireless 
sensor network, they largely ignore the properties of the network itself. In other words, most of 
these approaches do not attempt to change the properties of the network in order to manage 
energy,  and  they are  not  flexible  enough to  support  different protocol stacks or  different 
applications' QoS requirements. To overcome this, an interesting solution has been developed 
within the framework called MILAN (Middleware Linking Applications and Networks) [L11]: 
When applications have the ability to adapt to changing sets of available components, MiLAN 
can  identify  these  feasible sets  and  determine which  set  optimizes the  tradeoff  between 
application  performance and  network  cost  (e.g.,  energy  dissipation).  MiLAN  must  then 
configure the  network so  that  components  in  the  selected  feasible set  are  linked  to  the 
application. So, a key feature of MiLAN is the separation of the policy for managing the 
network, which is defined by the application, from the mechanisms for implementing the policy, 
which is effected within MiLAN.
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5.5. Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance (NMR) spectroscopy is a unique experimental technique that is 
widely used in physics, organic and inorganic chemistry, biochemistry as well as in medicine. It 
is a powerful technique for obtaining structural and dynamic information on molecules at the 
atomic level. NMR phenomenon itself  serves observing physical, chemical,  and electronic 
properties of molecules, allows to determine spatial structure of chemical compounds, and it is 
also the underlying principle of magnetic resonance imaging and a technique used to build 
quantum computers.

5.5.1. NMR Experiment Overview
In general, NMR experiment starts with a preparation of the sample. In chemistry, most NMR 
spectra are recorded for compounds dissolved in a solvent. Therefore, signals can be observed 
for the solvent as well as for the compound and this must be accounted for in solving spectral 
problems. To avoid spectra dominated by the solvent signal, most spectra are recorded in a 
depurated solvent like chloroform (CDCl3), acetone-d6, D2O, or benzene-d6. Prepared sample 
is held by an NMR probe. This device is placed into the core of the magnet. The probe contains 
also the coil for irradiating the sample with radio frequency energy and for receiving the very 
weak radio frequency resonance back from the sample.

NMR experiment is a very complex process. While running experiment on NMR spectrometer, 
the FID (continuous NMR radio-frequency) signal is registered, which is in turn a function of 
electromagnetic radiation  absorption in  time domain.  This  signal  is  then converted to  the 
numeric value.

In general, an NMR spectrometer consists of a superconducting magnet, NMR console and a 
computer workstation with the control software. Thus, the spectrometer provides a uniform, 
stable magnetic field generated by the magnet (commonly a superconducting solenoid), creates 
radiofrequency (RF) pulses at the proper frequency (NMR console generates them), collects and 
processes the data (computer's part of the job).
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Figure 5.5.1: NMR spectrometer schema (Perkel, 2004).

Information stored in  the  NMR spectra received in  time domain is  illegible.  To obtain  a 
conventional spectrum of the NMR signal in the frequency domain, the FID signal has to be 
converted using mathematical operations e.g. Fourier transformation (FT), which operates on 
functions depending on both time and frequency.

In NMR spectroscopy the Fast Fourier Transformation (FFT) algorithm is commonly used. Data 
obtained in time domain in NMR experiment are then numerically processed using one of many 
available specialized applications, such as:  VNMR, Xwin-NMR, TopSpin, Felix, NMRPipe, 
GIFA, MestRe-C.

5.5.2. Data Rate
User requirements in terms of date rate are changeable and depend on many aspects such as 
substance amount, type of  the  experiment (1D or  nD; homo- or  heteronuclear),  examined 
isotope properties (like natural abundance, magnetogyric ratio).

In general it can be said the measurement time for 1D experiment is between few up to dozen of 
minutes, for 2D ― up to dozen of hours and for 3D experiments between dozen of hours up to 
few days. Within given time they generate from dozen of kilobytes up to tens or hundreds of 
megabytes respectively. It means that data rate should not be a critical issue.

5.5.3. Timeliness
This is a problematic issue. When the NMR user is pretty sure the experiment is going to go 
smoothly (which is usually known at the start point of the experiment) and the results obtained 
will satisfy him/her there is no need to control the experiment in the real time. In other words 
the user can wait until the experiment finishes even if it lasts for few hours or days and then 
he/she can start to analyze the results. In case the user is not sure what the results will be like or 
there is a need to change some parameters ― in most of the cases ― he/she assists the ongoing 
experiment and checks its current state.
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The data from the NMR experiment are usually received in packs after the certain amount of ― 
so called ― scans is processed.

5.5.4. Interactivity
In  some  cases,  when  NMR  experiment  is  being  prepared  (sample  locking,  shimming, 
calibrating)  latency  during  user-device  interaction  may  cause  difficulties  or  even  bad 
experiment preparation. As the result the output data time used for spectrometer usage will be 
lost and measurement will have to be repeated. Such delays in interaction are less important 
when the data (spectrums) are processed or output data are analyzed. Those delays are rather 
user irritating and do not cause any problems as it was described in the previous earlier.

To minimize such situations  VLab provided a  compressed and efficiently  compressed and 
secured VNC connection between the user and NMR spectrometer.

Security is one of the most important aspects in the user access to the spectrometer due to high 
data value obtained. A general architecture is given below.

Figure 5.5.2: VLab setup for efficient communication with the NMR 
spectrometer.

The original VNC solution has been modified to enable secure connections between the Viewer 
and the Server. As you can see in the figure above there are three elements in the model:

● Secure VNC Viewer (SVV)

● Zebedee Server

● VNC Server

VLab uses the Zebedee server to encrypt the data flow. Generally speaking the Zebedee is a 
simple program  to  establish  an  encrypted, compressed tunnel  between two  systems.  The 
encrypted data flow is sent to the Zebedee Server, which decodes the stream and forwards it to 
the VNC Server. The similar situation takes place when the VNC Server sends the data stream 
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to the Viewer. First of all, the data is transmitted to the Zebedee, which encrypts the flow and 
sends it to the Viewer.

The Secure VNC Viewer (SVV) has been designed to decode the encrypted stream. It is a 
modified version of the Java VNC Viewer and has been equipped with the ability to decode the 
Zebedee data streams. The example screenshot is given below. The data streams carrying the 
visualization data are compressed and thus network throughput is not the most important issue.

