Technical Report: Privacy-preserving
Outsourcing of Association Rule Mining

Fosca Giannotti Laks V.S. Lakshmandn Anna Monrealé
Dino Pedreschi Hui (Wendy) Wang

Abstract

Spurred by developments such as cloud computing, there has besidezon
able recent interest in the paradigm of datamining-as-service. A agm(pata
owner) lacking in expertise or computational resources can outsdarogning
needs to a third party service provider (server). However, both thesiterthe
outsourced database and the patterns of items that can be mined fromtatbass,
are considered as the private property of the corporation (data pwmherpro-
tect the corporate privacy, the data owner transforms its data andishipthe
server. The server sends extracted patterns to the owner in respdhedatter’s
mining queries. The owner recovers the true patterns from the extrpatesins
received. In this paper, we study the problem of outsourcing the iatisocrule
mining task within acorporate privacy-preserving framework. We propose an
attack model based on background knowledge and devise two scheamasly
Frugaland RobFrugal, for privacy-preserving outsourced mining, based on the
concept of k-anonymity. The protection against the privacy violatiotkttames
from ensuring that each transformed item (itemset) is indistinguishabile, the
attacker’s background knowledge, from at least k-1 other tramsfdiitems (item-
sets). We show that the owner can recover the true patterns as welirasport
by maintaining a compact synopsis. Finally, we empirically demonstrate usin
comprehensive experiments on a very large and real transactidradatahat our
techniques are effective, scalable, and protect privacy.

1 Introduction

In this technical report are available all the proofs and details omitted in dinle w
“Privacy-preserving Mining of Association Rules from OutsourcednBaction
Databases”, that we submitted to ICDE2010.

*ISTI-CNR, Pisa, Italy

TUniv. of British Columbia, Vancouver, Canada
fUniversity of Pisa, ltaly

$University of Pisa, Italy

Ystevens Inst. of Tech., New Jersey, USA

2 Encryption/Decryption Schemes Section

Definition 1 The Frugalencryption scheme consists in grouping together cipher
items inD* into groups ofk adjacent items in the item support table in decreasing
order of support, starting from the most frequent item

Lemma 1 For every non-monotone groupidg there is a monotone groupiig,
obtained by swapping items between groups, suchtaf < ||G||.

Proof: Suppose to the contrary that the groupids non-monotone and that
by swapping items between groups we obtain eitiienon-monotone of{G’|| >
[|G||. This means thatit' = (G4, ..., G,) there exists a grou@; s.t. for some
e € G; we havesupp(e) < m;4+1, wherem; 41 is the maximum support (iP) of
any item in groupG;+1. Denote bye’ the item with supportn;.1 and suppose of
exchanging the item € G; with ¢’ € G,+1. It is immediate to verify that in this
caseG’ is monotone. So, if we show thatz’|| < ||G|| we obtain a contradiction.
Consider the case &' = (G4, ...,Gi,Git1, . ..,Gp) whereG), = (e1,...,€’)
andGi,; = (e, ..., es). This means that we havepp(e) = mj,; andm, 1 >
M1, thereforeZvej €Gi+1 (mi1 — supp(e;)) < zvejeGi+1 (miy1 — supp(e;)).
As a consequendgG’|| < ||G]|. Hence, grouping=’ is monotone and|G’|| <
[|G||, which yields a contradiction.

Lemma 2 Let GY™9 be the grouping obtained using the above procedure. Then
G’™9 is optimal, i.e., it has the least size among all groupings of cipher items into
groups of size> k each.

Proof: We show that any grouping method different fréimugalis not optimal.
Let F' be the grouping obtained usirfgrugal Notice that F is a partition of the
itemsZ. Suppose to the contrary that a groupikg different from Frugal is
optimal. A grouping method different frorRrugalgenerates a grouping that
can be either a non-monotone grouping or a monotone grouping iff non-
monotone then by the Lemma 1 we show thais not optimal. IfX is monotone
and not obtained witlfrrugalprocedure then we can have two case:

e Let m; be the maximum support of items K, and lete;,es € X, be
the item with supportn, and the item with the second largest value, re-
spectively. Movinge; from X, to X,,_, will change the size of the grop-
ing to [|X|| + (mp-1 — mp) — (|Xp| — 1)(mp — suppp(ez)), where
(mp—1 —myp) — (| Xp| —1)(mp — suppp(e2)) < 0.

e Letm; be the maximum support of items iX; and lete; € X,_, be the
item with minimum support. Moving; from X,_, to X, will change the
size of the groping t¢| X || — (mp—1 — suppp(e1)) + | Xp|(suppp(e1) —
mp), Where(m, 1 — suppp(e1)) + | Xp|(suppp(e1) — mp) > 0.

