D2.0.4 THE ASSETS APIS

Advanced Search Services and Enhanced Technological
Solutions for the European Digital Library

Grant Agreement Number: 250527

Funding schema: Best Practice Network

Deliverable D2.0.4 WP2.0

<Report>
V.1.1- 15 April 2011
Document. ref.: ASSETS.D2.0.4.ENG.WP2.0.V1.1

v

V)
i
i
":;ir»
o

{ ‘:,\-'\,

[d
Il

N

Q

Programme Name:ee. ICT PSP
Project Number:cccccoeeenneenn. 250527
Project Title:........ccceevecverecieene ASSETS
Partners:.........ccccoeveeeiiiiieneeieeeees Coordinator: ENG (IT)

Contractors:
Document Number: D2.0.4
Work-Package:..........cccccceecvveeennns WP2.0
Deliverable Type:ccoccvernnenne Report
Contractual Date of Delivery: 28-february-2011
Actual Date of Delivery: 15-april-2011
Title of Document: The ASSETS APIs
AUthor(s): ...ccvvveeeeieeeeeceeeeie, Luigi Briguglio (ENG);
.. Sergiu Gordea and Andrew Lindley (AIT);
.. Efstratios Tzoannos (ATC);
.. Carlo Meghini, Franco Alberto Cardillo, Andrea Esuli,

Fabrizio Falchi, Diego Ceccarelli, Paolo Bolettieri, Nicola

Aloia, Cesare Concordia(CNR);
.. Victor Valdés, Fernando Lopez, José M. Martinez, Jesus

Bescds, Pablo Castells, Miguel Angel Garcia (UAM);
.. Oscar Paytuvi (BMAT);
.. Michalis Lazaridis (EKETA CERT);
.. Abdelkrim BELOUED (INA);
.. Nicolas Spyratos, Tsuyoshi Sugibuchi (UPS);

Approval of this report APPROVED

Summary of this report:................ see Executive Summary

History:........cooeiiiiiiceeeee, see Change History

Keyword List:cccooevveviiiinennne ASSETS, Models, Services, Interfaces

Availabilityccooeeriiieens This report is:

X public

limited to ASSETS consortium distribution
limited to EU Programme distribution
##t# restricted

internal
Change History
Version |Date Status | Author Description
0.1 21-march-2011 Draft LB (ENG) Revision of the contributions from D2.0.2 and
System Architecture, according to sw code.
0.2 23-march-2010 Draft LB (ENG) Release for dev team review
0.3 31-march-2011 Draft LB (ENG) Revision based on dev team feedback
0.6 8-april-2011 Draft LB (ENG) Revision based on peer-review feedback
1.0 28-march-2011 Draft LB (ENG) Pre Final Release
11 15-april-2011 Final SG (AIT) Final Release

@888

Page 2 D2.0.4v.1.1

PO YY.X VX
=8 S S 7 O E
e/l Wl WF O o ud?

2.

3.

4,

Table of Contents

INTRODUCTION
1.1 HOW TO READ THIS DOCUMENT

THE ASSETS NEEDS AND CONSTRAINTS

2.1 METADATA ENRICHMENT, HETEROGENEITY REDUCTION, INFORMATION EXTRACTION AND

CLASSIFICATION

2.2 INDEXING, RANKING AND RETRIEVAL

2.3 DIGITAL PRESERVATION

2.4 BROWSING AND CONTENT CHARACTERISATION
2.5 COMMUNITY

THE ASSETS SERVICES

3.1 THE INGESTION SERVICES

3.1.1 The ASSETS Approach and Proposal
3.2 INDEXING, RANKING AND RETRIEVAL SERVICES

3.2.1 The ASSETS Approach and Proposal
3.3 DIGITAL PRESERVATION SERVICES

3.3.1 The ASSETS Approach and Proposal
3.4 THE BROWSING AND CONTENT CHARACTERISATION SERVICES

3.4.1 The ASSETS Approach and Proposal
3.5 THE COMMUNITY SERVICES

3.5.1 The ASSETS Approach and Proposal
3.6 USER INTERFACE OF THE ASSETS PORTAL

3.6.1 The ASSETS Approach and Proposal

THE ASSETS DATA MODELS AND INTERFACES

4.1 SYSTEM ARCHITECTURE OVERVIEW
4.1.1 System Components
4.1.2 ASSETS Software Architecture
4.2 INTEGRATION LAYER AND INTERFACES
4.2.1 ASSETS Data-Model Component
4.2.2 Core Data Model
4.2.3 ASSETS Common APl and Common Server APl Components
4.2.4 Common Server and Common Client
4.2.5 Notification and Taxonomy Models and Interfaces
4.2.6 Session Management and Identification
4.3 THE INGESTION MODELS AND INTERFACES
4.3.1 The Metadata Cleaning Service Models and Interfaces
4.3.2 Knowledge Extraction Models and Interfaces
4.3.3 Metadata Classification Models and Interfaces
4.3.4 Ingestion Workflow Management Models and Interfaces
4.3.5 Post-Ingestion Processing
4.4 THE INDEXING, RANKING AND RETRIEVAL MODELS AND INTERFACES
4.4.1 Post-query processing Models and Interfaces
4.4.2 Metadata Based Ranking Models and Interfaces
4.4.3 Text Indexing and Retrieval Service
4.4.4 Images Indexing and Retrieval Service
4.4.5 3D-Model Indexing and Retrieval Services

‘LM:THE ASSETS APIS Page 3

10
12
14
14

16

16
16
20
20
23
23
25
25
27
27
28
28

52

52
53
54
55
55
57
59
63
65
70
71
71
74
77
80
87
88
88
89
91
94
98

D2.0.4v.1.1

AT

LA T T . LT
4.4.6 Audio Indexing and Retrieval Service 105
4.4.7 Video summarisation, indexing and retrieval 107
4.5 THE DIGITAL PRESERVATION MODELS AND INTERFACES 110
4.5.1 The Risk Management Models and Interfaces 110
4.5.2 The Normalisation Models and Interfaces 119
4.5.3 The Notification Models and Interfaces 124
4.6 THE BROWSING AND CONTENT CHARACTERISATION IMODELS AND INTERFACES 126
4.6.1 Annotation Propagation Service Models and Interfaces 127
4.6.2 Training Service Models and Interfaces 129
4.6.3 Manual Annotation and Annotation Correction Service Models and Interfaces 130
4.6.4 Content Selection Service Models and Interfaces 131
4.6.5 Relevance feedback service Models and Interfaces 133
4.6.6 Log Analysis Service Models and Interfaces 134
4.7 THE COMMUNITY MODELS AND INTERFACES 137
4.7.1 User Generated Content Models and Interfaces 138
4.7.2 Taxonomy-based Notification Service Models and Interfaces 148
4.7.3 Personalisation service Models and Interfaces 151
APPENDIX 1 - ENRICHMENT SERVICES TRAINING DATA FORMAT 153
5. REFERENCES 154

‘LM:THE ASSETS APIS Page 4 D2.0.4v.1.1

v

V)
i
i
":;ir»
o

{ ‘:,\-'\,

[d
Il

N

Q

Executive Summary

This is a technical document detailing the ASSETS architecture and API for each component.

It integrates and extends results of the first year mainly from T2.0.4 “Platform design and
implementation guidelines” and T2.0.5 “API Specifications”, but it introduces technical
aspects of all the software services defined, analysed, implemented and tested in ASSETS
WP2.1, WP2.2, WP2.3, WP2.4, WP2.5 and WP3.2.

This document provides the following information regarding the Assets Services:
e The rationale behind the service choices;

e The approach and methodology of proposed solutions;

e The services description and the definition of their interfaces (APIs);

¢ The data models and data flows exchanged between services.

This documentation is the basis for the development activities, because identifies the
components, their responsibilities data models and interfaces. Through the iteration, as yet
occurred during the first year, the data models and interfaces will be refined and enriched
with further details.

More, even if an improved User Interface is expected on next months, yet in this document
ASSETS is able to present some anticipations with preliminary results and mock-ups, carried
out during this year. Those are shown for better describing and clarifying how the ASSETS
services are/will be used for improving access and usability of Europeana.

LM:THE ASSETS APIS Page 5 D2.0.4v.1.1

1. Introduction

The goal of the ASSETS projects is to improve the usability of Europeana (the European
Digital Library platform) by developing, implementing and deploying robust and innovative
services focusing on improvement of search, browsing, usability and personalization
functionality of the Europeana platform. These services are designed to be reused by any
digital library. The concrete enhancements proposed by ASSETS Services include the
followings: i) Searching multimedia objects based on metadata and on content similarity; ii)
Ranking algorithms for improved result display; iii) Browsing multimedia objects fast and
comfortable navigation through semantic categories; iv) Enhanced Graphical User Interfaces
specially designed for interacting with multimedia objects; v) Planning Long-term Access to
digital information; vi) Ingestion of metadata, which is enriched by normalization, cleaning,
knowledge extraction and mapping to a standardized format; vi) Supporting Community and
the user generated contents.

Based on results documented in the D2.0.1 "Requirements Specification" [1], the Milestone
12 "System Architecture" [2], and the D2.0.2 “Interface Specifications and System Design”
[7], this document provides the description, the definition of the software interfaces, the
data models and data flows used by ASSETS Services. Documentation and models are
synchronised with the current release of the software implementation.

All this information is collected by the activities carried out within all technical
workpackages of Stream2 and Stream 3:

® Ingestion models and tools from WP2.1;

e Indexing, Ranking and Retrieval models and tools from WP2.2;

Digital Preservation models and tools from WP2.3;
® Browsing and Content Characterisation models and tools from WP2.5;

e Community models and tools from WP3.2.

metadata & logs St
I et r”r’ \\\‘
= g
O -Ihdexing D|g|tal
pE = WP & Ranklng Preservatlon
_C _\\ N ,.--""
o i s /P
i _.In estion \ ~ Browsin
europeana < (= g /
) | oo\ & Char, cterlsatlon
N I“a, “\ ,pfl’ - \
content & /Communlty\ "h
metadata ¥

0% /?\'[
aﬁ
M

Figure 1 - The ASSETS Services

LM:THE ASSETS APIS Page 6 D2.0.4v.1.1

v

":;irl»

)
()
77
()

[d
!
v
A q.\-\‘
N |
T

For collecting this information, a Service Specification Template has been created, based on
the experience gained within the WP2.3 and in particular the Milestone 27 "Digital
Preservation Service Design".

Starting from these descriptions, the current document proceeds with the identification of
the needs and constraints, which are applied for characterising the ASSETS context and its
technical challenges. Those latter justify the decisions behind the functionality provided by
the ASSETS services and their integration. A detailed data model is defined for providing a
common understanding of the key concepts used for the implementation of ASSETS
Services, together with the related programming interfaces.

1.1 How to read this document

The document is divided in three main parts: the rationale of the services, the approach and
methodology, and finally the data models.

The section 2 “The ASSETS Needs and Constraints” identifies the set of needs and
constraints for ASSETS Services by grouping the issues in the five research activities of the
ASSETS project. That allows describing the rationale behind the decisions for the system and
its services design, the models, the constraints and the features.

This section is a brief overview of the ASSETS project and allows the reader to understand
the context of the project and the issues to be addressed by each research activity. The
nature of this section doesn’t require a technical background for its understanding.

Section 3 “The ASSETS Services” allows the reader to understand the approach adopted by
each research activity (often according to the state of the art and standards) for identifying
the proposed solution to the issues described in the previous section. Moreover, preliminary
results on User Interface improvement are anticipated through mockups. They allow us to
indicate how will be the ASSETS Services used for improving the access and usability of
Europeana portal.

Finally, by using the information available from those above parts, the last part of the
document enters into the technical details by identifying and analysing the main concepts of
the application domain. These concepts are modelled by using UML Class diagrams which
explicitly represent their properties and their relationships.

The modelled concepts represent the so-called ASSETS Data Models. They are described in
section 4 “The ASSETS Data Models and Interfaces” and drive the identification of Interfaces
(i.e. APIs) for the ASSETS Services.

‘LM:THE ASSETS APIS Page 7 D2.0.4v.1.1

v

":;irl»

)
()
77
()

[d
!
v
A q.\-\‘
N |
T

2. The ASSETS Needs and Constraints

ASSETS project aims at improving and extending the features of Europeana portal. Within
this section we identify the set of needs and constraints, and we group them in 5 research
activities:

1. Metadata Enrichment, Heterogeneity Reduction, Knowledge Extraction and
Classification;

Indexing, Ranking and Retrieval
Digital Preservation

Browsing and Content Characterisation

vk W

Community Services

That allows describing the rationale behind the decisions for the system and its services, the
models, the constraints and the features.

2.1 Metadata Enrichment, Heterogeneity Reduction, Information
Extraction and Classification

The ASSETS portal will act as an integration system acquiring information, (i.e. metadata
content) from different entities (e.g. museums, libraries, archives, etc.) which are called with
the general term of Content Providers (CPs) located in different European countries. Since
different CPs organize their digital archives using different formats, the metadata gathered
within the ASSETS project will suffer from a great heterogeneity. The metadata submitted by
CPs is characterized by the following properties:

e |tis expressed in different languages. Basically, ASSETS will process metadata containing
words and texts written in the most of the European languages.

e |t uses different formats for the textual representation of many values, such as, for
example, the dates (e.g. dd-mm-yyyy or mm-dd-yyyy) or the dimensions of a physical
object (e.g. different units measurement) .

e |t is formatted according to different XML schemas (e.g., Dublin core-based, encoding
archival description or entirely proprietary formats).

e They are likely to contain mistakes in the textual representations and descriptions.
There are several types of mistakes the metadata can suffer from. We report two
example cases that we plan to study. :

o Spelling mistakes. Authors can be easily misnamed if they do no have a well
known name in the annotator's native language. There might be spelling errors
even if the author's name (or other texts) does not change among languages. In
one of the first examples received, Mozart has been written as Mozzart.

o Aging-related mistakes and problems. The metadata datasets of cultural
heritage institutions have been produced over a long period of time by different
archivists. Without digital preservation actions, it is likely that different
archivists used (over a long period of time) different terms and ontologies for
annotating similar or related metadata records. Furthermore, metadata

‘LM:THE ASSETS APIS Page 8 D2.0.4v.1.1

V)
i
i
[o o
v

16

annotated many years ago might refer to ontologies that are no longer used.

Such heterogeneity represents a major difficulty in offering a satisfactory user experience on
the ASSETS web site. In fact, if the metadata is ingested 'as it is', without any specific
processing, the users would not benefit from the richness of such a large archive of cultural
heritage digital object descriptions. The results returned to a specific query might miss some
interesting results (for example, an Italian-speaking user might not receive the link to an
Italian book whose metadata record is not expressed in Italian). The results might as well
contain irrelevant result due to false matches among different languages or formats.

assgts oo

The aSS&tS Segrvices

In ge St I O n: w hy? Metadata cannot be ingested
without any specific processing.

* Content providers, located in different EU

countries, or ::<-‘l”]i%:—_~ their archives LIC.,I!;(;

different formats, policies, language

Rwheas
Description contain errors (spelling, aging-
related errors)

» Heterogeneity and metadata “as
they are” : a major difficulty in
offering a satisfactory user
experience

content & ‘
,rnetadata .

» Users would not benefit from the
richness of such a large archive of
cultural heritage digital object
descriptions

Figure 2 - The rationale of Ingestion Service

Europeana Foundation realised the need of integrating the tools that collectively cover the
ingestion functionality into a unique framework. In particular, the need for having a unified
ingestion workflow with a single access point was identified as a requirement for the Assets
Project. Since this is a joint collaboration, the extended description for the design of this
service will be provided within the Europeanalabs documentation.

Europeana metadata contains both structured and unstructured information. Structured
information is provided by those metadata fields that identify well-specified type of
information, e.g., "date", "creator", "language". Unstructured information is provided by
those metadata fields that act as containers of generic information, e.g., "description".

The aim of the knowledge extraction service is to provide Europeana enrichment process
with automatic knowledge extraction functionalities that enable identification of relevant
information from unstructured metadata fields of collection objects.

Finally, the aim of "Metadata classification" is to develop a service for the automatic
classification of metadata records according to the predefined taxonomy of semantic
categories (classification schema).

LM:THE ASSETS APIS Page 9 D2.0.4v.1.1

V)
i
g
"IIi;ID
ui

PN
&

bl

l
\
\

The classification process consists of assigning a record to zero, one, or several categories
(aka "classes", or "concepts", or "codes").

Europeana records are provided by many different content provider, which may (i) not use
any classification schema for their data, (ii) use a very specific classification schema
specifically tailored for particular purposes of the content provider, (iii) use a standard well-
know classification schema for their data, either general-purpose (e.g., Library of the
Congress Subject Headings, LCSH) or discipline-specific (e.g., Medical Subject Headings).
Among these three cases the last one is certainly the preferred one for Europeana.

The metadata classification service will enable Europeana to automatically categorize the
new records provided by content providers, and those already acquired by Europeana,
following a set of general-purpose and/or discipline-specific classification schema.

The final goal of the task is making the searching and browsing experience on the part of the
user more satisfactory; e.g.:

e user can navigate from record to concept and to other records belonging to same
concept or sibling concepts;

e user can restrict search to records belonging to a specific concept;

e user can ask to group the search results according to the concepts they belong to.

2.2 Indexing, Ranking and Retrieval

|II

The group of services provided by “Indexing, Ranking and Retrieval” addresses a wide

variety of issues:
1. Post-query processing;
Metadata based ranking;

Text indexing and retrieval;

3D model indexing and retrieval;

2
3
4. Image indexing and retrieval;
5
6. Audio indexing and retrieval;
7

Video summarisation, indexing and retrieval;

Post-query processing

Users queries are often very short, ambiguous, and sometimes only exploratory. Thus, they
do not suffice to describe the user information need. Query suggestion is fundamental for
improving the search through the complex space of information provided by Europeana.

Furthermore, in the case of Europeana, identifying the possible interests of users might be
beneficial for suggesting new topics that are related to the one s/he is currently exploring.
For instance when searching for "Giotto" one can be interested in exploring also related
topics, such as: "Cimabue", "Famous Young Artists", "Florence Art", etc. In other words,
differently from what happens in the case of Search Engines, Europeana post-query
processing might be helpful to enlarge somebody's vision.

‘LM:THE ASSETS APIS Page 10 D2.0.4v.1.1

V)
i
g
"IIi;ID
ui

PN
&

bl

l
\
\

Metadata based ranking

Europeana indexes a massive amount of structured information. This requires special search
functions, beyond full text search, that exploit this structure in order to provide better
answers to users' queries.

In fact, full text search returns results (mostly) based on frequency of query terms in the
collection and in the returned documents. This approach is not the most efficient one in the
context of Europeana, where the indexed object is not a large document but a concise
metadata record. For this reason, special search functions should have the capability for
ranking metadata associated with the multi-media objects indexed by Europeana, and
obviously, according to the user interests.

Text Indexing and Retrieval Service

Europeana and Assets have many software components exploiting textual information.
Some software components in Assets/Europeana access significant amounts of structured
information to achieve their tasks. Such information include: submitted queries, popularity,
recency, clicks and other aggregated data such as clustering of search queries, etc. This
knowledge base is crucial for some of the Assets/Europeana components. This service will
provide efficient access to such information.

Many Assets services exploit external information sources. Having this information smartly
indexed, cleaned and promptly retrievable will boost the performance of search services.

Images Indexing and Retrieval Service

When searching for a particular masterpiece by using text queries, the user has to know
some very detailed information like title or creator of a work in order to find it in one search
action. Therefore, there is a real need for being able to use images as queries for searching
information about a digitized masterpiece (e.g. a snapshoot of a painting taken when
visiting a museum) .

3D--Model Indexing and Retrieval Services

A user would like to search for 3D models geometrically similar to a query model. The query
3D model can be provided by the user or be the result of a previous search.

Audio Indexing and Retrieval Service

A user would like to find the kind of audio he's looking for, but in most of the cases, the only
way of accessing the audio content is via textual searches on the Dublin core metadata. This
service offers the possibility to query objects by using the audio metadata, or by providing
an audio file as query.

Video summarisation, indexing and retrieval

Efficient and fast access to video content is often limited. Users need for condensed preview
versions and advanced video search functionalities are typically unsatisfied.

‘LM:THE ASSETS APIS Page 11 D2.0.4v.1.1

agemsts
LAVT T 5. - T
5
assgts R
The assgts Services
Indexing & Ranking: why?
* Search service: entry point to Europeana,
must guarantee:
ot — Efficiency - Response should be given in
NS qg 3 less than one second
o 0y
% & — Scalability - Must serve several requests
Q) e ki
3V, 1 simultaneously, Must handle
& ‘ millions/billions documents
P
j‘x’“[r. — Effectiveness - Response should contain
‘! what the user is looking for
- U *| Scalable Metadata and similarity based
Indexing = indexing and retrieval
& Ranking

Figure 3 - The rationale of Indexing Services

2.3 Digital Preservation

Usually Preservation is an issue which is considered “important” only for digital content
which have a long lifecycle. For instance, they could be accessed after a long time since their
ingestion and storage, and so a number of impacting events could occur and affect or
damage their “long-term usability and/or access”:

e Changing technologies, including support for new media and data formats
e Changing of terminologies/knowledge of “designated communities”

Corrective preservation actions have to be properly planned and evaluated for avoiding side
effects. Actions could affect more than the impacting events and/or carry out an irreversible
process and loss forever the original content. So, it’s important to:

e |dentify/Classify/Monitor potential impacting events
e |dentify/Evaluate/Enact relative corrective preservation actions (plans)

e Notify impacting events and actions to the right actors involved in the preservation
process

e Document the history of the digital object, as evidence for judging/auditing/certifying
the goodness of “preservation archive” and the “authenticity” of archival objects.

For more clarity, it could be useful to describe a "case in the real world".

The world heritage convention aims to safeguard our heritage, but sadly in one real case, we
lost one cultural heritage which was not yet inscribed. The unfortunate scenario of the

Lﬁ:mg ASSETS APIS Page 12 D2.0.4v.1.1

V)
i
g
"IIi;ID
ui

PN
&

Bl

l
\
\

explosion of the Buddhas of Bamiyan provides a real case scenario of the fragility of our
heritage and the importance for its documentation and hence the preservation of that
digital information for future generations.

After the explosion of the buddhas - UNESCO’s partners the Institute of Geodesy and
Photogrammetry - ETH Zurich, Switzerland made a 3D digital reconstruction of the buddhas
with the remote sensing technique: photogrammetry. This ‘digital heritage’ remains the
only available documentation of the buddhas to provide a true record of their original
structure.

UNESCO has 3D model contents in PLY format which is mainly designed to store three
dimensional data from 3D scanners of CH objects. Potentially impacting events may be:

e PLY format could become obsolete/ replaced by another format (e.g. VRML or MAYAS.x)

e Tools supporting that format could be no more available

TR

j;ang%mation —

o =

WRMLAAYAS x DATA

Max Radius 187 m.
Min Radius 155 m.
Height 50m.

Max Radius 189 m.
Min Radius 156 m.
Height 50m.

Figure 4 - Distortion in the Information introduced by a transformation of the Data

Usually, Emulation and Transformation which are applied as corrective preservation actions.

But, it's important to remark that transformation could introduce “distortions” in the
information (aka Significant Properties) which may corrupt the usability of the object.

In order to evaluate the proper “transformation” we have to know which kind of
information of the content we want to preserve, and the metrics for properly evaluating the
process In this perspective, who wants to preserve has to think in terms of “apply
transformation T to content object O for preserving information | by accepting an error E”
(e.g. preserve the main spatial information of the scanned monument).

LM:THE ASSETS APIS Page 13 D2.0.4v.1.1

AT
LA W WF .5 SedD
5
asscts 000

The assgts Services

Digital Preservation: why?

* Between the ingestion and the access a
number of impacting events could occur
and affect/damage their “long-term
usability & access ”

* For that reason it is fundamental a
continuous monitoring and maintenance
of the archived data

* Corrective actions have to be properly
planned and evaluated for avoiding side
effects

* Actions could affects more than the
impacting events, and loss forever the

original content
Figure 5 - The rationale of the Digital Preservation Services

2.4 Browsing and Content Characterisation

Many archives identify digital content by tagging and hyper-linking; however, the
conventional browser model offers few possibilities for exploring the patterns that are
inherent when information is classified in this way. Designers must therefore seek to enrich
the user’s experience of complex data sets through:

e patterns of metadata,
e graphical visualization and iconography,

wherever possible allowing users to manipulate information according to their own
interpretation.

2.5 Community

Traditional libraries have always served communities of users to find the information
sources they need for their work; and, in turn, they enrich the library with the results of
their own work. Digital Libraries are no exception. The ASSETS project will develop services
aimed at supporting this information exchange. In particular, the project will address the
content creation by re-use, a sophisticated form of notification based on taxonomies, and
the personalization of search based on user preferences.

Lﬁ:mg ASSETS APIS Page 14 D2.0.4v.1.1

\)
V.
j(!ﬂ:

W

[o o

(7

000

assgts
The aSSQtSServices
Community: why?
* Traditional libraries have always

served communities of users
v — Users find in the library the
5“ source of information they need
for their work;

R S
% ﬁ?‘ 'Rﬁf 'Xs —and, in turn, they enrich the
library with the results of
their own work.

* ...Digital Libraries are no
exception.

Figure 6 - The rationale of the Community Services

]
@08
ITHE ASSETS APIS Page 15 D2.0.4v.1.1

v

":;irl»

)
()
77
()

[d
!
v
A q.\-\‘
N |
T

3. The ASSETS Services

This section allows the reader to understand the approach adopted by each ASSETS research
activity (often according to the state of the art and standards) for identifying the proposed
solution to the issues described in the previous section.

3.1 The Ingestion Services

3.1.1 The ASSETS Approach and Proposal

Most of algorithms that will be experimented and implemented will be based on a Machine
Learning (ML) approach, particularly by employing supervised learning methods. Within this
approach, a learning machine induces a classification model by analyzing a training set of
metadata records that are considered to be correctly categorized by human users.

In particular:

e for the Metadata Cleaning service, the training set should contain examples of typical
unclear or wrong constructs together with their correspondent corrections;

e for the Knowledge Extraction service, the training set should contain annotated
descriptions. Basically, the relevant entities (e.g. names of persons or places) should be
marked with specific tags;

e for the Metadata Classification service, the training set should contain metadata records
associated to the correct categories;

e the Ingestion team has already prepared XML schemas the CPs need to use in order to
provide training sets before the Europeana Data Model (EDM) is finalized. Once the
EDM has been finalized, the Ingestion team will migrate the current XML schemas to the
fresh data format.

ML methods have already been proven to be very effective in knowledge extraction and
classification tasks. Even if some established algorithms will have to be tailored for the
specific needs of the ASSETS project, it is reasonable to expect very good results if enough
annotated metadata are provided by the CPs.

However, supervised ML algorithms are not the only methods that will be experimented in
the Ingestion module. Possible alternatives include unsupervised learning methods (that do
not require a training set) and non-adaptive methods for the simpler cases.

In general, we will limit the number of cases where a non-adaptive approach will be used. In
fact, even if in some cases a rule-based system would be quite effective and much simpler to
implement, it would not adapt to new datasets provided by CPs that decide to join ASSETS
(or Europeana).

The ASSETS proposal for the ingestion issues is to provide implementations of advanced
services with functionalities able to clean, enrich, extract knowledge, and classify the
metadata records coming from the CPs involved in the ASSETS project and the metadata
records currently indexed by Europeana.

The ASSETS ingestion services will:

‘LM:THE ASSETS APIS Page 16 D2.0.4v.1.1

V)
i
g
"IIi;ID
ui

PN
&

bl

l
\
\

e clean and perform a basic enrichment of the metadata (using URIs pointing to
controlled vocabularies and authority files) through the Metadata Cleaning service;

extract knowledge and enrich the original metadata with the new information through
the Knowledge Extraction service;

e classify the metadata under a well-defined classification taxonomy through the
Metadata Classification service;

Metadata Cleaning

The service has the following set of goals:
1. correct part of the errors in the metadata;

2. normalize the values of specific fields by using the same textual representation in all
of the datasets received by the ASSETS project;

3. perform a basic enrichment of specific elements of the metadata records.

1. In order to be able to correct generic errors affecting the metadata, the service will use
algorithms based on supervised ML approaches. On simple values non-adaptive approaches
will be experimented. For example, if a year has been specified as "1797,", this would be
corrected by removing the comma. In particular, when the EDM is finalized and used by the
CPs in submitting their metadata, the EDM semantics will be exploited to correct simple
errors in a larger number of elements.

2. Two types of normalization procedures will be implemented. On simple cases, like, for
example, metadata elements whose values do not vary greatly with the language used in
expressing them (e.g. the size), simple rule-based systems will be used. On more complex
cases, like the elements whose values vary with the language, an adaptive approach
(supervised ML) is better suited.

3. Some metadata elements related to names of persons or places will be enriched by
adding a URI to controlled vocabularies and authority files. Obviously such enrichment will
be performed only on those values for which those resources are available. By adding a URI
it is possible to overcome part of the limitations imposed by the multilingual nature of the
data and by the high variance characterizing the values in the datasets. For example:

® the Greek philosopher Plotinos can also be referred to as Plotin, Plotinus, Plotino.
® the English capital London can also be called Londra or Londre.

e the Monna Lisa is also known as La Gioconda or La Joconde. Furthermore, it has
been painted by Leonardo da Vinci, also known as Leonardo di ser Piero da Vinci.

As shown in the example above, the use of URIs can greatly improve the number of relevant
matches returned to a user query. For example, by using a URI pointing to Plotinus in the
VIAF file (www.viaf.org), if a user specify 'Plotin' as query term, metadata records originally
containing 'Plotino’' or 'Plotinus' would also be included in the results.

The ingestion service will have the responsibility of reducing the inhomogeneities in the
metadata and enrich their description by extracting from the metadata as much
information as possible. The service will be organized into a processing stream composed by
three steps: metadata cleaning, knowledge extraction, and metadata classification.

The first step Metadata Cleaning will correct (basic) errors and perform a basic enrichment
of a well-defined set of elements. After having corrected the errors in the values, some

‘LM:THE ASSETS APIS Page 17 D2.0.4v.1.1

V)
()
%
o
[o o

3
v

d

elements, like the one containing names of persons or names of places, will be "enriched"
by adding a link to an entry in a controlled vocabulary or an authority files. For example, the
name of an author can be "substituted" with a link (URI) to an entry in an authority file
containing the author's name expressed in several languages.

Knowledge Extraction

Usually the metadata records have one or more descriptive fields containing free-form,
unstructured textual description of a physical object. The second step Knowledge Extraction
will extract information by such long textual description. The type of extracted information
will depend on the metadata domain and cannot be specified at this moment.

Metadata Classification

Even after the cleaning and the extraction of knowledge have been accomplished, the
metadata remain a largely disorganized set. The ASSETS users might benefit from an
organization of the metadata under a well defined semantic taxonomy, like, for example,
the Library of Congress Classification scheme. The third step Metadata Classification will
associate each metadata record to one or more categories in classification schemes that are
yet to be chosen.

assgts oo

The aSS@‘tS Services

Ingestion: what and how?

europeana

Ingtmnk bulturary

it

Reduce inhomogeneities and
metadata cleaning errors in metadata

Enrich description by extracting
e from metadata as much
information as possible

Perform classifications according

etadata classificatio 5
to well defined domain ontology

5
0
a
-
=
g
R
5
)
g

Figure 7 — The ASSETS Ingestion Services

For further details on how CPs have to format their data in order to submit training data to
the enrichment services of WP2.1 see Appendix 1 - Enrichment Services Training Data
Format.

The ASSETS proposal for the ingestion issues is to provide implementations of advanced
services with functionalities able to clean, enrich, extract knowledge, and classify the
metadata records coming from the CPs involved in the ASSETS project and the metadata

LM:THE ASSETS APIS Page 18 D2.0.4v.1.1

[o o
\
I

)
()
77
u.

S0

records currently indexed by Europeana.

The ASSETS ingestion services will:

clean and perform a basic enrichment of the metadata (using URIs pointing to
controlled vocabularies and authority files) through the Metadata Cleaning service.

e extract knowledge and enrich the original metadata with the new information through
the Knowledge Extraction service.

e classify the metadata under a well-defined classification taxonomy through the
Metadata Classification service

Ingestion Workflow

The Europeana web portal implements a search engine over the European cultural heritage.
In order to provide this functionality, an index with the description of the masterpieces was
created. This information is retrieved from the Content Providers (CPs). The model used for
metadata aggregation is sketched in the following figure.

Institute Institute Institute |m1im§ Institute | Insti institute Institute\, Institute Institute
/ / / / / & | mm\ e

Institute Institute Institute Institute Institute Instiute Institute Institute Institute Institute Institute

Figure 8 — Aggregators in the Europeana organisation model

Where the aggregators are organizations which integrate the data retrieved from content
providers, and transform it into a representation compatible with the Europeana search
index. See also Europeana Aggregator's Handbook [6].

The harvesting of the metadata is based on the Open Archives Initiative Protocol for
Metadata Harvesting (for further details see http://www.openarchives.org/pmh). This
protocol standardises the harvesting of metadata by defining a web service interface which
provides descriptions of the collection objects in XML format.