Figure 5.5.3: VLab SVV screenshot.

5.5.5. Data Loss
Another important issue that should be considered in NMR is the possibility of losing the data 
or some part of the data during the experiment. In case the sudden lack of the electricity or 
when the computer which is connected to the spectrometer will be shutdown then some parts of 
the data collected can be restored because every few or dozen of minutes data are stored on the 
hard disk of the computer steering the spectrometer. It has to be underlined that ― in theory ― 
the possibility exists to resume the experiment which has been prematurely interrupted. In case 
when (for example) something happens to the sample then false data will be stored in the file 
(additionally to the good ones saved earlier) and the experiment will have to be repeated.
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5.5.6. Storage Space
Storage  space  required  for  storing  NMR  experiments  results  strongly  depends  on  the 
experiment parameters,  such  as  spectrum resolution,  dimensions  (1D,  2D,  3D,  etc.).  As 
mentioned before as the result of NMR experiment FID signal is registered. For 1D experiment 
one FID signal is obtained (dozen of kBs, with processed data file size up to 0.5 MB), but in nD 
experiment the number of FID series decides what resolution of the spectra in full resolution 
will  be  like.  For example, in  2D experiment with  resolution  2048x512 points  we receive 
collection of 512 FIDs, each one with the resolution of 2048 points, so we will need 512 times 
bigger  disk  space  than in  1D experiment. For  the  3D experiment with  the  resolution  of 
1024x128x128 we receive collection of 16384 (128x128) FIDs and thus much bigger disk space 
is required. It is also worth to mention that 4D and 5D experiments are also ran but because 
they are time consuming they are rarely used.

Storage space should not be an issue for the user and it should be hidden from the user as much 
transparently as possible.

Taking advantage of running experiments in the VLab environment make it easy to manage 
experiments result  files  transfer between applications  used in  NMR spectroscopy for  pre-
processing, experiments and post-processing as well and keep everything together. Files are 
saved in Data Management System repository which is available for VLab users and where they 
can share results of their work. Files are copied between user experiment result files location 
and DMS repository using GridFTP protocol.

5.5.7. Collaboration Tools
The following are the key issues that should be taken into consideration within collaboration 
tools in NMR:

● Getting in touch with other people working on the same topics using collaboration tools 
such as: chat, audio and video communicators;

● Communicating with the device control staff. It is especially helpful when user requires 
the information about device time availability;

● Setting up the experiment execution time (reservation) ― useful in case of on-line 
experiments when scientists are able to meet at the certain amount of time and watch the 
experiment results on the screen;

VLab enables the user with the tools such as Skype or Gadu-Gadu (the latter being a very 
popular Polish messenger).

5.5.8. References
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6. Use Cases

6.1. Southern Astrophysical Research Telescope Control 
System

The  SOAR  (SOuthern  Astrophysical  Research)  Telescope  is  designed  to  carry  a  large 
instrument payload. An Instrument Support Box (ISB) at  each Nasmyth focus can carry a 
cluster of three instruments with a total weight of up to 3000kg, and contains a shared Tip-Tilt 
guider and calibration unit.  Two "Folded Cassegrain" ports on the elevation ring can each 
support an additional smaller instrument weighing up to 300kg. A third such port holds the 
Calibration Wavefront Sensor used to tune the Active Optical System. The system is designed to 
allow the observer to switch between instruments, several of which will be "science ready" at 
any time, within a few minutes. The tertiary mirror rotates to select the focal station in use while 
beam steering optics within each ISB direct the light to the chosen instrument.

Figure 6.1.1: Schematic representation of the SOAR telescope.

The  4.1  meter  SOuthern  Astrophysical  Research (SOAR) Telescope  is  now  entering the 
operations phase, after a period of construction and system commissioning. The SOAR TCS 
(Telescope Control System), implemented in the LabVIEW software package, has kept pace 
throughout development with the installation of the other telescope subsystems, and has proven 
to be a key component for the successful deployment of SOAR. In order to understand the 
success of  the SOAR TCS, we review the design considerations  and the implementations 
details, followed by a presentation of the software extensions that allows a seamless integration 
of instruments into the system, as well as the programming techniques that permit the execution 
of remote observing procedures.
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6.1.1. Introduction
With the arrival of the optics system in January 2004 the SOAR telescope is  now in the 
commissioning  stage  with  all  subsystems  fully  operational and  approaching readiness for 
science operations.

The SOAR TCS is a distributed control system, implemented using the LabVIEW software 
package and makes use of several support software modules written in C/C++ and TCL. The 
TCS software runs on regular desktop PCs with a standard set of I/O cards and peripherals. This 
implementation of the TCS with its strong emphasis on connectivity to diverse systems, based 
on a simple client/server architecture adopted by all the subsystems, played a key role in the 
integration of all telescope components.The extensive set of functions and visual tools offered 
by LabVIEW also allowed the implementation of rich user interfaces, that readily evolve in line 
with changing needs, and are easily tuned to optimize machine operator interactions. These 
capabilities have been utilized at all levels during the commissioning period, both for quick 
visualization of status and data, and to develop control sequences and ad-hoc operations.

6.1.2. Integration Results
The first outstanding result is the open loop tracking performance of the mount. The mount 
tracks very well with no perceivable drift of the tracked object for several minutes. The good 
tracking performance proved to be important during the calibration of the optics. The SOAR 
Calibration WaveFront Sensor (CWFS) used to measure the aberrations, has no provisions for 
guiding so that it is necessary to center a star on the 3 arcsecond diameter entrance aperture of 
the device and hold it there during a series of exposures ranging from 10 to 30 seconds while 
tracking open loop. Without the good tracking this would have been very time consuming, or 
impossible activity.

The implication of the good open loop tracking performance, is that the computation of the 
demands is done at the right time and with the right precision, and that the mount follows those 
demands with great accuracy (see ref 3 for a detailed description of the mount results). In order 
to better understand how the demands are generated in the SOAR TCS, figure 6.1.2 shows the 
present implementation of the KERNEL5,6 component and the associated support software that 
performs the demand computations.