In both cases it is possible to obtain a grouping with smaller size, henam-gro

ing X is not optimal, which yields a contradiction.

Theorem 1 Let D be a TDB andD* its encryption obtained using the group-
ing Gf™9. ThenD* is the smallesk-private TDB for D, i.e., its size||D*|| is
minimal among alk-private encryptions oD.

Proof: By Lemma 2 we have that/™9 is optimal, hence no groupiny #
G’™9 has the least size among all groupings of cipher items into groups of size
> k each. Sincé|D*|| = ||D|| + ||G*"“9|| we conclude thalf D*|| is minimal.

2.1 Details on the Construction of fake transactions

It should be noted that given the frequency of cipher items in the noisenco
any exact covering of these occurrences by means of a suitabletsstsactions
yields a correct realization of our encryption scheme. However, waadfavising
a method for arranging fake transactions that allows for a compaopsigwith a
strong protection level.

Given a noise table specifying the noid&e) needed for each cipher itee
we generate the fake transactions as follows. First, we drop the rows evith z
noise, corresponding to the most frequent items of each group or ¢o idms
with support equal to the maximum support of a group. Second, welsore-
maining rows in descending order of noise. kgf. . ., e, be the obtained order-
ing of (remaining) cipher items, with associated naléée’), ..., N(e,,). The
following fake transactions are generated:

N(e}) — N(eb) instances of the transactidm’ }
N(e5) — N(e3) instances of the transactiday, 5 }

N(ep,—1) — N(e;,) instances of the transactidm?, . .., e}, _1 }
N (e;,) instances of the transactida, . . ., e,

Continuing the example, in therugalcase we consider cipher items of non-
zero noise in Table 1 (a).

(a) FrugalScheme

Item || Support|| Noise
€9 5 0
€4 3 2
€5 2 0
€1 1 1
€3 1 1

Table 1: Noise table fok = 2

The following two fake transactions are generated: 1 instance of thett@ms
{e4} and 1 instance of the transactigna, es,e1}. In the RobFrugalcase, we
consider the cipher items with non-zero noise in Table 1 (b). The following 3
fake transactions are generated: 2 instances of the transgetioss, e, } and 1
instance of the transactidms }.

It can be shown that this method yields a minimum number of diffefygres
of fake transactions that equals the number of cipher items with distinet (tbis
number is 2 in both cases in the example). This observation yields a compac
synopsis for the client, of the introduced fake transactions. As a finsne we
observe that fake transactions introduced by this method may be lorageatly
transactions in the original TDB®. Recall that the attack model only includes
plain items and their exact support In as the background knowledge of the at-
tacker and not the transaction lengthslim So, adding longer fake transactions
technically does not constitute privacy breach. However, for addatégion, we
can consider shortening the lengths of the added fake transactiong swethare
in line with the transaction lengths 8. In our running examples above, we obtain

in the Frugalcase the fake transactiofias, es }, {e1}, and{e4}; in the RobFrugal
we obtain{es,es}, 2 of {e1} and 1 instance ofes}. These transactions are of
length either 1 or 2. We briefly illustrate the idea here. Ltz the length suggested
by FrugalRobFrugafor a fake transaction and lét> 1,,,4., Wherel,,q, is the
maximum length of a transaction ip. Then find the largest number: ¢ < lnaa
and one of the following holds: (iy dividesi evenly, or (i)l modq =~ ¢, or
(iii) I modg < [l/q]. Here, we can takemodg ~ ¢ to bel modq = ¢ — 1.

If conditions (i) or (ii) hold, we simply split the fake transaction of lengtimto
smaller ones of sizg or ¢ — 1. If condition (iii) holds, then we creatg/q| trans-
actions of sizeg. From the remaining set dfmod ¢ items, we add one each to
I mod ¢ distinct transactions. So, we will have transactions of gize ¢ + 1.
For example, suppode= 50 andl.... = 7, the calculated value equals to 7,
i.e., the fake transaction of length 50 is split into 6 shorter ones of lengihd,
2 of length 7. In our experiments we studied the distribution of transacti@iten
in both the original and encrypted TDBs, and observed that such distrilsiare
very close. Figure 1 shows the distribution of transaction lengths befatafter
the encryption of the TDE oop Prod.

