
DELOS WP1-Survey (SoA, P2P, Grid) Final 1/39

DELOS – Deliverable 1.1.1

WP 1: Survey on

Peer-to-Peer Architectures, Grid Infrastructures,
and Service-oriented Architectures for Digital Libraries

Authors:
M. Agosti 1, L. Bischofs 2, L. Candela 3, D. Castelli 3, N. Ferro 1,
W. Hasselbring 2, N. Moumoutzis 4, H. Schuldt 5,6, G. Weikum 7,

M. Wurz 5, P. Zezula 8

Editors:
 D. Castelli 3, H. Schuldt 5,6, G. Weikum 7

1 Department of Information Engineering,

University of Padua, Italy
2 OFFIS, Oldenburg, Germany

3 Istituto di Scienze e Tecnologie dell’Informazione (CNR)
Pisa, Italy

4 Laboratory of Distributed Multimedia Information Systems & Applications
Department of Electronic & Computer Engineering

Technical University of Crete, Greece
5 Information & Software Engineering

University for Health Sciences, Medical Informatics and Technology (UMIT)
Austria

6 Database and Information Systems Group
University of Basel, Switzerland

7 Max-Planck-Institut für Informatik
Saarbrücken, Germany
8 Faculty of Informatics

Masaryk University Brno, Czech Republic

DELOS WP1-Survey (SoA, P2P, Grid) Final 2/39

Abstract

Second generation DLs have new requirements. Firstly, these
requirements include the way to make data and specialized DL
applications available to a large set of users by means of well-defined
services. Secondly, the interaction between independent data/service
providers (peers) within a network needs to be addressed. Finally, the
computing and storage resources that are available in large networks
have to be made available in an efficient and effective way by means of
grid technology.

We provide a survey in order to highlight whether and to what extent i.)
service-oriented architectures, peer-to-peer infrastructures, and grid
infrastructures can contribute to satisfy the requirements of these new
DLs. This survey contains a detailed summary of state-of-the-art in the
three architectural paradigms and lists current approaches that aim to
exploit these architectures in DL Management systems and DL
applications.

DELOS WP1-Survey (SoA, P2P, Grid) Final 3/39

Introduction
Current Digital Libraries (DLs) are usually content-centric, special-purpose systems that are
targeted for storing static digital content and are in most cases used for library and/or cultural
heritage applications. A result of this content-centric approach is that systems tend to be
tailored to concrete application domains rather than being of general applicability.

Second generation DLs aim to overcome these limitations. The overall goal of these new DL
systems is to enable any citizen to access all human knowledge anytime and anywhere, in a
friendly, multi-model, efficient and effective way by making use of multiple Internet-
connected devices. Moreover, they shall help in overcoming the barriers of distance,
language, and culture. This goes along with a large number of vital requirements for these
next-generation DLs. Different DL applications have different requirements on the underlying
DL systems as can be seen in the following three examples.

Example 1: Management and Coordination of Information Spaces.
In large organizations,
data and documents are
usually stored in various
distributed databases, re-
positories, etc. As an
example, consider the
information space of a
university, consisting of
several databases (e.g.,
of the university library,
research reports data-
bases, etc.). Moreover,
data is also stored in file
systems and made ac-
cessible by different web
servers (of institutes,
research groups, etc.).
Search for data and do-
cuments in the information space has to be supported by dedicated indexes. Consider a user
that exploits a content-based image similarity search service (no. 1 in Figure 1). The query
results stemming from the distributed data sources are displayed (2) while the actual
distribution is made transparent. When new information is inserted into the information space
(3), it should be made available as soon as possible. This means that the index needs to be
updated immediately and not in a style that is conventionally used by search engines – the
latter need quite some time i.) until a search robot happens to detect this new artefacts and ii.)
until the index is updated. The active propagation usually encompasses several activities to be
performed on the newly inserted artefacts (e.g., replication, extraction of characteristic
features like colour, texture, shapes, and finally the update of the index). This sequence of
activities (workflow process) has to be automated by the underlying Digital Library
management system to ensure timely updates of derived data and consistency of the overall
information space.

