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Abstract.  Based on the mobile automaton  computational paradigm, a (fully deterministic) algorithm is introduced that
grows  planar  graphs  while  exhibiting  surprisingly  uniform  pseudo-random  dynamics.  The  graph  growth  rate,  as  a
function of the automaton steps, is O(n), and nicely combines with the O( n ) of a previously introduced algorithm of
ours:  these  two  rates  are  also  achieved  by  two  most  elementary  visit-and-grow  procedures  with  regular  dynamics,  of
which our  automata  can be viewed as  randomized versions.   Applications of mobile  automata to fundamental  physics
and quantum gravity have been recently suggested, but other application areas are envisaged as well.
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Cyclic mobile automata with regular dynamics
In a classical Turing machine, a control head moves on a tape of binary cells and performs 1-step moves and read/write
operations, based on a state transition table; the extension to cell arrays of two or more dimensions is straightforward.
Somewhat similar to two-dimensional Turing machines, a planar network mobile automaton is a model of computation
in which a control head moves by unit steps on the nodes of a planar graph and performs local, read/write operations on
the structure of the latter, based on some control logic.  Typically, the control logic includes a set of graph rewrite rules
and, possibly, criteria for resolving potential nondeterminism in rule application.  However, the control head is stateless:
it does not store information for deciding which rule to apply and where to move next.

We are interested in visit-and-grow  patterns,  thus  we admit  rewrite  rules  that  add nodes to the graph.   Let  us start  by
considering graphs where each node may only have degree 2, that is, exactly two neighbors.  Clearly   these graphs can
only be cycles.  Two most elementary mobile automata for cyclic graphs are depicted in Figure 1.  
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Figure 1 - Two cyclic mobile automata yielding linear (left) and square root (right) node growth

In Figure 1, x and y identify nodes, n identifies a newly created node, and a small triangle indicates the position of the
control point. Both automata move always in the same direction around the cycle.  The automaton on the left introduces
a new node at every step; the one on the right does it every time a circular visit is completed, and, for detecting the end
of a cycle, it flags a node by the '+' symbol.  

We  are  particularly  interested  in  visit-and-grow  algorithms  that  never  permanently  abandon  regions  of  the  growing
graph.   To  this  purpose,  we  assign  progressive  natural  numbers  to  the  nodes,  as  they  are  created,  and  use  them  for
plotting  the  trajectory  of  the  control  point.  The  revisit  indicators  for  the  two  automata  above  are  shown  in  Figure  2.
Note that the automata do not make any use of these numbers: the only node labelling used as state information is the
flag, in one case.
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The revisit indicators of both automata exhibit a regular pattern, for which one can anticipate future values without need
to run the computation step by step.
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Figure 2 - Revisit indicators for the linear (left) and square root (right) mobile automata of Figure 1

The first revisit indicator exhibits an overall linear growth, and is the well known fractal sequence (1, 1, 2, 1, 3, 2, 4, 1,
5, 3, 6, 2, 7, 4, 8, 1, ...), described in [5] and [3]. This sequence is self-similar: it reproduces itself once the elements in
odd positions are deleted.  Clearly, every node of the growing graph is visited infinitely often.  In particular, node k (k =
1,  2,  ...)  is  visited  at  steps  2m H2 k - 1L,  with  m  =  1,  2,  ...  ,  so  that  the  intervisit  intervals  for  any  given  node  grow
exponentially. The second revisit indicator exhibits a square root growth; again,  every node is visited infinitely often,
but now intervisit intervals grow linearly. 

In the next two sections we introduce two mobile automata that exhibit chaotic behaviour and appear as pseudo-random
versions  of  the  two  regular  automata  above.   Interestingly,  this  is  achieved  without  exploiting  any  state  information
other  than  local  topology:  no  node/edge  labels  or  flags  are  involved.   Quite  obviously,  these  restrictions  make  it
impossible  to  obtain  complex  dynamics  while  manipulating  just  cycles;  we  shall  therefore  consider  slightly  more
complex graphs, and handle planar trinets.

Linear chaotic trinet mobile automaton
A planar  trinet  is  a  planar,  undirected,  connected  graph  in  which  all  nodes  have  degree  3.   By  definition,  any  planar
trinet T can be embedded on the sphere in such a way that edges do not cross one another; such an embedding partitions
the spherical surface into regions, or faces.   The dual graph D of T  is a planar graph in which nodes correspond to the
faces of T's embedding and the edges reflect the face adjacency relation.