The KERNEL running under the Real-Time Applications Interface extension to Linux (RTAI-
Linux), computes the position demands for the mount, rotators and guiders, and sends those 
demands to the mount and the LabVIEW process for final application of the results. An RTAI-
FIFO link is used to expedite the KERNEL to LabVIEW communications in these time-critical 
cases,  because  TCP/IP  used  for  the  original  implementation,  was  found  to  impose  an 
unacceptable overhead.  Conversely,  TCP/IP is  entirely  adequate  for  the  TCL link  that 
implements less time critical services, such as slew requests, pointing measurements, etc., and 
given its proven reliability there is no need to move them to the FIFO link.
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Figure 6.1.2: KERNEL component and associated support software.

The second important result is  the stability of the messaging system. The communications 
library provides applications with a  standard messaging interface supporting a  client/server 
architecture.  Furthermore,  SOAR  defines  a  messaging  API  using  a  tokenized  scheme. 
Underlying  this  architecture is  the  need to  modularize  applications  ,  with  many modules 
running concurrently exchanging messages with one another.  Messages may be exchanged 
between subsystems in different machines, as well as internal components running in the same 
computer. Different transport mechanisms are used, like TCP/IP, RTAI-FIFOS, queues, shared 
memory,  serial  links, etc.  The ability to  use diverse transports  for messages proved to  be 
extremely useful when performance enters the picture. Whenever it was felt that processes were 
lagging behind because of the slowness in message exchanges, a new faster transport was 
explored. A typical result is that the KERNEL communications could be upgraded from the pure 
TCP/IP  transport  to  RTAI-FIFO,  regaining  the  lost  performance  without  changing  the 
architecture or affecting the stability of the system.

Another important consideration for a client/server architecture to be successful is to design the 
messaging system to  be  non blocking  and  for  servers to  decouple  the  internal processing 
activities  from the  handling  of  the  messages. On the  one  hand, a  server should  respond 
immediately to every command, while on the other, the act of responding to commands must 
not interfere with the control activities. This results in the ability to decompose a software 
problem into a series of fully encapsulated processes and to keep adding new processes without 
disrupting other components in the system, i.e., so that the application can evolve and change 
under control. The practical result is that the SOAR TCS is a very stable system, running for 
days without  a  flaw,  and  behaving gracefully  when a  component does fail,  continuing to 
function with degraded performance, but remaining responsive to external demands.

Another area of satisfactory results concerns operator-TCS interactions. SOAR utilizes GUI 
based interfaces at all levels, from basic motor control all the way to elaborate maneuvers like 
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finding targets and setting the optics. Figure 6.1.3 presents a snapshot of the present operator 
GUI.

Figure 6.1.3: SOAR operator GUI.

The critical aspect here is the rational use of the screen space, while avoiding overloading the 
user with information. The general idea is that at any moment only the minimum amount of 
information should be presented to give an indication of the system status. For example, the two 
upper top left rows of indicators represent the status of all the subsystems and instruments 
connected. A colour code serves to provide status information, anomalous conditions being 
flagged by changes of indicator colour. Clicking the trouble indicator pops up a status message 
with a brief description of the problem. The operator may then choose to open the entire screen 
of the subsystem involved in order to perform a detailed diagnosis of the problem. We utilize a 
dual screen system, in which such detailed sub-system display are diverted to a second monitor 
so as not to overlap the operator GUI and hiding the overview of the rest of the system.

The bottom left section is where all actions are initiated. This is a "tab" structure, where one can 
quickly select a section and activate the required actions. The idea here is to never be more that 
a click away from any operation, a condition difficult to attain with more traditional menu 
approaches.  Some  common  operations,  like  track  on/off,  dome  enable/disable,  etc.,  are 
promoted to an actual switch icon as shown in the middle row of on/off switches. The centre 
section to the right of the screen contains a number of numeric indicators which give the present 
position of the mount, dome, and rotator, as well as the environmental conditions. In the bottom 
right section there is an image generated by the Soar All Sky Camera (SASCA) showing the 
state of the sky at the time of observation.
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6.1.3. Instruments Integration
The SOAR telescope will deploy multiple "hot" instruments when in operations. Figure 6.1.4 
shows the initial suite of instruments, and the locations where they will be installed on the 
telescope. At  the  Nasmyth locations,  instruments attach  to  a  support  cage known as  the 
Instrument Selector Box (ISB), which contains movable optics to send the light to any of the 
three instruments installed at each side. A guider device is also included in each ISB. Selection 
of the instrument to be used, consists of rotating the M3 turret to the appropriate port and setting 
the optics in the ISB if necessary.

Given the number of online instruments and the ability to rapidly switch from one to another, 
the SOAR telescope is well suited for the study of short lived transient objects, such as gamma 
ray bursts, by means of a "target of opportunity program".

Figure 6.1.4: SOAR instruments.

All the new instruments developed by the SOAR community utilizes LabVIEW to implement 
the control and acquisition software. The first  instrument to  be integrated was the  SOAR 
Optical Imager, that is being used to commission the telescope, and includes its own rotator, 
ADC corrector and guider since it is located at one of the Bent Cass ports. This instrument 
requests status information from the TCS, and steers the focus device, when performing focus 
sequences. The TCS in  turn steers the rotator,  ADC and guider.  The command exchanges 
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follows the protocol explained earlier. A TCP/IP link provides enough bandwidth for all these 
operations.

The second instrument to be integrated was OSIRIS, a legacy InfraRed Imager/Spectrograph 
provided by Ohio State University. The software for this instrument is not LAbVIEW based, but 
we faced no difficulties in connecting it to the TCS given the simple client/server approach of 
exchanging commands. This instrument has a more demanding interaction with the TCS given 
the continuous requests for mount offset motions, that are required for observations in the near 
IR.

6.1.4. Remote Observation
One of the requirements of the SOAR TCS is the need to support remote observation. Note that 
the term is "remote observation" and not "remote operation", since there will always be an 
operator  on  site  to  enable  telescope  slew  and  to  supervise  other  potentially  hazardous 
maneuvers. In this context then, remote observation is the ability to interact with the TCS and 
instruments to get observational data from a remote location, with the assistance of a local 
operator.