Lﬁ:mg ASSETS APIS Page 19 D2.0.4v.1.1

V)
i
i
[o o
v

S0

Request
Harvester |.—OAI—PMH
Records

Figure 9 - OAI-PMH Harvesting

These XML files, retrieved through the OAI-PMH interface, are used as input for the
ingestion workflow.
The ASSETS proposal for the ingestion workflow management will:

® Integrate execution of the metadata enrichment services in a standardized workflow -
Ingestion Workflow Management;

e Build the multimedia index used for content based search functionality - Post-Ingestion
Processing;

The ingestion framework will perform the necessary processing steps as much as possible in
an autonomous way. The ingestion team is involved in the scheduling process, where the
team needs/can prioritise certain collections or inform the system about a new collection
which needs to be processed. After processing, the records remain in the acceptance point
until a member of the ingestion team confirms them.

SJ e e . -

' ' Ingestion Team

Ingestion Team

Scheduler

Figure 10 - The Ingestion Process flow
3.2 Indexing, Ranking and Retrieval Services

3.2.1 The ASSETS Approach and Proposal

The ASSETS proposal for the indexing and retrieval issue is to provide implementations of
services with functionality such as:

e suggest queries to users mining query logs;
® enhance ranking using a ranking function designed for metadata;

e provide efficient access specifically tailored to structured information exploited by
suggest and ranking services;

e enable 3D content-based indexing, search and retrieval.

]
@08
ITHE ASSETS APIS Page 20 D2.0.4v.1.1

asssets
LAVT P 75 ST
assgts
assgﬂs

G) 77 metadata &Iogs> ——

: \ﬁi w |

0, updated metadata ——

eurapeana < | ——— k. |

. * Advanced Indexmg & Ranklng
P°5t query processing technlques '

'Indexmg & |mage 3D |mage/3D/V|deo/Aud|o

retrieval | foemoneniarenns * Multimedia-based similarity
audlo wdeo Feedback fro

Figure 11 - The ASSETS Indexing, Ranking and Retrieval Services

As shown in section 2.2, for indexing, ranking and retrieval, there are a variety of issues
which need to be addressed and focused by specific approaches and solutions. They are
presented in the followings:

Post-query processing

The importance of query suggestion is recognized by major Web search engines, who
already incorporated this tool into their portal. To this end, specific post-query processing
techniques are important for providing the user with additional (or enhanced) information:
query suggestion is one of such kind. The goal of query suggestion is to provide the user
with a list of related queries, in addition to the usual result list.

Query suggestion helps the user to either better specify the information he/she is looking
for, or help him in browsing semantically related concepts. For instance, given the query
"Pablo Picasso", possible interesting suggestions are "Pablo Picasso blu's period"
(specification) or "cubism" (related concept - diversification).

We aim at producing a novel software product, specifically tailored for the information
indexed by Europeana, and its users. In particular, we plan to exploit sources of implicit
feedback from Europeana users, e.g. query logs.

Metadata Based Ranking

The goal of this service is to provide a better ranking of the result list returned after a user
query.

The full-text based retrieval/ranking does not best fit the Europeana content representation,

LM:THE ASSETS APIS Page 21 D2.0.4v.1.1

V)
i
g
"IIi;ID
ui

PN
&

bl

l
\
\

and for that reason, a ranking model being aware of the structure present in Europeana
documents is mandatory.

In this perspective, we aim at producing a novel software product, specifically tailored for
the information indexed by Europeana, and its users. In particular, we plan to exploit
sources of implicit feedback from Europeana users, e.g. query logs. From this knowledge it is
possible to properly weigh the various fields of the Europeana Metadata Records.

This service will affect the result list presented on the Europeana portal. The service needs
historical information regarding users interaction with Europeana, and in particular, query
logs and click stream data should be made accessible. Also the service needs to access the
full collection of metadata records for statistical analysis and feature extraction.

Text Indexing and Retrieval

The goal of this service is to provide efficient access specifically tailored to structured
information exploited by those services. The most popular approach for text indexing is the
usage of inverted document representation. We will adopt the same or similar technologies,
and provide additional functionalities specifically tailored for Assets services. In particular,
this service will focus on the analysis, the cleaning and the processing of the query logs. The
output of the service will allow obtaining useful statistics on the user’s usage and will feed
the Post-query Processing and Metadata Based Ranking tasks.

Images Indexing and Retrieval Service

We aim at developing a scalable content based similarity search engine that will allow
searching between Europeana images using an image as query. The goal is to offer more
powerful yet easy to use search functions to our portal end-users. This type of search is also
useful in a mobile context.

3D-Model Indexing and Retrieval

The 3D Model Indexing and Retrieval Services allow users to search for 3D models similar to
a query 3D model. The 3D search interface will allow 3 types of queries: Models uploaded
from the user, models returned from a previous search and hand-drawn sketches.

Audio Indexing and Retrieval

The audio indexing and retrieval service provides advanced music search and
recommendation functionalities. It enhances Europeana by enabling end users to discover
audio media based not only in textual similarity but based on audio content and context
similarities. This service allows searching for similar songs, albums or artists based on a
given song, album or artist; also being able to find tracks by mood, tempo amongst other
music descriptors.

Video summarization, indexing and retrieval

Existing internet video providers don‘t provide neither advanced video summarization nor
content based search (only text/tag based search). This service aims at enhancing the
functionalities of Europeana for searching, browsing, pre-visualizing and accessing video
content. The search of video content is many times difficult due to the high amount of
information this kind of media contains.

e Provide the users with reduced-length versions of the original videos (video summaries)
in order to be able to overview the original video content without

‘LM:THE ASSETS APIS Page 22 D2.0.4v.1.1

V)
i
g
"IIi;ID
ui

PN
&

Bl

l
\
\

downloading/watching the complete original video. The personalization of video
summaries will be possible in terms of summary length as well as tempo vs. coverage of
the generated summaries which can be modified via generation parameters

Offer solutions to allow the user to search for videos with enhanced mechanisms (e.g.
visual similarity) apart from existing tag-based search approaches.

3.3 Digital Preservation Services

3.3.1 The ASSETS Approach and Proposal

OAIS (Open Archival Information System) Reference Model is the ISO standard (14721:2003)
adopted for addressing the digital preservation problem, which identifies three main
components: i) information model, ii) archive responsibilities, iii) functional model.

For addressing the digital preservation issue it's important to:

¢ |dentify and characterise events potentially impacting the long-term usability and access
of digital information - This deals with the evaluation of potential accessibility RISKS;

e Monitor occurring events which potentially impact the long-term usability and access of
digital information;

e Identify, characterise and evaluate relative corrective actions/plans for mitigating
impacts (preservation plans) - This deals with the plans for reducing impacts of risks;

e Communicate/Notify impacting events and actions to the right actors involved in the
preservation process - This deals with the notification/communication of RISKS to the
actors responsible for taking the right decisions and enacting corrective actions;

e Enact, monitor and control relative corrective actions - This deals with the
enactment/reaction for mitigating impacts of risks;

e Track, report and document occurring events/actions/changes within the digital archive,
as evidence for judging/auditing/certifying the quality of “preservation archive” and the
“authenticity/provenance/integrity" of archival objects - This deals with the reporting
aspect, which is useful for tracking changes.

OAIS Preservation Planning and Administration components provide the functionality
described above, as shown in the following table.

OAIS Responsibilities

PLANNING

ADMINISTRATION

Monitoring OAIS Environment;

Detect changes/impacts in DCKB
(Designated Community Knowledge
Base);

Mapping out Preservation Strategy;

Provide Recommendations.

Manage submission agreements;
Audit submission;

Maintain configuration management;
Monitor archive operations;
Inventory archive content;

Report on archive content;

Migrate/update archive content;

@888

Page 23

D2.0.4v.1.1

V)
i
i
[o o
v

S0

e Manage archive standards/policies.

The ASSETS proposal for the digital preservation issue is to provide implementations of
services with functionality defined for the OAIS Preservation Planning and the OAIS
Administration components. More concrete, the ASSETS Digital Preservation Services will:

e Estimate preservation risk for data through the Risk Management Service
e Track and report/notify occurring events through the Notification Service

e Enact preservation plans through the Normalisation Service

assgts ol

The assgts., Services

Digital Preservation: what & how?

* Estimate preservation risks
for data

* Track, Report and . notification
Notification events

* Enact preservation plans ~ normalization

Figure 12 - The ASSETS Digital Preservation Services

Risk Management

The services aims at mitigating the risk of digital obsolescence by providing risk
management reports to content providers - which is done by analyzing the contributed
content. The service will perform object inspection and statistical analysis of the content
formats at hand to categorize them based on their preservation risk. The service needs to be
robust in terms of reliably classifying the underlying data on basis of available metadata and
giving solid preservation recommendations. The component beyond this addresses the
topics of technology watch and (semi)automated preservation policies. It will make use of
available preservation community resources such as technical registries (like PRONOM?! and

1http://www.nationalarchives.gov.uk/PRONOM)/Default.aspx

Lﬁ:mg ASSETS APIS Page 24 D2.0.4v.1.1

V)
i
g
"IIi;ID
ui

PN
&

bl

l
\
\

UDFR? - Unified Digital Formats Registry) for policy extraction and the Assets Normalisation
Service for object identification and policy execution.

The service addresses the problem of: format obsolescence and limited support for
proprietary formats; unstructured and unknown digital collections; automated collection
profiling and recommendation of fine-tuned preservation actions.

Normalisation Service

The Assets Normalization Preservation Service offers a wide range of tools (e.g. Droid,
JHove, ImageMagick, etc.) and is responsible for deploying and exposing their functionality
through a well defined set of standardized preservation operations. These include for
example the identification, characterisation, migration and validation of digital objects. The
provided APl will allow for example to migrate a digital object from its original
representation into open and preservation-friendly archival formats, such as e.g. PDF/A for
documents or TIFF for images - or to profile digital collections. Based on the results of the
risk management analysis, the service can automatically perform a normalization strategy
on the provider’s collection.

Notification Service

Notification is one of the digital preservation services, which guarantees the adequate
communication and management procedures in reaction to events that could impact long
term preservation, within the digital archive. As actions, appropriate messages are
dispatched according to event types, well defined rules, roles of the entities involved in the
digital environment (i.e. curator, preserver, holder). The alerted entity (i.e. human actor
and/or automatic tool) is able to enact corrective action according to established
preservation plans.

3.4 The Browsing and Content Characterisation Services

3.4.1 The ASSETS Approach and Proposal

Most existing Information Retrieval systems either annotate all the objects in the database
(manual tagging) or annotate a subset of the database manually selected (partial
annotation). In the case of large-scale digital repositories, full annotation is increasingly
difficult because of the manual effort required. Partial annotation is relatively affordable
and trims down the heavy manual labour. Leveraging this information to automatically tag
items that have not been tagged, e.g. newly entered items can be done effectively using
recent advances in active learning frameworks, where most salient features and items are
automatically selected for human verification and generalisation.

A dynamic and adaptive knowledge representation scheme - e.g. a vector space model or a
probabilistic model - used for representing the semantics of collection items can be
designed to allow generalisation and fuzzy matching of items within the collection and
across collections. Together with a learning approach, this will allow for the construction of
meaningful representations, which evolve over time and automatically assign associative
links between items that are related by virtue of their usage (recommendation systems) or
their content representations. Technologies that make this feasible have been deployed for

2 http://www.udfr.org/

‘LM:THE ASSETS APIS Page 25 D2.0.4v.1.1

V)
i
g
"IIi;ID
ui

PN
&

bl

l
\
\

innovative text search systems but have not yet been put in place for multimedia, except in
laboratory experiments - the technology is now mature for application.

The ASSETS project will adopt the Semantic Web paradigm in representing knowledge and
content in order to achieve a semantically rich representation of content, user interests,
ideas and social interactions. The project will augment the capabilities of multimedia
information retrieval by providing the mechanisms for the establishment of semantic links
between pieces of information presented in different media. This will be realised through
the development of a service based on semantic cross-linking of multimedia content. The
service will allow users who have little experience with the collection to gain access to it
with a low learning threshold. This is expected to significantly improve searching, browsing
and retrieving information, especially for large scale Digital Libraries such as Europeana.

The ASSETS project will also develop graphical user interfaces specially designed for
searching and browsing in large scale multimedia archives. The objective is to develop an
interface that provides intelligent access to a wide range of media content within an rich
functionality web portal. This will support the processing of different types of queries, which
enhances the user’s experience and allows a customization of search responses according to
user’s information needs and preferences . Rich user interface components will be designed
and implemented to support the ASSETS Platform and its value-added services. The ASSETS
web portal will allow complex query formulation and results presentation, ensuring native
integration and interoperability with EUROPEANA. It will also implement GUI components
specially designed for improving the usability of the searching and browsing functionality of
EUROPEANA platform.

The ASSETS proposal for the browsing and characterisation issue is enhance the application
with functionality supporting Semantic cross-linking, the Query Log Analysis and the
Graphical User Interface improvements for displaying a wide range a multimedia objects
(e.g. different text, image, audio, video, and 3D formats). In particular, the ASSETS Browsing
and Characterisation Services will:

e establish semantic links between pieces of information presented in different media,
through the Annotation Propagation Service;

e appropriately train the Annotation Propagation Service, through the Training Service;

¢ allow to manually correct and complete the ingested metadata and provide training
examples to the Training Service, through the Manual Annotation and Annotation
Correction Service;

e select the most "informative" examples for manual annotation through the Content
Selection Service;

e display and play media content provided by Assets content providers

e exploit user feedback information in order to improve the quality of search results,
through the Relevance Feedback Service, and

e perform query log analysis through the Query Log Analysis Service.

‘LM:THE ASSETS APIS Page 26 D2.0.4v.1.1

\)
)
2

S0

[o o
v

assgts s

3.5

3.5.1

The assgts Services

Browsing & Characterisation: what and how?

Adoption of Semantic Web
paradigm: establish semantic
links between pieces of
information presented in
different media

Exploit user feedback
information in order to improve S pe—)
the quality of search results q ery log j'elevanceg
' analysis feedback!

. & | propagation

Browsing Similarity and 3D

Figure 13 - The ASSETS Browsing and Characterisation Services
The Community Services

The ASSETS Approach and Proposal

The objective of this WP is to develop services addressing the needs of digital libraries
communities. A community is a group of users who share some interests, such as the
carrying out of a common activity or the membership to some social network. This WP will
focus on the following services:

e Content creation by re-use. The availability of content in digital form makes it possible
to create new content by extracting and recombining in various forms existing digital
objects or parts thereof. This service aims at supporting the composition of new
complex objects by combining the information available in simpler digital objects;

e Taxonomy-based notification. This is a service that enables the selective dissemination
of events, in an asynchronous manner, to communities that have expressed interest in
those events. This service aims at developing a sophisticated form of notification, based
on a taxonomy between the events;

e Personalization services. This service aims at customizing the functionalities of a digital
library to specific communities by reacting in different ways to one and the same
request, depending on the community issuing the request.

Lﬁ:mg ASSETS APIS Page 27 D2.0.4v.1.1

ass;j;;ts

s information 8/ R% 'Rﬁ?’(Tﬂ‘ ﬁ

exchange ! ‘
Compoasition of new content by ‘

Selective dissemination of

Personalisation ¢

Figure 14 - The ASSETS Community Services

3.6 User Interface of the ASSETS Portal

Premise

Users evaluating the Europeana portal have reported that the look & feel of the portal is
good, although the purpose of the web site could be unclear to users at first. They have also
demanded the ability to get more clear and precise information about specific items. Some
functionality and usability drawbacks could discourage users from future use of Europeana.
Also, some difficulties experienced in navigation, query creation and using filters to refine
searches indicates that the Europeana Portal should to be improved by offering access to its
functionality in a more user friendly environment.

3.6.1 The ASSETS Approach and Proposal

The ASSETS proposal for the user interface improvement issue supports the enhancements
of GUIS with components specially designed for searching and browsing large scale
multimedia archives.

Rich user interface components will be designed and implemented to support the ASSETS
Platform and its value-added services. We aim at providing user friendly and intuitive
interaction with the Europeana platform and its contents. Consequently, this will make the
portal more attractive and will increase its popularity for the wide public. Particularly, the
ASSETS Ul Improvements will provide support for the end-user services such as:

e Scalable metadata and Similarity based Indexing and Retrieval;

LM:THE ASSETS APIS Page 28 D2.0.4v.1.1

V)
i
.
ST
"IIiPID
ui

Bl

l
\
\

e Semantic cross linking browsing;
e Media display, play and preview;
* Intuitive execution of text and content based similarity search actions;

A complete release of User Interface improvements is expected due to next months, but yet
we are able to present some prototypes with preliminary results and mock-ups, which were
developed during this year. Those are shown for better describing and clarifying how the
ASSETS services are/will be used for improving access and usability.

User Query Suggestion Ul

Interface

Name

Objective Help the user to either better specify the information s/he is looking for, or

help him in browsing semantically related concepts

Basics o A list of related links will be shown below the search box and/or at the
bottom of the result search page.

e This list should be easily recognizable but not intrusive

Dependencies | Query Suggestion Service

Mock-ups

Next figure shows the suggestions returned to the user after submitting a query.

LM:THE ASSETS APIS Page 29 D2.0.4v.1.1

pablo picasso Search

Refine Search Advanced search

Related seaches:
pablo picasso obras pablo picasso cuadros escuela pablo picasso -

Matches for: pablo picasso

Al Texts (22) Images {9,518) Videos (353) Sounds (5}

Fesults 1 - 12 of 9,580 Page: 1 2 3 4 5 6 7 & &8 10 = B share

Pablo Picasso Pablo Picasso Pablo Picasso Pablo Picasso
Deutzche Fotathek Deutzche Fotathek Deutzche Fotothek Deutsche Fotothek

Pablo Picasso Pablo Picasso Pablo Picasso Pablo Picasso
Dewutsche Fotothek Deutsche Fotothek Deutsche Fotathek Anonyme |
Culture fricollections

Resuttz 1 - 12 of 9,580 Page: 1 2 3 4 5 6 7 & 9 10 = B share

Related seaches:
pablo picasso obras pablo picasso cuadros escuela pablo picasso -

When the user clicks the "arrow" button, further suggestions will be returned:

@000

ITHE ASSETS APIS Page 30 D2.0.4v.1.1

PN Y YN
= S S 7 LE
Al ol W 2. O G CdD)
(v .
pablo picasso Search
Refine Search Advanced search
Related seaches:
pablo picasso obras pablo picasso obras pablo picasso eobras
pablo picasso cuadies pablo picasso cuadios pablo picasso cuadios
escuela pablo picasso escuela pablo picasso escuela pablo picasso
pablo picasso obras pablo picasso obras pablo picasso obras
pablo picasso cuadios pablo picasso cuadios pablo picasso cuadios 4
Matches for: pablo picasso
All Texts (22) Images (9.518) Videos (35) Sounds {5)
EEE Results 1 - 12 of 9,580 Page: 1 2 3 4 5 & 7 & 9 10 = B share

Pable Picasso
Dectzche Fotothek

Pablo Picasso
Devtzche Fotothek

Pable Picasso
Deutzche Fotothek

Pable Picasso
Deutzche Fotothek

Pablo Picasso

Pablo Picasso

Pablo Picasso

Pablo Picasso

Deutsche Fotathek Deutsche Fotathek Deutsche Fotothek Anonyme |
Cutture fricollections
EEE Rezults 1 - 12 of 9,580 Page: 1 2 3 4 5 6 7 8 9 10 = @ share

Related seaches:

pablo picasso obras pablo picasso cuadres escuela pablo picasso -

User Similar Search Images Ul

Interface

Name

Objective Search for visually similar images, allowing a user to find images based on

other images.

Basics e A link for searching similar images should be added near each image
returned by the Europeana, independently from the type of query. In
particular, the button or link for similarity searching should be showed
only for those images for which it will possible to perform the content
based similarity search.

e The Ul should allow similarity search in a self-explanatory and easy
way. No settings, weights or specifications of what is the intention of
the user searching for similar images should be required.

® In the results list of similar images it could be added a text reporting
the similarity score of the results images. However, this is not
mandatory.

@000

ITHE ASSETS APIS

Page 31

D2.0.4v.1.1

P oW oY X V.S

=8 S N 7 N0 S

b/l Cudl ¥l 7. O G CudD)
(o

Dependencies | Images Indexing and Retrieval Service

Mock-ups

When the mouse is over an image thumbnail a mini-zoom window will be displayed. The
toolbar at the bottom of this window includes a button labelled "~" that allows the user to
make a similar search based on the selected image.

car Search

Refine Search Advanced search Upload and Search

Matches for: car = TYPEimage

Al Texts Images {28,045) Videos Sounds

HH Results 1 - 12 of 25,045 Page: 1 2 3 0 share

Car Car
Scottish Mator Museum CuttureGrid
Soran

CuttureGrid Cutturerid CuttureGrid

Car Car Car Car
CuttureGrid CuttureGric CuttureGrid CuttureGrid
HH Resuttz 1 -12 of 28,045 Page: 1 2 3 4 5 & 7 & 9 10 = B share

When the user press the "~" button the system returns as result the list of similar images.
The image used for the query is displayed at the top of the results.

@000

ITHE ASSETS APIS Page 32 D2.0.4v.1.1

[o o
U

\)
¢/
¢

K

Search
Refine Search Advanced search Upload and Search
4 =
Matches for: g E)
All Texts Images (28.045) Videos Sounds
Results 1 - 12 of 25 045 Page: 1 2 3 4 = & ¥ &© 9 10 - [+] share

Car Car Baby Carriage Argyll Tourer Type G Motor
Scottish Motor Museum ClttureGrid CLlturerid Cutturecrid
Scran

Car Model of a Two-Wheel Model of a Two-Wheel Spinal Carriage
Cutturerid CuttureGrid CuttureGrid

Horse drawn ralli car, by A.D. Arrol-Johnston "18° Open Car Car
Culturerid Cuturecrid Cutturedrid CutureGrid

Results 1 - 12 of 28,045 Page: 1 2 3 4 5 6 7 & 9 10 = 8 share

A similar search can also be launched in the Details window, by clicking the "~" button at
the toolbar.

@000

ITHE ASSETS APIS Page 33 D2.0.4v.1.1

\)
¢/
v

K

[o o
v

europeana

think culture

Related content:

termns

Wooden National
Telephone

- Telephone transmitter

Hughes carbon
miq
. "1 viewin original context
S9s 3l rglated itgmg
Add atag

Actions:

Logged in as: cmartinez | Saved items: 2 | Saved searches: 5 | Saved tags: 2 | Log out

My Europeana About us Communities Pariners Thought lab Iohanss a language vI

telephone Search

Advanced search

Matches for: telephone

em details

Return to results O share

Wooden Stan i Telephone

Title: Wooden Standard Telephone
Date: 1876-01-01 00:00:00; 1576-12-31 00:00:00; 1800 made 1876 telephone patented

Creator: North Ayrshire Council Museums Service: Standard Telephone and Cable
Company. Limited, London maker Alexander Graham Bell inventor of the telephone

Description: England, London made USA telephane patented
Walk-mountable of tabletop waod and Bakelite telephone made by the Standard
Tele = any, London, sbout 1900

Save to My Europeana

Format: 25 = 20 x 24em; imagefjpeg; Wood, Bakelite, metals

Similar gearch

Provider: Scran ; Uk

5= Horth Ayrshire Council Museums Service

More

Using Europeana Acces sibility Sitemap Taerms of use Privacy Language policy Contacts | Send us feadback co-funded by the European Unien [l
User Uploading & Search Images Ul
Interface
Name
Objective Upload a locally available image or refer an image on the web, and make a
search (e.g. to identify an image whose motif is unknown to the user)
Basics * |dentity an image to base a search by uploading a locally available
image or referring an image on the web.
® Alink should be created just below the text box for searching. This link
will allow uploading an image for searching on the basis of the content
of the given image
Dependencies | Images Indexing and Retrieval Service
Mock-ups

A link labelled "Upload and Search" will be placed below the search box.

@000

ITHE ASSETS APIS Page 34 D2.0.4v.1.1

V)
i
v

W
[o o
7

car Search
Refine Search Advanced search Upload snd Search
Matches for: car = TYPEiImage
Al Texts Images {28,045) Videos Sounds
=== Results 1 - 12 of 25,045 Page: 1 2 3 4 5 6 T 8 9 10 = 0 share

Scottish kotor Muzeum CultureGrid
Scran

CuttureGrid CultureGrid

Car Car Car
CultureGrid CultureGrid Cutturecrid CuttureGrid
HH Resuttz 1 -12 of 25,045 Page: 1 2 3 4 5 6 T 8 9 10 = O share

When the user clicks this link a window will be opened where the user can either select a
file or enter a URL address. After clicking the "Search" button, the image is uploaded and

the search similar function returns a list of similar images.

Hide upload and search 3

Select the image to upload

& File: Cidermovimagesiimagel.bmp Browse

= url:

Reset Search

ITHE ASSETS APIS Page 35 D2.0.4v.1.1

[o o
U

\)
7
v

26

User Interface Name Similar Search 3D UI

Objective Select one of the existing 3D models and search for similar
models.

Basics e The user accesses the interface by clicking on a "Search

similar" link, while browsing through the existing models.
The search similar function returns a list of similar results.

e The service should be self explanatory and easy to use even
from a non-expert user.

Dependencies 3D Search and Retrieval service

Mock-ups

When the mouse is over a 3D model thumbnail a mini-zoom window will be displayed. The
toolbar at the bottom of this window includes a button labelled "~" that allows the user to
make a similar search based on the selected 3D model.

car Search
Refine Search Advanced search Upload and Search

Matches for: car = TYPE 3D model

Texts Imaaes 30 models (28,045) Videos Sounds

9
CuttureGrid

Scottizh Motar Museum CuttureGrid
Scran
~—
Car Model of a Two-Wheel Meodel of a Two-Wheel Spinal Carriage
CLtureCGric CuttureGrid CuttureGrid CuttureGrid

Horse drawn ralli car, by A.D. Arrol-Johnston "18° Open Car Car
Cuturecric CuttureGrid CuftureGrid Cutturedrid
HH 1-12 Page: 1 2 3 4 5 B 7 8 9 10 = @ share

When the user press the "~" button the system returns as result the list of similar models.
The model used for the query is displayed at the top of the results.

@000

ITHE ASSETS APIS Page 36 D2.0.4v.1.1

)

V)
i
%

N
[o o

y
¢4

Search
Refine Search Advanced search Upload and Search
Matches for: ‘
Texts Imadqes 30 models (28,045} Viteos Sounds
ot Page: 1 2 3 4 5 & 7 & 9 10 = B share

car Car Baby Carriage Argyll Tourer Type G Motor
Scottish Motor Museum CutureGrid CuttureGrid CulttureGric

Scran

Car Model of a Two-Wheel Model of a Two-Wheel Spinal Carriage

CuttureGricd CuttureGrid CultureGric CuttureGricd

s | |wigw | I,

Horse drawn ralli car, by A.D. A car Car
Cutture Gric CltureGrid CubureGrid CuttureGrid

Page: 1 2 3 4 5 B 7 5 8 10 = B share

A similar search can also be launched in the Details window, by clicking the "~" button at the
toolbar.

User Interface Name Upload & Draw & Search 3D Ul

Objective Upload a 2D model or create a sketch and search for similar
models

Basics e The user accesses the interface by selecting the appropriate

tab. He or she either draws a sketch or uploads a 2D image
by clicking a "Browse" button and sketches the contour of
the object of interest. The search similar function returns a
list of similar results.

Dependencies 3D Search and Retrieval service

Mock-ups

Alink labelled "Upload and Search" will be placed below the search box.

@000

ITHE ASSETS APIS Page 37 D2.0.4v.1.1

P Yo Yol o i- =
= S S 7 LE
A W I F. O CeSdD
(v .
car Search
Refine Search Advanced search Upload and Search
Matches for: car = TYPE: 3D model
Texts Imaaes 30 models (28,045) Videos Sounds
HH Fesults 1 - 12 of 28,045 Page: 1 2 3 4 5 & 7 & 9 10 = @ share
Car Car Baby Carriage Argyll Tourer Type G Motor
Scottish Motor Museum CuttureGrid CuttureGrid CuttureGrid
Scran
- S— F .
e LT R o Spmal Carmue
CuttureGrid CuttureGrid CultureGrid CulturedGrid
D s Car ... Car ...
CuttureGrid CuttureGrid CultureGrid CulturedGrid
HH Fesults 1 - 12 of 28,045 Page: 1 2 3 4 5 & 7 & 9 10 = o share

When the user clicks this link a window will be opened where the user can select the "Draw"
option. The window will then expand to allow the user either to select a base image (and
draw a contour) or to make a sketch from scratch. After clicking the "Search" button, the

model is uploaded and the search similar function returns a list of similar models.

@000

ITHE ASSETS APIS

Page 38

D2.0.4v.1.1

!
l

L

i

g
N

[o o

(7

<!>1i[

Select the 3D model to upload
" File:
& Draw

Base image: Cidemotimagesiimage!.brmp

Select the 3D model to upload
" File:
& Draw

Base image:

Hidle upload and search [E3

o(|gd| |~

[

Browse

Browse

Reset

Search

Hide upload and search ﬁ

o gl 7

[

Browse

Browse

Reset

Search

LM:THE ASSETS APIS Page 39

D2.0.4v.1.1

[o o
U

D)
7
v

RO

User Interface Name

Similar Search Audio Ul

Objective Similarity search by prior search result: allowing searching for
similar songs, albums or artists based on a given song, album or
artist

Basics e A link for searching similar audio content should be added

near each audio content returned by Europeana in the web
user interface independently from the type of query
performed. In particular, the button or link for similarity
searching should be showed only for those audio contents
for which it will possible to perform the similarity search.

® In the results list of similar songs it could be added a text
reporting the similarity score of the results songs. However,
this is not mandatory

Dependencies

Audio Indexing and Retrieval service

Mock-ups

When the mouse is over an audio thumbnail a mini-zoom window will be displayed and the
track will start to play automatically. The toolbar at the bottom of this window includes a
button labelled "~" that allows the user to make a similar search based on the selected

music.

When the user press the "~" button the system returns the list of similar tracks.

Matches for: sting

Refine Search Advanced search

Texts (7) Images (160) Videos (9}

Search

Upload and Search

Sounds (22)

Page: 1 >3 4 5 6B T & 3 B share

Sting mercury falling tour

Leipzia

Strup & med {rezija Richard Wild bees, wasps and ants and

Maraddna in univerzitetna knjiznica

Otrov & med {rezija Richard

title: Fragile

STING remet les prix
d'interprétation fé...

988
Institut national de "Audiovisuel

Festival de Cannes 83 : direct.. Arlist: §TING
1988
Institut national de 'Audiovisuel

+, Jonatha...
am-Centre Pompicou (auteur)

Page: 1 ! 3 4 S e S - 1 > O share

A similar search can also be launched in the Details window, by clicking the "~" button at the
toolbar. When the item is an album the details window will show the list of tracks within the
album. The user will be able to play a track or to make a similar search based on it.

@000

ITHE ASSETS APIS

Page 40 D2.0.4v.1.1

[o o
U

D)
7
v

26

Item details

RBeturn to results

e —

[— L L L

Inevitahle

u La espera H

Par un minuta de amar

Confesiones

“Wolver a empezar

B share

Family Putting Groceries

Title: Family Futting &roceries

Crestor: Scottish Media Group

Language: en

Format: BE9202 07:40-02:10; Video, wideo/mpeg
Rights: Scottish Media Group

Provwider: Scran; Uk

. Maod: happy; relaxed

: Muore

Miew in original contest

Cpensin a new windomn

User Interface Name

Descriptor Search Audio Ul

Objective

Find tracks by mood and other music descriptors

Basics

® A user searching for classical music in Europeana finds a
very sad and powerful piece of music. He then clicks the link
“Find more sad music” and Europeana returns audio objects
that have been indexed and tagged as “sad”

Dependencies

Audio Indexing and Retrieval service

Mock-ups

When the user opens the Details window of a music item, its music descriptors tags will be
shown on the right hand side of the window. The user can click on any of them to launch a

new search based on that value.

@000

ITHE ASSETS APIS

Page 41 D2.0.4v.1.1

[o o
U

D)
7
v

26

Item details

RBeturn to results

BT, RS T

[— L L L
Inevitakle
u La espera H

Par un minuta de amar

Confesiones

“Wolver a empezar

B share

Family Putting Groceries

Title: Family Futting &roceries

Crestor: Scottish Media Group

Language: en

Format: BE9202 07:40-02:10; Video, wideo/mpeg
Right=s: Scottish Media Group

Provwider: Scran; Uk

- [Facd: happy; relaxed

: Muore

Miew in original contest

Cpensin a new windomn

User Interface Name

Similar Search Video Ul

Objective Search for visually similar videos, i.e. provide solutions to allow
the user to carry out searches of video content based in
extracted video features (e.g. allow the user to search for
videos containing similar video shots)

Basics e A link for searching similar video content should be added

for video objects displayed in Europeana portal.

Dependencies

Video Indexing and Retrieval service

Mock-ups

When the mouse is over a video thumbnail a mini-zoom window will be displayed. The
toolbar at the bottom of this window includes a button labelled "~" that allows the user to
make a similar search based on the selected video.