The  faces  of  a  trinet  dual  are  always  (possibly  degenerate)  triangles,  while  node  degrees  have  no  upper  bound.   Six
examples of planar trinets are shown in Figure 3 (black nodes), each with its corresponding dual graph (white nodes).

A connected graph is n-connected  when n is the smallest number of edges one has to remove in order to disconnect it.
By definition, a trinet is at most 3-connected.  Figure 3 shows examples of 1-, 2-, and 3-connected trinets.

Our planar trinet mobile automata modify the local structure of the graph by using the two graph rewrite rules illustrated
in Figure 4 (left), that we call R and S.  In terms of trinets, rule R replaces a node with a triangle of interconnected nodes,
while rule S preserves the number of nodes and modifies the local edge pattern.  In terms of trinet duals, rule R places a
new node  inside  a  triangular  face  and  connects  it  to  its  three  vertices,  while  rule  S  flips  the  diagonal  of  the  rhombus
formed by two adjacent triangles.  (These two rules are known in knot theory, and play an important role also in Loop
Quantum Gravity [6].)
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Proposition 1.  Let T be a (connected) planar graph, and D be its dual.  Then (i) T is 1-connected if and only if D has a
loop edge; (ii) T  is  2-connected if  and only if D  has double edges (ones that connect the same pair  of nodes).  Proof.
Trivial. []

Figure 3 - Six trinets with connectivity 1, 2, or 3, their duals, and their transformations by rules R and S

Figure 4 - Rules R and S  applied to trinets and to their duals (left) - choice of next head position (right)

Figure 3 illustrates the relation between the connection degree (1-3) of some trinets and the presence/absence of loops
and doubles in their duals; it  also shows examples of application of rules R  and S  to simple trinets.   For example, the
application of R to the upper left trinet preserves 3-connectivity, while the application of rule S to the same trinet yields
a 1-connected trinet.

The definition of a planar trinet mobile automaton (TMA) involves describing: (i) an inital condition -- a trinet and an
oriented location of the control head; (ii) a criterion for chosing between rules R and S, and (iii) the step of the control
head,  i.e.  where  it  moves  after  a  rewriting;  this  may  depend  on  the  applied  rule.   Let  us  define  our  first  planar
automaton, called TMA1.

Definition 1 [TMA1]

- Initial condition: the 3-connected trinet in the upper-left corner of Figure 3, with control placed at either node.

- Rule choice criterion: choose S whenever it does not violate the 3-connectivity of the trinet, otherwise choose R.

- Step: depending on the applied rule, move the control head to the new location marked by the grey triangle in Figure 4
(right).  []

In  our  Mathematica  implementations  of  network  mobile  automata,  we  conveniently  manipulate  trinet  duals;  then,  in
light  of  Proposition  1,  the  rule  choice  criterion  is  implemented  by  checking whether  the  new edge  that  Rule  S  would
introduce  is  a  loop  or  a  duplicate.  The  initial  trinet  is  3-connected  and,  by  induction,  so  are  all  the  subsequently
generated graphs.

Two mobile automata with pseudorandom dynamics.nb  3

Printed by Mathematica for Students



In  our  Mathematica  implementations  of  network  mobile  automata,  we  conveniently  manipulate  trinet  duals;  then,  in
light  of  Proposition  1,  the  rule  choice  criterion  is  implemented  by  checking whether  the  new edge  that  Rule  S  would
introduce  is  a  loop  or  a  duplicate.  The  initial  trinet  is  3-connected  and,  by  induction,  so  are  all  the  subsequently
generated graphs.