Advanced Querying:
Find Similar Image

DL
Search Index

Image
Database

University
Library

...

Web Servers of
Research Groups

Inst.
of

Building
Tech.

Report
Repository

University Research
Reports

Insertion of
new Project
Description

Rope Bridges
Eine Besonderheit
besteht darin, dass
sich die mit speziell
geformten, variabel
geneigten Kragarmen
ausgestatteten Quer-
träger direkt auf den
Tragseilen absetzen.
Am auffälligsten ist
wohl der geringe Stich
der Tragkabel, der
mit 2,30 m in der 144
m langen Mittelspann-
weite das traditionelle
Stich-Spannweiten- …

Replicate
Data

Observe
Changes

Extract
Features

Update
Index

Coordination:
• Replicate Project Description
• Make Index Up-to-date

1

2

3

4

Fig. 1: Management and Coordination of Information Spaces

DELOS WP1-Survey (SoA, P2P, Grid) Final 4/39

Example 2: Telemonitoring in eHealth.

Telemonitoring supports
the analysis and processing
of data reflecting vital
information on patients.
Based on sensors that are
integrated into the patient’s
clothes or their home
environment, the health
state can be seamlessly
monitored by processing
and analyzing continuous
streams of data. The under-
lying DL has to provide a
high degree of reliability
and availability (a system
their users can rely on).
Moreover, considering the
mobility of out-patients, also mobile devices for hosting (some) of the operators required for
processing sensor data have to be supported (see Figure 2). Finally, aggregated stream data
and the results of data stream processing have to be integrated into other eHealth DL
applications like the (distributed) electronic health record of a patient.

Example 3: Distributed Electronic Patient Records and Similarity Search.

As another example for next
generation DLs, consider
the digital artefacts which
are generated about patients
throughout their lifetime.
Usually, these artefacts
cannot be physically
integrated but are, for admi-
nistrative and also legal
reasons, stored under the
control of the healthcare
providers that have
generated them. When a
physician needs access to
the full medical history of a
patient, the different
artefacts have to be
identified, located, and virtually integrated. The search for and integration of the artefacts has
to be supported by the underlying eHealth DL (see Figure 3, top), by appropriate, privacy-
preserving index services. Patient records comprise many multimedia objects of various
media types. Another requirement for an eHealth DL is the support for multi-feature, multi-
object queries within these eHealth patient records (c.f. Figure 3, bottom). This, in turn,
requires the possibility to compute document similarity based on similarity of component
objects, even when the numbers and types of objects in documents differ.

Pre-
processi

ng

Blood pressure ECG
oxygen

saturation

historical
datacorrelation and

processing

Analysis & prognosis Electronic
patient
record

ECG
variability

Pre-
processi

ng

Call
emergency
physicians/
neighbors

context

oven,
light
off

activity

Has
person
fallen?

„e-
Inclusion“

processing

Patient
Sensors

Home PC

Healthcare
provider

Mobile
device

Fig. 2: Telemonitoring in eHealth

laboratory

Former family doctor

Hospital

Family
doctor

Former family doctor

examination

Similar?

examination

Electronic
Patient
Record

Fig. 3: Distributed Patient Record (top) and Similarity Search (bottom)

DELOS WP1-Survey (SoA, P2P, Grid) Final 5/39

The above mentioned examples have shown that second generation DLs require a shift from
content-centric to person-centric solutions. In terms of the digital artefacts to be stored, not
only static content has to be considered but also content that is frequently updated,
continuously created/revised, etc. Systems have to support the active communication and
collaboration of their users.

Although the three of examples of second generation DLs and DL applications mentioned
above are taken from a very long list, it can be seen that all have individual, application-
specific requirements a DL has to support. The most important of these requirements
(stemming from the above mentioned examples but also from others that are not mentioned in
detail) are:

• Availability of specialized services, local to a content provider, such as
– Search (different media types, content-based similarity search, multi-object,

multi-feature queries, relevance feedback, etc.)
– Indexing
– Annotation
– Metadata management
– Content management
– Resource Management

• Availability of specialized services, across different providers. In addition to the local
services like content management, search, etc. which are also needed outside of
content providers, this includes metadata management and indexing in a distributed
way, without central control (no censorship)

• Generation of virtual DLs across several content providers
• Management of services which are distributed, heterogeneous, and/or autonomous.