Length Distribution - CoopProd - RobFrugal

18000 T T T T — - - -
original TDB ——
16000 k=10 — N B
. k=20 -]
g 14000 k=30 .
= 12000 r | k=40 = A
g k=50 ---o---
% 10000 ¢ k=60 -~ |
= 8000 r ~
* 6000 |]
4000 ~
2000 f o 1
0 L M o |
0 20 40 60 80 100 120 140 160 180 200

lengths

Figure 1: Distribution of transaction lengths for diffetérvalues

2.2 Implementing RobFrugakEfficiently

The encrypt/decrypt module is a “black box” to the users. We explairesom
plementation details of this black box. Note that all these details are hidden in the
encrypt/decrypt module. Users need not concern themselves with them

The key to achiev®obFrugais that for any grou-, efficiently check whether
supp(G) > 0. For this purpose, the ED module makes use of a simpler version
of FP-tree [1] in order to store the TDB in a compressed way; howéverED
module does not store transaction supports nor perform any mining. data
structure is composed of the well-known prefix tree structure and an ibzaen
table. In the prefix tree every node corresponds to an item in the databdse
contains three fields: the item name, the parent-link that is the link to the parent

node and the node-link that links to the next node in the tree carrying the sam
item-name or null is there is none. Every path represents the items that are
the same transaction. The paths share the same prefix sub-treesg iistia@y.
Each entry in the item header table consists of two fields: the item name and the
head of the node-link. In Figure 2 we show and example of TDB storethédy
prefix tree. Note that the prefix tree is constructed once by the ED moddlesa
solely used for efficiently whether a given itemset has suppdit The client can

of course repeatedly issue mining queries to the server with variousraions

on support threshold and item properties. The tree is constructed bytéps. s
First, scan the database once, collect the items, and sort them by thagriey in
descending order. Then scan the database for the second time. fisiscan, for
each transaction, re-order the items by their sorted orders, andtimsegtordered
transaction into the prefix tree. In particular, for the itetinat immediately follows
item j in the transaction, let; andn; be their corresponding nodes in the prefix
tree. Ifn; has no child of the same item namergsthenn; is inserted as a new
node undem;. The procedure is repeated until all transactions are inserted into
the tree. Then checking whetheipp(G) > 0 is equivalent to checking whether

G corresponds to a path in the tree and this can be done efficiently using this
structure. In particular, given an itemg@tfirst of all, we have to sort the items

by their frequency in descending order, then we access to the heaieusing

as key the last itena;. Therefore, we access directly to the first occurrence of
that item into the prefix tree, the node. So, using the parent-link we visit the
path reachingu;, starting from it and going up to root. If this path contains all the
items of G thensupp(G) > 0. Otherwise, by using the link-node field of it is
possible to analyze others paths containing the last étenif all the paths do not
containG thensupp(G) = 0.

IID Transactions (ordered)Transactions | Ifem fieq.
100 {f,a,c m,p} {f, ¢, a,m, p} f 4
200 {a,b, ¢, f, m} {f, ¢, a, b, m} c 4
300 {b, f} {f, b} a 3
400 {b.c,p} {e, b, p} b 3
500 {a,f,c,e,d, p, m} {f,e,a,mp,d, e} | 3
P 3
d 1
e 1
Item Header table |
R
(e
A m——
By, el
M —————- o ey
P omo S
D~ ™
E \\\\ i

Figure 2: Prefix tree

3 Details on Complexity Analysis

In this section, we discuss time and space complexity ofttwgaland RobFrugal
encryption schemes and associated decryption scheme. Recalishihe number
of (distinct) items inD andl,, .. is the maximum transaction lengthin Our next
result justifies the namEBrugalfor the encryption scheme.

Theorem 2 The Frugalencryption scheme encodes the fake transactions using a
synopsis of size)(n), which can be built inO(n log n) time, given the item
support table of databage.