Fact 1 - A 3-connected trinet may not have loop edges.  Proof - If it had one, incident to, say, node p, then the removal
of the only other edge incident to p would disconnect the graph, thus contradicting its being 3-connected. []

Fact 2 - A 3-connected trinet may not have double edges either, unless it is the two-node trinet in the upper-left corner
of Figure 3.  Proof  - The simple proof, again by contradiction, is obtained by considering the sub-trinet including two
double edges e1 and e2, connecting nodes p and q, and by observing that the presence of two further, distinct  edges e3
and e4  connected, respectively, to p  and to q,  would imply that the trinet  is  1- or 2-connected, regardless of where e3
and e4 are placed with respect to the finite region between e1 and e2 (inside or ouside). []

Thus, the faces of the running trinet, except for the initial one, are always at least triangular, and their dual graphs have
nodes  with  degree  at  least  3.   Figure  5  illustrates  the  revisit  indicator  for  TMA1  corresponding  to  a  20,000-step
computation, and the resulting trinet.   
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Figure 5 - Revisit indicator and final trinet for a 20,000-step computation of TMA1

Although   in  the  revisit  indicators  introduced  earlier  the  current  position  of  the  control  head  is  represented  by  node
identifiers,  an  edge  or  face  identifier  could  as  well  be  chosen,  either  of  the  trinet  or  of  its  dual,  without  affecting the
general pattern of the revisit indicator -- whether regular, fractal, linear, random-like, etc. -- except for a scale factor  (in
a trinet with n nodes and e edges, it must be 3n = 2e, so that, for example, edges are created 1.5 times faster than nodes).
In the revisit indicators just introduced we record current trinet edges, that is, we trace the edges successively traversed
by  the  automaton,  as  identified  by  the  grey  triangles  in  Figure  4  (right).   In  doing  so,  we  adopt  the  rather  natural
convention of preserving the identifier of the edge that 'flips' when rule S is applied.

Figure  5  indicates  that  the  growth  is  roughly  linear,  with  one  new edge  created  about  every  10  steps,  or,  a  new face
created by rule R every 30 steps, since in a planar trinet with e edges the number of faces is f = (1/3)e + 2, as implied by
Euler's formula f - e + n = 2, and by equation 3n = 2e above.

In Figure 6 we visualize the cumulative number of edge occurrences for the 20,000 step computation of TMA1 in Figure
5; point (e,  f) in this plot indicates that edge e  occurs a total of f times in that specific computation.  The origin of the
vertical axis is conveniently set to -1, for better visualisation of zeroes.   Since the creation of an edge does not count as
a visit, one does find zeroes in the plot, but these occur only for the most recently created edges, i.e. in the r.h.s. portion
of the function: eventually, all  edges are visited, and, apparently, they are visited infinitely often.  In Figure 6 we also
plot, as a solid line, the theoretical edge occurrence density.  We have assumed that: (i) the revisit indicator contour is
perfectly  linear,  with  rate  k  =  1893/20,000,  where  1893 is  the  highest  numbered  edge  found;  (ii)  at  step  s  the  current
edge is a random variable with uniform distribution in the interval [0, k*s]; (iii) these variables are independent.  Then,
letting  h  =  1/k,  the  expected  number  F(e)  of  occurrences  of  e  in  the  computation  can  be  expressed,  in  a  continuous
approximation, as
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In Figure 6 we visualize the cumulative number of edge occurrences for the 20,000 step computation of TMA1 in Figure
5; point (e,  f) in this plot indicates that edge e  occurs a total of f times in that specific computation.  The origin of the
vertical axis is conveniently set to -1, for better visualisation of zeroes.   Since the creation of an edge does not count as
a visit, one does find zeroes in the plot, but these occur only for the most recently created edges, i.e. in the r.h.s. portion
of the function: eventually, all  edges are visited, and, apparently, they are visited infinitely often.  In Figure 6 we also
plot, as a solid line, the theoretical edge occurrence density.  We have assumed that: (i) the revisit indicator contour is
perfectly  linear,  with  rate  k  =  1893/20,000,  where  1893 is  the  highest  numbered  edge  found;  (ii)  at  step  s  the  current
edge is a random variable with uniform distribution in the interval [0, k*s]; (iii) these variables are independent.  Then,
letting  h  =  1/k,  the  expected  number  F(e)  of  occurrences  of  e  in  the  computation  can  be  expressed,  in  a  continuous
approximation, as
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Figure 6 - Density of edge occurrences for a 20,000 step computation of TMA1 (compare with Figure 5) 