Traditionally,  this interaction has been made by remote display of screens generated at the 
telescope site. The drawback in this situation, is that response times are not optimum, which can 
be  irritating,  and to  improve on  that  condition  the  bandwidth  requirements increase.  Our 
approach (see ref 4 for a complete description) makes use of three technologies to accomplish a 
better solution: DataSocket, Remote Panels and Compression.

Figure 6.1.5: DataSocket concept.
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DataSocket (http://ni.com/datasocket) is a programming technology for sharing and publishing 
live data between different applications. Broadcasting data requires three "actors": a publisher, 
the DataSocket Server, and a subscriber (see figure 6.1.5). A publishing application uses the 
DataSocket API to write data to the server. A subscribing application uses the DataSocket API 
to read data from the server. The server then broadcast information to subscribers whenever a 
producer generates new data. The actors normally reside on different machines to improve 
performance. We use DataSocket to publish telemetry data from the TCS and instruments. The 
remote subscribers generate local display screens or Web pages, to visualize the data,  thus 
decreasing the bandwidth requirements considerably.

Remote Panels in the context of LabVIEW is the ability to view or control a VI in any Web 
browser. This feature allows several users at different locations to access the VI simultaneously. 
What makes this approach different to previous remote display implementations, is that the 
amount of data exchange between the machine running the VI and the machines displaying the 
VI is greatly reduced, by sending only the portion of the display that have changed (if any), 
without the need to resend the entire panel. This is done with the help of a plug-in (freely 
available from ni.com) that one needs to install in a browser, with this plug-in performing the 
display updates locally.

6.1.5. Summary
After 5 years of development and test, the SOAR TCS software is in a stable condition, and 
utilized routinely to control the SOAR telescope and instruments. The software survived several 
LabVIEW versions (from 5.1 to 7.0) and several Linux versions (RedHat 5 to RedHat 9) during 
the implementation phase. Upgrading to new versions has been seamless and straightforward. 
We expect this trend to continue as new releases are produced.

6.2. The National Virtual Observatory Project and the 
International Virtual Observatory Alliance

For several centuries, astronomical research has been carried out by a single astronomer or 
small group of astronomers performing observations of a small number of objects. In the past, 
entire careers have been spent in the acquisition of enough data to barely enable statistically 
significant conclusions to be drawn. Moreover, because observing time with the most powerful 
facilities is very limited, many astrophysical questions that require a large amount of data for 
their resolution simply could not be addressed.

This approach is now undergoing a dramatic and very rapid change. The transformation is being 
driven by the unprecedented technological developments over the last decade. The major areas 
of change upon which this revolution in astronomy rests are advances in telescope design and 
fabrication,  the  development  of  large-scale  detector  arrays,  the  exponential  growth  of 
computing capability, an increasing capability of space-based observatories and missions, and 
the ever-expanding coverage and capacity of communications networks.

The steep increase in the volume and complexity of available information is based on the great 
progress in technology, including digital imaging (the chief data source in astronomy), and, of 
course, the ways of processing, storing, and accessing information with the advent of grid 
technology [7]. Figure 6.2.1 shows, as an example, the Montage project [10] architecture, on 
how data grid technology can be applied to manage astronomy objects creation or replica 
retrieval, by the use of data grid technology. The Montage project goal is to deploy a portable, 
compute-intensive service that will  deliver science-grade custom mosaics  on demand, with 
requests made through existing portals. Science-grade in this context requires that terrestrial and 
instrumental features are removed from images in a way that can be described quantitatively; 
custom refers to user-specified parameters of projection, coordinates, size, rotation and spatial 
sampling.
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Figure 6.2.1: The MONTAGE project architecture.

The diagram exemplifies the use of grid technology in the VO. After a user request has been 
created and sent to the Request Manager, part of the request may be satisfied from existing 
(cached) data. The Image Metadata (IM) system looks for a suitable file, and if found, gets it 
from the distributed Replica Catalog (RC). If not found, a suitable computational graph (DAG) 
is assembled and sent to be executed on grid resources. Resulting products may be registered 
with the IM and stored in RC. The user is notified that the requested data is available.

Most of the scientific measurements and data obtained today are either generated in a digital 
form or converted to it. Most of all astronomical measurements today are digital in nature, and 
most instruments contain some form of a digital imaging arrays. Such devices, in turn, are based 
on the same technology (integrated circuits and microelectronics), governed by Moore's law and 
are thus growing exponentially in their information-generating ability.

In addition to this increased data rate, the manner in which observations are being made is also 
changing. Although the new observatories in space and on the ground still devote a significant 
fraction of their time to research in the single observer/single program mode where small blocks 
of time are allocated to many specifically targeted research programs, more time is now being 
devoted to large scale surveys of the sky,  often at multiple wavelengths, that involve large 
numbers of collaborators. These large survey programs will produce coherent blocks of data 
obtained with uniform standards and with the amount of data often measured in terabytes.

These  trends  will  continue.  For  example,  the  Large-Aperture  Synoptic  Survey Telescope 
(LSST) [11] should produce about 10 terabytes per day.

The astronomical community should take advantage of the advances in computational speed, 
storage media and detector technology in two ways:
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1. By carrying out new generation surveys spanning a wide range of wavelengths and 
optimized to exploit these advances fully;

2. By developing the software tools to enable discovery of new patterns in the multi-
Terabyte (and later Petabyte) databases that represent the legacies of these surveys.

In combination, new generation surveys and software tools can provide the basis for enabling 
science of a qualitatively different nature.

The quantity of data continues to grow exponentially. Transforming vast masses of bits into 
refined knowledge and understanding of  the universe is  a  highly complex task. The great 
quantitative change in the amount and complexity of available scientific information should 
lead to a qualitative change in the way science is conducted.

Large digital sky surveys and archives are now becoming the principal sources of data for 
astronomy. Increasingly, the field is being dominated by the analysis of large, uniform sky 
surveys, sampling millions or billions of sources, and providing tens or hundreds of measured 
attributes for each of them. There is a paradigm shift in observational astronomy, with survey 
based science becoming an ever more important way of exploring the universe in a systematic 
way. The sky is now being surveyed over a full range of wavelengths, giving us, at least in 
principle, a panchromatic and less biased view of the universe.