Proof: We show that each step of theugalencryption method is linear inin
space and cost3(n log n) in time. We note that th&rouping step of procedure
Frugalgenerates the groups éfadjacent items of the item support table, while
generating the noise table. These two operations require to visit at muestadin
distinct items; therefore, this step requir@én) time. The second step, first of all,
sorts the list of items with non null noise values in descending order of aoide
then, creates hash tables in order to store the fake transactions efficlémntlyost
of this operation i) (n log n) for the sorting and) (n —) for the creation of the
hash tables. Indeed, we have to visit the list of items with non null noise sialue
by construction, at least th® most frequent items of each group do not occur
in this list. So, we conclude that the time complexity of #eigalencryption is
O(nlog n). In order to encode the fake transactioRsjgaluses the list of items
with their support and noise value, requiri6gn) space. Moreover, this method
generates perfect hash tables containing all the items with non null ndigssva
Again, the collection of these items contains at mest 7 items because, for
each group of items, the item with highest support value has null noise value.
Therefore, we conclude that the fake transactions are encoded@gingpace.

Theorem 3 The RobFrugalencryption scheme encodes the fake transactions in
O(n) storage and(n?) time, given the item support table of datab#@®and the
prefix-tree representation @j.

Proof: The noise table and the hash tables, analogously to Thm. 2, require
O(n) space. Notice thaRobFrugain order to guarantee thie-private grouping
has to assure that eaéhgroup does not occur i®. In order to check this fact
efficiently the ED module makes use of data structure described in Sd0.dzder
to represenD. The generation of fake transactions requires: (1) to generate the
k-private grouping and (2) the creation of the hash tables. The phpger{érates
a grouping such that for eaéhgroupG, suppp (G) = 0. For this check this step
uses the prefix tree as described in Sec. 2.2. The worst case seiguiteeck the
support ofO(n?) k-groups, where: is the number of items. Given/agroupG,
in order to check whetheruppp (G) = 0, at worst case all the paths, containing
the last itene; of G, have to be visited. This operation can be done as explained
in Sec. 2.2 efficiently. In general, in the prefix tree the number of seoges
of a node with item-name; (denoted byOcc(e;)) depends on both the support
of the item and the position of the item in the sorted list of items. Given an item
e; in positionz in the sorted list ther; should occur in the tree at mogt—*
times but it has to be considered also the support of this ite i80, the number
of occurrence ot; is Occ(e;) = min{suppp(e;), 2"~ '}. Considering that the
item support distribution is described by a power law the max valu@wefe;) is
the maximum of the functioff = % — 2°~1. Note that, a path in the prefix tree

represents a transaction therefore, for each path the number aftodakevisited is
Imae- Finally, the number of nodes to be visited to check whethepp (G) = 0
is O(mazf * lymaz). Thus, the step (1) requir€®(mazf * lmae * n?) in time.
Clearly,O(max f * lmaz) in this kind of problem can be considered a constant, so
the time required i©)(n?).

The step (2) generates the hash tables and as showed in the Theorem 2 this
requiresO(n log n) time. Clearly, the cost of the step (1) dominates the cost
of the step (2). So we conclude that the generation of fake transactindsso
RobFrugal requiresO(n?) time.

Theorem 4 Given a cipher patteri with its fake support from the server, the
decryption procedure computes its actual suppof(hF|) time.

Proof: In order to compute the actual support value of a given iterised-
turned from the server, it is necessary to use the perfect hash tableephesent
the fake transactions. First of all, the client by using any itera E and the
second-level hash functioH selects the hash tabET containinge. Then, it
selects the itema,,., € E such that for each € E h(e) < h(emas), Whereh
is the perfect hash function for the hash taHl&". In this way, the client can take
the entry values of the hash table to compute the real support. To thisseuigo
number of lookups equal to the number of items in the pattern is needec€erh
fect hashing gives hash tables where the time to make a lookup is coimstaat
worst case. Therefore, the time complexity for the computation of tHesugport
of a single pattern i©(|E|).

3.1 Incremental Maintenance

We now consider incremental maintenance of the encrypted TDB. Thadidle
is responsible for this. We focus on batches of appends, which ayensaural in
data warehouses. Lé? be an initial TDB andA D be a set of transactions that
are appended. LdD* be the original encrypted TDB. The ED module stofes
as a prefix tre€". Letsyn(D, D*) denote the compact synopsis stored by the ED
module for encoding the generation of fake transaction®1n The server and
client have the item support tablésT" of D andI.ST* of D*.