Especially for computationally intensive services, this includes the possibility to scale-
out (installation and deployment on demand) as well as load balancing

• Composition of services; this includes the definition of complex services (processes)
on the basis of existing services, the automation of these processes, and the flexible,
automatic adaptation to changing environments

• Notification of changes and the guaranteed consistency of derived data is needed in
the case of dependencies between digital artifacts

• Personalization, visualization, access from everywhere, especially from mobile
devices

• Context- and location-awareness
• Authentication and authorization, preservation of privacy
• High degree of availability: access needs to be guaranteed 24/7 (e.g., by means of

replication)
• High degree of scalability
• High degree of dependability/reliability: DLs must be systems their users can count on
• Processing of continuously generated data streams (e.g., from sensor networks,

hardware or software sensors)

These requirements can be summarized by three main issues: i.) the way to make data and
specialized DL functionality available to a large set of users by means of well-defined
interfaces, ii.) by the interaction between independent data/service providers within a

DELOS WP1-Survey (SoA, P2P, Grid) Final 6/39

network, and iii.) by making available the computing and storage resources that are available
in large networks in an efficient and effective way.

The goal of this survey is to analyze whether and to what extent service-oriented architectures
(SoA), peer-to-peer (P2P) infrastructures, and grid infrastructures can contribute to satisfy the
requirements of second generation DLs.

This survey is organized as follows. The first part contains a detailed summary of state-of-the-
art in service-oriented architectures (Section 1.1), peer-to-peer architectures (Section 1.2), and
Grid infrastructures (Section 1.3). The second part starts with an overview on relevant DL
systems/repositories (Section 2.1) and provides an overview on current approaches on
service-oriented architectures, peer-to-peer architectures, and grid infrastructures for Digital
Libraries (Sections 2.2 – 2.4) mainly undertaken by the DELOS WP1 partners. Finally,
Section 3 discusses the applicability of these technologies for DL management systems and
DL applications.

Part 1: State-of-the-Art

1.1 Service-oriented Architectures
A service-oriented architecture is a component model that inter-relates the different
functional units of an application, so called services, through well-defined interfaces and
contracts between these interfaces. It is also known as an architectural style whose goal is to
achieve loose coupling among interacting software entities. The communication among the
functional components, the services, can involve either simple data passing or it could involve
two or more services coordinating some activity. A service is a unit of work done by a service
provider to achieve desired end results for a service consumer. Both provider and consumer
are roles played by software entities on behalf of their owners. More formally, a service is a
function that is well-defined, self-contained, and does not depend on the context or state of
other services [116], [125].

Service-oriented architectures differ from other architectural concepts by their emphasis on
‘separation of concern’ and on loose coupling. The loose coupling among interacting software
entities and services is achieved by

• Using a simple and ubiquitous interface to all participants. Only generic semantics is
encoded at the interface. Interfaces have to be universally available for all providers
and consumers, meaning that they should be independent of hardware platform,
operating system, and programming language they are implemented with.

• Descriptive messages constrained by an extensible schema delivered through the
interfaces. No or only minimal system behaviour is prescribed by means of messages.
An extensible schema allows new versions of services to be introduced without
breaking existing services.

Having simple, generic interfaces is vital to interaction among components. The emphasis on
loose coupling enables the architecture to better survive evolutionary changes in the structure
and implementation of the internals of each service. When working with traditional
distributed architectures, interfacing is an expensive and very error prone task. The need for
loosely coupled systems rose from the need of business applications to act more agile based
upon the need of businesses to adapt quicker to changing environments as there are changing
policies, business focus, partnership, industry standing, and so on. Attracting these companies

DELOS WP1-Survey (SoA, P2P, Grid) Final 7/39

to shift their computer systems to this architectural pattern, the marketing slogan “On Demand
Computing” was coined by IBM [69] and is now used throughout the industry [66], [76].