In this paper we are not particularly interested in detailed measures of the intrinsic 'degree of randomness' achieved by
TMA1. However,  an effective way to appreciate its  singular  behaviour consists  in comparing its revisit  indicator with
those  of  similar  TMAs.   Figure  7  shows  the  revisit  indicators  for  a  family  of  3-connectivity-preserving  trinet  mobile
automata  of  which  TMA1 itself  is  a  member.   These automata  share  with  TMA1 the  initial  trinet  and the  rule  choice
criterion, but differ from it and from one another in the step of the control head, which is controlled by two parameters
R-code and S-code, ranging, respectively, in intervals [1, 18] and [1, 9], and yielding 18 * 9 = 162 family members.  The
way these parameters determine the step is illustrated in Figure 4 (right).  The numbers in figure correspond to values of
the  R-code  (resp. S-code) parameter, and identify the new position of the control head after rule R (resp. S) is applied.
Note  that,  based  on  symmetry  considerations,  we  can  safely  restrict  to  9  values  for  the  S-code  parameter.  For  space
reasons, some rows are not shown in the table: but they all replicate the pattern of row 1.  Interestingly, this family of 3-
connectivity-preserving  automata  also  yields  some  regular  revisit  indicators  equivalent  to  those  introduced  in  the
previous  section.   The  revisit  indicator  for  TMA1 has  code  pair  {17,  8},  as  shown by  the  grey  triangular  markers  in
Figure 4 (right), and appears as unique in its class.  Three other cases of apparently non regular indicators appear in the
table,  where  500-steps  computations  are  considered.   But  longer  computations  reveal  that  case  {17,  4}  is  a  perturbed
version of  the  fractal  sequence,  and cases {13, 5} and {17, 9} eventually stabilize to a  periodic behaviour with linear
growth.  In conclusion, TMA1 is the only case, in this family, which appears to behave pseudo-randomly forever.  
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Of  course  we  have  no  absolute  guarantee  --  no  formal  proof  --  that  the  automaton  will  not  eventually  stabilize.   Our
conjecture  is  based only on the remarkable difference between the revisit  indicator  of  TMA1, which we run for up to
340,000  steps,  and  those  of  the  dozens  of  mobile  automata  with  random-like  initial  behaviour  whose  eventual
stabilization  we  have  been  able  to  observe  [1,  2]:  while  TMA1  yields  a  dense,  uniform  distribution,  in  the  latter  we
always observe transient phases with large empty space-time regions (similar to those in Figure 11, r.h.s.).
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Figure 7 - 500-step revisit indicators for a family of automata including TMA1 (case {17, 8})

A peculiarity  of  TMA1,  and  a  departure  from any  reasonable  notion  of  random planar  graph,  is  that  square  faces  are
almost  completely  missing  in  the  trinets  it  computes.   For  the  20,000-step  computation,  yielding  a  total  of  637  trinet
faces, the following distribution was obtained (read: 35 triangles, 1 square, 321 pentagons, etc.):

{{3, 35}, {4, 1}, {5, 321}, {6, 121}, {7, 68}, {8, 38}, {9, 19}, {10, 11}, {11, 6}, {12, 6}, {13, 5}, {14, 1}, {16, 2}, {18, 1}, {19, 1}, {23, 1}}

Incidentally, these data definitely depart also from the limit distribution mentioned in [7], p. 1038, obtained by interated
random application of rule S to the hexagonal grid.   

As a final comparative element, in Figure 8 we show the revisit indicators for 2000-step computations of a RandomWalk
and a RandomJump  automaton. These automata use the same rule choice criterion as TMA1, but different  policies for
the step: for RandomWalk the next head position is defined, at every step, by new random values of R-code and S-code;
for  RandomJump  these  parameters  are  ignored  and  a  new position  is  chosen  randomly  in  the  graph  --  not  just  in  the
neighborhood. 
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Figure 8 - Comparing revisit indicators for TMA1 and two randomized automata, 

By inspecting these 2000-step indicators, and comparing them with the one for TMA1 in Figure 5 (which was based on
a 20,000-step computation) two remarkable facts emerge: 
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By inspecting these 2000-step indicators, and comparing them with the one for TMA1 in Figure 5 (which was based on
a 20,000-step computation) two remarkable facts emerge: 

Ë In both random cases the number of edges is roughly the same as the number of steps, implying that the frequency 
of rule R application is 1/3, since each such application introduces 3 new edges in the dual graph.  This is quite in 
contrast with the TMA1 case, with its  ratio 1/30.  

Ë The RandomWalk automaton, which represents a sort of randomized version of TMA1 (in light of its 'short' step 
policy), completely fails to revisit past regions of the growing graph: to obtain such a fair behaviour we have to 
randomize more drastically, and introduce random jumps.  