The tools to carry out surveys over nearly the entire electromagnetic spectrum on a variety of 
spatial  scales and over multiple  epochs are now available, all  with  well-defined selection 
criteria and well-understood limits. The ability to create panchromatic images, and in some 
cases digital movies of the universe, provide unprecedented opportunities for discovering new 
phenomena and  patterns  that  can  fundamentally  alter  our  understanding.  In  the  past,  a 
panchromatic view of the same region of sky at  optical and radio wavelengths led to  the 
discovery of quasars. The availability of infrared data led to the discovery of obscured active 
galactic nuclei and star forming regions unsuspected from visible images. Repeated images of 
the sky have led to the discovery of transient phenomena ― supernovae, and more recently, 
micro-lensing events ― as well as a deeper understanding of synoptic phenomena. The joining 
together of various largescale digital surveys will make possible new explorations of parameter 
space, such as the low surface brightness universe at all wavelengths.

Many astronomical surveys, large telescopes, and space missions are already producing large 
quantities of high quality legacy data, and much of this is currently being archived. Most of 
these data, obtained through use of costly and highly oversubscribed, state of the art facilities, 
have an unprecedented richness and depth, and they offer unique opportunities for application 
to a variety of scientific programs by a wide range of users. The existence of such information-
rich archives, containing multi-wavelength data on hundreds of millions of objects, is creating a 
demand within  the  astronomical community for  access to  the  archives and  for  the  tools 
necessary to analyze the data they contain. Opportunities for data mining, for sophisticated 
pattern recognition, for large scale statistical cross correlations, and for the discovery of rare 
objects and temporal variations all become apparent.

In  addition, for the first  time in  the history of  astronomy,  such data sets  can go through 
meaningful  comparisons  to  be  made  between  sophisticated  numerical  simulations  and 
statistically complete multivariate bodies of data. The rapid growth of high speed and widely 
distributed networks means that all of these scientific endeavours will be made available to the 
community of astronomers throughout the U.S. and in other countries.

The potential for scientific discovery afforded by these new surveys is enormous. Entirely new 
and unexpected scientific results of major significance will emerge from the combined use of 
the resulting datasets, science that would not be possible from such sets used on their own.
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6.2.1. The US-NVO
The NVO is the National Virtual Observatory, the United States based Virtual Observatory [8] 
project that is collaborating with the International Virtual Observatory Alliance (IVOA) to make 
it possible for astronomical researchers to find, retrieve, and analyse astronomical data from 
ground and space-based telescopes worldwide.

The origin of the NVO can be traced to the establishment in the early 1990s of wavelength-
oriented science archive centres for NASA mission datasets. These were the first comprehensive 
astronomy archive facilities having a close connection between data and expertise in calibrating 
and using the data. Also, during the 1990s several large-scale digital sky surveys began, most 
notably the Sloan and 2MASS surveys. The images and source catalogues derived from these 
surveys demonstrated the value of homogeneous, on-line datasets. In April 1999, the concept 
for a "National Virtual Observatory" arose at a meeting of the Decadal Survey Panel on Theory, 
Computation, and Data  Discovery.  In  the following two years, a  series of workshops and 
conferences were held to flesh out the concept of the VO. In September 2001, National Science 
Foundation (NSF) Information Technology Research program awarded US$10Million to a 17-
organization collaboration led by Alex Szalay (JHU) and Paul Messina (Caltech) to build the 
infrastructure for the VO. Both the US NVO project and the Astrophysical Virtual Observatory, 
the European pilot VO effort, released their first science prototypes in January 2003.

The VO enables a new way of doing astronomy, moving from an era of observations of small, 
carefully selected samples of objects in one or a few wavelength bands, to the use of multi-
wavelength data for millions, if not billions of objects. Such datasets will allow researchers to 
discover  subtle  but  significant patterns in  statistically  rich and unbiased databases, and to 
understand  complex astrophysical  systems  through  the  comparison  of  data  to  numerical 
simulations. The VO goal is to provide simultaneous access to multi-wavelength archives and 
advanced visualization and statistical analysis tools.

The Virtual Observatory comes about now as a result of the convergence of research interests 
(multi-wavelength astrophysics, archival research, survey astronomy, and temporal astronomy) 
and information technology (Moore's law, digital detectors, the Internet, and data representation 
standards).  Astronomy is  well-positioned to  exploit  the  IT revolution  because of  its  early 
commitment to formatting standards (FITS), the now universal use of digital detectors, and an 
ever-broadening commitment to data preservation and data re-use.

The  US  NVO  project  is  supported  by  the  National  Science  Foundation's  Information 
Technology Research Program under Cooperative Agreement AST-0122449 with The Johns 
Hopkins University.

The  NVO  should  not  be  viewed  just  as  a  new  information infrastructure for  data-rich 
astronomy. Rather, its main objective is to be a comprehensive research environment for the 
new astronomy with massive data sets,  including data,  tools, and services. The NVO goes 
beyond the existing structures in that it would provide new and increasingly needed technical 
and scientific functions, including unprecedented data  fusion and data mining  capabilities, 
instead of just the passive serving of limited data sets of the kind have been available until 
recently. It will make possible rapid querying of individual terabyte archives by thousands of 
researchers, enable visualization  of  multivariate patterns embedded in  large  catalogue and 
image databases, enhance discovery of complex patterns or rare phenomena, encourage real 
time collaborations among multiple research groups, and allow large statistical studies that will 
for  the  first  time  permit  confrontation  between  databases  and  sophisticated  numerical 
simulations. It will also facilitate the understanding of many of the astrophysical processes that 
determine the evolution of the Universe. "It will enable new science, better science, and more 
cost effective science" [6].
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6.2.2. IVOA
The International Virtual Observatory Alliance (IVOA) [9] was formed in June 2002 with a 
mission  to  facilitate  the  international  coordination  and  collaboration  necessary  for  the 
development and deployment of the tools, systems and organizational structures necessary to 
enable the international utilization of astronomical archives as an integrated and interoperating 
virtual observatory. By January 2005, the IVOA has grown to include 15 funded VO (virtual 
observatory) projects from Australia, Canada, China, Europe, France, Germany, Hungary, India, 
Italy,  Japan,  Korea,  Russia,  Spain,  the  United  Kingdom,  and  the  United  States.  This 
membership is  being  expanded  to  include  representation  from  projects  constructing  and 
planning  new observatories and  astronomical facilities,  as  well  as  emerging  astronomical 
communities that seek to benefit from the global availability of VO facilities and technologies.