When the user presses the "~" button, the system will performs a content based search and
will return a list of similar videos.

@000

ITHE ASSETS APIS Page 42 D2.0.4v.1.1

ey
0y
v
W
[o o
(7

EEEEEEEFED

A Car Journey: Educational fil

{video c...
Crrticoh Chraan

Championnat d'Europe de Cars interdits Montmartre..

stock cars.. 1997
1837 Inztitut national de 'Audiovisuel

car Search
Refine Search Advanced search Upload snd Search
Matches for: car = TYPEVIDEO
All Texts Images Videos (804)
EEE Results 1 - 12 of 304 Page: 1 2 3 4 5 & 7 & 9 10 =

Inztitut national de 'Audiovisuel

ttle: Family Groceries
Arlisl: STING

Aceés i Montmartre interdit Man in Car with Mobile Phone
aux cars de ... and Laptop ...

1985 Seottizh Media Group

Inzstitut nationsl de FAudiovisuel Scran

Sounds

& share

Mational Muzeums of Scotland -

- Scottish Life Archive

Scran

Asian Women Learning Car
Maintenance (si...

Scoftizh Media Group

Scran

HHH Resutts 1 - 12 of 804 Page: 1 2 3 4 5 & 7 & 9 10

to perform a similar search for a selected keyframe.
ftem details

! Beturn to results

Creator: Scottish Media Group

Language: &n

Rights: Scottish Media Group
Prowider: Scran ; Uk

hdore

I B L 3 g Ry

Wiew in ariginal contesd

Opensin a new windouw

B share

A similar search can also be launched in the Details window, by clicking the "~" button at
the toolbar. In this window the Storyboard of the video will be shown. The user will be able

B share

Family Putting Groceries in Car (silent video clip)

Title: Family Putting Groceries in Car(silent video clip)

Farrnat: BS2202 07:40-08:10; Video; wideo/mpeg

@000

ITHE ASSETS APIS Page 43

D2.0.4v.1.1

P oW oY X V.S

=8 S N 7 N0 S

b/l Cudl ¥l 7. O G CudD)
(o

User Interface Name

Video Summarization Ul

Objective Provide condensed versions of complete videos (video summaries
or video abstracts) for easing the users’ browsing process
Basics ® Video summaries will allow the user to overview the original

video content without downloading/watching the complete
original video

Dependencies

Video Indexing and Retrieval service; Video Summarization service

Mock-ups

Video summaries will be displayed on the Mini-zoom window and on the Details window.

A button toolbar labelled "S" will allow the user to start this functionality on the selected

video.

car

Refine Search Advanced search

Matchesfor: car = TYPEVIDEO

All Texts Images

Fesultz 1 - 12 of 304 Page: 1 2 3 4

Cars interdits Montmartre..
1987
Inztitut national de 'Audiovisuel

Championnat d’Europe de
stock cars.

1957

Inztitut national de I'Audiovisuel

Aceés 4 Montmartre interdit

Man in Car with Mobile Phone

aux cars de . and Laptop ...
1985 Scottizh Media Group
Inztitut national de 'Audiovisuel Seran

Search
Upload and Search
Videos (804} Sounds
5 6 7 8 9 10 = & share

B
L
.
L
"
L
L
L
L

Board game

Mational Museums of Scotland -
- Seooftish Life Archive
Scran

A Car Journey: Educational film

{video c...
Ttz Crraan

Family Groceries
Allisl; STING

Asian Women Lea
Maintenance (si...
Scoftizh Media Group
Scran

EEE Resutts 1 - 12 of 804 Page: 1 2 3 4 5 6 7 & 9 10 = B share
: ITHE ASSETS APIS Page 44 D2.0.4v.1.1

ftem details

Eeturn to results

B share

Family Putting Groceries in Car (silent video clip)

Title: Family Putting Groceries in Car(silent video clip)
Crestor: Scottish Media Group

Language: en

Farrnat: BS2202 07:40-08:10; Video; wideo/mpeg
Rights: Scottish Media Group

Prowvider: Scran ; Uk

i hdore

Wiew in ariginal contesd
Opensin a new windouw

User Interface Name

Similar Category Ul

Objective Search for media of the same category as a selected media file
(image, 3D model)
Basics e The database media files are classified in several categories.

The user accesses the functionality by clicking on the
category of a selected media file. Results of the same
category are returned.

® This service will work on 3D models and images, as those
types of media use low-level feature vectors for their
description.

Dependencies

Relevance Feedback service

Mock-ups

The user initiates a search, then selects one of the results and opens the Details window. A
list of the object Semantic categories will be displayed on the right hand side of the window.

Each category is a link.

By accessing the a new search for objects from the selected category will be performed..

@000

ITHE ASSETS APIS Page 45 D2.0.4v.1.1

[o o
\
I

)
()
77
u.

S0

Matches for: telephone

ltem details

Eetumn to results

8 share

Wooden Standard Telephone

Title: Witooden Standard Telephone
Oate: 1276-01-04 00:00:00; 1876-12-31 00:00:00; 1900 made 1876 telephone patented

Crestor: Horth Ayrshire Council Muzeoms Semice; Standard Telephone and Cable
Company, Limited, London maker Alexander raham Bell inventor of the telephone

Description: England, London made USA telephone patented
tfall-mountable ortable-top wood and Bakelite telephone made by the Standard
Telephone Company, London, about 1900,

Language: &n
Format: 25 = 20 »x 24em; imagefjpeg; Wood, Bakelite, metals
Rights: Morth Ayrshire Council Museums Senrice

Proveider: Scran; Uk

S| SemanticLabels: telephone; square; communication

| hlare

Viewin original eontext
Qpensin a new window

User Interface Name

Relevance Feedback Ul

Objective Refine the results already retrieved during the last search
session
Basics e The user performs a search and inspects the results. The

user marks some of the results as more relevant (or less
relevant) than the rest to the object that s/he has in mind.
This feedback is used to refine the search and return more
similar results. Refined results are presented to the user.
The refinement can be repeated until the user is satisfied.

Dependencies

Relevance Feedback service

Mock-ups

The user initiates a search and judges (gives scores to) the relevance of the retrieved results

by clicking on the mini-zoom "+" "-" toolbar buttons.

@000

ITHE ASSETS APIS Page 46 D2.0.4v.1.1

[o o
ui

4V
¢/
¢
K

Search

car
Refine Search Advanced search

Matches for: car = TYPEiImage
Images {28,045) Videos . Sounds

Texts

All
8 share

Fesults 1 - 12 of 28 045 Page:

CultureGrid

Scottish kotor Muzeum
Scran

CuttureGrid CultureGrid

Car Car Car
CultureGrid CultureGrid Cutturecrid CuttureGrid
= Results 1 - 12 of 28,045 Page: 1 2 3 4 5 6 7 & 9 10 = @ share

Those results that have been marked as "+" or "-" by the user will be shown on the interface
surrounded by a "green" or "red" frame respectively. The "Refine" button will allow to
launch a new search and receive new results which are more relevant to the object(s) that

s/he is looking for.

@080
Page 47 D2.0.4v.1.1

ITHE ASSETS APIS

[o o
\
I

\)
¢/
¢

K
¢/

car

Refine Search Advanced search

Search

Matches for: car = TYPEimage

All Texts

Car
Scottish Mator bMuseum
Soran

=== Results 1 - 12 of 28,045

CultureGrid

Images {28,045} Videos Sounds

Page: 1 2 3 4 5 = 0 share G refine search

s

CultureGric

CultureGrid

CuttureGrid

CuttureGrid

Car Car
Cutturedrid

= Fesults 1 - 12 of 26 045

Page: 1 2 3 4 5 E 7 & 9 10 = 8 share

User Interface Name

Improvements On Results_Ul

Objective Enhance the user experience in the interaction through the
Europeana portal, providing search, navigation and access to
documents in a user-friendly way

Basics e Option to sort the results by different criteria (e.g. by rank,

by title, by creator, by provider, by date, etc.).
e QOption to define the desired number of results to display.

e Compact table view: to display just the title below each
thumbnail and the rest of the information on mouse-over.

® Mini-zoom window displayed on mouse-over a result: Show
a bigger size thumbnail -if available-, main metadata values
and a toolbar.

e Buttons Toolbar: icons to launch main operations on the
selected result: "Save to My Europeana", "Similar search",

@000

ITHE ASSETS APIS

Page 48 D2.0.4v.1.1

[o o
U

D
v
¢

W

“Open details". This toolbar will be included in the Mini-
zoom window and in the Details page.

Dependencies

Mock-ups

Next figure shows a mock-up of the proposed "Compact view" and the mini-zoom on a
result.

My Europeana About us Communities Partners Thought lab Choose a language ¥

telephone Search

Refing Search Advanced search

Watches for: telephone

)
i Al Texts (78) Images (1,493 Videos (73) Sounds {11)
europeana
think culture ﬁ

Refine your search:

f1,655 Pages 1L 2 3 4 5 = (@ share Dizplay options

Sort by: date, alphabetical
Display: 10, 25, 50,100
items per page

By provider {g
By language =
By country
Tri VADS...
By date
By typs
Actions:

!

Wy
g

Login | Redister

Steamship Telephone built at... Elektron VADS Collection: ...

gEEE T |commss]

Mo image? Click through the colour
block to ses the tem. e are stil

loacding...
Design Council Slide Collection Deltaline, Deltaphone, ... Agreement For A Telephone ... Design Council Slide Collection
| WO S 1
Toy Telephone Exchange Star VADS Collection: Design... Star VADS Collection: Design... Star VADS Collection: Design..
Resultz1-120f 1633 Page: 1 2 3 4 35 B 7 &6 39 o = & share
Using Europeana Accessibilty Stemap Terms of use Privacy Language policy Contacts | Send us feedback co-funded by the European Union -

Next figures show mock-ups of the details window for images, audio and video respectively.

@000

ITHE ASSETS APIS Page 49 D2.0.4v.1.1

V)
i
%
o
[o o

.

Logged in as: cartinez | Saved items: 2 | Saved searches: 5 | Saved tags: 2 | Log out
My Europeana Aboutus Communities Parners Thought lab Choose a language vl

telephone Search

Advanced search

@ Matches for: telephone

europeana

think culture T Batunto eyl € 9 @ share

Wooden Standard Telephone

Related content:

| Tile: Wooden Standard Telephone
ems =

Wooden National
Telephone
| Description: England, Landon made USA telephone patented

! Telephone transmitter
" fal-mountable ortable-top wood and Bakelite telephone made by the Standard

=] bl i phe mpany, London, about 1900
Hughes carbon H
miq - | Save to My Europeana
View in original contesxt |

S¢q all iglated itgms _ : Format: 25 x 20 % 2490m; imagefjpeg; Wood, Bakelite, metals
Add a tag S
Similar search

Actions: | Provider: Seran ; Uk

i Date: 1876-01-01 00:00:00; 1576-12-31 00:00:00; 1900 made 1876 telephone patented

{ Creator: North Ayrshite Council Museums Serice; Standard Telephone and Cable
Company, Limited, London maker Alexander Graham Bell inventor of the telephone

|5: North Ayrshire Council Museums Sernvice

More

Using Europeana Accessibility Sitemap Temms of use Privacy Language policy Contacts| Send us feadback co-funded by the European Union [l

Item details

Beturn to results € d share

Family Putting Groceries

Title: Family Putting Groceries

Creator: Scottish Media Group

Language: en

Forrm=t: BEQ202 07 :40-02:10; Video, videa/mpeg

Rights: Scottish Media Group

Prowvider: Scran ; Uk
Inevitable

n La ezpera ﬂ

Par un minuta de amar

Mood: happy; relaxed

Maore

Confesiones

“olver a empezar L
Miew in original contest
Cpensin a new windomn

0210

NS IS T THE ASSETS APIS Page 50 D2.0.4v.1.1

P oW oY X V.S

=8 S N 7 N0 S

b/l Cudl ¥l 7. O G CudD)
(o

ftem details

! Beturn to resuls

B share

Family Putting Groceries in Car (silent video clip)

Title: Family Putting Groceries in Car(silent video clip)
Crestor: Scottish Media Group

Language: en

Farrnat: BS2202 07:40-08:10; Video; wideo/mpeg
Rights: Scottish Media Group

Prowvider: Scran ; Uk

i hdore

Wiew in ariginal contesd

Opensin a new windouw

User Interface Name

Improvements On MyEuropeana Ul

Objective Introduce new facilities in ‘My Europeana’ page
Basics e Option to allow the user sorting stored items by different
available criteria (e.g. by type, by title, by creator, by
date,...).
e QOption to delete all items at once.
® Mini-zoom window to be displayed on mouse-over.
Dependencies
Mock-ups

Next figure shows a

europeana

think culture

Using Europeana Accessibility Sitemap Terms of use Frivacy Language poliey Contacts | Send usfeedbadk

mock-up of the proposed improvements for "My Europeana" page.

Logged in as: cmartinez | Saved items: 2 | Saved searches: 5 | Saved tags: 2 | Log out

My Europeana Aboutus Communities Fartners Thouaht lab |Chnnsea|anguage -I
My Europeana

Uszerinformation Saved items Saved searches Saved fags

|50rt results by: | Latest ~

Vas bitronconic cu doufi [tor A£i
O share

oreator: none

Date saved: hay 11, 2009 £:02:01 FM Delete
= Bronzezeitliche Schieif- oder Karrenspuren {car ni...
1 0 shame
% creator: none
Delete

Date zaved: May 11, 2009 £:10:02 PM

co-tundad by the Europaan Union [l

@O0

ITHE ASSETS APIS Page 51 D2.0.4v.1.1

v

V)
i
i
":;ir»
o

{ ‘:,\-'\,

[d
Il

N

Q

4. The ASSETS Data Models and Interfaces

The information available from the above sections allows us to depict the context and the
application scenarios for the ASSETS services, and consequently, this allows us to identify
concepts which are presented below. These concepts are modelled as UML diagrams which
emphasize the relationships between and the properties of objects, which represent the
ASSETS Data Models.

Obviously, each group of services (i.e. Ingestion, Indexing/Ranking/Retrieval, Digital
Preservation, Browsing/Characterisation, Community) will model and use a specific set of
concepts. By now, during the above sections, common concepts and needs have been
identified. For that reason, this section introduces the Common Data Model, and afterwards
it and describes the Service Specific Data Models.

The ASSETS Data Models drive the identification of Java Interfaces for the ASSETS Services,
which are the basis for the implementation of the ASSETS Services API.

For that reason, in this document we present the most important aspects related to the
assets service design such as: their interfaces, their responsibility, their supported
operations and the key concepts modelled within the service.

The following tables have been used as template for collecting this information.

Service Name | The name of the service

Responsibility | List of items for the responsibility of the service

Provided List of the interfaces through whom the service provides its features and
Interfaces manages key concepts

Dependencies | List of dependencies with other ASSETS services, if any. If this information
is not available, provides the expected key concepts which represent inputs
for the service from other ASSETS services

Interface The name of the service interface
Name

Key Concepts | Identification of the key concepts (data model) managed by the interface

Operations List of Item for the operations of the interface

It is important to remark that ASSETS project is adopting an iterative and incremental
development process. For that reason, the interfaces and models presented here are a
picture of the current development phase, where many components are still under
definition and will provide a more detailed specification on deliverables such as D2.1.1 and
D2.2.1.

4.1 System Architecture Overview

Differently from Europeana project, which stores exclusively the items’ metadata within its
database, the ASSETS services will need to index and store multimedia content, too.
Moreover, the “Video summarisation, adaptation, indexing and retrieval” service will

LM:THE ASSETS APIS Page 52 D2.0.4v.1.1

V)
i
g
"IIi;ID
ui

PN
&

Bl

l
\
\

generate video summaries which need to be made available to the end user. These
requirements enforce the enhancement of ASSETS architecture with the usage of
“heavyweight-technologies” in comparison to Europeana architecture.

Anyway, one of our project goals is to implement high quality services and to integrate as
many as possible into the Europeana portal. Therefore, the ASSETS architecture needs to
follow as much as possible the Europeana architecture, technologies and implementation
guidelines.

The proposed system architecture is sketched in the following figure.

ASSETS SYSTEM COMPONENTS

|
Il
'
1
1
1
1
Multimedia '
Tndex :
1
1
1
1
1

metadata update | 1
v e - Search : browse ;’
WS invoke =,
-+ j———— L}
metadata Assets el 1 | M
pap » Backend Hana 1 =
Backend WS response () Ttem list |/ description ———
enrithed Fement i
1
1
i Ingestion :
! Management |
fstadaal original content, integrated content Streaming|data :
Content conteit generated content Il
Provider 1 :
|
1
0
1
1
I
1
1
1

1
I

: CMS video summaries Media Repository

: (JackRabbit) p (lile systemn / REDS)
]

1

1

Figure 15 — Overview of the ASSETS System Architecture

The dashed line marks the border of the ASSETS system and its external interfaces. The
named arrows represent the dataflows exchanged between the ASSETS system components
(internally or with the outer world).

The assets services needs to communicate with:

e Content Providers Portal: which needs to provide an OAI-PMH interface for metadata
harvesting and an URI for content harvesting;

e Europeana Backend: which will be accessed through its Web API for updating the
Europeana metamodel and metadata with the one created by ASSETS services;

e End Users: access the ASSETS search and browsing services from their browser.
4.1.1 System Components

The Assets internal architecture is composed from 3 main software modules. First of them
has the role of collecting the metadata information and the content from the content
providers and submitting it for storage into the Assets&Europeana databases (Ingestion
Management). The second one implements the business functionality (Assets Backend) and
makes it available on Internet through a Web API. The third component implements the
Graphical User Interface (Assets Frontend) which offers a rich set of browsing and searching
functionality for end users. Further information regarding these components is available in
the sections: Ingestion Management, Assets Backend and Assets Frontends

If the servlet container (on which the frontend application will be deployed) doesn’t handle
correctly the http pseudostreaming requests, RED5 will be used for streaming the media

LM:THE ASSETS APIS Page 53 D2.0.4v.1.1

L
i
i
[o o
v

S0

content. See http://red5.org/

Apache Jackrabbit will be used internally for the storing and accessing the multimedia
content (binary files). “Apache Jackrabbit is a fully conforming implementation of the
Content Repository for Java Technology APl (JCR, specified in JSR 170 and 283).” See:
http://jackrabbit.apache.org/

The Assets services will extract metadata and different features from the media content (i.e.
text, images, 3D models, audio and video files) and will store this information into the
multimedia index.

4.1.2 ASSETS Software Architecture

_ Presentation

tier
REST AP REST API RESTAP| | RESTAPI LS
Metadata Metadata Digital B i Community
enrichment indexing preservation rowsing services Business logic
integration layer

_ o

Figure 16 - ASSETS Three-Tier Architecture

Considering the “three-tier architecture” paradigm typically adopted to describe software
systems, the ASSETS system can be described as follows:

Presentation tier: the ASSETS system will provide RESTful APIs enabling external
applications to use its functionalities and a set of GUIs for managing specific functionalities
such as data ingestion and data access and browsing.

Business logic: a set of autonomous software components implementing the following
functionalities:

® Ingestion: Metadata Enrichment, Heterogeneity Reduction, Information Extraction and
Classification;

¢ Indexing, Ranking and Retrieval;

e Digital Preservation;

e Browsing and Content Characterisation;

e Community services: tagging, user generated content, etc.

A middleware, implementing integration functionalities, enables interaction between
components.

0210

NS IS T THE ASSETS APIS Page 54 D2.0.4v.1.1

V)
i
g
"IIi;ID
ui

PN
&

bl

l
\
\

Data tier: enables software components to interact in a transparent way with data
repositories. The ASSETS system will need to manage different kind of information objects:
multimedia objects, structured data, text etc. For this reason there will be several different
kinds of data management stores.

The main goal in adopting the described architecture is to obtain a loosely coupled system:
each service component has no (or little) knowledge of other components and also is not
supposed to know which tools are actually used to store or manage data, this kind of
knowledge is implemented in the integration layer module.

4.2 Integration layer and Interfaces

The integration layer was designed for implementing:

e functionalities that enable ASSETS services to interact each others;
e functionalities implementing interactions with the data layer;

e functionalities shared between service components.

These functionalities include: the access to the information stored into the Europeana
database and Solr index, the unified concept for application configuration, the common
data-model used by ASSETS components, the ORM framework for data storage based on
MongoDb.

The Assets integration layer is implemented by 5 components:
® Assets data-model

® Assets common-api

® Assets common-server-api

® Assets common-server

e Assets common-client
4.2.1 ASSETS Data-Model Component

The main goal of the common data-model is to offer a common representation for the
information exchanged between Assets services. The component implements an
AbstractFactory pattern for the instantiation of the domain objects.

‘LM:THE ASSETS APIS Page 55 D2.0.4v.1.1

Buyg *(Bumgor
uugisiuBisussdainglss +

18uns : suqunuList +
Bumrslsnisasinounyiugsisd + *
Busisienis psnqunyABLIyBuaSIsE + *] =
B .+ plon : {addixsduios ungEuLop b
wnuZspE et - +
B + +
F=6 + X
126 - pe
i ERE + I TCgllE +
2di)sussdaingist % Buu +
nogeussdoinTiaf s + Bdiixetdwoguoy suwicujswonnoiusng | Jedixsdwoguogsuuou swosngiusasieb =
<ufisussdaingisB + 3 sdf | xepduuooisuguspRUsAT - { e
ispnaljBUE3danTEE 4 K ug 3
jsBsnBussusadoinzisE + 5 *
Agumouss|susadaingist + i
wUMOUSS|SUSSdaingisE + 5.2 HAUOPea] T0S651 GFOGFOGOF0LLGL = BUGl [gQIMUCIsiSNESSE -
i T +
Buins -) SiaEe i T —
algosssussdongizl +
impnoigsisgeussdaingisd +
junoosussdainsl +
oosuszdoingieb +
@B+
SR TIOCF==] T LEIELE06.5 5as = Buo :
T=E + (dwjsomisug SIS Sy uIEwWoR
: feusiueni0sigs suLs omsE + s pepn)
isnsdgousiomsE + i prox - f=sdA) sidwonisyuspUSBysishay +
nbagsuwsiagst + Jwnuzysaped +
Buuis : (ssomdeyauusiomsb + +
jsuslamst o+ SpUEE 3
@meB + (o reiwousty +
gisg +
m.,mm - wicoEEpdn - [FIUQPE=I] "G68S08L0FEECO)- = DuG) gIuorEaeusE -
=+ ViR e 1
N ; iy Buuigol Am__lﬂnd.uﬂuf add | xa3jdwouaby:uoneaasad
i +
=B
ohEE - F flosfon ‘Bunsipdiss +
u—um * SlawspjusuodwoTes +
oleuucsjsuslomsE + pran uuglBweNeHgoSiEEEeE +
JucsisasEHSWISoqISE + 33
jsuns st + o e
BHsULE oMmSE + il
Juusamst + 53 +
ajoqed + 5
| SUICUG WS omel + 7 Aojoequawaleuswysiquogeaasaidsiiooey
\agimE o+ h
asB +
omsE + 2
oIl + i
m=8 1
o mwm * TGores] : diswngsiEssy +
N 3 fio19Euoiiuog:A10}98)
+ 192[0UIEWO0 S195 83 TE;
mafgoggases

odwor : (Bunigiuaedlusucdu o

peigpuswegsisssy | (Buwlg ‘BunshosigouBWonsiEsn +
Arojpsqiusuedwon : (Bums)lucpeJusucdwenFeEas -
js=Epfio@Edmng @

dhwjaognisies sy uiEwop

IEWO0Se557 UIEWOR
+SoELF

= SfICIOEJJUEUCOWaS ' BUL S = aBly

1wAI010E HOENSOYSIESSY:

==En

: W

* Kugps=l —FuoiEds==i0, = Bulls ININSOYNAHEE NCILYAH3S3ed 1
&1 TRUCPEa] uoWled, = S ‘NCWINOD. L2
. “uogEAIasaId

*EIELE

= gmEEE

B

wnuzysa0is - (Jwnu3s0sJuowLLa)

WnuZegp el UIEwWop
B L)

Jaslaguiewogagobus i uIewon
sEsELEun

D2.0.4v.1.1

Page 56

Figure 17 - Abstract Factory Implementation
THE ASSETS APIS

@000

\Eouumntuwbmnt |3POWEIE] SSET

V)
i
g
"IIi;ID
ui

PN
&

bl

l
\
\

4.2.2 Core Data Model

ASSETS integration layer offers access to the information managed by the Europeana
application. This information is organized in collections provided by individual content
providers or provider aggregators (EuropeanaCollection objects), and the metadata
containing the descriptions of the masterpieces (FullDoc objects). Each object in the
collection is identified by a set of properties which are grouped in Europeanald objects. In
order to be able to expose these objects over the Rest interface, the Assets adapter classes
enhance the core application objects by adding JAXB serialization annotations
(EuropeanaCollectionAdapter, EuropeanaldAdapter, FullDocAdapter). The metadata
descriptions are stored into the Solr index for providing fast search and access through the
Europeana Portal. Assets needs to process and persist these objects in a database, therefore
the AssetsFullDoc representation of the objects was created. All Assets domain objects need
to implement a common interface: AssetsDomainObject. The other objects of the Assets
domain model are presented together with the components which are responsible for their
management.

‘LM:THE ASSETS APIS Page 57 D2.0.4v.1.1

{RUGFEs} "LELEIE0BLELYE.

[dwjaoqisug SIS sy uiEwoD
BalgouEKcgeseyseEg

TOSLEAS5y. UIFIn0R
HEEpRUD

Tisores]

E5E10E18 - DU QinuoSsNEes -

Bums : (BumSo} +

pon : (Buuglunsusadeingy

poA (NS HopnYT
Brow {)50)2150P=XSp BN
UBI00G : (pEXEpUIBERIA
JpexspuisBew

unsussdaingi=6 +
Buus : Opisussdoingist +
Buus JuisaopnysE

Bumg | J=BgpsxapUIOENYISE +

Qicw| BoBunca puisipapSIassy

[TC0R==] 5ocecoeroienaloeis = Foe

segimaes 1dungegyn4sies sy uiewap
Esfsousucan s sES
Bumg * (Buuis)smEASINQUYBuISISE +
[iuus - (Bug)sniens ieuyblgiab +
O suesdain: +
Bugs +
w90 +
ECRITE TiEwop
«sseys smdepyaoging: sugsg

Y uEsgisgHsusaq

il

Buuyg.
Buwgg - (MisngBngsgisb
Buwg - (hspnasdereniab

Buys - (uojEai0ieE

Somaug anh
=aaspmun

spuspes

B Bu X 3pu 1P 519 S Sy uOWILIOD

paigguswogsisseyseEg

ueaging::sueaq

S

BB

S

R

sneussdoings

(s

waospBUE

sBenbuejomab + f/”
(s 5

unsussdains

‘plsuszdeings

o TBUIXSpUIEIp S {5335 57 0o Tuiios
raspEUe

pen:

=80 : DpawaseTEl &
180 : psgpopiseTIsE +

8i07:0p=t +
Qunsussdoingizl -

sjogsussdoinzisl +

el sussde,

ang

nu = BucT :pj

1sdepypeussdomnguiewop

[uogasjogsusadoing)

Sucios

=e0

gopsussdaing -

TRUDP5E] 12072801 5222122 LB.E = BUOl inuasiss0s

Buo

1mdepyuogosiogeueadomn g uizwop.

Buus - (Bugoy

pon:
uesiooq

1B - Qpamapzaus e
<Bsysmogzsr - (=fs so0g
sis0 (pavayssTis
s180 : OpawpoppssTsE

senoisnist
15014 - (iopEsoomet
<UBESIBULY-IE ! (SuossiouLTE
(usgasjogsussdeina)pisusadaing

ussdoing

v

pro (sl

pion (B850 lSuBUdICIST0,
proa - (Buug)awey
pioa : (Bunsliouguodu

n
:

50+
ssBau; - Jsusydigieon=t +
Bung : JawspnsB +

Op=wpopIssTUCIsR0013E +

syogsusadoing +

oosussdoing =

pleusadaing:uizwop

srgezEusg

sigEzEusg

uogazyoneueadoing uzwop

\mzm_gn_wauﬂ_wmac:w;mucsmﬁn sseja

Figure 18 - Core data models

D2.0.4v.1.1

Page 58

ITHE ASSETS APIS

@000

V)
i
g
"IIi;ID
ui

PN
&

Bl

l
\
\

Interface AssetsAbstractFactory
Name

Key Concepts | Domain object, component factory

Operations * public AssetsDomainObject createDomainObject(String
componentName, String domainObjectName) - This method is used
for the instantiation of the given domain objects from the given
component

Interface ComponentFactory
Name

Key Concepts | Instantiation of current component domain objects. Each component will
provide a ComponentFactory Implementation.

Operations * public AssetsDomainObject createDomainObject(String
domainObjectName) - This method creates an instance of the domain
object identified by the given domain object name.

Interface AssetsDomainObject
Name

Key Concepts | Field enumeration

Operations ¢ public String getld() - Retrieve the identifier of the object stored in
database

e public String getDomainObjectName() - This method returns the
logical name of the current domain object. By default, the simple
classname will be used as object name.

® public String getComponentName() - This method returns the name
of the component to which the current domain object belongs.

¢ public FieldDefEnum getFieldsEnum() - This method returns the list
with the names of the attributes which hold information which
defines the current domain object.

4.2.3 ASSETS Common APl and Common Server APl Components

The APl components implement functionality that is common and should be reused by all
Assets Services. There is functionality which is independent from the location at which it is
used. For example, the reading of the configuration files, conversion between different
textual representations of date information can be used without any restrictions in server-
side and client-side components. This functionality is implemented in the “common-api”
component.

Further more, there is functionality which needs to access restricted or protected resources,
like the persistence system. This functionality is made available only for being accessed on

LM:THE ASSETS APIS Page 59 D2.0.4v.1.1

\)
V.
.
\:\ PNy

the server; therefore, it resides in the

LN
"‘m‘r»
[0}

\

Iz

‘common-api-server” component. In the current

version of the system, this component implements a generic implementation of the
MongoDb based DataStore and the logging for the media indexing functionality. Further
common functionality will be identified during the implementation of the Assets services.

Service Name

Common Server API

Responsibility | 1. Generic data Store

2. Logging support for media indexing
Provided 1. DataStoreDao
lnisitees 2. MedialndexinglLogService

Dependencies

Common data model

LM:THE ASSETS APIS Page 60 D2.0.4v.1.1

BaszeAzseizSenice

winterfaces <<|___ ________ Jp—

api:MedialndexinglogService apizindexinglogServicelmpl

sp<Sinng. String> =
p<Stang, Stang= L

(Long, S

i x L)i AssetsMedialndexinglog
AssetsMedialndexinglog
bRunning(j :
diglnd=xingLo:

alndexinglog) : AssetsMedialndexinglog
xinglog(Long, String, Date) : AssetshMedialndexinglog

«interfacas
api:

AssetsService

«interfaces BazeAzzeizDao
dao::Assets CommonDao <]' ____________________________________ dao:AssetsCommonDacimpl

Europesnaid > - sanlus

(Strng) : FulDoc

etEuropesns

+ getEurop

el T TR EET dao:Data StoreDaclmpl
dac::DataStoreDac

- log: Logger= Loggergstloggs..
- mongoDbManager

+ izDbBRunning|)

+ cifAzseizDomsinCf, vipid
+ t) - AzsetzDomain Cbject + DataStoreDaolmpl
+ inCbject, Stang) - AzsetzDomsin Object + isDbRunning() : boolzan

AszzetzDomsinOf

+ remg

o

o
) : AssetsDomainObject
String) :
id

J AszzstsDomeinObject
MongoDbManag

+ storeObj =tzsDomainObject
+ updsteOhbject{AssstsDomainDbject) ; AssetsDomainObject
-mongolbMansgar
mongodb::BaseMongoDbManager mongodb::MongoDbManager
- e - =
= - ASCENDING | : int = 1 {readOniy}
= - commonApiSenvarConfiguration: CommonApiSenerConfigun
- tring) : Class<?>
+ String, DECollection) : BasicDBEOhject H
+ ByField(String, DBCollection, Strng) : BasicDBObject 4
55527%) £
- ng, Cless<?> *:
- isDomainObject *
- isDomainCbject] + oid
E
& : AzsstzDomanObjzct mengodh::MongoDbConstants
+ etsDomainObject
= A 1 fresdCniy}
- # CL ring = "class_name” {readOniy}
= # D NOT_FOUND: String = "Digital objec
+ DomainObject = D NOT RE
- CommonFields| omainObject) : void # DIGITA NOT_STO
- updateDbRefToDomain{AssetsDomainObject, FieldDefEnum, Object IMAGE, nt = 0 {readCnliy}
= oDb{AssetsDomainObject, FisldDefEnum, Objact # DBJECT_ID ng = "_id" freadOnhy}
+ VIDEO {readOnly]

Figure 19 — Common Server API

@000

ITHE ASSETS APIS Page 61 D2.0.4v.1.1

agcamite
LA T T . LT
Interface DataStoreDao
Name
Key Concepts | AssetsDomainObject
Operations ¢ public AssetsDomainObject storeObject(AssetsDomainObject object)
- Stores the given domain object into the database
e public AssetsDomainObject retrieveObject(AssetsDomainObject
object) - Reads the object identified by the given object id from the
database
* public AssetsDomainObject
retrieveObjectByField(AssetsDomainObject object, String fieldName)
- Reads the object identified by the passed field from the database
e public AssetsDomainObject updateObject(AssetsDomainObject
object) - Updates the object identified by the given object id from the
database
¢ public void removeObject(AssetsDomainObject object) - This method
removes the given object from the database
e public boolean isDbRunning() - This utility method checks if the
database connection can be established
Interface MedialndexinglLogService
Name
Key Concepts | AssetsDomainObject
Operations e public Map<String, String> getindexedMedialds(List<String>

europeanaUlris) - This method evaluates the indexing log for media
objects and returns a map of Europeanald.ids which are already
available in the media index.

public Map<String, String> getindexedMedialds(List<String>
europeanaUris, int type) - This method evaluates the indexing log for
media objects and returns a map of Europeanald.ids which are already
available in the media index.

public AssetsMedialndexinglLog getMedialndexinglLog(Long
europeanald) - This method returns the AssetsMedialndexinglog for
the given EuropeanalD.id

public AssetsMedialndexinglLog
storeMedialndexingLog(AssetsMedialndexingLog medialndexinglLog)
- This method stores the AssetsMedialndexinglLog data representation
in database. If the object already exists in the database it will be
overriden with the current database.

public AssetsMedialndexingLog
updateOrCreatelmagelndexinglLog(Long europeanald, String
europeanaUri, Date imagelndexingDate) - This method updates the
image indexing date for the object identified by the given

LM:THE ASSETS APIS Page 62 D2.0.4v.1.1

V)
i
.
ST
"IIiPID
ui

Bl

l
\
\

europeanald.