Next, the new TDBAD arrives, together with its item support takl&7Tx.
The following steps can be applied to obtain an incremental version of the ED
module according to either of therugalor RobFrugakchemes:

1. The new transactions iAD are inserted into the prefix-trég, obtaining
a cumulative representation &f U AD. Also, a cumulative item support
tableIST is constructed by adding the support of each iterd $tT* and
ISTa. In particular, for each item; € I.S5T™ the support ok; is added to
the support ok; € I1STa. Clearly,ISTa should both:

a not contain some item belonging (67"
b contain some new items.

In the case (a) the support of these items in the cumulative item support
table IST is equal to the support of them ihST™; while in the case (b)

the support of these items FS5T is equal to their support iiSTA. Note

that, when the cumulative item support tabbleT” is constructed the method
keeps the order of the items in th87™. So, if an item belonging tdST™ is

in the positiori, then in the cumulative item support talfléT its position is

1. When an item only belongs to tH&Ta, then this item is appended to the
list. Clearly, the balance of support in each group is now generally gestro

by the new item supports, and it is needed to add new fake transactions to
restore the balance.

2. In theFrugalscheme, the pre-existing grouping is maintained, and the new
synopsis for the new fake transactioR$ is constructed as usual. On the
other hand, in theRobFrugalkcheme, the old grouping is checked for ro-
bustness w.r.t. the overall prefix-tréeand the pre-existing synopsis, which
is equivalent to checking against 10" U F™*. If the check for robustness
fails, than a new grouping is tried out with swapping, until a robust graupin
is found. Then, the new synopsis for the new fake transactions is ootesir
as usual; notice that the new grouping is robust w.r.t. the new fakeatrans
tions by construction, as the most frequent item of each group doescut
in any fake transaction.

3. The ED module uses both old and new synopses to reconstruct ttie exa
support of a pattern received from the server.

On the complexity side, we observe that the incremental encryption hast afc
O(||AD|| + n?) time, namely the cost of updating the prefix tree witD plus

the cost ofRobFrugal whereO(n?) is a very pessimistic upper bound. Besides
the first term dominates the overall complexity for reasonably sized &stch
appends. As a consequence, the incremental encryption has agaareclist in

the size ofA D. Our method extends to the case when simultaneously, a new batch
is appended and old batch is dropped; the method also works in the caseexh
items arrive or old items are dropped.

3.2 Atoy example

We now present a toy example which shows how our incremental eremygro-
cedure works wheiRobFrugalis used. LetD* be the original encrypted TDB,
obtained withk = 3. Consider its item support tableST™ and its synopsis repre-
senting the fake transactions, showed in Table 2 and Table 3, respective

Iltem || Support
€1 10
() 10
€3 10
() 5
€5 5
(&1 5

Table 2: Item support tablEST™ for toy example

Suppose another set of transactiah® arrives with the item support table
ISTa (Table 4). Note that/ STa does not contain the items while it contains
the new itemes.

The incremental procedure computes the cumulative item supportfta®ble .,
(Table 5) as explained in Sec. 3.1.

Tablel

wWN PO
o~
D
[\v]
| Ol
(=] i e
R N R P

Table 3: Synopsis foD*

Item || Support
(] 2
(] 21
(hrd 2
€3 3
€4 10
€5 12

Table 4: Item support tablESTA for toy example

Two cases are possible: 1) the grouping defined during the previquis stiso
robust forA D; 2) this grouping forA D is not robust.

In the case 1) we generate the fake transactions by Usifi¢)... In the case
2) we have to generate a robust groupingior and A D starting fromZ.STecym.
Thus, we have to do queries toD, D and fake transactions represented by the
synopsis. We can do this using the prefix tree, represediirmsnd A D, and the
synopsis.

Suppose that thg-groups{e: ez, es} and{e1, e2, es} occurinAD. Then
the robust grouping, the noise table and the new synopsis are compuisten
to represented the new set of fake transactions (Tables 6, 7). At tiistpe ED
module has to use both old and new synopses (Tables 3, 7) to recotistragact
support of a pattern received from the server.

4 Proofs: Privacy Analysis Section

Theorem 5 For every cipher itene € &, let Cand(e) be the corresponding can-
didate set computed by the above pruning procedure. Then evetydasa set
Cand(e) is minimal. Furthermoreland(e) = {i’ | suppp+ (') = suppp~(e)},
wherei’ is the true plain item correspondingda

The proof of Theorem 5 is straighforward from the pruning procedufor
better understanding, we illustrate the theorem and the pruning prooiiran
example.