Since only few generic interfaces are available, application specific semantics have to be
expressed in the messages exchanged. The following rules have to be followed when calling a
system following a service-oriented architecture:

• The message has to be descriptive rather than instructive (the service provider is
responsible for how to solve the problem, so only a problem description is passed)

• The message has to follow a certain format, structure and vocabulary to be understood.
Limiting the vocabulary and structure is necessary for efficient communication, but
reduces extensibility.

• Extensibility is fundamental (although it has to be reduced in favour for efficient
communication)

• There has to be a mechanism for a service consumer to find service providers under
the context of a service sought by the consumer. This can, but need not be, a central
registry.

The early representatives of service-oriented architectures, even if not named that way in
these days, are DCOM [88] or Object Request Brokers (ORBs) based on the CORBA [96]
specification. Another technology for loosely coupling components that is widely spread in
enterprise wide system architectures is message-oriented middleware [125]. Representatives
of this kind of systems are, for example, MQseries [68] by IBM, DECmessageQ [39] by DEC
or Message Queue Server [89] by Microsoft. An extensive list of vendors of message oriented
middleware can be found in [85]. These technologies already allow the communication and
collaboration of software across network boundaries, although having increasing difficulties
passing corporate firewalls. This is one of the major drawbacks of these architectures that is
addressed by Web Services based service-oriented architectures.

Web Services – a Modern Approach to Service-Oriented Architectures
Although service-oriented architectures are not bound to a specific implementation or
technique, the state of the art in service-oriented architectures is Web Services [7], [28], [40],
and [92]. It is mainly driven by IBM, Microsoft, and other industry partners. Web Services
have to support protocols like SOAP (Simple Object Access Protocol) [118] for the
invocation of web services, with parameters and invocation details shipped in XML format
[172]. In order to allow services to be dynamically discovered, they have to be described, e.g.
using languages like WSDL (Web Service Description Language) [163].

It is generally accepted that a web service implements a service-oriented architectures, placing
the following additional constraints on the architecture:

• Interfaces on the transport layer are based on internet protocols such as HTTP, FTP,
and SMTP.

• Messages must be in XML format, except for binary data attachments

Web services mainly refer to SOAP-based service invocations. SOAP web services
encapsulate their messages within a SOAP envelope, and are described using WSDL. The
advantage of this approach is that it allows for rich message exchange patterns ranging from
traditional request/response to broadcasting and sophisticated message correlation.

SOAP allows for the unidirectional information exchange in a distributed, service-oriented
environment. Within the SOAP web services world, two flavours of SOAP calls exist: SOAP

DELOS WP1-Survey (SoA, P2P, Grid) Final 8/39

RPC for remote procedure calls using the technologies mentioned above, and document-
centric SOAP web services. The former type supports the ‘tunnelling’ of application-specific
remote procedure calls through a generic interface. SOAP 1.2 [117], as well as the web
services interoperability (WS-I) basic profile [148], made the support for RPC optional.

WSDL provides an implementation-independent description of methods (operations) of web
services and their interfaces, respectively. In addition, a WSDL web service description also
includes the possible bindings within transport protocols (how the web service can be
invoked) which is in most cases SOAP.

Finally, web service and their descriptions need to be found in a distributed system. To this
end, several repositories and registries exist. The most common directory service used for
service discovery is UDDI (Universal Description, Discovery, and Integration) [129]. The
web services dynamic discovery (WS-Discovery) specification [144] defines a multicast
discovery protocol to locate services. The web service inspection language specification (WS-
IL) [149] provides an XML format for assisting in the inspection of a site for available
services and a set of rules for how inspection related information should be made available for
consumption. A WS-Inspection document provides a means for aggregating references to pre-
existing service description documents which have been authored in any number of formats.

Within the approach of using web services to realize service-oriented architectures, there is a
vast amount of specifications that is currently transferred to working implementations. These
specifications address messaging and routing, notification mechanisms, transactional
semantics, and security aspects. Finally, the WS-Manageability specification [151] introduces
the general concepts of a manageability model in terms of manageability topics
(identification, configuration, state, metrics, and relationships) and the aspects (properties,
operations and events) used to define them.