In January 2003, the IVOA Executive adopted several strategic approaches to achieving the 
IVOA mission. Firstly,  the work of producing standards was to be modelled on the W3C 
process  involving  a  cycle  of  Working  Drafts,  Proposed  Recommendations,  and  finally 
Recommendations  to  the  international  community  as  represented  by  the  International 
Astronomical  Union  (IAU).  Secondly,  Working  Groups  were  created  with  cross-project 
membership in those areas where key interoperability standards and technologies had to be 
defined and agreed upon. The Working Groups represent a significant commitment from each of 
the projects to build new standards on a time scale consistent with the original IVOA Roadmap 
(2002-2005). Finally, the IVOA Executive emphasized the importance of annual demonstrations 
for the astronomical community of new and emerging VO capabilities. Demonstrations provide 
a forum to engage the scientific community, they provide a major,  regular, and predictable 
milestone for development projects to meet deadlines, and they allow the IVOA Executive to 
assess progress on standards development in order to set priorities for standards roll-out in a 
coordinated way.

Currently the IVOA coordinates eight Working Groups as well as four Interest Groups in areas 
such as Applications and Theory. The efforts of the Working Groups have been coordinated and 
focused through five international Interoperability Workshops held in the US, the UK, France, 
India, and Japan between October 2002 and May 2005. To date, the Working Groups have 
produced Working Drafts, Technical Notes and specific Recommendations in the areas of XML 
data format standards (VOTable),  VO Resource Metadata, Universal Content Descriptions, 
Space-Time Coordinate Metadata, unified Data Access Layer standards for spectra and images, 
VO Resource Registries, VO Query Language,  unified astronomical data models and web 
service technologies for the VO. The chairs of the Working Groups have also produced an 
overall architectural plan for an operational VO that identifies the critical areas for current and 
future development of standards and technologies. The IVOA has also sponsored two regional 
VO meetings in China and India to ensure that small VO projects in these areas have a forum to 
share developments with each other and the larger projects in Europe and the US. In January 
2003, 2004, and 2005, coordinated demonstrations of VO developments were held in the US 
and  Europe  which  highlighted  progressively  more  complex  VO  capabilities,  new  web-
accessible services  for  the  community,  and  downloadable prototype  software that  proved 
capable of producing new scientific results in multi-wavelength astronomy. In July 2003, a 
coordinated set of demonstrations was held at the IAU General Assembly by ten VO Projects 
that highlighted the international scope of the VO effort.

Several new scientific finding have already been published through VO-based research. The 
first major discovery to be made with the Virtual Observatory was reported by the Astrophysical 
Virtual Observatory (currently Euro-VO) in 2004 (Padovani et al.; Astronomy & Astrophysics, 
424, 545). The AVO science team discovered 31 previously undetected powerful super-massive 
black holes in the so-called GOODS (Great Observatories Origins Deep Survey) fields. The US 
Virtual Observatory (NVO) also published a paper; McGlynn et al. classified all unidentified 
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ROSAT WGACAT objects using VO data access methods to cross-correlate multi-wavelength 
catalogues (Astrophysical Journal, 616, 1284, 2004). More than 400 papers have been published 
related to "Virtual Observatories". These publications indicate that Virtual Observatories have a 
very high potential to enable new astronomical research.

The IVOA has also sought to form links to other communities, projects, and governing bodies 
in order to share technological approaches, gather scientific and technical requirements and to 
promote the importance of adequate funding for the scientific exploitation of data from new and 
existing facilities. In particular, the IVOA has initiated the formation of an astronomical grid 
community research group within the Global Grid Forum, has encouraged the International 
Astronomical Union (IAU) Commission 5 to form a VO Working Group to facilitate IAU 
oversight and endorsement of IVOA recommendations, has made presentations to specific large 
project meetings (ALMA, LSST, and IAU Joint Discussions), and has actively participated in 
the OECD Global Science Forum workshops on Future Large-Scale Projects and Programmes 
in Astronomy and Astrophysics (April 2004). The OECD workshop summary noted: The huge 
volume of digital  information flowing from the new observatories  raises the challenges of 
collecting, using, storing, and sharing data. The workshops identified a number of major issues 
in the context of a new community-based vision for a common research infrastructure: the 
"Virtual  Observatory".  Impressive  progress  has  been  made  and  the  momentum  of  the 
International Virtual Observatory Alliance will ensure sustained progress, provided support and 
funding are made available. The IVOA is also engaged in the OPTICON-sponsored study of 
Future Astronomical Software Environments, helping to define a framework in which legacy 
applications, data processing pipelines, custom analysis tools, and VO-enabled data access can 
be easily integrated together [9].
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6.3. Nuclear Magnetic Resonance Spectrometer
Nuclear Magnetic Resonance (NMR) spectroscopy is a unique experimental technique that is 
widely used in physics, organic and inorganic chemistry, biochemistry as well as in medicine.

The analysis of one- or multi-dimensional homo- and hetero-nuclear spectra obtained in the 
course of NMR experiment can provide information about the chemical shifts of the nuclei, 
scalar coupling constants, residual bipolar coupling constants and the relaxation times T1, T2.

Many areas of information can be obtained from this single phenomenon. In its simplest form 
NMR allows identification of individual atoms in a pure molecule. Much like using infrared 
spectroscopy to identify functional groups, analysis of a 1D NMR spectrum tells the scientist 
what atom environments (like a methyl proton), and in some cases how many atoms of each 
type, exist within the sample. NMR is based in quantum mechanical properties of nuclei, and as 
such is very reliable, predictable and reproducible. Since its advent, it has become the most 
important analytical tool available for organic chemists; it yields far more information than for 
example infrared spectroscopy.