Example 1 Consider a transaction databaBecontaining itemsiy, ...,i6. Let

e; be the substitution cipher correspondingifo Let the support distribution
of items in D correspond to Figure 3, columrsupp,(7)”. Suppose that the
encrypted databasP™ has a support distribution of cipher items matching the
column ‘supp,,.(e)”. The last column, “Noise” corresponds to the additional

Item || Support

€1 12
(&) 31
€3 13
€y 15
€5 17
€g 5

er 2

Table 5: Item support tableST.,.,,,,, for toy example

Item || Support|| Noise
€2 31 0
es 17 14
€1 12 19
€4 15 0
es3 13 7
€g 5 10
er 2 13

Table 6: Noise table fok = 3

support of every cipher item that is caused by the addition of fake trtiosa.
Then it is easy to verify thaftCand(e1) = ICand(e2) = {i1,42, 3, %4, 5, 6},
ICand(e3) = ICand(es) = {i3,14,15,16}, andICand(es) = ICand(es) =
{i5,i6}. Notice that cipher items with the same supportZifi have the same
set of (initial) candidate sets. Now, after sorting cipher items on supprst, fi
for es andeg, the attacker can infer th@'and(es) = Cand(es) = {is,i6}.
Second, the attacker removigsis andes, eg from further consideration. This re-
movesis, i¢ from ICand(es) andICand(es). Then the attacker concludes that
Cand(esz) = Cand(es) = {is,i4}. Similarly, he concludes that'and(ei) =
Cand(ez) = {i1,’i2}.

Assuming every candidate item is equally likely to be the true plain item cor-
responding to a given cipher item, we can show:

Item || suppp(¢;) || suppp-(e;) || Noise
1 100 100 0
io 67 100 33
i3 40 40 0
14 33 40 7
i5 20 20 0
ig 8 20 12

Figure 3: Support of Plain and Cipher Items

10

AWNPERO
N
3

Table 7: Synopsis foA D*

Theorem 6 Let D be a transaction database and the encrypted database pro-
duced by thé=rugalscheme or th&obFrugakcheme. Then for every cipher item
e, the probability of its crack is bounded byrob(e) < 1/k, wherek is a given
parameter for itenk-anonymity.

The correctness of Thm. 6 follows from the construction details of fakesite
for both Frugaland RobFrugal by guaranteeing that every item is included in
a candidate set of size at ledstthe probability of cracking its cipher value is
at mostl/k. The theorem shows that the probability that an individual item is
broken can always be controlled to be below a threshold chosen by tres.oBy
controlling the parametek, the owner can control the crack probability of cipher
items. The owner can choose a valuekdy striking a balance between increased
privacy and increased server side overhead for mining the endrgatabase.

4.1 Set-based Attack

Theorem 7 Given a cipher itemseb = {ei,e2,...,en}, letCy,...,C; be the
collection of equivalence classes Bf Then the size of the candidate set of item-
sets i Cand(E)| = Ti_; (1915(C1).

Proof: It is straightforward thatE is a union of one or more equivalence
classes. Construction of candidate itemsets from each equivaleneseiglizs
dependent of each other. ThiGand(E)| equals to product of“*4(C)l),
the size of candidate itemsets constructed from the equivalent €lassSince

|Cand(Cy)| > |C;| and|Cand(C;)| > k, the result follows.

Theorem 8 Given the original transaction databaBe let D; be its encrypted
version obtained using any robust grouping scheme. ThiéemsetE with non-

zero support inD;:, the crack probabilityrob(E) < 1/k, wherek is the given
threshold fork-anonymity.

Proof: The key is to show that no cipher itemset can be complete under the
RobFrugakcheme. Assume there is. Th&hmust be the union of one or more
complete equivalence classes. In other words, every equivaléag®in £ has
non-zero support il . This contradicts the property ensured by the construction
of RobFrugal. Thus there must exist at least one equivalence class that is not
complete. Theorem 7 has shown that the bound of the candidate itemsatfo
incomplete equivalence class is at lelasThus the size of candidate itemset for
must be at least. The theorem follows.

11

References
[1] J. Han, J. Pei, Y. Yin, R. Mao. Mining Frequent Patterns withoutdidate

Generation: A Frequent-Pattern Tree Approach. Data Mining and Knowl-
edge Discovery, 8, 5387, 2004.

12