4.2.4 Common Server and Common Client

The common layer of Assets architecture follows the same structure as the regular
components. This layer is also provided through a REST and a client APl and makes the core
information of the assets system available to the other components. The business
functionality provided through the Server, Rest and Client interfaces are identically;
therefore, they will only be described once in the Server interface.

Service Name | Metadata Management Service

Responsibility | 1. Define a unified representation for the assets domain model

2. Instantiate domain objects
Provided 1. MetadataManagementService,
Interfaces 2. CommonRest,

3. DataManagement

Dependencies | Europeana Core Data — Model

LM:THE ASSETS APIS Page 63 D2.0.4v.1.1

7))
o}

N
N
(44}

Buuunyags

Bung=dey
<uopoaionEuadanT i

<peusamngsET

(Buo

Jgo

usnENOAL] 4L LH

uogesjegsussdaing : (Bua)s onsiepdn
uosEEeD 0103 (UOTOSOTSUESE0INT)UBTISIOD HIEPAN
AquzsnsnpBusepyl | (AsuzensnDBusepu))Bunepu s

uogosjegeussdains - (Buss ‘BuaheuTuedurss
pioA [piBusstINg *ATU35nsny BUXSPU| ‘1L PEXSPU|SRIOSHEABS
pisussdomny : (psusadaing)pisussdaingsuss

DDA - (UBSSH0N SUESO0INT) SNENTXE LI {SAOWS)

usB00g ; (us

tugsnsnpBusapul)by o 3
pieussdaing * (pjsussdeing)pleusstaing;st

- : sswugEnanDy
<BopisogussgsIsT BuoogssnuatoTuomy
<BopiEoguSEgE =
<BoipisoqussgRE |
pleussdaing - (Bunglpisusadoinguois
<UoRIBgogsUESdLNg=1S] | (SUOIDSI0DEEUTLOIS,
<togsjenBUBEdaing e « (Bunglsuogssian ots
SUOTSENEUESAAINT IS | DEUGRISOIUIEL
zpisussdengis - {Uossssoosusadaina)
o

oy

ook

=goqeussdains : (Busjuorasionuor;

uogasfegEUsSdNINg : {ussicog *Busg Bumg)unyssf0DuslS
pion - fsu -

<UeasienEuESaeiNg e (SLORSET wSaES D

UBS00G : (UBIOR{00SUSECCINI)R NENTNERLICLPEE

oivEiasy:

oA (BNESI0SIzisAE S0
PiOA - (SrisgI0g) Pansg oGS
2fisuylisnpliszisuyisnmes
on (BUL
Fion : (<Fo0g SPusprs (asseID)usSRRSS
pon - fezossmiDlusaEINgIss

piov : (BusglinussDiusLnaoEs

pion - (oEgisEnjosaRIEooysEqIES
pron (zz>ssmpjussaisigmes

pron s osss ,‘= ‘
scundsapAinng - (<zssse Aienmuog)esundssyic:

e

e

BoT=1s0867 B
=80 Gp =

' g qur
xussGun - {<llBuns ‘Eums:

<eoiE]
waiAUS=Ej0g ¢ (Bng |
fuenguos : (Bu

Kisnsios (<llBuns ‘Busssds,

e
=

5 845 ST G

aaBeuEagobue aseg: apobuD W

Aimoedjzpopyanpueagiiz0g

Kwjeeqpizequsegiosn

pioa N=1Epani0a
Buns : JBuuumyags +
smdspy2agind - (BuashioguoiinEpe +

Buus : Qiunoguososiogist +
smdspyueRss|onsusEdeing ; (Busigiuoosye

sowsciuswse

PRt e

JuswsBeusyus/ueg

TRuGReE=s pieus=can

1ssnuswImODSjas YIS al

fiepELEpapAENDU

Pion : (uoPE

B qus|etey ICOEIPRa0NE -
pon +

2eqIns

- uegEINByUCE:

LEGHORUOWICT UG

=B80=B =880 = jsBBoT Boy
SSBEUBIATILT SSBEUSP

Kromegiepopdienpuses foksmpopiiennuseg

13BeuzggoBuoy-qnoBuow

[dwjoEquoLs) SYEsSYoEp

oegeisssysees

ussi00q : (JBuLUNYGgs
SwoiEspETNS

JosgupwLe;

Osuoiosionist

S50

eEquowca

jssnsIsesyaeeg

Sogindsiesey
aoging *{pisussdang
seqynasisssy : (Buo]sisparzyy
aeqpisoqussq - fasgriEoguss
esquouALeD
<Uoga5100) s
<pisiissdoingsis - {uomspeosussdongiseslaguoizI00150
pisusadaing (Buo
=831y
uoResesUsEdeInS ¢ (BucuoroRe:
osgmtigeisg sgmeissise
oeqpisccyseq osgrisagusep
osQuCHALaD IS
sesoixs

sausssisssyeen

sBsuspiogoBuou-

Euuunyags:
joBgaioIgeIsg =

{ooanae;ass

uezo0q

SES

jomyeoEussdamnT e - (sucyosgonies +

wmspELUD

231aIzg Uz WEBRUENEEp RISy S50

Figure 20 - Metadata Management service

D2.0.4v.1.1

Page 64

ITHE ASSETS APIS

@000

— .

ol s S 7 AT

LA T T . LT

Interface MetadataManagementService
Name

Key Concepts | Collection, CollectionObject, Metadata

Operations ¢ public Integer getCollectionCount() - This method returns the number
of collections available into the database

e public EuropeanaCollection getCollection(Long id) - This method
returns the collection identified by the given id

e public List<EuropeanaCollection> getCollections() — Fetch all
collections.

e public List<Europeanald> getCollectionObjects(EuropeanaCollection
collection) - The list of Europeana ids available in the collection

e public Europeanald getCollectionObject(Long id) - This method
returns the Europeanald object identified by the given database id

e public FullDoc getMetadataFromSolr(Europeanald euld) - This
method retrieves the metadata of the collection object from the
Solrindex

¢ public AssetsFullDoc getMetadata(Long euld) - This method retrieves
the metadata of the collection object from the database

¢ public AssetsFullDoc storeMetadata(AssetsFullDoc afd) - This method
stores the FullDoc metadata representation in database. If the object
already exists in the database it will be overriden with the current
database.

¢ public Long getCollectionObjectld(String europeanaUri) - This
method retrieves the ID of the Europeanald object identified by the
given URI

4.2.5 Notification and Taxonomy Models and Interfaces

The need for a common ‘notification’ component was explicitly identified throughout
different parts of the ASSETS project especially in the Work Packages: WP2.3 “Preparing the
ground for digital preservation” and WP3.2 “Community Services”. For that reason, this
paragraph analyses and describes the rationale and concepts behind the decisions taken for
the ASSETS Services: Preservation Notification (i.e. outcome of the Task 2.3.3), Taxonomy-
based Notification (i.e. outcome of the Task 3.2.3) and Content Creation (i.e. outcome of the
Task 3.2.2).

The notification of occurred events (i.e. events impacting on preservation of archived
document, publishing and/or update events) represents an important feature for digital
libraries. In fact it enables the process of easily spreading structured information among the
members of the digital library community (e.g. new document published by authors. This
feature can be also be used for tracking changes occurred on documents, allowing to
provide useful documentation and evidence on the integrity and authenticity of the
archived documents in the digital library).

For that reason, we propose a publish/subscribe system for digital libraries which

‘LM:THE ASSETS APIS Page 65 D2.0.4v.1.1

V)
i
g
"IIi;ID
ui

PN
&

bl

l
\
\

continuously evaluates queries over a large repository containing document descriptions.

When users submit a query, they actually submit a query expression. This contains a set of
terms of well-defined vocabularies. The same occurs for the document descriptions, in fact
publishers adopt set of terms which belong to vocabularies too. For instance, a publisher at
UNESCO could use the UNESCO Thesaurus (http://www?2.ulcc.ac.uk/unesco/thesaurus.htm)
for notifying the publication of a new content about the Coliseum described by terms “3.50
Visual arts/ Architecture / Monuments / Historic monuments”. Any person interested in
“historic monuments” could receive that notification.

The idea behind the taxonomy-based notification is to suggest subscription for specific
topics of interest whenever users submit queries. The subscription allows them to identify
topics of interest among the terms contained in the query expression.

The subscriptions, the query expressions and the document descriptions, all rely on a
taxonomy that is a hierarchically organised set of keywords, or terms. The digital library
supports insertion, update and removal of a document. Each of these operations is seen as
an event notifying users whose subscriptions match the document’s description [5].

We focus on digital libraries (DL) which maintain (in a repository) descriptions of documents
and pointers to their binary content: that scenario exactly matches with the Europeana DL.
In this context publishers are authors that provide to the DL descriptions of their documents
and ways to access their contents (e.g. their URIs), whereas a subscriber is a user willing to
be informed of any event affecting a document that relates to his topics of interest. We
consider a DL model with the following characteristics:

e There is a taxonomy to which authors of documents and subscribers of the library
adhere; this taxonomy is just a set of keywords, or terms structured as a tree. An
example of a taxonomy is the well known ACM Computing Classification System
(The ACM computing classification system, 1999. www.acm.org/class) ;

e A document is represented in the DL repository by a description (metadata)
together with an identifier (say, the document’s URI) allowing to access the
document’s content. The description is based on free text and categorization
information which is part of the taxonomy;

e A query against the library is a conjunction of terms from the taxonomy (i.e. a
conjunctive query) ;

e A user is represented by an identifier together with a subscription; where a
subscription is a query defining (intentionally) the documents of interest to the user;

The picture below shows an overview of the common data model for the notification and
taxonomy.

‘LM:THE ASSETS APIS Page 66 D2.0.4v.1.1

class eu.europeana.assets . service notification.domain /

CueryResult
submit

Guery Sub=criber Ewent refer

subscriberld: ldentifier
subscriberLabel: String

express interest {/1 . report
QueryExpression Subscription Motifi cation Document
queryTerms: Set<QuenTerms| |- terms SetzTerm> | |- topicsOfinterest: Set<Term:

describe
parent f broader

1.7

Term Docurment Description
belong to - label: String
BRI =2 bupicid: Identifier

0.1

parentTopic: Term o.r
childTerms: Sethermbj
<£ child / narromer
Taxonamylnfo
] title: String
taxanomyld: ldentifier - des-:m.:tmn: _SF"nQ
taxonomylnfa: Taxonamylnfa ° CHaE Idenh_ﬂer
wersion: Wersion

Figure 21 — Notification and Taxonomy Common Model

It is important to remark that the query expressed by the user contains terms which refer to
a taxonomy and that are consequently used for handling the subscription. The picture below
shows the processes and its information flow.

Extract Topics of
Interest
'

=d Taxonomy kodels From Faper /
'

QueryExpression 4 _______ e
wflow
'
Event for
Documents
i
Motification
}

opics Of Interest &
Irfor ation

afloms

Figure 22 - Notification and Taxonomy Common flow

@000

ITHE ASSETS APIS Page 67 D2.0.4v.1.1

D)
V.
.
N .\:.

Bl

l
\
\

[o o
o

Service Name | Notification
Responsibility | 3. Allows the submissions of messages for specific topics;
4. Delivers messages to subscribers;
5. Allows the subscription to topics of interest
6. Manages the taxonomies
Provided 4. NotificationManager
i 5. RegistrationManager
6. TaxonomyManager
Dependencies | ASSETS Common

Interface
Name

NotificationManager

Key Concepts

Message

Operations

Notification createMessage(ldentifier serviceld, Publisher publisher,
Set<Term> terms) — allows a publisher, through a service, to create a
notification message for events and/or objects, which are represented
by a set of terms (of an existing taxonomy);

void publishMessage(Notification notification) — allows a publisher to
submit a notification message;

List<Alert> deliverMessages(ldentifier serviceld, Identifier
subscriptionld, FilteringRule filterRule, int indexFrom, int maxBunch,
MessagePolicyAge policyAge) — allows a subscriber to receive a bunch
of alert messages for a specific subscription of a service, according to
the expressed message policy (e.g. if the message has been posted
before the subscription) and the filtering rule (e.g. AND, OR).
FilteringRule and MessagePolicyAge will be implemented later;

List<Alert> deliverMessages4Term(ldentifier serviceld, Term term,
int indexFrom, int maxBunch, MessagePolicyAge policyAge) - allows
a subscriber to receive a bunch of alert messages for a specific term of
interest, according to the expressed message policy. The messages
refer to the exact matching for the term, and not for its children.
MessagePolicyAge will be implemented later;

MessageStatus getMessageStatus(ldentifier messageld) — returns the
status of the delivered alert message. The status may be read or
unread. This method will be implemented later;

boolean markAlertAsRead (ldentifier subscriberld, Identifier
messageld) — allows to set the status of the delivered alert message as
read. This method will be implemented later;

Interface

RegistrationManager

LM:THE ASSETS APIS Page 68 D2.0.4v.1.1

GO avTs
viwle Yl e,
._{' B

Name

Key Concepts | Subscriber and Subscription

Provided e Subscription createSubscription(ldentifier serviceld, Subscriber

Interfaces subscriber, Set<Term> terms) — allows to register a subscription for a
specific subscriber. That allows to specify the set of terms of interest
for receiving alerts. The operation provides an identifier for the
registered subscription;

e Subscription updateSubscription(ldentifier serviceld, Identifier
subscriptionld, Set<Term> terms) — allows to update the information
for a registered subscription;

e boolean deleteSubscription(ldentifier serviceld, Identifier
subscriptionld) - allows to remove the registration of a specific
subscription;

e List<Ildentifier> getAllSubscriptions(ldentifier serviceld, Identifier
subscriberld) — allows to obtain all the identifiers of subscriptions
created by a service for a specific subscriber. This method will be
implemented later;

e Llist<ldentifier> getAllSubscribers(ldentifier serviceld) —allows to
obtain a list of all the identifiers of registered subscribers. This method
will be implemented later;

Interface TaxonomyManager

Name

Key Concepts | Term and Taxonomy

Operations ¢ |dentifier createTaxonomy (ldentifier serviceld, Taxonomylnfo

taxonomyinfo, Taxonomy taxonomy) — allows a service to create and
register a taxonomy by providing the taxonomy and its information;

Taxonomyinfo getTaxonomylinfo (Identifier taxonomyld) — allows to
obtain the information of a taxonomy through its identifier;

List< Taxonomylnfo> listTaxonomies(ldentifier serviceld) - allows to
obtain the information of all the registered taxonomies by a service.
This method will be implemented later;

Taxonomy getPartOfTaxonomy (termid: Identifier, taxonomyld:
Identifier) — allows to obtain the part of taxonomy which has a specific
term as root. This method will be implemented later;

boolean replaceTaxonomy (ldentifier taxonomyld, Taxonomy
newTaxonomy) — allows to replace an existing taxonomy with a new
one. This method will be implemented later;

boolean deleteTaxonomy (ldentifer taxonomyld) — allows to remove
an existing taxonomy. This method will be implemented later;

LM:THE ASSETS APIS Page 69 D2.0.4v.1.1

F Y a Yol i-_

= N S B

LAVTI T 7. 5 T
&

class =p 2

NotificationManagerlmpl BaseAsselsSenioe

PreservationNatificationServicelmpl

0g: Logger= Logger.getlogge...

~ dstatanagement Datablanagsment

«Senice Canfigurations
getDAQQ : PraservationMotificationDacimpl

sNotification Managements «Semice Configurstions PreservafionNotifioationService

+ createMessage(identifier, Fublisher, Set<Term=) : Hofification e At
+ publishMessage(Notification) : vaid] . 1 oid
+ deliverblessagendentifier, Identifier int Int, MessagePolicyAge) : List<Alert> | FcationManager |7 20 Tor Ll or
: deliveressagesATerm(dentifier, Term, int, int, MessageFolioyhge) - List<Alets + zelC) woid
+ manhlertAsRead(ldentifier, Identifien : boalean
+ findTermByldentifienldentifie : Tem
+ findTermsByRaotldentifiefidentifier) : Collection<Temm>
- getTtermsFromRoot(Tterm): Collaction=Term>
Taxonamyhtanager|mpl
Registration Manager Impl P p————
log: Logger= Legger.getlogge. ..
«Senvica Configurations
«Senice Configurations - getDAD(: FresewationMNotificationDaalmpl
getDADN) : PreservationNotificationDacimpl wTaxonomy Managements
R D (e regleraTansger + createTaxonomytldentifier, Taxonamylnte, Taxonomy) : Taxanomy
+ createSubscriptionildentifier, Subscriber, Set<Term=) : Subscription - termsCollection2OrderedListiCollection<Term>, Identifier) : ArayList<String[]> TazoromyManager
+ updateSubscription{ldentifier, Identifier, Set<Term=) : Subscriptian + getTaxonomylnfofldentifier) : Taxonomylnfa
+ deleteSubscription(dentifien) : boolean + listTaxonomiesldentifien) : List=Taxonomylnte>
+ getallSubscriptionstidentifier, 1dentifier) : List<|dentifiers + getPanOfTazonomy(ldentifier, [dentifier) : Tazenomy
+ Identifien : L + replaceTaxanomytidentifier, Taxonomy) - boolean
+ deleteTaxonomylldentifien : boolean

Figure 23 — Common Notification APIs

4.2.6 Session Management and Identification

For many usage scenarios, there is a crucial need to properly handle the identification and
certification of the actors throughout the broad spectrum reaching from the object
ingestion process up to searching and interacting with the portal. The ASSETS platform has
the role of being a content aggregator for Europeana. In this perspective, it is reasonable to
have a clear identification of users and/or services through unique identifiers or
sessions/tokens. For that reason, it is introduced the generic concept of Identifier defined as
a unique identifier for objects, persons and services within the ASSETS federation and
processes.

class dol y

BaseAssetsDoaain Olyject
MongoDbDomain Olject
QueryLogRecardimpl

serialversionUID: long = 1L fizadDnly}
ip: String

queny: Sting

filters: String GQuerylogRecont
country: String
date: Date wenumerations
rank: String GueryLogRacordimpl :
page: Sting Fields Enum
isClick: boslean
isQuery: boglean cEnUms
raw: String ip
sessionld: Integer cenumeratians query
ionimpl : filters
getFage() : Sting FieldsEnum date
setPage(Sting) - woid rank
setRankiString) : void cenums page
QuenLogRecardimpl() Userld isClick
QueryLogRecordImpliString, Sting, Sting, Date, Stiing, Sting, Sting, boolean, baslean, Sting, Integen) Sessionld isQuery
getlp() - String End raw
setlp(Sting) : wold start sessionld
getuent) : Sting Size
setQuen(Sting) : vaid
getFilters) - Sting
setFilterString) : void
getDate() : Date
setDate(Date) : void BaseAssetsComainOlject
istlickf) - boolean Sessionimpl
setilickibaalesn) : void
is0uen(: baolean - serialemsionUID: long = -62982620501459... {readOnly}
setQuenboolean) - void
getRaw) : String

setRawgString) : void
getSessionld() : Integer
setSessianld{Integer) : woid
getFieldsEnum) : FieldDefEnum]
setCountnrString) : vold
getCountyd) : String

P

evalNamed) : Stiing]

¥

ewalNameQ) - String

Sessionimpl()
getFieldsEnumg) : FieldDefEnum]
getUserlD) : String Sezsion
setlserld(Sting) - void
getEnd(): Date
getSta)): Date
getSize() : Integer

TR

getldD) : String
initDomainDbjectBasicDBObject) : void
isEmbedded() : boolean

setld(String) - waid
updateCommonFislds) : waid
getRank) : String

B

Figure 24 — Common Session and Query Log Record API

0le]o

ITHE ASSETS APIS Page 70 D2.0.4v.1.1

V)
i
g
"IIi;ID
ui

PN
&

Bl

l
\
\

4.3 The Ingestion Models and Interfaces

The Ingestion Services are composed by the:

Metadata Cleaning which reduces errors in the metadata and perform a basic
enrichment of specific elements of the metadata records;

e Knowledge Extraction which enables to extract relevant structured metadata fields;

e Metadata Classification which supports automated classification of metadata records
under a taxonomy of semantic categories.

Post Ingestion Processing allows to harvest and index the multimedia content during the
ingestion. More, an Ingestion Workflow guarantees the proper flow of tasks and

information.

4.3.1 The Metadata Cleaning Service Models and Interfaces

Notice each interface described above will depend on the key concept "MetadataDataset".
Such concept has not been explicitly included.

Service Name

Metadata Cleaning Service

MetadataValueNormalization

MetadataFieldEnrichment

Responsibility | 1. Basic error correction

2. Value normalization

3. Basic enrichment.
Provided 1. MetadataErrorCorrection
Interfaces 7

3.

4.

MetadataCleaningManager

Dependencies

ASSETS common, other modules and services used during the ingestion
stage

Interface MetadataErrorCorrection

Name

Key Concepts | MetadataErrorCorrectionDescriptor
Operations e correctRecord

Interface MetadataValueNormalization
Name

Key Concepts | MetadataValueNormalizerDescriptor
Operations ® normalizeRecord

Interface MetadataFieldEnrichment

Name

@888

Page 71 D2.0.4v.1.1

V)
i
.
ST
"IIiPID
v

Bl

l
\
\

Key Concepts | MetadataFieldEnricherDescriptor

Operations ® enrichMetadataWithAuthorityFile

e enrichMetadataWithControlledVocabulary

Interface MetadataCleaningManager
Name
Key Concepts | MetadataErrorCorrection, MetadataValueNormalization,

MetadataFieldEnrichment

Operations e trainMetadataErrorCorrector

e getStatus

e |istTrainingMethodsForCorrection
e |istMetadataErrorCorrectors

e deleteMetadataErrorCorrector

e |istMetadataValueNormalizers

e deleteMetadataValueNormalizer

e listAuthorityFiles

e [istControlledVocabularies

LM:THE ASSETS APIS Page 72 D2.0.4v.1.1

BazeAszeizSenice
Metadsta CleaningManager impl

~ databanagement: Datablanagement
~ componentdameDbae: IngesionCleaningbacn
configuration: IngestionCleaningConfiguration

wSenice Configuration

+ sethatablanagementDatabdanagement) : void

+ setlngestionCleaninglaoingestionCleaninglany : void
+ getConfiguration) : IngestionCleaningConfiguration

+ setConfigurationingestionCleaningConfiguration) : woid

whietadata Cleanings
trainhietadataBmorComectonString, URI) : String
getStatusString) : MetadataCleaning TrainingStatus
listhdetadataErrarCarrectars) : String]
deletetdetadataBrorCorectonString) : woid
listhdetadataWalueMaormalizers]) © String[]
deletetdetadatatfalueNormalizenString) : woid
listAutharityFilesl : String[]
listControlledWocabularies]) : String[]

+ o+ o+ + F o+ o+t

EazzeAsselsSenvice
Metadat=a Error Correctionmpl

~ datablanagement: Databdanagement
~ componentdamelao: IngestionCleaninglan
- configuration: IngestionCleaningConfiguration

wSenrice Configurationx

+ setbatamlanagementlatabdanagement) : void

+ setlngestionCleaningbacllngestionCleaninglbac) : void
+ getConfiguration() : IngestionCleaningConfiguration

+ setConfiguration(ingestionCleaningConfiguration) : woid
whletadata Errar Corrections

+ corectRecord(detadataRecard, String) : MetadataRecord

MetfadzfalleanirgManager

MefadziaErrorCarrection

Metadata Fiel dEnrichrmentimpl

Bazedzmets Senice

~ datablanagement: atatlanagement
~ componentdamelao: IngestionCleaninglan
- configuration: IngestionCleaningConfiguration

aSenice Configuration.

+ setbatabanagementDatatdanagement) : woid

+ =etingestionCleaninglao(lngestionCleaninglan) : void
+ getConfiguration() : IngestionCleaningCanfiguration
o

«hetadata Enrichments

setConfiguration(ingestionCleaningConfiguration) : waid

+ enrichhetadataniithAuthorityFilelhietad ataRecord, String, String) : MetadataRecord
+ enrichhetadataniithCaontrolledWocabulanhietad ataRecard, String, String) : MetadataRecord

MeizdafaFieldEnrichnrent

Metadat="alusNaor malizationlmpl

BazedzsetsSenice

~ datamanagement: Datablanagement
~ componentdamelao: IngestionCleaninglao
- configuration: IngestionCleaningConfiguration

wSenice Configuration:s
+ setbatablanagement(Databanagement) : void

+ getConfiguration(: IngestionCleaningCanfiguration

whdetadata Mormalizations

+ szetlngestionCleaningbaoingestionCleaningan) : woid

+ szetConfiguration(IngestionCleaningConfiguration) : woid

+ normalizeRecord{betadataRecord, String, String) : MetadataRecord

MefadaiaValuveNormalization

Figure 25 - Ingestion Cleaning API: Overview

0le]o

ITHE ASSETS APIS

Page 73 D2.0.4v.1.1

class client

MetadataalueNor malizationimpl

configuration: IngestionCleaningClientConfiguration

+ getCon

+

+ normal

getComponentdameF romPBesh]) : String

figuration : IngestionCleaningClientConfiguration

izeRecordiMetadataRecord, String, String) : MetadataRecard

MetadataCleaning Manager Irnpl

configuration: IngestionCleaningClientConfiguration

+ 4+ + + + + + + + +

getCanfiguration() : IngestionCleaningClientConfiguration
getComponentMameFromBest]) @ String
traintdetadataBrrorCorrectonString, URD : String
getStatusString) : MetadataCleaning TrainingStatus
listhdetadataErrorComectoral © String[]
deleteMetadataErrorComectonString) @ woid
listhetadata®alueMormalizars]) @ String]

deletebdetad atavalueMarmalizenString) : woid
listAuthorityFilest : String[]

listControlledWocabularies? : String[]

MetadataFieldEnrichment Impl

canfig

uration: IngestionCleaningClientCanfiguration

enrich
enrich

+ + + +

getConfiguration) : IngestionCleaningClientCanfiguration
getComponentlameF romPBestl : String

hetadataWithAuthorityFileihetadataRecord, String, String) : MetadataRecord
MetadatawrithControlledWocabulanghetadataRecord, String, String) : MetadataRecord

MetadataError Correctionimpl

configuration: IngestionCleaningClientConfiguration

+

+ getConfiguration() : IngestionCleaningClientConfiguration
getComponentdameFromReshT : String
+ comectRecord{MetadataRecard, String) : MetadataRecord

Figure 26 — Ingestion Cleaning : Client Side Models

4.3.2 Knowledge Extraction Models and Interfaces

Service Name

Knowledge Extraction

Responsibility

1. Extraction of structured information from unstructured textual
metadata fields of europeana metadata records

Provided
Interfaces

1. KnowedgeExtractionTrainer,

2. KnowledgeExtractionManager,

@000

ITHE ASSETS APIS Page 74 D2.0.4v.1.1

v
)

L
i
¢
."m‘r»
o

&

Bl

\

3. KnowledgeExtractor

Dependencies

ASSETS common, other modules and services used during the ingestion
stage

Interface KnowedgeExtractionTrainer
Name
Key Concepts | MetadataKnowledgeExtractionModel, KnowledgeExtractorDescriptor
Operations e [istMetadataKnowledgeExtractor
e deleteMetadataknowledgeExtractor
e getKnowledgeExtractorDescriptor
Interface KnowledgeExtractionTrainer
Name
Key Concepts | MetadataKnowedgeExtractionTrainingSet,
MetadatakKnowledgeExtractionModel
Operations ® trainMetadataKnowledgeExtractor
e getTrainingStatus
Interface KnowledgeExtractor
Name
Key Concepts | MetadataDataset, MetadatakKnoledgeExtractionModel
Operations e extractKnowledgeFromMetadata

class damain

cinterfaces zenumerations

KrewledgeExfracforDescriofor Knowdedge ExtractionTraining Status

+ nFare) o S

+ creskionDete]) | Date “E“h:'g'; S

+ exhEchonFieldNaae () Shieg 7 RUNHING

+ exbmcled Conoepts() | Shimg] COMFPLETED
ERROR

Figure 27 — Ingestion Knowledge Extraction Data Model

@888

Page 75 D2.0.4v.1.1

class api

clas=2pi 7

BazedzzetzSenice

kroved edge ExtractionManager Impl

databianagement: Datablanagement
ingestionknomledgeExtractionlao: IngestionknommledgeExtractionlac
configuration: IngestionknowledgeExdractionCanfiguration

+
+
+
+
b

+
b

wSenice Configurations

sethatablanagement/latabanagement) : waid
setingestionknowledgeExdractionlaningestionknowledgeExtractionan) : woid
getConfiguration) : IngestionknomledgeExtraction Configuration
setConfigurationingestionnowledgeExtractionConfiguration’ : waid

aknowledge Extraction Managements

listhdetad atakinowiledgeExtracton]) : String[]
deletehietadatakinowledgeExtractonString) : woid
getknowledgeExdractorbescriptonString) © KnowledgeExtractorbescriptor

BazedzsetzSenioe

kroved edgeExtractionTrainer Irnpl

databdanagement: Databianagement
ingestionknowledgeExdractionlao: IngestionknowledgeExdractionlran
configuration: IngestionknomledgeExtractionConfiguration

+

+
+
+

a2
+

wSenrice Configurations

setDatabdanagement(latablanagement) : void
setingestionknovledgeExtractionbaailngestionl<nowledgeExtractionland : void
getConfiguration() : IngestionknomwledgeExtractionConfiguration
setConfigurationfingestionknowledgeExtractionConfiguration) : woid

wknomwledge Extraction Managements

trainhdetadatabinomwledgeExdractanURT) - String
getTrainingStatusString) © KnowledgeBExtractionTrainingStatus

BaseAssetzSendoe
KrnowiedgeExtractor Impl

datablanagement: Datablanagement
ingestionknowledgeExtractionbao: IngestionknowledgeExtractionlac
configuration: IngestionknovledgeExtractionCanfiguration

+

o
+
o

+

wSenice Configurationa

sethatabdanagement(latablanagement) : void
setingestionknomledgeExtractionaoflngestionkKnowledgeExtractionaa) : woid
getConfiguration() : IngestionknowledgeExtractionConfiguration
setConfiguration(IngestionkKnowledgeExtractionConfiguration) : vaoid

wknomwledge Extraction Managements

extractknowledgeFromhdetadataidetadataRecard, String) : MetadataRecord

HrowledgelxfraclionManager

Mo wledgeExfraclion Traimer

Hrowledgetrfracior

Figure 28 - Ingestion Knowledge Extraction API

@000

ITHE ASSETS APIS Page 76

D2.0.4v.1.1

classrest -

BaseAssetsfest
Krowd edge Extractor Rest

log: Logger= Logger.getlogge...
~ ingestionkKnowledgeExtractionSenice: KnowledgeEsxtractar
~ gonfiguration: IngestionknowledgeBExtractionConfiguration

setknomledgeExtractonkKnowledgeBEsxdractar) : waid
setConfigurationingestionknowledgeExdractionConfiguration : waid
getConfiguration() : IngestionknowledgeExdractionConfiguration
getComponentiame) : String

displayComponentlame) : String

+ + + + +

BazeAzzetaest
KnovdedgeExtractionTrainerRest

lag: Logger= Logger.getlogge...
~ ingestionKnomledgeEsxtractionSenvice: KnowledgeEstractionTrainer
~ configuration: IngestionknowledgeExtractionConfiguration

setknowledgeExtractionTrainenkKnowledgeExtraction Trainer) : woid
setConfigurationfingestionknowledgeExtractionConfiguration) : waid
getConfiguration(: IngestionknomwledgeExdractionConfiguration
getComponentdame: String

dizplayComponentdame) : String

+ o+ + + o+

BazeAzsetnfest
KnovdedgeExtractionManager Rest

log: Logger= Logger.getlogge...
~ ingestionkKnowledgeExtractionSenice: KnowledgeBExdtractionhanager
~ gonfiguration: IngestionknowledgeE=tractionConfiguration

zatknomwledgeExtractionManagenknowledgeExdractiontdanagear : wvaid
setConfiguration(lngestionknomledgeExtractionConfiguration) : waid
getConfiguration) : IngestionknowledgeExtractionConfiguration
getComponentdame) : String

dizplayComponentdame) : String

+ 4+ o+ o+ o+

Figure 29 - Ingestion Knowledge Extraction REST API

4.3.3 Metadata Classification Models and Interfaces

Service Name | Metadata Classification

Responsibility | 1. Classification of europeana metadata records on relevant taxonomies