The impact of NMR Spectroscopy on the natural sciences is substantial. It can be used to study 
mixtures of analytes; to understand dynamic effects such as change in temperature and reaction 

RINGRID-WP3-D3_2-JKU-
Middleware.odt

PUBLIC Page 142 / 149



RINGrid  Status of Grid Middleware Standards―  
for Sharing Scientific Instruments

mechanisms; it can be used in the solution and solid state; and critically it is an invaluable tool 
in understanding protein and nucleic acid structure and function.

6.3.1. NMR and VLab
To explain why NMR has been introduced to the Virtual Laboratory few additional words 
concerning tasks types are needed.

In  the  Virtual  Laboratory  two  main  tasks  types  can  be  distinguished:  experimental and 
computational  ones.  The  latter  can  be  divided  into  regular  (batch)  jobs  and 
interactive/visualization tasks (the ones performed in the real time, directly by the users ― via 
GUI). The biggest difference (and difficulty) between those types is that ― in the interactive 
tasks  ― the time slot  reserved for running the task on a  computational machine must be 
synchronized with user preferences, considering specific working hours, daily schedule etc. 
Another aspect is the mechanism which will present the users with the graphical interface of the 
actual computational (or visualization) application ― which is run on dynamically assigned 
computational  server  ―  and  allow  them to  perform their  interactive  task.  Another,  very 
characteristic type of Virtual Laboratory tasks are the experiments. By the term "experiment" 
we mean a task, scheduled to be performed on the remote laboratory equipment, available via 
VLab to its users. In most cases such experiments will  be interactive processes, with users 
manipulating directly the remote equipment via specialized control software GUI. Experiments 
are difficult to describe in a normative manner. Depending on a specific science domain, there 
can be many dependencies of external, often non-deterministic factors. The device will not be 
continuously available for VLab users but will be shared with local researchers (usually with 
higher priority than the remote users). There are also maintenance periods, in which the device 
is unavailable. Sometimes the presence and assistance of the device operator may be necessary 
― especially at the beginning of experiments.

The first scientific device incorporated into the VLab system was an NMR spectrometer. The 
most important problems with scheduling the NMR experiments, apart from those described 
above, come from the samples management. To perform an NMR experiment, an actual sample 
containing chemical compound has to be delivered to the NMR spectrometer and inserted into 
the machine. This causes a number of scheduling problems. At the task (and corresponding 
sample) submission point the actual NMR device has to be known and chosen, because the 
sample has to be sent from the remote location to the device site. The exact time of sample 
arrival is not known as well, making the exact task scheduling impossible until the sample 
arrives.

6.3.2. Digital Science Library for NMR
Current Digital Science Library (DSL) implementation has been used in the Virtual Laboratory 
for NMR spectroscopy purposes. Its main functionality, which is storing and presenting data in 
a grid environment, was extended with the functions specific to the requirements of the NMR 
data. This data can be the input information used for scientific experiments as well as the results 
of performed experiments. Another important aspect is the capability of storing various types of 
publications and documents related to NMR discipline, which are often created in the scientific 
process. This type of functionality, which is well known to all  digital library users, is also 
provided by the DSL.

The analysis of one or multi-dimensional homo- and hetero-nuclear spectra obtained in the 
course of NMR experiment can provide information about the chemical shifts of the nuclei, 
scalar coupling constants, residual dipolar coupling constants and the relaxation times T1, T2. 
All of these data can be stored in the presented database, which also offers tools for performing 
quick and optimal  search through the  repository.  Compared  to  the  other  NMR databases 
available  through  the  Internet,  like  BioMagResBank, NMR data-sets  bank,  NMRShiftDB, 
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SDBS and Spectra Online, DSL is more suitable for teaching, since it contains an entire range 
of the information about the performance and analysis of the NMR experiment.

Information about each compound which is stored in the NMR DSL comprise its unique name, 
a chemical formula, information about its physiochemical properties and a specific description 
of all its atoms consistent with a HOSE code. Graphical representation of one- and multi-
dimensional NMR spectra as well as their source files obtained from NMR experiments and a 
complete description of parameters used to acquire spectra are also kept  in  the repository. 
Additionally, it is possible to place the pulse sequence programs which can be used by all the 
database users. In case of biomolecules ― proteins and nucleic acids ― the database yields a 
possibility of depositing atom coordinates, structural constraints used in the computation and 
the complete structure determination protocols. References to all the stored data in a form of a 
list of papers are also included. A complete list of record fields and their formats is presented in 
the table  below.  Information is  processed with  the  use of  the following operations:  enter, 
modify, search.

No Name Type Size Description
Information about the compound

1 Compound Name(s) Text 256 characters Chemical name(s) of the compound
2 Molecular Formula Text 32 characters Molecular formula
3 Summary Formula Text 32 characters Summary formula
4 Chemical Structure Graphics Molecular formula with atom numbering

5

Atoms name with numbers and 
HOSE code

Text Array: N·16 
(names, numbers 
of atoms)
Array: N·64 
(HOSE codes)

Atom names and their corresponding HOSE codes

6 Chemical Class Text 256 characters Chemical class of the compound
7 Molecular Weight Text 16 characters Molecular weight
8 Boiling Point Text 16 characters Boiling point
9 Melting Point Text 16 characters Melting point

10 Form Type Text 2 characters Type of the form
Information about NMR experiment

11 1D NMR Spectra Graphics ~ 0,5 MB Graphical representation of 1D NMR spectra

12 Correlation type Text 16 characters Type of correlation of 2D and 3D NMR spectra: 
homonuclear, heteronuclear, other

13 2D NMR Spectra Graphics ~ 0,5 MB Graphical representation of 2D NMR spectra
14 3D NMR Spectra Graphics ~ 0,5 MB Graphical representation of 3D NMR spectra
15 Pulse sequence Binary ~ 0,25 MB Pulse sequence
16 Pulse sequence ― description Text 64 characters Description of the pulse sequence
17 Spectrometer model Text 32 characters Model of NMR spectrometer used in an experiment
18 Spectrometer manufacturer Text 16 characters Manufacturer of NMR spectrometer used in an experiment
19 Spectrometer basic frequency Text 16 characters Spectrometer basic frequency
20 Temperature Text 16 characters Temperature of experiment
21 Solvent Text 32 characters Solvent name
22 Concentration Text 16 characters Concentration of the compound
23 PH Text 8 characters pH of the solution
24 Buffer Text 128 characters Buffer contents and its name
25 Reference Text 32 characters Reference compound name and its chemical shift
26 Reference Compound Text 32 characters Example of reference compounds with their chemical shifts
27 Additional Spectrum Information Text Text file Additional spectrum information