Thus,  the  brownian-like  motion  of  the  pseudo-random  TMA1,  which  is  based  on  a  fully  deterministic  procedure,  is
much  more  effective  than  a  'truly'  random,  brownian-like  automaton,  in  its  revisiting  performance.   In  part  this
phenomenon can be explained by considering that the RandomWalk  automaton grows the graph  about 10 times faster
than  TMA1.   However,  in  the  next  section  we  show  that  variants  of  the  RandomWalk  with  considerably  lower  node
growth rates still fail to achieve the revisit ability of TMA1.

Sublinear chaotic trinet mobile automaton
In [2]  another,  pseudo-random trinet  mobile  automaton was discovered,  which we call  now TMA2, and which differs
from TMA1 in  the  fact  of  exhibiting a  square-root  node growth rate.   We shortly  recall  the definition and features of
TMA2 here, for comparison with TMA1.

Definition 2 [TMA2]

- Initial condition: the  trinet in the upper-left corner of Figure 3, with control placed at either node (same as TMA1).

- Rule choice criterion: choose S whenever it does not create trinet faces smaller than a triangle, otherwise choose R.

- Step: depending on the applied rule, move the control head to the location marked by the grey triangle in the r.h.s. part
of Figure 4 (same as TMA1). []

In terms of trinet  duals,  the rule  choice criterion is  that  S  can be applied only when it  decreases (by 1 unit)  two node
degrees that have at least value 4, which we call the threshold parameter. We have observed above that the condition for
choosing  S  in  TMA1  (S  preserves  trinet  3-connectivity,  that  is,  it  does  not  introduce  loops  or  doubles  in  the  dual)
implies the condition for choosing S in TMA2 (S does not create trinet faces smaller than a triangle, that is, it does not
introduce loops or doubles in the trinet).  The converse is not true: Figure 9 illustrates two applications of rule S that are
admitted  by  TMA2,  but  prevented  by  TMA1:  they  do  not  introduce  loops  or  doubles  in  the  trinet,  but  reduce  its
connectivity below 3.  Hence, TMA2 may produce trinets which are 1- or 2-connected.

Figure 9 - Rule S may reduce trinet connectivity without introducing planar trinet faces smaller than triangles
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Figure 10 illustrates the remarkably uniform revisit indicator for TMA2, which plots the current trinet edge as a function
of the step, for a 20,000-step computation; the figure also shows the final trinet, and the growth of the number of trinet

faces, which closely matches function 2 steps + 3. 
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Figure 10 - Revisit indicator, final trinet and trinet face count (dual node count) for a 100,000-step computation of TMA2

A table of revisit  indicators for  a  family of 162 trinet  mobile  automata that  includes TMA2, analogous to the table in
Figure  7,  is  introduced in  [2].   The  two tables  appear  quite  similar,  but  one  can  spot  {R-code,  S-code} pairs  yielding
completely different dynamics in the two cases ( e.g. {6, 4}, {11, 4}, {16, 2}, {17, 5}; see [2]). Surprisingly, the revisit
indicator for TMA2 has again codes {17, 8}, and again this appears as the only element in its class to behave pseudo-
randomly forever; all other apparently random indicators eventually stabilize to periodic dynamics.

It is quite remarkable that, in the two considered families, the pseudo-random cases correspond to only one, and exactly
the same {R-code, S-code} pair: this peculiar choice of how the control head moves after applying rule R or S seems to
be responsible for the random like dynamics, independently of the rule choice criteria.   

The  distribution  of  face  sizes,  for  the  469-face  trinet  produced  by  a  100,000-step  computation  of  TMA2  is  (read:  2
triangles, 1 square, 256 pentagons, etc.):

{{3, 2}, {4, 1}, {5, 256}, {6, 105}, {7, 43}, {8, 32}, {9, 11}, {10, 5}, {11, 7}, {12, 2}, {14, 3}, {15, 1}, {18, 1}}

which, again, represents a departure from the limit distribution mentioned in the analogous remark about TMA1.