Provided 1. ClassificationTrainer,

lnietie s 2. ClassificationManager,

3. ClassificationService

Dependencies | ASSETS common, other modules and services used during the ingestion
stage

@000

ITHE ASSETS APIS Page 77 D2.0.4v.1.1

[o o

P e VoY al ol -
= S S 7 LE
LAV I 7. b)
L

Interface ClassificationTrainer
Name
Key Concepts | MetadataClassificationTrainingSet, MetadataClassificationModel
Operations e trainMetadataClassifier
Interface ClassificationManager
Name
Key Concepts | MetadataClassificationModel
Operations e [istMetadataClassifier

e deleteMetadataClassifier
Interface ClassificationService
Name
Key Concepts | MetadataDataset, MetadataClassificationModel
Operations e classifyMetadata

@888

Page 78

D2.0.4v.1.1

class api

ciazz i/

BamedAzsets Jenice

Cla=sification Manager impl

~ datablanagement: Catabdanagement
~ ingestionhetadataClassificationao: IngestionhtetadataClassificationao
- configuration: IngestionhetadataClassificationConfiguration

wSenice Configurations

+ szetbDatamanagement’Datamanagement) : woid

+ getConfiguration(: IngestionhdetadataClassificationConfiguration

+ setConfiguration(ingestionhetadataClassification Configuration’ : waid

«wRegistration Managements
+ setlngestionhetadataClassificationDaoilngestionhdetadataClassificationDao) : void

«hletadata Classifications
+ listMetadataClassifien] : String[]

+ deletebdetadataClassifienString) : waid

Bazedssetz Jenice

ClassificationServicelmpl

~ datablanagement: Databdanagement
~ ingestionhdetadataClassificationCao: IngestiontdetadataClassificationCrao
configuration: IngestionhietadataClassificationConfiguration

wSenice Configurations

+ =ethatamlanagementlatabanagement) : woid

+ zetlngestionhletadataClassificationD aoflngestionhdetadataclassificationCrao) : vaid
+ getConfiguration) : Ingestionhdetad ataClassificationConfiguration

+ zetConfigurationiingestionhtetadataClazsificationCaonfiguration) : waid

«whletadata Classifications
+ classifyhdetadatalString, MetadataRecord) : MetadataRecord

BazeAszetsSenioe

Cla==sifi cationTrainer Impl

~ databanagement: Databtanagement
~ ingestiontdetadataClassificationfao: IngestionhetadataClassificationiao
configuration: IngestionhetadataClassificationConfiguration

aSenice Configuration

+ zethatablanagement(latablanagement) : void

+ zetlngestiontetadataClassificationCaoflngestionMetadataClassificationCrao) : waid
+ getConfiguration) : IngestionhMetadataClaszificationConfiguration

+ =etConfiguration(ingestionhetadataClassificationConfiguration) : woid

«hetadata Classifications
+ trainhdetadataClassifienURI : String
+ getTrainingStatusString) : MetadataClaszsification TrainingStatus

ClassificafionMarager

ClassificafionServios

Classification Traimer

Figure 30 — Ingestion Metadata Classification Service API

@000

ITHE ASSETS APIS Page 79

D2.0.4v.1.1

4.3.4

class rest

BazeAzzetnest
ClassificationTrainer Rest

lag: Logger= Loggergetlogge...
ingestionhdetadataClassificationSenrice: ClassificationTrainer
configuration: IngestionMetadataClassificationConfiguration

+ o+ o+ + o+

setClazsification TrainenClassification Trainer) : woid
setConfigurationingestionhetadataClaszsificationConfiguration) : waid
getConfiguration) : IngestionhetadataClassificationConfiguration
getComponentdame) : String

dizplayComponentfamer) : String

BazeAzzetzRest

ClassificationServiceRast

log: Logger= Logger.getlogge...
ingestionhdetadataClassificationSenrice: ClassificationSenice
configuration: IngestiontetadataClassificationConfiguration

+ o+ o+ o+ o+

setClaszsificationSenvice(ClassificationSenvice]) : woid
setConfigurationIngestionhetad ataClaszsificationConfiguration] : woid
getConfiguration) : IngestionhetadataClazsificationCanfiguration
getComponentdame) @ String

dizplayComponentdamell : String

BazeAzselzRest

ClassificationManagerRest

log: Logger= Logger.getlogge...
ingestionhetadataClassificationSenice: Classificationhanager
configuration: IngestionMetadataClassificationConfiguration

o+ o+ + o+

setClassificationhlanagenClassificationhanager) : waid
setConfigurationIngestionhetad ataClassificationConfiguration) : vaid
getConfiguration) : IngestionhetadataClassificationConfiguration
getComponentdamer) @ String

displayComponentdamel) : String

Figure 31 - Ingestion Metadata Classification REST API

Ingestion Workflow Management Models and Interfaces

Concept Definitions

Workflows

A number of predefined workflows will be provided which cover the standard steps for
processing and ingesting collections in Europeana platform. These workflows can be
adapted and tweaked by technical staff for certain collections. The ingestion team needs to

configuration time: execution phase during which the plugins are configured. In OSGi
this corresponds to the registration phase, during which validity checks are performed
by the system.

processing time: execution phase during which the MetaDataRecords are being
processed

@000

ITHE ASSETS APIS Page 80

V)
i
v

W
[o o
7

assign a workflow to the collection before its going to be processed.

= - -
- - -
- -

Figure 32 — Ingestion Workflows

—

Processing Model

Due to the necessity of optimal resource usage, each process part is asynchronous executed
within a thread pool. A plugin must make explicit if it is not thread safe - in which case the
framework ensures that no more than one thread at a time uses the plugin. To uncouple
each processing block from each other a FIFO queue will be provided. The input queue will
thereby be filled by the framework controller to ensure, that the framework is in control of

all load balancing issues.

Figure 33 — Ingestion Processing

The ingestion workflow management is developed as a joint effort with Europeana and The
European Library. It provides a framework for a scalable and robust execution of the
ingestion of large quantities of meta-data records and allows specialized processing by using

a plugin based mechanism.

-
@ 0O
NS IS T THE ASSETS APIS Page 81 D2.0.4v.1.1

Pion Jumogiesr = N
(pEjuCoUCaNoaKS ‘BUIBUISERIIS ‘PICORUISORIMNSEL + i
pon - Qdmas 5
Fion - (Siasmaiy Jejasmoal + B o
pion - {uss00q ‘Wb guonssBuldaisiss = 5
spsmmsis - 118 - OspAvIOd *
+ 1 - (isanbasljesnbandgiers, +
+ s =
pion + <jsenbayer - (uoiss -
poa cguns mwanbay s
Busssaciginissssangs + ispuAcy +
+ e e (b 5
Aaspusis 3
sasmon - (gemon st + 5
LEnguoi=Ey femaisE « <Buas Sunssam +
smeisyesy - - <usgoay +
& fir +
PEoquoINasYS | (xsjucqueInseKTist + b
cisssig : Dpsubseyiet + :
usso0g | (pEpUeoLaITS + : +
i PECEE - i
= . s
3 SN SMEISSEL = seanbay o+
2 20q - i 1
i 15 = oosiEreqEr - (Buuis o+
¢ 0og - 5 3
¥ =5 = .
TEIUESSEUFTE PR 7 T
PRI dme- g =asusU
pion - (Buns)subuzeseics prnbyucoies + + 2
proa - (BunsisuBuzSubBaTpantyuosse * +
o * + 2
Loz + + poba ; +
i - =21=AqugeoTsEr - (uaunosxg)BoTuss 4
£ s L ohoT e
5 o wsosyEIn
bl = g daigiab +
+ ” syo0 mmenel) wsh + .
* ez (Busjusinosxgamewies + pion - (ulpyion
3] + A RioA - (BugsirEEian +
i * - (easpasduoab. + {ion - (uessoglpsgaaussyse +
SOEGSeNGID-IaE sassiapes - (Bung)peuBsemsd « uszjaog v
sospsu +
WoGEEYE ROV ITE
e sasan ssompEun ‘
S B Y YRR
«zaspEUn

=0

. usgnasrs

i sEeeg (lRgsEgeh +

7 TIEEEEREC
sasumur

wEREpE

uopnesxIMe| oM S5E(9

D2.0.4v.1.1

Page 82

Figure 34- Workflow Execution Model

ITHE ASSETS APIS

@000

\)
0y
Y

[o o

LN,
/.

\

Service Name

Unified Ingestion Manager

Responsibility definition of ingestion workflows;
workflow execution orchestration;
reporting

Provided Workflow,

Interfaces MetaDataRecord,

o Uk W N RrIW N

IngestionPlugin,
SavePoint,
Execution,

Orchestrator

Dependencies

Apache Karaf OSGi implementation

Interface Workflow
Name
Key Concepts | Representation of a workflow, composed of multiple WorkflowSteps.
Operations e String getName() - @return name of the workflow, should be
reasonable meaningful
e String getDescription() - @return description of this specific workflow
(what does it perform, what should be the outcome, etc.)
e WorkflowStart getStart() - @return defined start point of work flow
e List<IngestionPlugin> getSteps() - @return plugins as steps in this
workflow
e boolean isSavepoint(String pluginName) - @return Is this a save point
plugin?
e boolean isMandatory(String pluginName) - @return Is this a
mandatory plugin, so unsuccesful processing is a failure?
Interface IngestionPlugin
Name
Key Concepts | Definition of a plugin that processes meta-data records. Services that
provide ingestion-time capabilities need to implement this interface. An
ingestion plugin is a single processing step within a workflow
Operations e String getName() - Get the class name of the plugin which is used to

register the plugin with the registry.@return the name for this plugin
(should be Plugin.class.getSimpleName()).

String getDescription() -Get the description of the plugin which is

@888

Page 83 D2.0.4v.1.1

V)
i
g
"IIi;ID
ui

PN
&

Bl

l
\
\

provided to the operators when starting analyzing workflows.

e TKey<?, ?> getinputFields() - Get the list of fields this plugin wants to
operate on. This is used for information purposes, so that it can be
validated if the records hold these data.@return a list of fields this
plugin requires

e TKey<?, ?> getOptionalFields() - Get the list of fields this plugin would
like to operate on or can get additional information for the working
process. This is used for information purposes, so that it can be
validated if the records hold these data. @return a list of fields this
plugin requires

e TKey<?, ?> getOutputFields() - Get the list of output fields. @return a
list of fields this plugin creates

e void initialize() - Initialize the plugin when it is loaded in the OSGI
container and attached to the uim registry.

e void shutdown() - Shutdown the plugin when it is removed from the
uim registry (due to OSGI shutdown or reinstallation etc.

e List<String> getParameters() - List of configuration parameters this
plugin can take from the execution context to be configured for a
specific execution. @return list of configuration parameters.

e int getPreferredThreadCount() - A plugin is always executed within a
thread pool, this parameter defines the preferred size of the pool.
Plugins should know best, what's a good level of parallelism. @return
number of threads this plugin should usually be processed.

e int getMaximumThreadCount() - Number of maximum threads. The
plugin might specify here one (1) if it is not thread safe. @return the
number of maximal threads

e void initialize(ExecutionContext context) throws
IngestionPluginFailedException - Initialization method for an execution
context. The context holds the properties specific for this execution.
@param context holds execution depending information for this
processing call. This context can change for each call, so references to
it have to be handled carefully. @throws
IngestionPluginFailedException is thrown if the intiliazation fails and
so the plugin is not ready to take records for this {@link
ExecutionContext}

e void completed(ExecutionContext context) throws
IngestionPluginFailedException - Finalization method (tear down) for
an execution. At the end of each execution this method is called to
allow the plugin to clean up memory or external resources. @param
context holds execution depending, information the {@link
ExecutionContext} for this processing call. This context can change for
each call, so references to it have to be handled carefully. @throws
IngestionPluginFailedException is thrown if the tear down
encountered a severe failure during deleting external resources, so
that executing it in a new {@link ExecutionContext} will most likely fail

LM:THE ASSETS APIS Page 84 D2.0.4v.1.1

V)
i
Y.

\l
Il

N

QI

[o o
o

boolean processRecord(MetaDataRecord mdr, ExecutionContext
context) throws IngestionPluginFailedException,
CorruptedMetadataRecordException - Process a single meta data
record within a given execution context. It returns true, if processing
went well and false, if something failed. NOTE, false in this context
means only that the plugin could not do its work, but neither is the
{@link MetaDataRecord} corrupted nor is the plugin itself damaged,
so that the record can further processed and this plugin can take
other records as well. Furthermore, additional information can be
logged ({@link LoggingEngine}). @param mdr the {@link
MetaDataRecord} to process @param context holds execution
depending, information the {@link ExecutionContext} for this
processing call. This context can change for each call, so references to
it have to be handled carefully. @return true, if the plugin could do its
work and false if something failed during processing @throws
IngestionPluginFailedException is thrown if the plugin encounters a
severe problem and it is therefore impossible to process any more
records for this {@link ExecutionContext} @throws
CorruptedMetadataRecordException the plugin encountered a severe
problem for a specific {@link MetaDataRecord} so that further
processing of this specific {@link MetaDataRecord} does not make
sense any longer.

Interface
Name

ActiveExecution

Key Concepts

Type-safe representation of a meta-data record

Operations

getld
addField
addQField
setField
setQField

Interface
Name

Execution

Key Concepts

An Execution in a running state. It keeps track of the overall progress.

Operations

StorageEngine getStorageEngine()
public void setPaused(boolean paused);
boolean isPaused();

boolean isFinished() - test the execution if all tasks are done eather
completly finished or failed. so if true: scheduled == finished + failed

void setThrowable(Throwable throwable);

LM:THE ASSETS APIS Page 85 D2.0.4v.1.1

)
()
77

{ ‘::“‘\
\ \\::‘:b

\
\

[o o
o

Throwable getThrowable();
Queue<T> getSuccess(String name);
Queue<T> getFailure(String name);
Set<Task> getAssigned(String name);

void incrementCompleted(int count); int getProgressSize(); - gives an
estimate of tasks/records which are currently in the pipeline. Note
that failed tasks are not counted. The system can not guarantee the
number of records, due to the problem that some of the tasks might
change their status during the time of counting.

int getCompletedSize(); - gives the number of tasks/records which are
completly finished successful by all steps.

int getFailureSize() - gives the number of tasks/records which have
failed on the way through the workflow no matter where.

int getScheduledSize() - gives the number of tasks/records which have
been scheduled to be processed in the first place. So scheduled =
progress + finished + failure.

int getTotalSize() - gives the number of records which this execution
will need to deal with. If not possible to estimate Integer.MAX_VALUE
is given.

List<WorkflowStepStatus> getStepStatus();
WorkflowStepStatus getStepStatus(IngestionPlugin step);
public Properties getProperties();

void waitUntilFinished();

void incrementScheduled(int work);

Interface
Name

Orchestrator

Key Concepts

Workflow execution orchestration

Operations

public String getldentifier();
ActiveExecution<?> executeWorkflow(Workflow w, DataSet dataset);

ActiveExecution<?> executeWorkflow(Workflow w, DataSet dataset,
Properties properties);

<T> ActiveExecution<T> getActiveExecution(long id);
<T> java.util.Collection<ActiveExecution<T>> getActiveExecutions();

void shutdown();

LM:THE ASSETS APIS Page 86 D2.0.4v.1.1

V)
i
i
[o o
v

K

4.3.5 Post-Ingestion Processing

This service supports the harvesting of the metadata based on the OAI protocol for
Metadata Harvesting.

Service Name | Post-Ingestion Processing

Responsibility | 1. multimedia content harvesting,

2. multimedia content indexing

Provided 1. MultimediaContentHarvesting,

i 2. MultimediaContentindexing

Dependencies | Assets Common, Europeana Core, Text Indexing, Image Indexing, Audio
Indexing, 3D Indexing

Interface MultimediaContentHarvesting
Name

Key Concepts | MultimediaContent
MultimediaContentUrl
ObjectMetadata (FullDoc/ESE/EDM)

Operations e downloadMultimediaContent
Interface Multimedialndexing
Name

Key Concepts | Multimedia Index, MultimediaContent

Operations e startindexing,
e savelndexedRecord,

e getIindexQueueSize

Extends e Core-Indexing

LM:THE ASSETS APIS Page 87 D2.0.4v.1.1

class api

winterfaces winterfaces
MedizConfernifrocessing MefadaiaProcessing

+

+ dowmloadedizFile WetzdataMRecom) @ LR
+ indexlediaFile WetadataRecom, LR void) co et ToEse fiketad stz Aecord) © Fullloc
+ indexiediaFile WetadataRecom) [void + conved ToEOWetad stz Recom) © Sidmg

+

BazeAzsetz Senice

Inge=tionWor kflow Servicelmpl

datablanagement: Databanagement
ingestionWoddlowl ao: Ingestioni'oddlowbao
configuration: IngestionWiioddlowConfiguration

setlatablanagement/Dratabdanagement) : waid IngesiorWorkflowService

oo et foEse ! ffetad stz Recom’) - Shing

+ + + +

zetlngestioniaddlowb aolngestioniaddlowbaod : waid
getConfiguration) : IngestionWoddlowC onfiguration
zetConfigurationdIngestionioddlomCanfiguration) : woid

Figure 35 — Ingestion Workflow APl model

4.4 The Indexing, Ranking and Retrieval Models and Interfaces

4.4.1 Post-query processing Models and Interfaces

Query suggestion helps the user to either better specify the information he/she is looking
for, or helps him in browsing semantically related concepts. For instance, given the query
"Pablo Picasso", possible interesting suggestions are "Pablo Picasso blu's period"
(specification) or "cubism" (related concept).

Service Name

Query Suggestion service

Responsibility

1. Query Suggestion

Provided
Interfaces

1. Suggest

Dependencies

ASSETS Common, ASSETS Core, Query Logs, BM25F

Interface Suggest

Name

Key Concepts | Queries, Shortcuts, Ranking
Operations e getSuggestions

Class diagram of the domain objects used by the service. Suggestions contains a set of
queries suggested to the user.

LM:THE ASSETS APIS Page 88 D2.0.4v.1.1

class post-query processing /

winterfaces
Suggesfions

+ getiuggestions]) | List=Shing =

i

BazeAzsetstonain Oiyect
Suggestionsimpl

seridlversionUIl: long =1L freadQnly}
querny: String
suggestions: List<String>

SuggestionsimplString)
getFieldsEnum(: FieldDefEnum(]
setSuggestions(List<String =) : woid
getSuggestions]) : List<String =
setQueniString) : waid
getuend] : String

+ o+ o+ o+ o+ o+

Figure 36 — Post-Query Processing : Query Suggestion model

The service gets a user query and returns a set of suggested queries (method
getSuggestion())

class api

BazedzetzSenice

QuerySuggestionServicempl

~ datablanagement: Patablanagement
~ irTextDao: IRTextDao

configuration: IRTextConfiguration QuerySuggesfionService

zathatablanagementlatabanagement) ; wvaid
zatlrTextbraollR T extlan) @ wvoid
getCaonfiguration() : IRTextConfiguration
setConfiguration(|R TextCanfiguration) : woid
getSuggestionsString) : Suggestions

+ 4+ + + +

Figure 37 - BM25F Scoring function Service model

4.4.2 Metadata Based Ranking Models and Interfaces

Full text search returns results (mostly) based on frequency of query terms in the collection
and in the returned documents. This approach doesn’t perform the best in the context of
Europeana, where the indexed information is not a large document but a concise, well
structured metadata record. The objective of this service is to exploit the structure present
in Europeana metadata objects in order rank search results according to the user interests.

@000

ITHE ASSETS APIS Page 89 D2.0.4v.1.1

Service Name | BM25F Scoring function

Responsibility | 1. Search & Retrieval

2. Learn from query logs BM25F's parameters

Provided 1. BM25F
Interfaces

Dependencies | ASSETS Common, ASSETS Core, Query Logs

Interface BM25F
Name

Key Concepts | Queries, Learning to rank, Ranking, QueryLogs

Operations e search

® |earning to rank

Class diagram of the domain objects used by the service.

QueryParams Contains the query submitted by the user, together with the filters on the
query (using solr sintax) and the result page requested.

class ranking-model s /

winterfaces
EarkingParanmefers winterfaces
+ getParameters() : Map=Sking Lomg = ClueryFarams

getend) o Shing
sl Shimg) o vodd
gedFilters) - Shing
sedFithersShirg) o wodd

i

+ o+ 4+

BazedzeetzDomain Olect

RankingParametersimpl

+ getFieldsEnum: FieldDefEnum(]
+ getParameters]): Map<Sting, Long= BaseAzsetzDomain Ofect

GueryParamsmpl

serialversionUID: long = -G2962520501459... freadOnlyl

winterfaces

QuenyP aramsimpld
getFieldsEnumi) : FieldDefEnum[]
getQueandl: String
setQuenrString) : woid
getFiltaral : String
setFiltara’String) : woid

danrain: FieldDefEnunt

~ ergMizare () o Sty
~ e Meoed Classars

+ 4+ + o+ o+ o+

Figure 38 — Ranking models: BM25F Scoring function Service

The service allows to perform a search using the bm25f scoring function (search method)
and returns a list of AssetsFullDoc. Furthermore, the service exposes a method to retrieve a
good tuning for the bm25f parameters.

@000

ITHE ASSETS APIS Page 90 D2.0.4v.1.1

.

class ScoringAFl o

BaseAssets Senioe
EMZ5F Scoring Function Servicelmpl

~ datablanagement: Datablanagement
~ o irTextDan: IRTexdlan
configuration: IRTextConfiguration

wSenrice Configuration:s

+ zetDatablanagementDatabdanagement) : waid
+ zetlRTextDac(lRTextlan) : woid

+ getConfiguration) : IRTextConfiguration

+ szetConfiguration(|R TextConfiguration) : waid
+ GetUserSessions(String) : Collection<Session=

SBM2EFScaningrunciionSeryice

wScarings
+ szearch{QuenyParams) : List<AssetsFullDocs
+ leamParametars]): RankingFParameters

Figure 39 —-BMF25 Scoring function Client

4.4.3 Text Indexing and Retrieval Service

Europeana and Assets have many software components that exploit textual information.
The goal of this service is to provide efficient access to structured information to end users
and to other assets services, with particular reference to T2.2.1 and T2.2.2.

Service Name | Query Log Indexing

Responsibility | 1. Cleaning and indexing of query log information for learning

Provided 1. Buildindex

Interfaces 2. GetUserSession

3. GetQueryPopularity

Dependencies | ASSETS Common, ASSETS Core, Query Logs

Interface QuerylLogindexing
Name

Key Concepts | Session Detection, Data cleaning

Operations Analysis and indexing of query log index

The class diagram of the domain objects used by the service is presented in Figure 40.

® QuerylogRecord interface describes the object that models a record in the query log. It
represents a user interaction with the portal (submitting a query, clicking on a results,
navigating..).

e Session groups a the connected search activities of the current user. A session is a
sequence of queries by a single user made within a limited range of time. It tries to

LM:THE ASSETS APIS Page 91 D2.0.4v.1.1

capture a single user’s information need. Queries by the same user are divided in
different sessions limiting the time gaps in a session (e.g., if a user does not search
anything within an interval of five minutes, a new session starts).

class QueryLogindexingServiceDomain /

BaseAssetzDomain Qiyect

GuerylLogRecordmpl winterfaces
QuerylogRecond

serialersionIC: long = 1L freadOnly}
ip: Sting gebing) ; Stiag
query; String sebp(Shirg) - void
filters: String getlireny)) Srr'rrg .
country: String st ey Shing) - woid
date: Date getFilters() © Sting
rank: String setFiltersSEiag) roid
page: String getlate) Date
isClick: boolean sedlate (Dabe) voio
isduen: boolean _.._.{> getRanh) | Shimg
rave: String sedRank(Shimg) o uoid

isClick{ : hooleam
setClichpootean) i
izGuen : boolesn
setCeryhoolean) | void
getRaw() | Shing

setRz witting) o woid
getSessiond [@ ibeger
setSessionid frteger) o void
setCoumtnyShing) o woid
getCountry() - Sting

sessionld: Integer

getPagel : String
setPagelSting) @ woid
setRank(String) : woid
QueryLagRecardimpl])
QuerglogRecordlmpl{String, String, String, Date, String, String, String, boolean, boolean, String, Integer)
getlpl): String
setlp(String) : woid
getQuend): String
set@uendString) : void
getFilters] : String
setFilters(String) : woid

FE o FEF F b F 4+

getlater) : Date ainterfaces
zethate(D ate) : woid dorrain. FieldDefEmwnt
isCliga) : boolean =l euslizme(: Sting

setClichboolean) @ waid
isQuent): boolean
setluendboolean) : void
getRawn) : String ﬁ\
sathanString) : woid
getSessionld]) : Integer
setSessionld(Integen) : woid 1
getFieldsEnum) : FieldDefEnum[]
setCountniString) : void
getCountrl : String !
getCommonFizldsEnumi : FieldDefEnum] H
getldl): String
initbomainObjectBasicDBObject) : woid
izEmbedded] : boolean 1
setld(String) : woid
updateCommonFielda]: void
getRank : String H

~ eudl Nyoe) - Glass=P=

U

BasedrseteDosmain Oect | oo '
Sessionlmpl

AssetsDonain Oiject
«interface:
Seszionimpl] Session

getFieldsEnumi): FieldDef€numd | _____ .|> getlizenD) @ Shing
getUzerlDi: String setlizedl (Shing) void
setllzerld(String) : vaid getStai]) - Date
getEnd() : Date getEnd () - Date
getStan) : Date getSize() irheger
getSizel): Integer

serialVersionlIl: long = -G2062620501459... freadOnly}

+ o+ttt ot o+
+ o+ + 4+ o+

Figure 40 — Query Log Analysis Domain model

The class diagram for the Query Log Indexing Service is presented in Figure 41. It takes the
query logs and splits them into user sessions. Furthermore it computes relevant statistics
and other parameters used by the query suggestion service. The functionality of these
classes is listed in the followings:

¢ initindex and insertQuerylLog allow to create a newIndex, and to add new query log.

e GetUserSessions, getNumberOfDistintUsers, getNumberOfSessions,
getNumberOfQueries, getNumberOfDistintQueries, getAverageQuerylLength,
getTopQueriesWithFrequencies, getNumberOfSessionsForDay,

@000

ITHE ASSETS APIS Page 92 D2.0.4v.1.1

getNumberOfSessionsForHour, getSession , getUserSessionlds. Allow to retrieve
statistics on the indexed query logs (also filtering on the date)

class QueryLoglndexingServiceAPR| /

AzzetzSenice
winterfaces
GueryloglrdexirgService

drritiratex () o owodd

imEertSeendog (Shiag) o owodd

GetlserSessions(Sing) - Colection<Session =

gt bensdoy shint UsersDate, Date) @ int
getiivabenfSesriorsDate, Date) ©int
gefiivaheCiGuedes Db, Date) »int

gt be TR stimt Quede sDabe, Dabe) ©int

getduemge Quendergih () - Aoat

gt Fop SQuedeslWith Freguenciesfnt, Date, Date) - Map =5hing, dnteger=
getiivarbenSe seior sForDa yDate, Dade) @ Wap =Date, frtegers
getiivarbenl Se sefor sFoHounDate, Dgte) @ Wap <irteger, frtegers
gt Sessionfrl) | Session

getleerfessionn s Shing) @ List<integers

i

ot o+ o+ o+ o+

BazeAzzets Senice

Queryloglndexing Servicelmpl

~ datatdanagement: Catablanagement
no irTextbao: IRTextDao
configuration: IRTextConfiguration

zathatabdanagementlatabdanagement) : woid

sethrTextDaollR Textban) : waid

getConfiguration() : IRTextConfiguration

setConfiguration(IR TextConfiguration) : waid
GetlserSessions(String) : Collaction<Session>

getterage QuensLengthl) : float
getNumberOfDistintQueriesDate, Date) : int
getlumberOflistintUsers(late, Date): int
getlumberOfQueariesDate, Date) : int
getlumber0fSessions D ate, Date) : int
getMumberdfSeszionsF orl awlate, Date) : Map<Date, Integar=
getMumberdfSeszsionsForHounDrate, [ate) : Map<intager, Intager=
getSessionint) : Seszion

getTopQueriesiiithFrequencies(int, [ate, Date) : Map=<String, Integer=
getllserSessionldsString) : List<integer>

initlnd e’ : waid

insetQuendogString) : woid

+ 4+ + +++ ++++++

Figure 41 — Query Log Indexing APl model

The class diagram for the Query Log Indexing Client is presented in Figure 42. It presents the
client APl used for remote invocation of the service’s REST interface.

@000

ITHE ASSETS APIS Page 93 D2.0.4v.1.1

.

class client

Gl ogird eximg
CGueryLoglndexing Impl

GetldzerSessionsString) : Collection<Session=
getfrerageluenyLengthl) : float
getMumberOfDistintQueries D ate, Date) : int
getMumberOflistintlze sl ate, Date): int
getNumberOfQuerieslate, Date] : int
getlumber0fSessiona(l ate, Date) : int

getlumberOfSessionsF arlrayDate, Date) : Map<Date, Integer=
getMumberdfSeszionsForHoun D ate, Crate) : Map<integer, Intager=
getSessiondint) : Session

getTopQueriesiWithFrequenciesint, Cate, Cate) : Map<String, Intager=
getllzerSessionldsString) : List<Intager=

initlnd a7 : waid

insertQuendogString) : vaid

o+ o+ F o+

Figure 42 — Query Log Analysis Client model

4.4.4 Images Indexing and Retrieval Service

Images Indexing and Retrieval Service allows users to find similar images using an image as
query (image content-based searching).

Service Name

Images Indexing and Retrieval Service

Responsibility

1. Search & Retrieval

Provided
Interfaces

1. Imagelndexing

2. ImageSearching

Dependencies

ASSETS Common

Interface Imagelndexing

Name

Key Concepts | ImagelD

Operations Image features extraction and image indexing

Interface ImageSearching

Name

Key Concepts | ImagelD, imageRanking

Operations Performs an image content based similarity search from a given image ID,

returning a list of image IDs ranked by similarity

@000

ITHE ASSETS APIS Page 94 D2.0.4v.1.1

The class diagram of the domain objects used by the service is presented in Figure 43. The

functionality of these classes is listed in the followings:

® QueryResults contains the query results with the most similar images to the query, as a

list of Europeanald.

e QueryResultsMarshaller serializes the query results in a list of EuropeanalDAdapter
objects (Rest Service purpose).

® ImagelndexResponse contains the query results as a list of EuropeanaUri.

class domain

ClueryResultsMarshaller

collectionObjects: List<EuropeanaldAdapters

+ getEuropeanaldfdapten: List<EuropeanaldAdaptears
+ =zetEuropeanaldAdaptenlist<Europeanald=): woid

QueryResults

mc: Unmarshaller

log: Logger= Logger.getlogge...
results: List<Europeanald=

Imagelndex Response

results: List=String=

+

getResulta : List<String=

+ QuangResults])

+

zetResultaString) : woid
+ getResultglint, int) : List<BEuropeanald=

Figure 43 — Images Indexing and Retrieval: Domain model

The class diagram of the Image Searching Service is presented in Figure 44.

In this diagram are shown the available methods to perform an image similarity search. It is

possible to perform a search by
e animage id (Europeanald);
e the stream of an image;

e animage URL.

Then, calling getResults the system returns the results of the query ranked by similarity.

@000

ITHE ASSETS APIS

Page 95

class ImageSearchingAPR| /

AzzeizSeniee
winterfacen
lmragelearehingService

seFmh SinilanEemoeanas) o void
seFmh Siailarinout Seaw) void
seamh Sieri2rLiEL) o woid
getResultefnt, int) : Lst=Eumpeanai =

A

+ 4+ + +

BazeAzsetsSenice

Image Searching Servicelmpl

log: Logger= Logger.getlogge...
datablanagement: Datablanagement
ilmagelao: IRlmagelao

configuration: IRImageConfiguration
queryResults: Quen/Results = new QueanResults])
client: Client

semice: WebResouroe

quenyParams: hultivaluediap=String, String>
response:; ClientResponse

ImageSearchingSenicelmplllRImageConfiguration)
zethatabdanagementlatabdanagement) : woid
setliimagelacllRImagealan) : vaid
zearchSimilanEuropeanald) : woid
zearchSimilanlnputStream) : woid
searchSimilanURL) @ woid

getResultxlint, int) : List2Europeanald=

+ 4+ + 4+ o+ o+

Figure 44 —Images Indexing and Retrieval: Serching Service model

In this diagram are shown the available methods to create and insert images into the image
similarity search index. The initindex() method creates a new image index; it destroys the
previous index (if any) to build a new one. Then, by calling the insertimage() method the
index can be populated, by inserting images by their URLs or by their streams.

