Softw Syst Model (2005) 00: 1-2 / Digital Object Identifier (DOI) 10.1007/s10270-005-0082-5

Special section on St. Eve workshop

Introductory paper

Tommaso Bolognesil, John Derrick?

L CNR, Istituto di Elaborazione della Informazione, Istituto die Scienza e tecnologie dell ‘Informazione “A. Faedo”,
Area della Ricerca CNR, via G. Moruzzi, 1, 56124 Pisa, Italy; e-mail: t.bolognesi@iei.pi.cnr.it
2 University of Sheffield, Department of Computer Science, Regent Court, 211 Portobello St., Sheffield S1 4DP, UK;

e-mail: J.Derrick@dcs.shef.ac.uk
Published online: Il 2005 — © Springer-Verlag 2005

Specifications of complex systems are usually based on ei-
ther states or actions (events). Some people believe that
the first step in system development should be the iden-
tification of the right global state structure. Other people
start characterizing the system by describing its interac-
tions with the environment, that is, by identifying event
patterns (e.g. use cases), without worrying, at least ini-
tially, about the shape of the state. Formal specification
approaches such as Abstract State Machines, B, CSP,
LOTOS, Predicate/Transition Nets, Statecharts, TLA,
7, imply a considerable bias towards one of these two
ways of conceiving system behaviour.

Abadi and Lamport [1] observe that, while the two ap-
proaches are, in some sense, equivalent (‘an action can be
modeled as a state change, and a state can be modeled as
an equivalence class of sequences of actions’), they have
taken, in the past, different formal directions. State-based
approaches are often rooted in logic, while event-based
approaches have algebraic roots. These differences tend
to obscure the real differences and possible bridges be-
tween state-based and event-based intuitive thinking, and
obstruct the identification of solid criteria for choosing
among specification methods. Often this choice is driven
by political considerations, or even by dogma, more than
by genuine technical insights.

In a time in which formal methods have begun to
show their effectiveness in addressing (some aspects of)
large-scale, industrial level system development, it seems
convenient to distill fundamental similarities and differ-
ences among approaches, to promote convergence, and to
stress paradigms over individual languages, thus provid-
ing a scenario that improves awareness and effectiveness
of choices.

This was the background to the St.Eve Workshop —
State-oriented vs. Event-oriented Thinking in Require-
ments Analysis, Formal Specification and Software En-
gineering, which was held as a satellite event of the 12th

International FME Symposium, Pisa, Sept. 13, 2003. The
purpose of the workshop was to stimulate discussion on
these topics; in particular, participants have been con-
fronted with the following questions:

— What is the shape of your mental landscape, when you
start conceiving a complex (concurrent, reactive, dis-
tributed) system? Is it a structure of state variables
(relations, functions), or a pattern of events in time?

— Is the choice between a state-oriented and an event-
oriented approach dependent on the type of system to
be described? How?

— How does a system description in natural language
affect the choice between state-oriented and event-
oriented formalisation? How does the requirements
analysis process affect the choice?

— The two approaches don’t have to be mutually exlu-
sive. Is it easy/desirable to move from one to the
other? At which stage of development would one do
that?

— Can one integrate the two approaches, keeping their
individual advantages? If so, can one formally refine
a purely state-oriented or purely event-oriented de-
scription into a hybrid one?

As suggested by some of the questions above, our aim
was to specifically extend our investigations to the very
early stages of system conception, including the ‘pre-
formal’ brainstorming phase during which ideas about
system behaviours pop up and are collected in a rather
free, unstructured manner. In this respect, we were po-
tentially open to interdisciplinary contributions, e.g. from
areas such as cognitive psychology and natural language
processing.

The Workshop consisted of eleven papers and at-
tracted a wide and varied audience. Following the work-
shop three papers have been selected, and revised for pub-
lication in this issue.

MS ID: SoSyMO0082
19 April 2005 13:45 CET



2 T. Bolognesi, J. Derrick: Introduction to the special SoSym section on St.Eve workshop

It was interesting to observe that the papers in the
workshop (and thus those selected here) concentrated
more on the specification and design phase as opposed to
the the pre-formal, intuitive phase of system conception.
This is perhaps reflective of the areas of work currently
being concentrated on, and it would be nice to see how,
in the future, this work shapes requirements analysis if
indeed it does at all.

On the other hand, all three papers strongly empha-
size on the comparison and the possibility to integrate
the best features and advantages of the two paradigms,
that are respectively represented by CSP an EB3 (action-
based languages), and by B an Z (state-based languages).
Although we are still left with some curiosity about pos-
sible arguments from cognitive psychology or linguistics
that might shed light on the essentials of state-oriented
vs. event-oriented thinking, we welcome all three papers
in the present special section for the insights they offer
on effective combinations of key expressive features from
both paradigms.

The paper by Fraikin, Frappier and Laleau presents
a detailed comparison of specifications in the two para-
digms, using the well known B method, and the EB3 pro-
cess algebra, and refers in particular to the development
of Information Systems. The comparison is conducted
under four criteria: expressiveness in behavioural specifi-
cation, validation against user requirements, formal veri-
fication, and flexibility to change and evolution.

The subsequent paper, by Evans and Treharne, takes
a further step and presents an integration of CSP and B.
To quote, the aim of the paper is to demonstrate that it is
possible to integrate two well established formal methods
whilst maintaining their individual advantages. By indi-
vidual advantages the authors mean that the languages,
their semantics, and their tool-support can be used un-
changed, and thus it is in some sense a compositional
approach to integration. The integration depends on con-

sistency checks between the CSP and B parts of a com-
bined specification, and the authors argue that these
checks can themselves be undertaken in a compositional
fashion.

The final paper in this section also looks at combining
established specification languages, this time integrating
Z, CSP and the refinement calculus. The resultant lan-
guage is called Circus by the authors. In this paper Cav-
alcanti, Sampaio and Woodcock extend Circus by adding
a third important expressive dimension, namely object-
orientation, with the notion of class. Their specific ob-
jective is to improve the facilities for the description of
complex data structures and have a target programming
language in mind, namely an extension of Java with CSP
constructs. The paper thus presents the syntax, seman-
tics of this OhCircus language and discusses refinement
in the language. The essential difference between the two
approaches to integration in these two papers is that in
the latter state transitions and events are decoupled, this
allows for a potentially richer set of implementation plat-
forms and languages, although at the expense of simpli-
city of integration.

We hope that the present selection of papers from the
St.Eve Workshop will trigger in the reader further inter-
est on the integration of formal specification methods,
on the investigation of specification paradigms over in-
dividual notations, and on the establishment of power-
ful specification languages and methods able to reflect
as transparently as possible, within a formal setting, the
multifaceted ways in which we intuitively conceive and
describe complex behaviours.

References

1. Abadi M, Lamport L (1993) Composing Specifications.
ACM Transactions on Programming Languages and Systems
15(1):73-132, January 1993

MS ID: SoSyMO0082
19 April 2005 13:45 CET