Figure 11 shows the revisit indicators for two RandomWalk  automata whose rule choice criterion is based on the above
introduced threshold  parameter.  They use, respectively, threshold  = 4 (like TMA2) and threshold  = 2.  Every move of
the control head is determined by a new random value for R-code or S-code.
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Figure 11 - Comparing revisit indicators for TMA1 and two randomized automata, 

As  expected,  a  lower  value  of  the  threshold  implies  less  frequent  application  of  the  'generative'  rule  R,  thus  a  lower
growth rate, as revealed by the upper values on the vertical axes; this in turn increases the chances to revisit past regions
of  the  graph.   However,  the  lowest  threshold  value  that  can  be  chosen  --  threshold  2,  yielding  a  frequency  of  rule  R
application of about 1/16 -- still fails to emulate the fair revisit indicator of TMA2.

Related work, potential applications, conclusions
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Related work, potential applications, conclusions
The  idea  to  study  the  'spontaneous'  dynamics  of  simple  computational  systems  and  to  experimentally  detect  the
emergence  of  complex  behavior  has  been  first  proposed  and  thoroughly  investigated  by  S.  Wolfram  in  [7],  where
special attention is devoted to graph rewriting for its possible applications to fundamental physics.  The network mobile
automaton idea itself is due to Wolfram, but the experiments he has carried out with this model, as shortly reported in a
note at p. 1040 of [7], have not succeeded in exposing especially complicated behavior.  The remarkable pseudo-random
automata illustrated in this paper represent a definite step forward in this investigation, and could perhaps be compared
with  the  'class  3'  elementary  cellular  automata  (e.g.,  Rule  30  -  see  [7]),  which  also  produce  pseudo-randomness,
undefinitely, starting from elementary initial conditions.  As it appears, both in elementary cellular automata and in our
trinet mobile automata, pseudo-randomness is achieved in rare circumstances.

Our first experiments with planar trinet mobile automata are described in [1], where we adopted only rule R, and a rather
different  policy  for  the  step  of  the  control  head.   Those  experiments  did  yield  regular,  possibly  fractal  dynamics,  and
cases  with  random-like  initial  transients,  but  all  of  them  eventually  settle  to  periodic  behavior.   In  our  subsequent
experiments  [2],  we  used  rules  R  and  S,  and  the  three  parameters  {threshold,  R-code,  S-code},  and  obtained  a  wider
variety of emergent features, but, out of about a thousand cases, we only found two cases of apparently endless pseudo-
randomness,  namely  {4,  17,  8}  and  {5,  9,  8}.   Both  exhibit  revisit  indicators  with  square  root  growth,  with  different
multiplicative factors.   No linear  or  quasi-linear pseudo-random revisit  indicator  of  this  type was ever found by using
the threshold-based rule choice criterion.  In this paper we have shown that linearly growing pseudo-randomness can be
achieved by changing that criterion.

Trinet  mobile  automata  represent  an  extremely  simple  model  of  computation.   They  share  with  Turing  machines  and
cellular automata a locality feature --  updatings depend only on local information -- but are simpler than the former, in
that  the  control  head  does  not  carry  around  state  information,  and  simpler  than  the  latter,  in  that  no  global
synchronization  of  site  (cell)  updatings  is  required.   This  circumstance  suggests  that  network  mobile  automata  might
prove  useful  in  bio-computing  applications,  for  example  in  building  nano-scale  structures  by  using  an  agent  of  very
limited operational capabilites.  Once (physical/chemical/biological) substrata are identified that offer adequate levels of
flexibility  and stability,  that  can play the  role  of  the  growing trinets,  and once associated processes  are identified that
may implement the TMA head operation, a range of possible applications would be at reach, exploiting the variety of
regular and pseudo-random patterns that can be obtained in this way, as shown here and in [2].  Another very attractive
application area for network mobile automata is Quantum Gravity, where graph rewrite rules such as R and S and their
higher  dimensional  versions  ('Pachner  moves')  are  used  for  animating  discrete  models  of  spacetime  (see,  e.g.,  [4]).
While the idea to apply Pachner moves to discrete models of space is mentioned in several theoretical physics papers,
we are not aware of any substantial experimental effort to investigate their emergent properties in the long run, and in a
fully deterministic setting.

Finally,  we  believe  we  have  provided  some  evidence  that  the  apparently  bizarre  NKS idea  of  exhaustively  exploring
portions  of  the  computational  universe  in  search  for  useful  algorithms,  without  a  specific  target  in  mind,  but  with
adequate visualization techniques, can be fruitful.
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