@000

ITHE ASSETS APIS Page 96 D2.0.4v.1.1

Figure 45 — Images Indexing and Retrieval: Indexing Service model

class ImagelndexingAP| /

AzzetzSenice
winterfaces
ImagelndexringService

+
s
+

drridirates) wod
imEetirage Eumpeanai, URL) :woid
insetiage Eumpeanaid, routStrean) o woid

£

BazeAzsetsSenice

ImnageIndexing Servicelmpl

datablanagement: atatdanagement
componentdamelao: IRlmagelan
configuration: IRImageConfiguration

+ 4+ + + + o+ o+

zetDatamanagement(latabanagement) : woid
zetliRlmagelanllRImagelacd : vaid
getConfiguration) : IRImageCaonfiguration
setConfiguration(IRImageConfiguration : woid
initlnd e ; waid

insertimagelEuropeanald, URL) : waid
insertlmage(Europeanald, InputStream) : vaid

In this diagram are shown the available client methods used to perform an remote image
similarity search. This allows to perform a search by

e animage id (Europeanald);

e the stream of an image;

® animage URL.

Then, calling getResults the system returns the results of the query ranked by similarity.

@000

ITHE ASSETS APIS Page 97

D2.0.4v.1.1

class client

M Fge Semhing
Im=age Searchinglrmpl

configuration: ImageRetrievalClientConfiguration
resourcelrl: String

rezource; MebResource

results: Arraylist<Europeanald=

ImageSearchinglmpl(
getComponentdameFromBestT : String
searchByldiEuropeanald) : woid
searchBydbjllnputStream) : waid
searchByUrl{URL) : woid

getResultxint, int) : List<Europeanald:>
getConfiguration) : ImageRetrievalClientConfiguration

+ o+ o+ o+ o+ o+ o+

Figure 46 — Images Indexing and Retrieval: Retrieval Client Model

In this diagram are shown the client side methods used to create and insert images into the
image similarity search index. initindex is the method to call to create a new image index; it
destroys the previous index (if any) to build a new one. Then, calling insertimage the index
can be populated, by inserting images by their URLs or by their streams.

class client

HrFgedrdexing
Irnagelndexing mpl

configuration: ImageRetrievalClientConfiguration
resourcelrl: String
resource; WebResource

Imagelndexinglmpll

getComponentdameFromReshT : String
getConfiguration) : ImageRetrievalClientConfiguration
initlnd e’ waid

insetlmagelEuropeanald, URL) : waid
insertlmagelEuropeanald, InputStream) : waid

+ o+ o+ o+ o+ o+

Figure 47 - Images Indexing and Retrieval: Indexing Client Model

4.4.5 3D-Model Indexing and Retrieval Services

The 3D Model Indexing and Retrieval Services allow users to search for 3D models
geometrically similar to a query 3D model (uploaded or returned from the search) or a
hand-drawn sketch.

Service Name | 3D Low-level feature extraction service

Responsibility | 1. Feature extraction

Provided 1. Extraction3D
Interfaces

Dependencies | ASSETS Common

@000

ITHE ASSETS APIS Page 98 D2.0.4v.1.1

Extraction3D

Key Concepts

LowLevelFeatureVector

Operations

e Extraction of Low Level Features

Service Name

3D Indexing service

Responsibility

1. Indexing

Provided
Interfaces

1. [InitIndex
2. Insertintolndex

3. Clearindex

Dependencies

ASSETS Common, 3D Low-level feature extraction service

Interface InitIndex

Name

Key Concepts | ObjectIlD

Operations e 3D index initialization
Interface Insertintolndex

Name

Key Concepts | ObjectIlD

Operations e Insertion of a new object into the index
Interface ClearIndex

Name

Key Concepts

Operations e 3D index deletion

Service Name

3D Search & retrieval service

Responsibility

1. Search & Retrieval

Provided
Interfaces

1. SearchingUploaded
2. SearchingSelected
3. SearchingSketched

Dependencies

ASSETS Common, 3D Low-level feature extraction service

@888

Page 99

D2.0.4v.1.1

S3QQMAES
LAVI I 7.)
(&
Interface SearchingUploaded
Name
Key Concepts | LowlevelFeatureVector, Ranking3D
Operations e Search for objects similar to uploaded object
Interface SearchingSelected
Name
Key Concepts | ObjectID, Ranking3D
Operations e Search for objects similar to selected object
Interface SearchingSketched
Name
Key Concepts | LowlevelFeatureVector, Ranking3D
Operations e Search for objects similar to sketched object

The class diagram of the domain objects used by the 3D services is presented in Figure 48.

e |owlevelFeatureVector3D contains the results of the 3D of the extraction service, as a
list of Integer.

® QueryResults contains the query results with the most similar 3D models to the query,
as a list of Europeanald.

e QueryResultsMarshaller serializes the 3D search results in a list of EuropeanalDAdapter
objects (Rest Service purpose).

® ImagelndexResponse contains the 3D search results as a list of EuropeanaUri.

@888

Page 100 D2.0.4v.1.1

class damain

CQuueryResults

results: List<Europeanald=
me Unmarshaller

log: Logger= Logger.getlogge...

CueryResult=Marshaller

collectionObjects: List<EuropeanaldAdapters

+ QuenResults])
setResults(String) : woid

+

+ getResultglint, int) : List<Eurapeanald>

+ getEuropeanaldAdapten) : List<EuropeanaldAdapters
+ setBEurcpeanaldAdaptenlist<Burapeanalds): waoid

Index20Response

LovwLewel FesturevectorzD

results: List=String=

features: List<integer=

+ getResults] : List<String=

+ getFeatures]) : List<intager=

+ zetFeatures(List<Integer=): woid

The class diagram of the 3D Extraction Service is presented in Figure 49.

The service performing the extraction of 3D low-level features is shown. The extract method
passes the url of a 3D model to the extractor; the results are returned in a XML file.

Figure 48 - 3D Domain Model

class 3dExdractionaF| /

AzseizSenioe
winterfaces
ExfraciiondDService

+ o=t o Steeg
+ exdagctShing) - Shing

i

BazeAzsetsSenice
Extraction30Servicelmpl

datablanagement: atatdanagement
iRThreeDDao: IRThreebban
configuration: IRThreeDConfiguration

+ 4+ + + 4+ o+ o+

zetDatamanagement(latabanagement) : woid
setComponentdamelac(lRThreellao) : waid
getConfiguration() : IRThreelConfiguration
zetConfigurationIR ThreeD Configuration) : waid
teshT : String

saweldrString, URL) : waid

extrachString) : String

Figure 49 — 3D Extraction Service model

The class diagram of the 3D Indexing Service is presented in Figure 50.

The methods performing the creation and update of the 3D index are shown. TheinitIndex
method creates a new 3D index. The invocation of insert3DFile method will populate the

@000

ITHE ASSETS APIS Page 101

index by passing the URL of a new 3D model.

class 3dindexingAFR] /

AzzetzSenioe
winterfacex
IndexingliDService

+ testl) o ShEng
+ imitiedex (Shdeg) o Shieg
+ insedA0File (Stiag) o Shieg

A,

BazedzetzSenice

Indexing30Servicelmpl

~ datamanagement: Databanagement
~ iRThreeblao: IRThreellac
configuration: IRThreeDConfiguration

zathatabdanagementlatabanagement) : woid
setComponentdamelac(lRThreellaa) : waid

getConfiguration(: IRThreeDConfiguration

setConfiguration(IR ThreeDConfiguration) : waid

test) : String

sawelrl(String, URL) : waid
CreateRefarenceObjecta™ector<DatasetObject=, String, String, int): int

- PopulatemMI_File®ector<DatazetObject=, int, int, int, String, String) : woid
+ initindexString) : String

+ inset30FiledString) @ Sting

+ + + + +

Figure 50 - 3D Indexing Service model

The class diagram of the 3D Retrieval Service is presented in the Figure 51. The methods
performing a 3D similarity search are shown. The following query forms are supported:

e a3Dmodelid (Europeanald);
e the stream of a 3D model;
® a3D model URL.

The results, ranked by similarity, are returned by calling the getResults method.

@000

ITHE ASSETS APIS Page 102

D2.0.4v.1.1

class 3dRetrieval AF| /

AzzetzSenioe
winterfacen
RefrievalI0Service

test) - Shing

seamh SinilanEempeana) o void

seamh Sinilaninout Sheamn) o void

seami SinilaniLAL) | void

getResultsfnt, int) - List=Evmaoeanai =

seamh Sinilar_intileger) | Teellfzo<Douhle, Evmpeana Ofect=
getRandon Offectzfirteger) | Treellzo=touhle, Evmpeana Ofject=
getResulte imtfnt, int) © List=integers

£

+ o+ o+ o+ o+ o+ o+ o+

Bz e Azsetz Senice

Retriewal 30 Servicelmpl

~ datablanagement: Catablanagement
~ [RThreebDao: IRThreelDao
configuration: IRThreeDConfiguration

zathatablanagementlatablanagement) : vaid

setComponentdamelaclRThrealDao) : waid

getConfiguration) : IRThreel Configuration

setConfiguration(|RThreelConfiguration’ : woid

te=t]) : String

FrintResTreedap=Couble, Object, int, int, ataset) : wvaid

SearchForObjectifithilint, int, int, int, int, String, String) : Treedap<Couble, Europeanalbject=
ChooseObjectsRandombylint, int, int, int, int, String, String) : Treebap<Double, Europeanalbject=
searchSimilanEuropeanald) : waid

searchSimilanlnputStream) @ waid

searchSimilanURL) : woid

getResultsint, int) : List<Eumpeanald=

zearchSimilar_intInteger : Treebap<Louble, Europeanalbject=

getResults_intint, inf) : List<integer=

getRandomObjectslinteger: Treeblap<Double, Europeanalbject=

+ 4+ + + 4+

+ 4+ + 4+ o+ o+

Figure 51 - 3D Retrieval Service Model

The class diagram of the 3D Extraction Client is presented in Figure 52.

The methods to test the 3D feature extraction are shown. The sendLinkToService method
sends the 3D model file URL to the extractor and receives the URL of an XML file, containing
the results of the feature extraction process.

@000

ITHE ASSETS APIS Page 103 D2.0.4v.1.1

class client

winterfaces
fhreed: Exfracfion30

+ getComponertiiameFfmomRest]) o Sidmg
+ mewd ik ToSendoe (Shimg) o Shirg

A

ExtractionZDlmpl

configuration: IRThreebClientConfiguration

+ getConfiguration) : IRThreebClientConfiguration
getComponentdameFromFBestl : String
+ sendLinkToSenice!String) : String

+

Figure 52 - 3D Extraction client model

The class diagram of the 3D Indexing Client is presented in Figure 53.

The methods to test the 3D indexing are shown. The sendInitLinkToService method sends
the URL of a file containing 3D model to the index creator. The sendNewFileLinkToService
method sends the URL of a 3D model to the index updater.

class client

winterfaces
fhreed:lndexing3D

+ getCompomentiiamermaRest]) @ Shing
serdiritlink To Senioe (Sing) & Shimg
+ mendfiewFilelink To Sendoe (Shimg) & Stieg

i

+

Indexing20lrmpl

configuration: IRThreeDClientConfiguration

getConfiguration) : IRThreebClientConfiguration
getComponentMameFromRBest : String
sendinitlinkToS e rvice(String) : String
sendMewFilelinkT oS enviceSting) : String

+ + + +

Figure 53 - 3D Indexing client model

The class diagram of the 3D Retrieval Client is presented in Figure 54. The methods for
remote invocation of the 3D retrieval service are shown. The following query forms are
supported:

e a3Dmodelid (Europeanald);

@000

ITHE ASSETS APIS Page 104 D2.0.4v.1.1

V)
i
.
ST
"IIiPID
ui

Bl

l
\
\

e the stream of a 3D model;

® a2 3D model URL.

When calling getResults method, the system returns the results of the 3D search ranked by
similarity.

4.4.6 Audio Indexing and Retrieval Service

The audio indexing and retrieval service provides advanced music search and
recommendation functionalities. It enhances Europeana by enabling end users to discover
audio media based not only in textual similarity but based on audio content and context
similarities.

This service provides two interfaces: one for inserting audio and the other for searching
amongst the indexed one.

Service Name | Audio Indexing And Retrieval

Responsibility | 1. Indexing and search of music based on content-based as well as
contextual similarity

Provided 1. AudiolndexingService

Interfaces 2. AudioSearchingService

Dependencies | ASSETS Common

The AudiolndexingService interface allows kick starting the content based analysis, the
context enrichment and the actual indexation within the audio dataset. It requires an audio
identifier, audio metadata (in order to match it against the context information for
enrichment) and the audio url for audio feature extraction.

Interface AudiolndexingService
Name

Key Concepts | Music features extraction and audio indexing

Operations ® insertAudio - Inserts audio based on Audio ID, Audio Metadata and
Audio URL

LM:THE ASSETS APIS Page 105 D2.0.4v.1.1

class Audiolndexing AR /

AzzetzSenice
winterfaces
AudialndexingService

+ imitimdes) o owodd
inseftdudioEumpeanad, URL, Dickiorans=Shing, Shimg=) o wodd
+ insefdudiofEumoeznakl, ot Strean, Dickoran=5Sting, Shirg =) woid

i

+

BazeAzzetzSenice

Audiolndexing Servicelmpl

datatlanagement: atabdanagement
componentdamelae: IRAudiolbao
configuration: IRAudioConfiguration

sethatablanagement(latablanagement) : woid
setiRAudiolaoRAudiolacd : vaid

getConfiguration) : IRAudioConfiguration
setConfigurationlRAudiaConfiguratian) : waid

initlnde=7 : waid

inzetfudiofEuropeanald, URL, Dictionan<String, String=) : woid
inzertfudiolEuropeanald, InputStream, Dictionan<String, String=) : waid

+ o+ o+ o+ o+ o+ o+

Figure 54 — Audio Indexing and Retrieval: InsertAudio model

AudioSearchingService interface enables audio similarity searches, mood based searches
(or high level musical feature) or hybrid search. The hybrid search uses similarity search
filters for audio descriptors.

Interface AudioSearchingService
Name

Key Concepts | Audio Similarity Search

Operations e searchSimilar - Audio Similarity search based on Audio ID. Optionally,
search can be filtered by mood or other high level musical feature.

@000

ITHE ASSETS APIS Page 106 D2.0.4v.1.1

class AudioSearching AR /

AzzetzSenioe
winterfacen
AudioSearchingService

seamh SinilanEvmaeanaid, Dickioranr=Shimg, Stimg =) © wodd
seamh Sinilarimout Steamn, Dickiorane=Shing, Shimg =) - wodo
seFmh SiailarURL, Diolorany=5hing, Shing =) - woid
getResultsfat, int) @ Det=Evmpeanaid =

i

+ + + +

BazeAzsetzSenice

AudioSearching Servicelmpl

irdudiolao: IRAudiolao
datatlanagement: atablanagement

AudioSearchingSenvicelmpllRAudicConfiguration)
sethratablanagement(latablanagement) : waid
setivtudiolacllRAudiolan) : void
searchSimilanEuropeanald, Dictionans<String, String=) : woid
searchSimilaninputStream, Dictionans<String, String =) : void
searchSimilanlURL, Dictionany=String, String=y : woid
getResultslint, int) : List<Europeanald=

+ o+ o+ o+ o+ o+ o+

Figure 55 - Audio Indexing and Retrieval: SearchAudio model

4.4.7 Video summarisation, indexing and retrieval

The goal of this service is to enhance the functionalities of Europeana for searching,
browsing, previsualizing and accessing video content, which is a time consuming activity due
to the high amount of information available in media (video) files.

Service Name | Video Summarization

Responsibility | 1. Generation of reduced length versions of original videos and
extraction of representative keyframes

Provided 1. VideoSummarizationService

Interfaces 2. SummarizedVideo

Dependencies | ASSETS Common

Interface VideoSummarizationservice
Name

Key Concepts | Europeanald

Operations e getSummarizedVideo() - returns a SummarizedVideo object from
which the video summary and keyframes can be obtained. The caller
can optionally indicate the desired percentage for the video summary.

@000

ITHE ASSETS APIS Page 107 D2.0.4v.1.1

V)
i
g
"IIi;ID
ui

PN
&

Bl

l
\
\

Interface SummarizedVideo
Name

Key Concepts | URL, KeyFrame

Operations e getOriginalVideo() - returns the original video's Europeanald

e getSummarizedVideo() - returns the URL of the summarized video.
This method receives an optional parameter with the percentage of
the original video length to generate in the video summary.

e getKeyFrames() - returns a collection of KeyFrame objects according
to the percentage that was indicated for the video summary. Each
KeyFrame instance is a representative pic-ture of the video along with
its timestamp in the original video.

Service Name | Video Indexing and Retrieval

Responsibility | 1. Indexing and search of videos based on visual similarity

Provided 1. VideolRService
Interfaces

Dependencies | ASSETS Common

Interface VideolRService
Name

Key Concepts | Europeanald

Operations ¢ indexVideo() - calculate the visual similarity indexes of the video so
that it can be compared to the indexes of other videos (for search
purposes). The method does not return any information but stores the
Europeanld parameter and the indexes in our internal database.

e getVideoSimilarTo() - returns a collection of Europeanald objects
corresponding to videos that are similar to the Europeanald object
received as parameter. This Europeanald object can be either an
image or a video. The visually similar videos that this operation
returns are obtained from those ones that our module has previously
analyzed and indexed (using indexVideo()).

The next figures show the UML classes diagram of the domain object for the summarization
service and the indexing and retrieval service.

The method getSummarizedVideo() of the VideoSummarizationService class is intended to
create different SummarizedVideo objects. The same original video can be summarized
several times with different values in the percentage parameter. Each instance of the
SummarizedVideo class represents a summarization request. This data is associated to the
Europeanald object by means of the getOriginalVideo() method. The getSummarizedVideo()
and getKeyFrames() methods do not create new Europeanald instances but a URL or
collection or KeyFrame objects, respectively. The KeyFrame class contains information for

LM:THE ASSETS APIS Page 108 D2.0.4v.1.1

the timestamp of the keyframe in the original video. The timestamp units are milliseconds
and 0 means the beginning of the video. The KeyFrame class also stores the JPEG visual
picture of the keyframe.

class domain

wenumerations EEECEIE AssetzDomnain Odect
WideoDatalmpl:: WideoDescription|mpl : -
FieldsErnurm :Field=Enurm #interdce:s
SummarizedVideo
wenum: GBEmITLE . + getfumpeanzil() - Evmoeanakd
Europeanallri el peanal + getSummanzed Vdeofozt) © LR
Originaltideo VIF'EDT_,IDE + getewFemenflogt) f List-MerFEne =
StaryBoard Ui
WideoSummany Duration
Format
+ evaldame(): String
+ ewalHame() : String

- - Assetsionsi ot
Azsetelomain Oyect . . zpetslionain Cies
«interfaces KeyFramalmpl:: winterfaces
ey Franme FieldsEnum Videole scrigfion
b R s + TYPE_WIDED: String ="wideo" freadCOnhl
+ getFicture('U‘%’." wENUM + TYFE_SUMMARY: String ="summan! freadOnhy}
+ getwageufé : Stiey Europeanallr + TYPE_CLIP: String = "clip" {readOnly}
+ getEempezna U] o Sieg TlmeSta.mp - X
& SRS ETE D S T ImageUri + getlidea Fype] @ Shimg
+ sebageUii(Sking) - void : + setlfidec Meoe Shing) vodd
+ selEumaean LE(Sirg) | waid + ewalMamer) : String + getli() : Stirg
+ st (SEdag) o ouodd
& + getFomat]) o Sting
j + setFomat(Sking) - woid
. + gedocalPath() : Sting
BazeAzzetzDomgin Oect + setlocalFath(Siing) "."‘:";d
VewFramelmol + getEumpesnak() @ Sting
i P + getfumoesna W[o Shieg
serialVemionUID: long = 5447634542509, freadOnhy} + sstEumpeans U (Sifag) - volid
+ getluation) lorg
+ metlwation fomg) @ woid
ainterfaces
VidealDaiz

getEumpeana U ([© Siimg
setEumpezna i (Shing) o uodd

setligira! Wideo (WdeoDesoroton) . void
gettiging! idea] @ Wideolesemation
setlfideo Suarardry (Wieolesorobion) | void
getlideo Summany @ idealesedotion

et StoryBoam () List=tey e =
setShonyBoam (List=ie yFame =) & woid

+ o+ o+ o+ o+ o+ +

BazeAzzetzDonrzin Oiyect

“ideoDescription|mpl

2}‘ - =erialVersionUID: long = -232742537E0194. . freadOnlyl

BazeAssetslon dm Ofect
“ideoD=talmpl

serialVersionUID: long = -22838261302832 ... {readOnhy}

Figure 56 — Video Summarization Model

The method getVideosSimilarTo() of the VideolRService class is intended to obtain a
collection of visually similar videos (represented as instances of the Europeanald class). The
operation receives as parameter a Europeanald object that can be either an image or a
video. The visually similar videos that operation returns are obtained from those ones that
the module has previously analyzed and indexed (i.e., the videos that were received through
the indexVideo() method).

@000

ITHE ASSETS APIS Page 109 D2.0.4v.1.1

class api

BazeAzzets Sence
WideolR Servicelmpl

~ datadlanagement: Datablanagement
~ iRwWideolan:
configuration: IRVideoConfiguration

IEVidealano

+ 4+ + + + +

zathatablanagementlatablanagement) : vaid
setiRVideoDaollRVideobao) : void VideolR Service
getConfiguration) : IRVideoConfiguration
setConfiguration(|RWideaConfiguratian) : waid
index\ideolEuropeanald) : woid
getWideoSimilarTalEuropeanald) : List<Europeanald=

BaseAzzets Seniee

“ideoSurmmmarization Servicelmpl

~ datablanagement: Catabdanagement
~ iRWideoDao: IRVideolan
configuration: IRVWideoConfiguration

+ o+ o+ + o+

zeth atabdanagement(D atablanagement) : woid
setlRVideoDao(lRWidealaoy : woid

getConfiguration) : IRVideoConfiguration
setConfiguration{IRVideoConfiguration) : waid
getSummarizedVideoEurapeanald, float) : Summarizedyfideo

VideoSumman zafionService

Figure 57 — Video Summarization Service model

The SummarizedVideo class has a protected constructor that prevents from other
developers attending to instantiate it directly. This object always has to be instantiated
throughout its factory object (i.e., VideoSummarizationService).

4.5 The Digital Preservation Models and Interfaces

4.5.1 The Risk Management Models and Interfaces

Service Name

Risk Management

Responsibility | 1. Content classification /collection profiling
2. Risk analysis and rule based preservation plan recommendation
3. Preservation watch

Provided 1. ContentClassification

Ikl iEes 2. PreservationWatch

RiskAnalysis

Dependencies

ASSETS common, Normalisation Service, Notification Service

The diagram in
Service:

Figure 58 represents the domain concepts used by the Risk Management

@000

ITHE ASSETS APIS Page 110 D2.0.4v.1.1

Ay
v
v

PN
&

LN
"‘m‘r»
[0}

l
\
\

CollectionAnalysisReport - contains aggregated report information about the analyzed
collection e.g. the total count of broken objects, their formats.

MetadataAnalysisResult - compraises metadata analysis results like e.g. count of
missing fields and broken URIs in europeana records

RiskAnalysis - describes the underlying risk model which is specifically applied for a
given record at hand to evaluate the individual risks per property as well as the overall
weight between risk property sets.

RiskPropertySet - is a container for risk properties and nested property sets;

RiskProperty - is a leaf-node-concept which on the one hand contains static information
on the property ID, version, query (e.g. how to query and evaluate the property’s
possible outcomes) but also contains the evaluated risk classification result.

RiskClassification — contains a set of evaluated RiskFactors for a given object

RiskFactor contains the actual domain knowledge of risk factors and rules for judging on
risk properties in a given context. It defines rules with min and max limits, risk score and
metrics for different data types.

‘LM:THE ASSETS APIS Page 111 D2.0.4v.1.1

class Domain Objects

astatios
riskmodel:RiskPropertySet:PropertySets

atatios
riskmodel--RiskProperty Set-Properties

propriySet

< RgkPrapenys

Propary() : ListsRiskPropary>

riskmodel:RiskAnalysis

PropsnySat

astation

riskmodel:RiskPropertySet:

PropertyiDs

=Sting>

List=Stang>

riskmodel--RiskPropertySet

astaticn

:RiskClassification:RiskFactors

an RiskFactors. RiskFactors

2 RiskFaciors

wststion
kmodel: RiskClassification:
RiskFactors :RiskFactor

#rizkFacion

s<Fsciorsi) : RiskPropertySet

+ gatRi
s skPropartySet) : void

skFactors(Ri

opertyiDs
PropertySetProparySetiDs
skPropertySat PropartyS

Fi

String) : void
finValua(String) - void
skSocore(int) * void

riskmodel::RiskClassification

s<Factors() :

ant() : double

+ setCrestionDs| gorianCsiendsr : v
+ sstRiskFactors(RiskClassiication. RiskFsctors)

ight(doublz) : void

id

EsseAsceteDomainObject

port

EBazedzestsDomainObject

«gnumarations
riskmodel::Metric

riskmodel::RiskProperty

!

riaMersionUID

booissn = tru

ang = 26484258128507919634L

rakan.

ralVersionUID

boalesn = fs!

ong = 2648429128507918534L freadOniy}

freadOniy}

nAnalysRepon(

IsShownAtCou

+ setBrokenisShownAtCountiinteger) : void
- rokenisShownByCount =r): void
+ void

- void

+ void

isBrokan()

d

getBrokenEuropeenalsShownAt] : Strngl]

getBrokenEurnpesnalsShownBy[) - String]]
getCollectionName() : String
Europesnald() : Sting
g=tEurnpeanaln() : String

ieidsEnum() : FiekiDefEnum]]

getMissingEurapeansDeCrastor(: Bookan

nsCcFormat() : Baokesn

Boolean

sAnsly
rokenEurapeanslsSnownAl

- lissingEuropesnsDeCrastoriBoolesn) : void
- NissingEuropeanalcFamsi(Boslean) : vaid
- lissingEuropeanaleT: void
+ s=tResponsslinasisShownAt{String]) : void

+ s=iRespanseLineslsShownBy void

+ toString() : Sting

saoksn
Resut]

r clizctionC: R

BsseAssstaDomsinObject

RizkClsssfication(RiskCisssiication) :
alua(Sting)
an(String)

riskmanagement AudioFileDescription

45429

128507919535L

jong = 2648429128507518537L {readOnly}

EszeAszatzDomanObject

riskmanagement FileDescription

{rasdOnly}

Repor)

+ AudioFiDescrintion
AudioCodec) : String
FiakdDefEnumi]
ec(String) : void

propertyMap: Map<Sinn;

5 <Str

= new H sgt
8429128507818536L fresdOniy]

riskmanagement:ImageFileDescription

setCompression(String)

tring

gat

geiCrestor() : Sting
getEuropesnald() : String

gat FizldDefEnum]

: void
uropesnskd{String) : v

tPropertyMsp(Msp<String. String=) : vaid
String() - String

riskmanagement:VideoFileDescription

5128507913537L {readOniy}

@000

Figure 58 - Risk Management Service Domain Model

ITHE ASSETS APIS

Page 112

D2.0.4v.1.1

V)
i
g
"IIi;ID
ui

PN
&

bl

l
\
\

The Figure 59 briefly describes the most important interfaces and classes implementing
server side business logic. The PreservationRiskmanagementService interface provides
functionality needed to pass data received from client by REST services to the Risk Analysis
Service. The PreservationRiskmanagementServicelmpl class contains actual implementation
for corresponding analysis calculations.

The PreservationRiskmanagementDao interface provides the database connection including
store and retrieve methods for different analysis types

‘LM:THE ASSETS APIS Page 113 D2.0.4v.1.1

)
afjmd
Qs
)
7))
a3

podeysEAEUIUSIUODUoNS SN0 | (UodayEE

ynessysiE.

LodsgerEd

SEQSIESSY

OEIUaWabEUEIIYSIHUODEAISS eI OEp

®ECELSIU Y

upuogasgon | (5 E._.m lurod umm_m_“.

csquswsBeusuxsyucas

sE=id~

peoa © {HodsysEAE Uy UsoSI0D

ocequswabeusuNsUoH B

..Pm

o ru.}_nmmrmr.vn,urn 15

cEmuswsisuswy U

wogssnByuoy;

ALl
BEusyEiEp

SOUUSTEISEErSEET

pdwjasrassiusuaieuewy s quonealasal e

uswabeuEwysy

(e LT e e o ol

wopemnByuopuawaleuswysiyuogeassaly

SIUSTEISET Y

ESIELEIUE

sxussluswsBeuswuysucBaSsEId~

ucnsinByuss~

prow : {ssuusgiuaws BeusussH U EU S SIY
fuopsnByucoiuswsBeuswysigucnBISERId)U

pioA

uensinByucousws EsusuRs uog

Buums

{jsonus siuswsBeuswysJucENBESIdIET +

TuosinByuomisB =
swepjusucduwom=E =

N Biguc

Eagssssysseg

}sauawaieuE Wy SIUoREAIBS3I 453

A |dy 1335 sse|o

Figure 59 — Overview of Risk Manangement Interfaces

D2.0.4v.1.1

Page 114

ITHE ASSETS APIS

@000

v
)

[o o

o I NI
LAV T 5. T
._{' B

Interface PreservationRiskmanagementService

Name

Key Concepts | RiskAnalysisReport

Operations e CollectionAnalysisReport analyseMetadata(String id) - this method
analyzes the metadata of Europeana objects for a particular collection
identified by passed id;

e CollectionContentAnalysisReport analyseConnectionContent(String
id) - this method generates response to client for particular Europeana
collection identified by the given ID in form of “colection content
analysis report” objects;
¢ FileDescription analyseContent(String id) - this method generates

response to client for particular Europeana collection object identified
by passed ID.

Interface PreservationRiskmanagementDao

Name

Key Concepts | RiskAnalysisReport, StoreReport, RetrieveReport

Operations e CollectionAnalysisReport getAnalysisReport(String id) - this method

retrieves collection analysis report from database by passed object id;

CollectionAnalysisReport storeAnalysisReport(
CollectionAnalysisReport collectionAnalysisReport) - this method
stores collection analysis report in database;

MetadataAnalysisResult getAnalysisResult(String id) - this method
retrieves metadata analysis result from database by passed object id;

MetadataAnalysisResult
storeAnalysisResult(MetadataAnalysisResult
metadataAnalysisResult) - this method stores metadata analysis
result in database;

FileDescription getFileDescription(String id) - this method retrieves
file description from database by passed object id;

FileDescription storeFileDescription(FileDescription fileDescription) -
this method stores file description in database;

CollectionContentAnalysisReport getContentAnalysisReport(String
id) - this method retrieves collection content analysis report from
database by passed object id;

CollectionContentAnalysisReport
storeContentAnalysisReport(CollectionContentAnalysisReport
collectionContentAnalysisReport) - this method stores collection
content analysis report in database.