Information about spectral data
28 1H, 13C, … Chemical Shifts Text Array: N·8 Available chemical shifts
29 Coupling Constants ― Scalar Text Array: N·64 An array of available values of scalar coupling constants

30 Coupling Constants ― Residual 
Dipolar Couplings (RDC)

Text Array: N·64 An array of available values of residual dipolar coupling 
constants

31 Relaxation Times Text Array: N·2·16 Values of relaxation times T1 and T2
Information about the author

32 Authors Text 256 characters List of authors
33 Institution Text 128 characters Institution
34 Contact Text 128 characters Contact to the author (e.g. e-mail, phone)

Bibliography
35 Authors Text 256 characters List of authors
36 Journal Text 128 characters Journal name
37 Year Text 8 characters Issue year
38 Volume Text 16 characters Volume
39 Pages Text 16 characters First and last page of the article
40 Title Text 256 characters Title of the article
41 PDF, PS Binary Paper in PDF or PS file format
42 Link Text 128 characters Link to the bibliographic base
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Experimental data
43 Original NMR Data Binary ~ 10 MB Compressed NMR data
44 Format of data Text 64 characters Format of NMR data
45 Processed data (zipped) Binary ~ 50 MB Compressed processed NMR data
46 Format of processed data Text 16 characters Format of processed NMR data

Structural analysis
47 Protocol (zipped) Binary ~ 1 MB Protocols, scripts, ...
48 Protocol description Text 512 characters Description of a protocol
49 Restraints (zipped) Binary ~ 0,2 MB Experimental restraints
50 Restraints description Text 256 characters Description of experimental restraints
51 Structures (zipped) Binary ~ 5 MB Atom coordinates
52 Database Text Name of the database storing atom coordinates
53 Reference to database Text 128 characters Reference to database
54 Code Text 16 characters Structure code
55 Additional Data Text 512 characters Additional information

Other information
56 Other information Text 512 characters Additional information

Table 6.3.1: List of attributes present in NMR database.

Based on the data that are stored in the database such as chemical shifts, coupling constants or 
relaxation times, the user can quickly identify a molecule. In case of unknown compounds, the 
knowledge of chemical shifts and coupling constants together with a set of the HOSE codes can 
be used to predict the chemical environment of atoms and to suggest the types of functional 
groups which are present in the analysed molecule. The HOSE codes can also be helpful in the 
simulations of the spectra performed on the basis of molecular formula of the compound.

Figure 6.3.2: NMR digital library in Virtual Laboratory.

6.3.3. The Use-Case Diagram for the DSL-NMR Library
We can distinguish the main actor on the base of demands defined for the Digital  Science 
Library of Nuclear Magnetic Resonance Spectroscopy. It is presented in figure 6.3.3. As an 
actor we can consider the system placed in the presentation or the indirect (middle) layer, on the 
condition that it is able to communicate over the SOAP protocol.
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The following diagram presents two actors. The first ― SOAPCompliedClient ― is identified 
with a certain pattern of actor with granted rights for executing the specified operations and 
provided with the ability of intercommunication with the library over the SOAP protocol. The 
nuSOAP (nuSOAP_PHPClient) is the second actor in the diagram. It can be used to create an 
access service for the NMR Library. In this case the access service is based on WWW pages and 
the PHP programming language.

Figure 6.3.3: Use case diagram for DSL-NMR.

The diagram shows some main examples of using the DSL-NMR library system:

● Data gathering and updating: enables introducing and updating information related to 
the chemical compound and the experiment data,

● Querying  and  viewing: enables  getting  information  on  a  chemical  compound, 
experiment and its results, and the analysis executed on the basis of received data.

The search method depends on the data required. Typical queries are:

● Compound  info. Prerequisite:  Existence  of  information  concerning  re-searched 
chemical compound; searching out its attribute;

● Experiment data. Prerequisite:  Existence  of  experiment data;  searching  out  after 
attributes of  an  experiment, for  instance the  spectrum type,  sequence of  impulses, 
spectrometer type, solvent, measurement temperature;

● Post-experimental  analysis. Prerequisite:  Existence  of  the  analysis  description; 
searching out of chemical compound according to value of chemical shift, coupling 
constant;

● Post-experimental  additional  data. Prerequisite:  Existence  of  the  re-search 
documenting data, e.g. reference for authors of experiments, for articles concerning led 
research or papers documenting the received results.
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7. Summary
This  deliverable presents state  of  the art  of  grid middleware and corresponding emerging 
standards  for  sharing  scientific  instruments  over  international  networks.  It  does  this  by 
describing the existing middleware in depth (chapter 3) and by providing in-depth knowledge of 
related standards, both existing and forthcoming ones (chapter 2). Of particular interest in this 
regard is the CIMA project, a US-founded project which has similar aims as the European 
GridCC project.

Some of the middleware is already deployed in several testbeds. We aim to describe the two 
most important ones in chapter 4: We concentrate on the Virtual Laboratory project as well as 
the  GridCC project.  The  Virtual  Laboratory shows how a  workflow can  look  like  when 
conducting  an  experiment. The  GridCC  project  is  particularly  interesting  because  of  its 
"Instrument Element", a middleware component which represents an instrument in the grid 
infrastructure.  It  is  expected that some components from these projects will  be used when 
deploying a remote instrumentation infrastructure within the European Union.

What kind of middleware is suitable for deployment will be evaluated in chapters 5 and 6. 
These chapters present exemplary use cases where one can see what requirements are fulfilled 
by current technology and what is still missing. While this workpackage concentrates on what is 
currently available, WP4 will elaborate on the missing parts.

While this deliverable does not present a conclusive table where all requirements are contained, 
there will be such a table when the prototyping phase (WP6) starts: Deliverable 3.3 will present 
such a summary.
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