LM:THE ASSETS APIS Page 115 D2.0.4v.1.1

[o o

\)
()
¢

h)
v

>
S

Interface ContentClassification
Name
Key Concepts | SimpleClassificationProfile, ExtendedClassificationProfile,
ProfilingConfiguration, Report, ExecutablePolicy, FeatureVectors
Operations e classifyContent
e setProfilingWorkflow
e setlnspectionDepth
e getReport
e storeFeatureVectorsPerObject
Interface PreservationWatch
Name
Key Concepts PreservationWatchSource, FormatMonitor, Rules, FormatRiskScores,
ServicePerformanceTests, FormalRecommendations
Operations ® register,
e deposit,
e getFormatRiskScore,
e getServicePerformanceTest,
e getFormalRecommendation,
e |istAllFormatRiskScores,
e |istAllServicePerformanceTests,
e |istAllFormalRecommendations
Interface RiskAnalysis
Name
Key Concepts | RiskReport, ExecutableNormatisationPolicy, RiskScores, Metrics,
RecommendationMode, Reasoner
Operations ® analyseBySample
® analyseByMetadata,
e configure
Interface RiskModel
Name
Key Concepts | PropertySet XML, ClassificationXML
Operations ® RiskAnalysis analyze(File file, String propertySetXml, String
@ @®@ THE ASSETS APIS Page 116 D2.0.4v.1.1

v

[o o

o I NI
LACT T 5. 5 T
classificationXml) - this method analyzes passed file using calculation
model retrieved from passed property set XML and classification XML
files. If XML files have no valid path - default files will be used;
¢ RiskAnalysis getRiskAnalysis() - this method retrieves risk analysis
structure;
e setRiskAnalysis(RiskAnalysis riskAnalysis) - this method initializes a
risk analysis structure;
e setPropertyValue(RiskPropertySet set, String propertyld, String
propertyValue) - this method initializes property value.
Interface RiskScore
Name
Key Concepts | RiskScore
Operations e RiskPropertySet getRiskScoreBreakdown() - returns a set of all
RiskProperties that have been taken into account for the given data
item profile to calculate the risk score;
® RiskPropertySet getRiskProperties() - returns a set of all
RiskProperties;
® Integer getRiskScore() - returns the risk score of a given data item
profile; risk score values are integers between 0 (no risk) and 100
(highest risk).
Interface Connector
Name
Key Concepts | Request, Repository, Connection, Query
Operations e String getQuery() - this method returns base query for repository
request;
e String getRiskPropertyldentifier() - this method returns a risk
property identifier;
e String getSearchValue() - this method returns search value; it is a
request value for repository;
e List<String> getColumnNames() - this method returns repository
column names for particular request;
e setValue(String value) - this method fills risk property with value
retrieved from repository.
Interface RepositoryDescription

LM:THE ASSETS APIS Page 117 D2.0.4v.1.1

Name
Key Concepts | Repository
Operations e String getID() - this is a unique repository ID;
e String getName() - this is a repository name;
e URL getLocation() - this is a URL to repository;
e String getProtocol() - this is used protocol;
e String getUpdatePolicy() - this is a update policy definition;
e String getNameSpace() - this is repository name space.
Interface PreservationWatchSource
Name
Key Concepts | PreservationWatch, Repository
Operations e RepositoryDescription describe() - this method retrieves a repository
description;
¢ void update() - this method retrieves data from repository

The following diagram depicts the client side interfaces and classes used for remote
invocation of risk management service.

class API [client side)

riskmanagement: PreservafionRiskmanagement

zintarfacas

o

ntentAnalyeizRepon

iy=izReport

Strng

BazeAszetzConfiguration
riskmanagement::
FreservationRiskmanagementClientConfiguration

+ getComponentMame(} : String

-configuration

client:PreservaticnRiskmanagementimpl

configuration: Prz

mvationRiskmanagementClentConfiguration

t{Long} : CollectionContenténslysisReport

Figure 60 - Risk Management : Client Side Models

@000

ITHE ASSETS APIS Page 118

D2.0.4v.1.1

V)
i
g
"IIi;ID
ui

PN
&

Bl

l
\
\

Interface PreservationRiskManager
Name

Key Concepts | Metadata Analysis

Operations e CollectionAnalysisReport analyseMetadata(Long europeanald) -
allows to analyse broken URIs and missing preservation relevant fields
in EuropeanalD object.

e String getComponentNameFromRest() - retrieves the component
name from rest interface;

e CollectionContentAnalysisReport analyseConnectionContent(Long
id) - this method generates response to client for particular Europeana
collection identified by the passed ID in form of colection content
analysis report objects;

¢ FileDescription analyseContent(Long id) - This method generates
response to client for particular Europeana collection object identified
by passed ID in form of content analysis report.

4.5.2 The Normalisation Models and Interfaces

Service Name | Normalisation

Responsibility | 1. Allows the workflow execution of preservation services on a specific
object or a given collection;

ServiceRegistry,

2. Design of Normalisation tasks;

3. Administration and deployment of preservation services
Provided 1. WorkflowRegistry,
Interfaces 7

3.

WorkflowExecutionManager

Dependencies | ASSETS common, Notification

The diagram in Figure 61 represents the major normalisation data domain objects used by
the service: Every service declares a set of parameters that it’s able to cope with (e.g. the
compression type, quality or algorithm to apply) to allow fine-tuning of the service’s
underlying tool. Data records that are produced and exchanged between services are
wrapped up in a repository independent data abstraction called Planets Digital Object,
which roughly speaking can be mapped to the PREMIS (PREservation Metadata:
Implementation Strategy) notion of a representation object. It is composed of one bit-
stream, associated to repository specific metadata and in addition is designed to sufficiently
express the preservation process and its results as events, manifestations and properties.

¢ DigitalObject - A representation of a digital content object. Instances are created using a
builder to allow optional named constructor parameters and ensure consistent state

LM:THE ASSETS APIS Page 119 D2.0.4v.1.1

jay
()
0y

N,
[o o
Ui

l
\
\

during creation.

ImmutableDigitalObject - Representation of an immutable, comparable concrete digital
object, to be passed through web services and serializable with JAXB (Java Architecture
for XML Binding).

ServiceDescription - An entity to hold metadata about services. Using a builder ensures
consistent object state during creation and models optional named constructor
parameters while allowing immutable objects.

ServiceReport - The result of calling a digital preservation service, where possible,
information concerning the quality of the outputs should be placed in Events associated
with DigitalObjects.

MigrationPath - Simple class to build path matrices from. Contains the input and
outputs of the path, and allows for parameters for that mapping.

Parameter - This wraps the concept of a service parameter. When retrieved from a
service, the default values should be set. This form does not allow optional v. required
parameters, as ALL parameters should be explicitly specified. An 'optional' parameter
implies an implicit default that would end up not being recorded in the audit trail.

Figure 61 - Normalisation Service Data Model

LM:THE ASSETS APIS Page 120 D2.0.4v.1.1

V)
i
g
"IIi;ID
ui

PN
&

bl

l
\
\

The following diagram (Figure 62) represents the verbs or functional entities the service is
able to provide. In essence, this is an attempt to concretely define the basic nouns and verbs
of digital preservation, and so provide a suite of core preservation operations. These can be
combined and swapped transparently when performing the same conceptual operation and
therefore allow to perform a wide range of preservation processes.

Identification services extract a list of matching format URIs and record the methodology
used to determine the format. The Characterisation operation makes it possible to extract a
list of measurable properties and values from a given Digital Object. Validation services
report on the well-formedness and validity of a record with respect to the indicated format,
while Modification ones allow to enrich, corrupt, repair or crop a given digital object. The
Comparison interface compares different objects based on metadata, extracted properties
or normalized data to provide a degree of equivalence between those objects. The largest
number of available tools implement the Migration interface i.e. preservation action to a
specified target format. Planets has enhanced existing migration tools, as reported in [].

‘LM:THE ASSETS APIS Page 121 D2.0.4v.1.1

assgts

tl3ss serviees /
—

identfy: HentfyResut
(=4

Pes

- ot SenieReot

compare:Comparedesut
[esf

dentfResufLsteURl» Netrod, SenieeRepor)

- fagment: Song

validate:Valdatefesul

fzsf)

PrpertComarsin
et
siéCompar

migrate: Migatefesult

esuL sk Property Compsrsor?, SenvoeRepor
PropertComparon, SenveRepot, Stin)

s
200kan

<ompRsts

Preperty): aid

igrte:Niyat SreamResponse

+ oeteSenoe Senice Dot

anteftes
PreseafonServiceFacto onffaes
migrate:Migate

+ miyate Dt

Objet, R LR LiseParmeters) irteReaut

flici
FresenvafnSenice

charaeterise: CharacirieResul

fesf]

campare: PopertConparison

comparson: :'302'7 =l

B
+ Cnarae
+ Daaers

+ (o

z4Properys, Bevezenor)

e Deserpfon

i

sty

e
+ polSitusiing - Ay

e

it DigtalObect R, LR URL

LifePamneters Sing| |+

(raraerseRes

our, LatCharscterseesuty, LR)

N

i
charseterice Charactenie

= flici - et fhici i
modiy:dodfy validae: idenfy: Ay compire: CommonProperies comzare:Comare

i LitePaameiets | Chamofeoefen

1) LifProgertys

+ moaffDigialOfgct URY, LtéParameter Mo Resu i

0l LA, L

stParmmetts) - Valdtefeaut

+ it

"
U

[Tttt LisePammetrs): ent et + ferecfin Lt

+ unim(LitLRl

R CompreResul '

Compstefeaut +

iePametets] ComparReaut

s, g

[ListProperys
): Propety

+ isingeProperyComprzon):booksn
+ Bl

bogksn
PrperConparian]

+ PperConparin(Pper, Lis<Prapetye, LissProperyy, Equvglence)
+ PoperConparin(Poper

1, Prepety, Prgesty, Equieence]

e

compars:CompatePronerts
+ compar(C
canertonfy|

convertpuf gt

gl LifeFammatet - CompaeReau

3T

- ChasieaRent

+ Paope

+ {odh

Campgrsin(

s

Do)

ITHE ASSETS APIS

Page 122

Figure 62 - Normalisation Services

D2.0.4v.1.1

The Assets Workflow and Service Execution Engine allow building complex high-level service
assemblies and take care of their submission, execution and result delivery.

ciass worklow,

Kflow: WorklowFactory

WorkflowResulitem

Figure 63 - Normalisation Workflow

Interface ServiceRegistry
Name

Key Concepts | ServiceDescription

Operations * public Response register(ServiceDescription serviceDescription) -
@param serviceDescription The service description to register.
@return A response message

e public List<ServiceDescription> query(ServiceDescription example) -
Query by example registry lookup. @param example The sample
service description. @return The services for which all non-null values
correspond to the values of the given sample object

e public List<ServiceDescription> queryWithMode(ServiceDescription
example, MatchingMode mode) - Query by example registry lookup
with a specified lookup strategy. @param example The sample service
description, @param mode The matching strategy to use when
matching against the given sample, @return The services for which all
non-null values correspond to the values of the given sample object,
based on the supplied matching strategy

¢ public Response clear() - Clears the registry of all entries. @return A
response message

@000

ITHE ASSETS APIS Page 123 D2.0.4v.1.1

S3QQMAES
LACT T 5. 5 T
¢ public Response delete(ServiceDescription example) - @param
example The sample of the service descriptions to delete @return A
response message.
Interface WorkflowExecutionManager
Name
Key Concepts | WorkflowlInstance, WorkflowConfiguration, WorkflowData,
WorkflowReport, WorkflowStatus, WorkflowQueue
Operations ¢ public UUID submitWorkflow(WorkflowInstance workflow) - Submits

a workflow for execution. This will generate a UUID ticket and send a
message containing all information (workflow, ticket) to the queue

¢ public WorkflowExecutionStatus getStatus(UUID ticket) - returns the
Workflow Execution Status for a given ticket.

¢ public int getPositionInQueue(UUID ticket) - Returns the current
position in the queue

e public void notify(UUID ticket, WorkflowResult wfResult,
WorkflowExecutionStatus executionStatus) - The callback method
which is used by the execution engine to report back on a workflow
execution and its status

e public void notify(UUID ticket, WorkflowExecutionStatus status) -
The callback method which is used by the execution engine to report
back on a workflow execution's status

e public void notify(UUID ticket, WorkflowResult wfResult,
WorkflowExecutionStatus executionStatus, int percentCompleted) -
The callback method which is used by the execution engine to report
back on a workflow execution, its status, the current workflowResult
and the percent of completed items

e public int getProgress(UUID ticket) - submitted, completed or failed;
0-100 when execution is running

¢ public WorkflowResult getExecutionResult(UUID ticket) - Method for
polling the workflow execution results for a given ticket. public
boolean isExecutionRunning(UUID ticket)

¢ public boolean isExecutionCompleted(UUID ticket)

¢ public boolean isExecutionFailed(UUID ticket)

4.5.3 The Notification Models and Interfaces

This component is mainly an implementation of the publish-subscribe pattern, and for its
responsibility it may be considered a component of the OAIS Preservation Planning.

In this perspective it's possible to identify its characterising concepts:

® Publisher - actor enabled to submit/publish messages related to specific terms of
interest;

‘LM:THE ASSETS APIS Page 124 D2.0.4v.1.1

v
)

V)
i
i
[o o
o

\j;;:“‘\

Bl

l
\
\

Subscription — set of terms of interest which rely on a taxonomy;

Subscriber - actor which expresses his/her own terms of interest for whom expects to
receive alerts of changes

Message - object used for delivering/notifying terms of interest. Notifications are the
messages submitted by the publisher, and alerts are the messages received by the
subscriber.

For the above reasons, this service shares the models and features defined in section 4.2.5.

In practice, the Preservation Notification Service supports a digital curator in managing the
provenance information for a document within the Digital Library. In fact, the document is
conceived as a “subscriber” which subscribes to “topics” according to its description. The
alerts will be notified and will update the provenance whenever potentially impacting
events occur. Provenance Information, is a key information of the OAIS (1S0:14721:2003)
Preservation Description Information.

Service Name | Preservation Notification

Responsibility | 1. Allow to manage the provenance information for objects

Provided 1. ProvenanceManager

Interfaces

Dependencies | ASSETS Common, NotificationManager, RegistrationManager,
TaxonomyManager

Interface ProvenanceManager

Name

Key Concepts | Provenance

Operations e Provenance createProvenance(ldentifier serviceld, Identifier
documentld, Set<Term> documentDescription) — allows a service to
create and register provenance information for a potentially impacted
document, described by a set of terms. This method will be
implemented later;

* Provenance updateProvenance(ldentifier serviceld, Identifier
documentld, Alert alert) — allows a service to update the provenance
for the potentially impacted document through an alert. This method
will be implemented later;

* Provenance getProvenance(ldentifier serviceld, Identifier
documentld) - allows a service to obtain the provenance for a
potentially impacted document. This method will be implemented
later;

¢ boolean deleteProvenance(ldentifier serviceld, Identifier
documentld) - allows a service to delete the provenance for a
potentially impacted document. This method will be implemented
later;

LM:THE ASSETS APIS Page 125 D2.0.4v.1.1

.

Prowvenance

eu.europeana.assets . service notification.domain::

provenanceld: |dentifier
documentld: Identifier

?

Documert

documentld: Identifier

describe

Notification

" e . e europeana.assets service notificati on.domain:
eu.europeana.assets service naotification . domain::

Document Description

topicsOfinterest: Set=Tarms>

description: Set<Term=

report

Ewerit

eu.europeana assets.service.notification.domain::

eventType: Term

sinterfacex
FProveranceManager

aProvenance Managements

+
+ getPmuerance Wenkifier, Hentifier) Pmwenance
+ deletefmueranceilentifer, Memtifer) - hoolear

+ oegtefmuerancefertifer, Merlifier, Set=Tem =) : Fmveramce
uwodatePmuenarce Wertifer, Mertifer, Aled) - Pouersnce

Figure 64 — Provenance Data Model and ProvenanceManager API

4.6 The Browsing and Content Characterisation Models and

Interfaces

The interaction between the services engaged in the annotation propagation workflow is
depicted in the Figure 65. The communication between the Content Management System
(CMS), the Multimedia Index (MM Index), the Logging Service (Logs) and the various services
is controlled by the ASSETS Common Interface.

Low-level feature
extraction sarvice

T

Legend

il

Update mmmeten

. —_— vy

Content selechon
samvice

Manual
annolation

CMS
MM Indax

Logs

=
4
=

Training sarnvice

Annotation propagation service

Training
pArAMEtans

Figure 65 - Annotation Propagation Workflow

@000

ITHE ASSETS APIS

Page 126

D2.0.4v.1.1

jay
()
77

N
LN
"‘m‘r»
[0}

PN
&

l
\
\

In general, the individual workflow steps are:

w o NoRe

10.

11.

12.
13.

14.

15.

New objects (3D or images) arrive at the Ingestion Workflow.
The objects are sent to the Low-level feature extraction service.

The Low-level feature extraction service performs feature extraction and sends back the
low-level descriptors of the objects.

The Ingestion Workflow stores the objects and their descriptors into the CMS and
Multimedia Index respectively.

The manual annotation process is triggered (e.g. per email).
The Content selection service is called.

The Content selection service retrieves a list of all non-annotated objects and selects the
“most appropriate” between them for manual annotation.

A list with the IDs of the selected objects is returned to the Manual annotation tool.

The selected objects/records (along with a screenshot or thumbnail) are retrieved from
the CMS and an expert user, sitting in front of the Manual annotation tool, attaches
labels to them, according to a predefined ASSETS taxonomy.

The Manual annotation tool updates the annotations of the selected objects in the
Multimedia Index.

After the end of the manual annotation process, the Manual annotation tool passes the
list of the annotated object IDs to the Training service.

The Training service retrieves the newly annotated objects.

The Training service uses the newly annotated objects to train the annotation
propagation parameters.

The Annotation propagation service retrieves a list of all non-annotated objects and
performs automatic annotation.

The Annotation propagation service updates the annotations produced by the
automatic annotation.

4.6.1 Annotation Propagation Service Models and Interfaces

This service will leverage information from already annotated objects, in order to
automatically classify items that have not been annotated, e.g. newly entered items. The
annotations derive from an ASSETS-specific taxonomy.

The classification can be used for media types, with low-level features that can be directly
represented in a Euclidean metric space, e.g. images and 3D objects.

Service Name | Annotation Propagation Service

Responsibility | 1. Automatic content classification

Provided 1. ObjectClassification

Interfaces

LM:THE ASSETS APIS Page 127 D2.0.4v.1.1

Dependencies

ASSETS Common, Training Service, Feature Extraction Services

Interface ObjectClassification

Name

Key Concepts | LowLevelFeatureVector, ASSETSTaxonomy, TrainingParameters
Operations e getTrainingParameters,

® setTrainingParameters,

e classifyObject

The class diagram in Figure 66 presents the domain objects used by the annotation
propagation service. It presents the TrainingParameters, which are computed during the
training phase and are represented as a list of Float values.

The Class diagram of the Annotation Propagation Service.

The method performing the classification of the europeana objects is shown.
ObjectClassification receives a Europeana ID and classifies the given object.

class AnnotationPropagati onAr] /

AzzetzSenioe
winterfacen
AnmofzfionPropagafionService

+ test) o Shdeg
+ Oiyectllassifeation Exvmpeanaid) o void

i

Baredzmets Senvoe
AnnotationPropagation Servicelmpl

~ datablanagement: Catablanagement
~ annotationPropagationbao: AnnotationPropagationbao
configuration: AnnotationPropagationConfiguration

zethatabdanagementlatablanagement) : woid
setComponentdamelaciAnnotationPropagationrany : woid
getConfiguration) : AnnotationFPropagationConfiguration
zetConfigurationi®nnotationFropagationConfiguration) : woid
te=t]) : String

ObjectClassificationfEuropeanald) : woid

+ 4+ + + 4+ o+

Figure 66 — Annotation Propagation Service model

The class diagram in Figure 67 presents the client specification for the Annotation
Propagation service. The methods used for testing the annotation propagation configuration
are shown. Classify receives a Europeana ID and returns a String representation of the
classification of the object.

@000

ITHE ASSETS APIS Page 128 D2.0.4v.1.1

D)
V.
.
N n

LN
"‘m‘r»
[0}

\

class client

AnnotztionPmopagation
AnnotationPropagationimpl

configuration: AnnotationPropagationClientConfiguration

+

getConfiguration) : AnnotationPropagationClientConfiguration
getComponentdameFromReshl : String
+ ClassifEuropeanald): String

+

Figure 67 — Annotation Propagation client model

4.6.2 Training Service Models and Interfaces

This service will train the Annotation Propagation Service, using pre-annotated training

examples.

Service Name

Training Service

Responsibility

1. Content classification trainer

Provided
Interfaces

1. ClassifierTraining

Dependencies

ASSETS Common, Manual Annotation and Annotation Correction Service,
Feature Extraction Services

Interface ClassifierTraining

Name

Key Concepts | ObjectID, LowLevelFeatureVector, ASSETSTaxonomy, TrainingParameters
Operations e setAnnotatedObijectsList,

e startTraining

The class diagram of the Training Service is presented in Figure 68. The method performing
the training of the classifier is shown. ClassifierTraining receives a list of Europeana IDs and
uses the to compute the training parameters.

LM:THE ASSETS APIS Page 129 D2.0.4v.1.1

class Training ServiceAR| /

AzsetzSenice
winterfaces
TraimingService

+ test) o Shimg
+ ClassiferT@ining (Lst=Ffumpearai =) : woid

D,

BaseAzzets Seniee

Training Servicelmpl

~ datablanagement: Datablanagement
~ annotationPropagationfao: AnnotationPropagationbao
configuration: AnnotationPropagationConfiguration

zethatabdanagementlatablanagement) : wvaid
setComponentdamelaocAnnotationFropagationane) @ waid
getConfiguration) : AnnotationPropagationConfiguration
setConfigurationfAnnotationPropagationCanfiguration) : waid
teshT : String

ClazsifierTraining(List<Europeanald=): wvoid

+ 4+ + + + +

Figure 68 - Classification Training Service model

The class diagram of the Training Client is presented in Figure 69. The methods to test the
training procedure are shown. TrainClassifier receives a list of Europeana IDs and uses the
corresponding objects to train the classifier.

class client

Traiming

Traininglmpl

configuration: AnnotationPropagationClientConfiguration

+ getConfiguration() : AnnotationFropagationClientConfiguration
getComponentdameFromBeshT : String
+ TrainClassifienList<Europeanald=) : waid

+

Figure 69 - Classification Training client model

4.6.3 Manual Annotation and Annotation Correction Service Models and
Interfaces

The service is a tool (standalone application) capable of manually correcting/completing
automatic annotations that are provided by the ingestion process. This tool will also be used
for providing the input to the training process of the Annotation Propagation Service.

For the first responsibility, the manual annotation tool calls the Log Service to retrieve a list
of potentially wrong-annotated content. It interacts with ASSETS Common to retrieve

@000

ITHE ASSETS APIS Page 130 D2.0.4v.1.1

V)
i
.
ST
"IIiPID
ui

Bl

l
\
\

metadata of a selected content. Then the annotator corrects/completes these metadata
according to a predefined ASSETS taxonomy. Finally, the tool updates Log and metadata
through, respectively, the Log service and ASSETS Common.

For the second responsibility, the tool calls the Content Selection Service to retrieve a
training list of content. It interacts with ASSETS Common to retrieve metadata of a selected
content. Then the annotator assigns a classifying term(s) according to a predefined ASSETS
taxonomy. The tool updates these metadata in the Multimedia Index through the ASSETS
Common. Logs will be updated accordingly. After the end of the manual annotation process,
the Manual annotation tool passes the list of the annotated content IDs to the Training
service.

Service Name | Manual Annotation and Annotation Correction Service

Responsibility | 1. Manual correction and completion

2. Training of the propagation service

Provided No external interfaces are provided, except the graphical interface to the

Interfaces
human annotator

Dependencies | 1. For the first responsibility : ASSETS Common, Log Service,

2. For the second responsibility : ASSETS Common, Content Selection
Service, Training Service, Log Service

4.6.4 Content Selection Service Models and Interfaces

This service will exploit Active Learning methods, in order to select the most "informative'
training examples, which, after the manual annotation, will be used for training the
Annotation Propagation Service.

Service Name | Content Selection Service

Responsibility | 1. Training examples selection

Provided 1. TrainingExamplesSelection
Interfaces

Dependencies | ASSETS Common, Manual Annotation and Annotation Correction Service,
Feature Extraction Services

Interface TrainingExamplesSelection
Name

Key Concepts | ObjectID, LowLevelFeatureVector

Operations e selectExamples

LM:THE ASSETS APIS Page 131 D2.0.4v.1.1

The class diagram of the Content Selection Service is presented in Figure 70. The method
performing the content selection for the classifier training is shown.
TrainingExamplesSelection selects a set of Europeana objects, which will be passed to the
manual annotation and will be used as a training set for the training of the classifier.

class Content SelectionAF| /

AzsetzSenice
wintarfaces
Confenfielectionfervice

+ thestl) o SEEeg
+ TrRimingEdamolesfeleckon) [Lst=Eumpeanak »

i

BazedzsetzSenice

Cortent SelaectionServicempl

~ datablanagement: Catablanagement
~ annotationPropagationfao: AnnotationPropagationlao
configuration: AnnotationPropagationConfiguration

zethatabdanagementlatablanagement) : wvaid
setComponentlamelacnnotationFropagationlan) ; woid
getConfiguration() : AnnotationPropagationConfiguration
zetConfigurationfAnnotationPropagationCanfiguration) : waid
te=t]) : String

TrainingExamplesSelection]) : List<Eurapeanald=

+ 4+ + + + +

Figure 70 —Content Selection Service

The class diagram of the Content Selection Client is shown in Figure 71.

The methods to test the content selection procedure are shown.
SelectObjectsForManualAnnotation produces a list of Europeana IDs, which will be later
used the classifier training.

class client

Content Selection
Content Selectionlmpl

configuration: AnnotationPropagationClientConfiguration

+ getConfiguration]) : AnnotationFropagationClientConfiguration
getComponentdameFromReshl : String
+ SelectObjectsForbanualAdnnotation? : List2Europeanald=

+

Figure 71 - Content Selection Client model

@000

ITHE ASSETS APIS Page 132 D2.0.4v.1.1

V)
i
.
ST
"IIiPID
ui

Bl

l
\
\

4.6.5 Relevance feedback service Models and Interfaces

User interaction will be translated to a “similarity score”, and will be inserted to the system
in order to refine the already retrieved result set.

Service Name | Relevance feedback service

Responsibility | 1. Retrieved results refinement

Provided 1. ResultRefinement
Interfaces

Dependencies | ASSETS Common, Graphical User Interface

Interface ResultRefinement
Name

Key Concepts | RFElements, RFOIdRanking

Operations e refineResults

The following domain objects used by the relevance feedback service:

® ObjectRanking contains object IDs, ranked according to a similarity measure, as they are
returned after a search request, as a list of Europeanald.

e ObjectFeedback contains the user feedback, as a list of Object.

The class diagram of the Relevance Feedback Service is presented in Figure 72.

The method performing the search result refinement through user feedback is shown.
ResultRefinement receives the old ranking and the user feedback and returns the new
ranking.

LM:THE ASSETS APIS Page 133 D2.0.4v.1.1

class RelevanceFeedbackAR] /

AzsetzSenice
winterfaces
Felevancefeedhackiervice

+ AesultRefmementObectFanhking, OjectFesdbachk) | OiyectRamking

oo

BazedssetzSenice

RelewvanceFeedbackServicalmpl

~ datablanagement: Catabdanagement
~ relevanceFeedbacklae: RelevanceFeedbackDao
configuration: RelevanceFeedbackConfiguration

sethratabdanagement(l atablanagement) : vaid
setComponentlamelao(RelevanceFeedbacklan) : woid
getConfiguration : RelevanceFeedbackConfiguration
setConfiguration(RelevanceFeedbackConfiguration) : woid
ResultRefinementObjectRanking, ObjectFeedback) : ObjectRanking

+ o+ o+ o+ o+

Figure 72- Relevance feedback Service model

The class diagram of the Relevance Feedback Client is presented in Figure 73..

The methods to test the relevance feedback functionality are shown. RefineResults receives
the old ranking, deriving from a previous search request, and the user feedback, and
produces a new ranking of the search results.

class client

Releyzncereedbach

RelewanceFeedbackimpl

configuration: RelevanceFeedbackClientConfiguration

+ getConfiguration(): RelevanceFeedbadkClientConfiguration
getComponentdameFromBestT : String
+ FRefineResultsList<Europeanald=, List<0bject=) : List<Eurapeanald=

+

Figure 73 - Relevance Feedback Client

4.6.6 Log Analysis Service Models and Interfaces

This service provides a set of functionality for analyzing log data produced by services in the
ASSETS ingestion system to monitor and review the content ingestion processes (in future,
the service will be extended for query log analysis). This service allows client to formulate
and evaluate analytical queries for obtaining statistical information of events happened in
ingestion processes.

@000

ITHE ASSETS APIS Page 134 D2.0.4v.1.1

.

Incoming Log data DB Data analysis Log analysis
log events (based on JPA) service clients
service,; ___ 5 5 Functional
. \L______x query &) Q il query | lII
Service, , Q Q \'.‘j -4— = .___.I s
service ! O —
. : i . Result | “--~.C,I.f--" ' | Result
SEIVIC®s Domain objects i LR
: Interface def. | E Functional
t (log events) : dataschema

Figure 74- Log Analysis Outline

The main aim of this service is to provide a single point interface for analyzing log data
coming from different services in heterogeneous forms. To achieve this aim, we introduce a
higher abstract data model called functional data model (FDM) for data analysis proposed in
[8]. The structure of each log data format is mapped to a graph-based data structure called
functional data schema. The concept of the functional data schema gives us a uniform
representation for different data structures. The FDM also provides a graph-based query
language for formulating analytical queries over functional schema. Through a uniform
representation of the data structure (functional schema) and FDM's query language, user
can analyze log data produced by different services by means of the same manner.

The API of the log analysis service provides definitions of domain objects for representing
functional schema and queries. The API also provides a synchronous version and
asynchronous version of service interfaces for evaluating queries.

Domain Model

zinterfaces
Data Schema

+ getAttributes]) : Attribute]]

+ getFunctions() : Function]]
|
|
|
i |
RNy arts xinterfaces | xinterfaces
e Attribute I Function
|
BOOLEAN + getDataType() : DataType e } + getDesoiption() : String
INTEGER + getDesoiption]) : String | + getDomaind) : Attributel]
NUMBER + getMame() : String | + getName() : String
STRING | + getRange() : Attribute]]
DATE -‘_& :
TIME | |
| i |
|
. ! '
Attributelmpl Data Schemalmpl Functionlmpl
+ getDataTypel) : DataType + pgetAttributes]) : Athribute]] + getDesoiption() : String
+ getDesciption() : String + getFuncticns() : Functicn]] + getDomain{) : Attribute])
+ getMame() : String + setAttributes|Attribute]]) | void + getMame() : String
+ setDataType{DataType) : void + setFunctions{Function(]) : void + getRange() : Attributel]
+ setDeswiption(String) : void
+ setName{String) : void

Figure 75 — Log Analysis Domain Model

In the FDM, a functional data schema is a directed acyclic graph (DAG)

attributes as its nodes and functions as its edges.

@000

ITHE ASSETS APIS

Page 135

comprising a set of

D2.0.4v.1.1

.

winterfaces
domain::Funetion
+ getDesaiption() : String
A "
+
+
«enumerations
domain::AggregateFunction
«interfaces «interfaces «interfaces o
domain::C domain: Pairing domain:Aggregation s
MAX
+ getOperandi(): Function + getOperandi(] : Function + geta ction() : A i MIN
+ getOperand2() : Functicn + getOperandl() : Function + getClassifier() : Function COUNT
+ getMessure() : Function COUNT_DISTINGT
. ' I
| | + isApplicableTo{DataType) : boolean
: | : + resultDataTypeWith(DataType) : DataType
' / |
Compositionimpl Pairinglmpl Aggregationimpl
+ getDesaiption() : String + getDesaiption{) : String + g ction() : A cticn
+ + trribute]] + getClassifier() : Function
+ + ng + getDesipti String
+ : Function + Functicn + getDomain{) : Attributel]
+ : Function + Function + getMeasure() - Function
+ getRange() : Athibute]] + getRangsi): Attributel] + getMame() : String
+ setOperand1{Function) : void + setOperand{Function) : void + getRange() : Attribute]]
+ setOperand2(Function) : veid + setOperand2{Function) . veid + setAggregateFunclion(AggregeteFundion) - void
+ setClassifierFunction) : void
+ setMessure(Function) : void

Figure 76 - Log Analysis Queries model

A query in the FDM is a data function in a data schema or a function derived from data
function by applying operations. In FDM model, evaluating query is equivalent of obtaining
an instance of extension of a given function. The FDM model provides two basic operation
(pairing and composition) for deriving functions and aggregation operation. In particular, an
analytical query for obtaining statistic of data is performed by an aggregation operation
specified as a triple Q<c, m ,op>. Where “c” is a classifier function identifying values to make
groups for aggregation; “m” is a measure function identifying values to aggregate “op” is an
identifier of aggregation function (SUM, AVG, etc).

Service Name | Log Analysis Service

Responsibility | 1. Evaluate analytical queries

Provided 1. LogAnalysisService
Interfaces

Dependencies | ASSETS back-end database, ASSETS Commons, Ingestion Workflow
Manager

Interface LogAnalysisService
Name

Key Concepts | Concepts in the functional data model (attribute, function, data schema,
aggregate function, aggregation), result set, metadata of result set, query
session

Operations e getDataSchema

@000

ITHE ASSETS APIS Page 136 D2.0.4v.1.1

evaluateQuery
evaluateQueryAsync
getQueryEvaluationStatus
getResultSet

closeSession

AzzetzService
winterfacens domain:: domain::Order
api::Datal ogAnalysis Service Query Status TEar
+ closeSession{String) : void RUNNING ASC
+ evaluateQuery{String, Functicn, int[], Order) : String FINISHED
+ evaluateQueryAsync{String, Function, int[], Order) : String ERROR
+ getDataSchema(String) : DataSchema
+ get E i ing) : E ionStatu:
+ getResultSet(String) : ResultSet
|
W
sinterfacen femne TR
domain::ResultSetMetadata winterfaces [oman-nky
+ gefColumns() : Attribute]] it St S = fi =10 Obiec]
+ getMumAttributelnDomaind) : int T Data) : F =~ =() - Number
+ getQuerySessionld{) : String
| £ I
|
. ! I
Result5ethetadatalmpl ResultSetimpl Entrylmpl
+ getColumns() : Attribute]] + Dataf) : R + getkey() : Object]]
+ getNumAttributelnDomain() : int + getQuerySessionld() : String + getValue() : Number
+ setColumns{Attribute]) : void + zetlMetaDats(ItSeth) : void + setiey(Object(]) : void
+ setMumaAttributelnDemain{int) : void + setQuerySessionld(String) : void + setValue{Mumber) : void

4.7

Figure 77 — Log Analysis Service APl model

to browse and obtain registered functional schema

to evaluate queries synchronously

to evaluate queries asynchronously

The Community Models and Interfaces

The interface of the log analysis service provides the following functionality:

The evaluation result of a query is returned as an object implementing ResultSet interface.
The ResultSet interface represents an evaluation result of a query (an extension of a
function). It represents an extension of a function as a set of key-value mapping represented
as Entry interface.

The ASSETS project focuses on three basic services for the final user, besides those
addressed by WP2:

® A service for supporting the user in contributing content to Europeana; this is called
User-Generated Content Service, abbreviated as UGC service.

e A service for supporting the user in accessing Europeana based on the
publish/subscribe paradigm; this is called Taxonomy-based Notification service,
abbreviated as TBN service.

@000

ITHE ASSETS APIS

Page 137

D2.0.4v.1.1

V)
i
g
"IIi;ID
ui

PN
&

bl

l
\
\

e A service for supporting the user in expressing and using preferences when
accessing Europeana; this is called the Personalization Service.

In this section, each service will be presented in detail, each in a separate sub-section.

4.7.1 User Generated Content Models and Interfaces

This service aims at supporting the composition of new digital objects from other simpler
digital objects. To do so, a data model of objects as composite entities has been defined.
The model describes how complex objects relate to their simpler constituents, including
other objects as well as descriptions and versions. This data model is general enough to
enable the definition of an abstraction layer to be put on top of existing models for the
purposes of implementing advanced services. The service offers a basic APl for
implementing specific functionalities such as:

® tag or annotate existing object
¢ upload a new object

® translate metadata

® add metadata

and so on.

The UGC service will be deployed on the ASSETS Server. There will be a number of users of
the service, each one authorized to contribute content to Europeana.

Each user of the service has its own Workspace (WS) on the ASSETS server, and is viewed by
Europeana as a separate content provider. Overall, the ASSETS server is viewed by
Europeana as an aggregator of content providers.

The user WS will contain units of works (UoW). Each UoW represents a separate
contribution to Europeana that the user is constructing in his WS. A UoW contains objects,
identified by URIs, and their accompanying descriptions. Objects in a UoW can be of two
kinds:

e existing Europeana objects, that the user has included in a UoW in order to enrich them
with new descriptions; existing Europeana objects can also be used as values of
properties in descriptions.

® newly created objects, which we call UGC objects. These objects are original
contributions to Europeana, and can be of two kinds:

o they can be digital objects having an associated media file with the content;
these objects will be called Media Objects

o they can be digital objects for which no media file is available, or can be non-
digital objects. These objects are simply UGC objects.

When the user has completed a UoW, it submits the UoW to Europeana, for inclusion in the
Europeana database. To this end, the UoW will be packed in the form of a Submission
Information Package (SIP) and placed on a special area of the user WS (Outbox), to be
harvested by Europeana. After harvesting content, Europeana will analyze it and deliver a
result message in a different special area of the user WS (Inbox). Submission is an
asynchronous operation. There might occur hours before a submitted SIP is harvested by

‘LM:THE ASSETS APIS Page 138 D2.0.4v.1.1

jay
()
77

N
LN
"‘m‘r»
[0}

PN
&

l
\
\

Europeana, and days before the user receives the corresponding result message from
Europeana.

Figure 78 below shows the general architecture of the UGC service.

< Query
< Add
N % New
\ % View
S %+ Get
N r < Delete
< Rename:
< Save
UGC Client © List
(Webbles) < Submit

UGC Server

//—fQuery— -
QD User WS
\ |Query7API
o
§ Submit Out Box
\ . User WS
. ___Ingestion
Europeana Ingestion

(Repox ?)

Notifications

Unlt of Work
Results

!ﬂ Submit
In

- ‘gm Unit of Work
N
\ Unit of Work

Unit of Work

Figure 78 User Generated Content Service Architecture

The three main components of this architecture are:

Europeana Server. It provides an API to search for content in the digital library, using
filters on metadata fields. Currently, the Europeana query APl implements the "Open
Search" directives (http://www.opensearch.org/Home). The result of a query contains a
subset of metadata of the ESE schema and a URI to the full set of metadata and to the
digital object. The Europeana server also provides an application for harvesting of data
using the OAI-PMH protocol (e.g. Repox, is a GUI based tool for managing these
activities).

Assets Server. In the context of UGC, the ASSETS server provides functionality to
communicate with Europeana and with the UGC client. The communication with the
Europeana server is by invoking the Query_API module (namely OpenSearch API). The
server ASSETS allocate a workspace (USER WS) for each user, and provides an API
(through the UGC Server) to manage the objects in it. The UGC server provides API as
REST Web services to manage the user WS and to feed the UGC client. The API
implementation is independent of any specific UGC client. The User WS contains an
Inbox, an Outbox and a set of objects resulting from Europeana queries and/or loaded
from the user workstation. The Inbox is used to contain Europeana query results and
notification messages. Objects in the User WS are organized as Units of Work (UoW),
each of which forms a single contribution for Europeana, from the user point of view.
The Inbox is used to receive Europeana query results and notification messages. The
Outbox is used to hold messages about the submission of user-generated content, in the
form of Submission Information Packages (SIP). Each SIP is generated from one UoW.

LM:THE ASSETS APIS Page 139 D2.0.4v.1.1

Media Object Repository

I
!ﬂ Submit
,%\ Unit of Work
Box \‘

Unit of Work

V)
i
g
"IIi;ID
ui

PN
&

Bl

l
\
\

SIPs are stored in the ASSETS Media Object Repository (AMOR). Messages in the OutBox
are useful to track user submissions and to restart a failed submission process. The
AMOR implements OAI-PMH functionality to allow Europeana tools to harvest UGCs.

UGC Client. This is a browser based GUI (e.g. Webbles as a special case) able to create
new objects by assembling existing objects of the USER WS into more complex objects.
The UGC Client interacts with the ASSETS Server via REST web services provided by the
UGC Server module

The Figure below shows a UML class diagram including the classes and properties for
modelling the UGC services. In the diagram, boxes represent classes and arcs represent
association. Every association is bi-directional, but only the name in one direction is given
for readability purposes. The name given refers to the association going from the class
closest to the name to the other class. The reader can derive the name of the association in
the opposite direction by following any notational convention.

-receives
= S
| |

1.1 0 . |
b |
Query Result
| 14
0.
y 1.1
1.1 -produces 134 R=]
: o 0. ’—ﬂue—‘ry -send I—US—Ier
. .
-has property -has value 0 0.
3 [l |
1.4 -lives
3 Mk -cansists of |
Description (OD) Object | [Llnn of Work | i ransicrmad [siP |_1"1
I__I 1.1 L—I 0.4 1.1 I—I -delivered in

B~
2 1.1
N
Qi
E i |Eumpcana 0bject| | uGc I
F -has Object | | | I

-has Unit of Work

.

Figure 79 — The User Generated Contents Data Model

Here we define the classes of the model in Figure 79 as key concepts that will lead to the
definition of the UGC data types through a refinement process.

e Object is the class of objects that can be created or enriched by the user through the
UCG service. An Object can be:

o Anewly created object, in which case it is an instances of class UGC (see below).

o An existing Europeana object, in which case it is an instance of class Europeana
object.

Each object and its associated description belongs to one or more Unit of Work (UoW):

® User Generated Content (UGC) is a new object created by the user by means of the UGC
service. A UGC object can have an associated media file containing an
image/text/sound/video. In this case, the UGC description specifies the name of the file

LM:THE ASSETS APIS Page 140 D2.0.4v.1.1

jay
()
77

N
LN
"‘m‘r»
[0}

PN
&

l
\
\

containing the image/text/sound/video, through some property. That file will be stored
on the Assets server.

Object Description (OD) is a metadata record, newly created by the User to describe a
UGC or an existing Europeana object. In both cases, only one OD can be associated to an
object. We model a description as a set of Attributions. The user is free of mixing in a
single description properties from different schemas with new properties created by the
user.

Attribution models a single field of a metadata record. It is therefore linked to the
property of the field and the value that the property assumes in the specific field.

Property can be an EDM property or a user defined property. For each non-EDM
property, the user must give the schema where the property belongs, the range of the
property and the mapping to an EDM property. A property may be a multivalued
property (e.g. italian DC.Title an english DC.Title).

Value can be a Literal, an Object, or any Other resource. This means that within a
description a user can refer to a UGC, thus creating complex objects.

Other resource is the class of values used in Attributions that are neither UGCs nor
Europeana objects (e.g. a VIAF3 URI for Leonardo da Vinci, a TGN4 URI for Paris, a link to
a Wikipedia page, etc) .

Unit of Work (UoW). A UoW consists of the objects and their descriptions that form a
single contribution for Europeana, from the user point of view. This contribution is not
yet completed and therefore it exists as a UoW that the user can work on at any time. A
UoW may include several objects, but these objects must form a connected graph.

Workspace is the set of data structures that a user uses while interacting with UGC
service. It consists of: an Inbox, an Outbox and a set of UoWs.

Inbox is the class of all in-boxes. Each Inbox holds the messages that Europeana sends to
the user of the WS where the Inbox belongs. A message may contain the results of a
User query to Europeana, or a notification from Europeana to the User.

Outbox is the class of all out-boxes. Each Outbox holds the SIPs that the user of the WS
where the Outbox belongs has submitted to Europeana. Through Outboxes, Europeana
will be able to harvest the user created SIPs. The classes Inbox and Outbox support
communication between Europeana and the user. At implementation level, the Assets
server might contain a single Outbox/InBox for all users by providing appropriate
mechanisms for the identification of the messages sender/receiver.

Submission Information Package (SIP) is the class of all SIPs. SIPs are in one-to-one
relationship with UoW, in the sense that each SIP holds a UoW, and each UoW is held by
one SIP. Essentially, a SIP is an XML file containing the objects and the descriptions
created by the user in the format requested by Europeana. This format relies on the
ORE®> model for representing complex objects and their descriptions. We refer to the
EDM Primer for an introduction to the EDM.

Message is a notification (e.g. an error/warning/info/results) sent by the Europeana

3
4

Virtual International Authority File; http://viaf.org/

Getty Thesaurus of Geographic Names: http://www.getty.edu/research/tools/vocabularies/tgn/index.html

5 Open Archives Initiative — Object Reuse and Exchange: http://www.openarchives.org/ore/0.1/datamodel

‘LM:THE ASSETS APIS Page 141 D2.0.4v.1.1

jay
()
77

N
LN
"‘m‘r»
[0}

PN
&

l
\
\

Server. It may include a Query Results if the notification has been generated by the
execution of a query. Investigations on Europeana notification mechanism (if exists) are
needed. The message will contain a message type (e.g. error/warning/info), a message
code (e.g. RepoxError200) and a description.

Query. A query could be simple or advanced and can generate a large amount of
resulting records. In specifying a query should be given: 1) its type (simple/advanced), 2)
the string containing the query expression, 3) the initial record in the result, and 4) the
maximum number of records to return as a response (to avoid flooding the network
with huge shipments). For a simple query the minimum score may be expressed as a
constraint. The query expression is a Lucene expression. For advance search the query
expression contains condition in Lucene style (e.g. (Title:Nicola AND Year:1915) OR
Contributor:Cesare.

Query Result. Is an Europeana generated Message that includes the results of a query
execution in the form of an XML file (JSON based) containing: 1) the totalResultRows
generated by the query execution, 2) the currentCallRows i.e. the amount of returned
records (<= maxRow expressed in the query), 3) the execution time expressed in
milliseconds, 3) the query expression and an array of FullDocs.

Associations

describes: this is a ternary association that links a Description (OD) to an Object in a
given Unit of Work. An Object can have different Descriptions and a Description only
describes a single Object; an Object can belong to many different Units of Work and a
Unit of Work can have many Objects that belong to it. But an Object has exactly one
Description in one Unit of Work. This means that there is a functional dependency from
Unit of Work and Object to Description. The three sub-associations are:

o has Object: this association links an Object (whether an Europeana object or an
UGC object) to a triple in describes. An Object can appear in one to many triples.

o has Unit of Work: this association links a Unit of Work to a triple in describes. A
Unit of Work can appear in one to many triples

o has Description: this association links a Description to a triple in describes. A
Description appears in exactly one triple.

consists of: this association links the Description (OD) and the Attribution classes. A
Description is defined by (consists of) a set of attributions (at least one, as can be seen
from the cardinality and optionality constraints).

has Value: links an Attribution to the value. One Attribution can have many Values,
since metadata properties are by default multi-valued. A Value can appear in many
Attributions. This is a non-mandatory association, as there may exist Attributions with
no value.

has Property: links an Attribution to the property. One Attribution has exactly one
Property, whereas a Property can appear in many Attributions. This is a mandatory
association, as there cannot exist Attributions without a Property.

lives: a Unit of Work lives in exactly one Workspace, and a Workspace can be the living
place of more than one Unit of Works.

is transformed: this association highlights the fact that a SIP is obtained from a Unit of
Work through a transformation process, upon completion of the user work. A Unit of

‘LM:THE ASSETS APIS Page 142 D2.0.4v.1.1

V)
i
g
"IIi;ID
ui

PN
&

Bl

l
\
\

Work can generate a single SIP and a SIP can be generated by a single Unit of Work.

delivered in: This association links SIPs and the OutBoxes where they belong. At a given
time instant, an OutBox can contain more than one SIP, waiting to be harvested.
Conversely, a SIP can be placed only on one OutBox.

¢ s included: this association links an Inbox or an OutBox to a Workspace. An InBox or an
OutBox are included in exactly one Workspace, and a Workspace includes exactly one
InBox and exactly one OutBox.

e send: A User can submit Queries to the Europeana server in order to be able to use the
resulting objects for the creation of new objects. A User can submit more than one
Query and conversely the same Query could be sent by more than one User. This
association is not stored.

¢ produced: this association relates a Query to the (possibly empty) resulting Query Result
in the form of a Message. A Query has exactly one Query Result, while the same Query
Result could be generated by different Queries. This association is not stored.

® receives: system notifications and query results are delivered by Europeana in the user
InBox. At a given instant, an Inbox can contain zero to many Messages. Conversely, a
Message can be received by a single InBox.

® own: each Assets Workspace is owned by a single User and viceversa.

Service Name | Content creation by re-use

Responsibility Work space management;
Session Management;
Media File management;
InBox Management;
Outbox management;
Query management;

Object management

Provided
Interfaces

OutBox;
InBox;

Workspace;

P WM RrIN OGO R WD PR

MediaObjectRepository

Dependencies | Session Management, Media File management (ASSETS-Commons)

Interface MailBox (for both OutBox and InBox)
Name

Key Concepts | Message, QueryResults

Operations e getMessage,

e getMessages,

LM:THE ASSETS APIS Page 143 D2.0.4v.1.1

[d
!
J

[o o

\)
v
g

s
v

E

® putMessage,

® removeMessage,

removeMessages,

e removeAllMessages

Interface Workspace
Name
Key Concepts | UnitOfWork, Query
Operations o ist,
e createUnitOfWOrk,
e getUnitOfWOrk,
e removeUnitOfWOrk,
e renameUnitOfWork,
e executeQuery
Interface MediaObjectRepository
Name
Key Concepts | MediaObject
Operations e add,

e getObjects,
e getObject,

e removeObject

Domain Interfaces

Interface Message

Name

Key Concepts | QueryResult, Sipldentifier, Messageldentifier
Operations e getldentifier / setldentifier,

e getFrom /setFrom,

e getTo/setTo,

e getSubject / setSubject,

e getReturnCode / setReturnCode
e getMessage / setMessage

e getSip / setSip

e getQueryResults / setQueryResults

LM:THE ASSETS APIS Page 144

D2.0.4v.1.1

3
Interface UnitOfWork
Name
Key Concepts | DLObject, SIP
Operations e getName /setName,
e getSip / setSip
e submit
e getObjects / setObjects,
e getObject
e updateObject,
e addObject,
e removeObject
Interface DLObject
Name
Key Concepts | EuropeanaObject, UGCObject
Operations e getEuropeanaObjects / setEuropeanaObjects,
e getUGCObjects / setUGCObjects
Interface EuropeanaObject
Name
Key Concepts | ObjectDescription
Operations e getld /setld,
e getObjectType / setObjectType,
e getDescription /setDescription
Interface UGCObject
Name
Key Concepts | ObjectDescription
Operations e getName /setName,

e getOriginalFileName / setOriginalFileName,
e getCreationDate / setCreationDate

e getModifiedDate / setModifiedDate

LM:THE ASSETS APIS Page 145

D2.0.4v.1.1

smn oen oen rA_i- a—
= S S 7 LE
LAV I 7. b)
L
Interface ObjectDescription
Name
Key Concepts | Attribution
Operations e getAttributions / setAttributions,
e addAttribution / getAttribution,
® removeAttribution
Interface Attribution
Name
Key Concepts | Property
Operations e getValueType / setValueType
e getProperty / setProperty
e getResourceValue / setResourceValue
e getliteralValue / setliteralValue
Interface QueryResults
Name
Key Concepts | AssetsBriefDoc
Operations e getTotalResultRows / setTotalResultRows,
e getCurrentCallRows / setCurrentCallRows,
e getMilliseconds / setMilliseconds,
e getBriefDocs / setBriefDocs
Interface Sessioninterface
Name
Key Concepts | User, Privileges, Query, Queryldentifier
Operations e void login (User user),

e void logout(),
e Privileges checkPrivileges (User user),

e Queryldentifier execute (Query query)

The following figure shows the UML Class Diagram for the above definitions.

@888

Page 146

cla=s domain

[cioss domsin

- zenumeratio... wenumeratio...
«interfaces ObjectType WaluaType
EurcpeanaObject
+ ogetdpouR Lol = wEnUms wEnUMms
+ sebH {LRD : void EUROFEANA, LITERAL
+ getOliect Tyne () - Ofect Tyoe uet (ES0lGES
+ metlMyectTvpe(Chfect Tvos) © wodd J.l':\
+ getlesodotion () - OfectDesodolion - !
+ setDeseription(OectDeserotion) ; vaid - - - S5 Siniearsy BRI
Objecf ik
SIS S8 1 AHET Atiribution
~ getdtiibutiors]) © List=Alnbution = i
~ setAttibutionsistsAttlbution=) Lo | - geiﬁ""”e:"pe_a@fa’“e Tyoe
. ~ add Atihution (i bution) ; woid BT
aintarfaces ~ getfesowme Falwe () © LR
. ~ getAidputions (LR Lk ARd bution = X o
UECOhiect A o i ~ getlitera! ialue) @ Shing
a0 e At hubior Aidbudion) ©uoid Vst T Value T - void
~ gethizme() ; Sting ~ Eaove At ution (LRY ¢ uoid setValue Type (Vialue Type) - voi
..) . n medbPmpeddy (LR waid
~ petligicalFiletane () o Shimg .
. etCrestionDate) : Date ~ setResowme Valve (LR © void
- gem«: e s ~ setiiteValue (Sting) woid
o zetilame (Shing) ©void ainterfaces
~ sedCriginalFiletaane (Shimg) o woid Umifofark
~ setCregtionDateDate) void o o - st xinterfaces
L Hidooifed Date (Dade) © roid = GBI & Lot . :))
== e iBate il ~ setName(Stirg) | veid Fgi:Mediz0bjecisReposifary
I + getSip) LRI ~ addDatarendlen : LRI
H + sefS‘f.{JfU‘?O void ~ getCiyects() [ListclRlE
- + skt o St ~ getCiyech(LiR) | Detatandler
ainterfaces + getOiyects() DL OMyect ' 5
DL Object + getOiyectiRY : O Olyect T EmOVEONRCHURY o
+ getEwmpesraCects) | ListeEumpeana Ofect= == - <> S‘E'fo-@"E'C“:fDLO@"ECflJ : woid .
+ getUGCONects(] - Lst=LGC0Nects w aEEECEEepiEEe s
+ selfwmpeana Olfectsiist=Eumpeana Oiect =) - void = Edo‘O.l’;,'e-ctl['DLOﬂ'ecé. Lr.ﬂ"- LR - woid ez - zinterfaces
+ setUAE GO etslist LIS GO eat=] - waid + reaowe Oect (LRY © woid 300 Workspaee
+ Jm) et <Shing =
+ omabe Uit OV O Sting) © UritOfliod
+ getUrH O Ok (Stdmg) - Uitk
+ mearore VA OO SEdng) - woid
T T + menase UnidOfWVod(Shimg, Shimg) - uoid
a.l':.:te facen = + exeocwte Qe Shing, ind, ind) : essage)
es5Ige
ainterfaces
~ gebitestifen) : Lomg ﬁE --------------------- 3pi:MailBex
~ sehidentifeniong) - woid
n getFma () Shieg ~ putidessage (Wessage) Lomg
~ etFme (St © oid ~ getifessagelong) ifessage
+ getTof) : Shing ~ getifessages) | List-fessages
+ setfaSiing) : waid cenumerations ~ mwovelessage Lorg) : vold
~ getSulyect() - Sulyect Tuoe SubjectType ~ Erove e ssagesiist2long =) 1 woid winterface:
~ setSudiectSulyect Tyoe) - woid ~ maove ANfessages]) - void GlueryResulis
~ getRelum Codel) ©int
- get%ssage - @Mﬁ & CISTwED + getTotalResulbRows () [int
~ getSiog - LAY = ﬁ::RDUR + setTotalResultFowsint] : wid
~ setRetumCodednt) ; void RIS e e s, o
~ setMessage(Sting) : uoid SIS + .'sefCun?ntGaHRon.rsﬂan 2o
- 5etSinfURD - void BN FECULT + getm.'.'!'seconu’so Slarg }
~ getGueryResults() | GuensResults = + mebfllizecordsfomg) - void
~ setQuerRe slbspRUeryRestiE) T VoIt [=< = o e m el ¥ getBriedlocs() ; ListsAssetsBretDocs
+ seltfrieflocsilist2d smetzdnedlon=) © void

Figure 80 - User Generated Content Data Model

@000

ITHE ASSETS APIS

Page 147

D2.0.4v.1.1

V)
i
g
"IIi;ID
ui

PN
&

Bl

l
\
\

4.7.2 Taxonomy-based Notification Service Models and Interfaces

The purpose of this service is to allow users to be notified when objects of interest to them
are ingested or updated in Europeana. This is done by first allowing users to subscribe to
profiles, made up of terms from a controlled vocabulary, or taxonomy used for the
description of objects. After the subscription, when the user logs in the myEuropeana
service, he will find an alert signaling that there are newly added objects to Europeana
which satisfy one of the profiles to which the user subscribed and therefore are of interest
to the user.

The taxonomy based notification service will implement the Publish/Subscribe approach to
messaging. According to this approach Publishers and Subscribers may dynamically publish
or subscribe to the content hierarchy. The system takes care of distributing the messages
arriving from a topic's multiple publishers to its multiple subscribers. Topics retain messages
only as long as it takes to distribute them to current subscribers.

For that reason, the taxonomy-based notification, as well as the preservation notification,
shares models and interfaces defined in section 4.2.5 for the Common Notification.

The advantage of the taxonomy-based notification is that it allows users to define
subscriptions more flexibly and with less cost. In this approach, the hierarchy of terms in a
taxonomy is used for determining "is-a" relationships among descriptions and subscriptions.
For instance, users can receive alerts about "German watercolor", "ltalian watercolor
portrait" and "French gouache in 19th century" by subscribing only "European watercolor".
The taxonomy-based notification service implements an efficient algorithm to compare
descriptions and subscriptions by taking account a taxonomy.

Domain Model: Publishers and Subscribers

Publisher MNotification service Subscriber
—— — Subscription

Content + .Stfh“rrpth ol

_ Descriptio_n P Notification

-

ma'r'dhfng

Figure 81 - Taxonomy-based notification users

We can distinguish users in two main categories of actors:

¢ publisher: (typically Europeana) publishes content into the portal together with its
description. This description comprises a set of terms coming from a controlled
vocabulary, called the taxonomy, which is organized as a structured hierarchically.

e subscriber: uses the content published for satisfying some information need, described
as a set of terms from the taxonomy. Such a set of terms is called a subscription. The
goal of the taxonomy-based notification service is to retrieve a set of new content that
matches a given subscription. This is done in two phases:

o The user declares a subscription to the notification service, which stores it
into the system.

LM:THE ASSETS APIS Page 148 D2.0.4v.1.1

V)
i
g
"IIi;ID
ui

PN
&

Bl

l
\
\

o The notification service compares a given subscription with content
descriptions published in a specified period of time. Whenever a description
matches to the subscription, a notification is sent to the user.

Overall Architecture

Usually the interaction between users and a notification service can be implemented
according two models:

e Pull
o the component implementing the notification service periodically asks to
publishers for changes related to topics
o subscribers periodically queries the service to check if there are notification
messages
e Push:

o publishers sends notifications to the service
o the notification service sends notifications to subscribers

The Taxonomy based Notification service will be deployed on the ASSETS Server and will
implement a pull model. In our case the publisher is the Europeana server, therefore the
notification service will periodically inspect the Europeana database asking for changes
related to the topics defined in the taxonomy. Subscribers will check for notifications in the
following way: once they log in the ASSETS server all notifications (if any) will be shown in
their client GUI, during the session the client will implement a "refresh" of the list in a
transparent way by periodically contacting the service and updating the notifications list.

Implementation Approach

Subscribers

@ A N

8 sub | | Notif. Subj_] Notif. Suhl [Nutlf. .

s Digital Taxonomy | rayonomy

ﬁ preservation | |based noftif, -~) |

E | service service .| Taxonomy

. | Sub| ‘notif. Sub| | Notif. | manager

T v]

2 | Common notification service

= ry ;. d

5 [Publish |Publish Publish

= % % % " Taxonomy
Publishers

Figure 82 — Taxonomy-based Implementation Outline

This service will be implemented the top of the (common) notification service, which is a
part of the digital preservation service (Task 2.3.3). The main aim of the taxonomy based
notification service is extend functionality of the common notification service to perform
description-subscription matching by taking account a taxonomy. Therefore, the taxonomy

LM:THE ASSETS APIS Page 149 D2.0.4v.1.1

.

based notification service will be implemented as a client of the common notification
service. Due to compatibility among notification services, the taxonomy-based notification
service provides an API that is completely based on the common notification service. The
service provides two service interfaces that directly inherit NotificationManager interface
and RegistrationManager interface.

Q). O

api: pr api:

1 7

«interfaces winterfaces
TaxonomyBasedNotificationManager TaxonomyBasedRegistrationManager

pr

createMessage{ldentifier, Publisher, Set<Term:=) : Motification
i ifi int, int, licyAge) : List=Alert>
deliverit 4T ifier, Term, int, int, MessagePolicyAge) : List <Alert=

oreateSubsoiption{ldentifier, Subscriber, Set<Term>) : Subscription
deleteSubsaoription{ldentifier) : boclean

getAllSubsai ifier) : List<ld

getAllSubscripti o= P e

Set<Term>) : Subsmiption

ier) : boclean
publishMessage(Mctification) : void

+o4 ko

reconstructSubsoripticn Tree() : void

A I

L 1 L |

Figure 83 — Taxonomy-based Notification Service APl model

Service Name | Taxonomy-based Notification

Responsibility | 1. Allows subscription for topics of interest

2. Allows notification of changes

Provided 1. TaxonomyBasedNotificationManager

i 2. TaxonomyBasedRegistrationManager

Dependencies | Session Management, ASSETS Common, Common Notification

Interface TaxonomyBasedNotificationManager (inherits interface
Name NotificationManager from Common Notification)

Key Concepts | Message, Taxonomy

Operations ® createMessage

® publishMessage

e deliverMessages

e deliverMessages4Term
e getMessageStatus

e markAlertAsRead

Interface TaxonomyBasedRegistrationManager (inherits interface
Name RegistrationManager from Common Notification)

Key Concepts | Subscriber, Subscription, Taxonomy

@000

ITHE ASSETS APIS Page 150 D2.0.4v.1.1

[o o

P e VoY al ol =
= S S 7 0 E S
LAV I 7. b)
L
Operations ® createSubscription

e updateSubscription
e deleteSubscription
e getAllSubscriptions
e getAllSubscribers

® reconstructSubscriptionTree —rebuild a subscription tree

4.7.3 Personalisation service Models and Interfaces

Service Name

Preference management service

Responsibility

1. Stores user preferences into the ASSETS server;

Retrieves user preferences stored in the server;

w

Updates stored preferences

Provided
Interfaces

=

UserPreferenceManager

Dependencies

Session management and ASSETS common's storage to store user
preferences

Interface UserPreferenceManager
Name

Key Concepts | User and User preference
Operations e getPreference

e postPreference

Service Name

Personalized query service

Responsibility

1. Create new personalized query session;
Evaluates a query with a preference;

Allows users to navigate in blocks of retrieved items;

Provided
Interfaces

2
3
4. Close personalized query sessions after predefined duration
1

PersonalizedQueryService

Dependencies

ASSETS common's simple query service and Session management

Interface
Name

PersonalizedQueryService

@888

Page 151 D2.0.4v.1.1

Ay
()
Y

‘. LT
u e

l
\
\

[o o
o

Key Concepts

User preference, Query, Result set (block), Metadata of block and
Personalized query session

Operations

e evaluatePersonalizedQuery;
e getResultBlockMetadata;
e getResultBlock;

e closePersonalizedQuerySession

LM:THE ASSETS APIS Page 152 D2.0.4v.1.1

PO YY.X VX
=8 S S 7 O E
e/l Wl WF O o ud?

Appendix 1 - Enrichment Services Training Data Format

This page® provides information on how CPs have to format their data in order to submit
training data to the enrichment services of WP2.1:

e Metadata cleaning
e Knowledge extraction
® Metatada classification

The training data file format is XML. For each task an XML schema file, i.e,. an XSD file, is
provided. CPs should use the schema for each task to produce their training data files (one
file for each task).

In order to simplify the process we also provide an XML example file for each task and a
document with guidelines and comments. CPs could follow the guidelines and use the
examples as a starting point to produce their training data files.

The wiki folder "Enrichment Services Training Data Guidelines" contains both the guidelines
for the content providers and the xsd/xml files that are to be used in preparing the training
sets. More in details, that folder contains the following files:

e cleaningSchema.xsd.txt: XML Schema Definition for providing training sets to task T2.1.1
"Metadata Cleaning". The file extension is txt because the wiki does not allow the
upload of xsd files. The file should be renamed by removing the extension .txt.

e cleaningExample.xml: example of a well-formed training set for task T2.1.1. The content
providers may modify this file for providing their training data.

e extractionSchema.xsd.txt: XML Schema Definition for providing training sets to task
T2.1.2 "Knowledge Extraction". The file extension is txt because the wiki does not allow
the upload of xsd files. The file should be renamed by removing the extension .txt.

e extractionExample.xml: example of a well-formed training set for task T2.1.2. The
content providers may modify this file for providing their training data.

e classificationSchema.xsd.txt: XML Schema Definition for providing training sets to task
T2.1.3 "Metadata Classification". The file extension is txt because the wiki does not
allow the upload of xsd files. The file should be renamed by removing the extension .txt.

e classificationExample.xml: example of a well-formed training set for task T2.1.3. The
content providers may modify this file for providing their training data.

e T2.1 TrainingGuidelines.pdf: pdf document presenting and discussing the xml/xsd files
above.

e T2.1 Training.tgz": tgz pack containing all of the previous files (with the correct file
extension).

All of the previous files are available on this wiki at the following URL:
http://www.assets4europeana.eu/web/portal/documents?p p id=20&folderld=35495

6 http://www.assets4europeana.eu/web/portal/wiki/-
/wiki/Main/Enrichment%20Services%20Training%20Data%20Format

‘LM:THE ASSETS APIS Page 153 D2.0.4v.1.1

4y
)
2

{ ‘:,\-'\,

v

bl
"‘m‘r»
[0}

\
\

References

P w N R

ASSETS D2.0.1 "Requirements Specification" — Internal Document
ASSETS MS12 "System Architecture" — Internal Document
ASSETS MS27 "Digital Preservation Service Design"— Internal Document

Roy Thomas Fielding "Architectural Styles and the Design of Network-based
Software Architectures", 2000 - available at
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding dissertation.pdf

H. Belhaj-Frej, P. Rigaux, N. Spyratos “User notification in taxonomy based digital
libraries”, SIGDOC '06 Proceedings of the 24th annual ACM international
conference on Design of communication. Available at
http://portal.acm.org/citation.cfm?id=1166366

Europeana Aggregator's Handbook - available at
http://www.versionl.europeana.eu/c/document library/get file?uuid=94bcddbf-
3625-4e6d-8135-c7375d6bbc62&groupld=10602

ASSETS D2.0.2 “Interface Specifications and System Design” — Internal Document

Nicolas Spyratos. “A Functional Model for Data Analysis”. Proc. of Flexible Query
Answering Systems (FQAS) 2006, pp 51-64, 2006.

Eld Zierau “The Planets Approach to Migration Tools” — available at
http://www.planets-project.eu/docs/papers/Archiving2008 Zierau Wijk.pdf

LM:THE ASSETS APIS Page 154 D2.0.4v.1.1