In terms of messaging, WS-Addressing [134] provides transport-neutral mechanisms to
address Web services and messages. Essentially, XML elements are used to identify web
service endpoints and to secure end-to-end endpoint identification in messages. This
specification enables messaging systems to support message transmission through networks
that include processing nodes such as endpoint managers, firewalls, and gateways in a
transport-neutral manner. The WS-MessageDelivery specification [152] defines a mechanism
to reference Web services, a SOAP binding for abstract message delivery properties (AMDP),
and the relationship of those properties to WSDL definitions and message exchange patterns.
These properties enable SOAP messages to be transport-independent, thereby extending
messaging capability to use separate transport protocol sessions or even using different
transport protocols within the context of a message exchange pattern. WS-Routing [157] is a
simple, stateless, SOAP-based protocol for routing SOAP messages in an asynchronous
manner over a variety of transports like TCP, UDP, and HTTP. Reliable messaging which is
critical to some applications of Web Services is addressed by the web services reliability
specification (WS-Reliability) [155].

In terms of notifications, WS-Eventing [145] describes a protocol that allows web services to
subscribe to or accept subscriptions for event notification messages. WS-Notification [137] is
a family of documents that supports publish/subscribe notification patterns. The WS-
BaseNotification, the basis of all WS-Notification specifications, defines the web services
interfaces for producers and consumers of notifications. It includes standard message
exchanges to be implemented by service providers that wish to act in these roles, along with
operational requirements expected of them. WS-BrokeredNotification defines the web
services interface for the notification broker, which is an intermediary that allows publication

DELOS WP1-Survey (SoA, P2P, Grid) Final 9/39

of messages from entities that are not themselves service providers. Finally, the WS-Topics
specification defines a mechanism to organize and categorize items of interest for
subscription.

The Web Services Transactions specifications (which comprise WS-BusinessActivity, WS-
AtomicTransactions, WS-Coordination) define mechanisms for transactional interoperability
between Web services domains and provide a means enrich Web services applications by
transactional semantics. The WS-AtomicTransaction [136] specification defines three specific
agreement coordination protocols for the atomic transaction coordination type: completion,
volatile two-phase commit, and durable two-phase commit. Developers can use any of these
protocols when building applications that require consistent agreement on the outcome of
short-lived distributed activities that have the all-or-nothing property. The WS-Coordination
[142] specification describes an extensible framework for providing protocols that coordinate
the actions of distributed applications. Such coordination protocols are used to support a
number of applications, including those that need to reach consistent agreement on the
outcome of distributed activities. The WS-BusinessActivity specification [138] provides the
definition of a business activity coordination type used to coordinate activities that apply
business logic to handle business exceptions. Actions are applied immediately and are
permanent. Compensating actions may be invoked in the event of an error. The
BusinessActivity specification defines protocols that enable existing business process and
workflow systems to wrap their proprietary mechanisms and interoperate across trust
boundaries and different vendor implementations. The Web Service Transaction Management
specification (WS-TXM) [161] defines three distinct transaction protocols that can be plugged
into the coordination framework for interoperability across existing transaction managers,
long running compensations, and asynchronous business process flows.

For securing web service calls, WS-Security [158] describes enhancements to SOAP
messaging to provide quality of protection through message integrity, message
confidentiality, and single message authentication. These mechanisms can be used to
accommodate a wide variety of security models and encryption technologies. WS-
SecurityPolicy [160], which extends WS-Security, indicates the policy assertions for which
apply to WS-Security specifications. The Web Services Trust Language [162] (WS-Trust)
uses the secure messaging mechanisms of WS-Security to define additional primitives and
extensions for security token exchange to enable the issuance and dissemination of credentials
within different trust domains. The Web Services Secure Conversation Language (WS-
SecureConversation) [158] is built on top of the WS-Security and WS-Trust models to
provide secure communication between services. The WS-Federation specification [146]
defines mechanisms that are used to enable identity, account, attribute, authentication, and
authorization federation across different trust realms.

Service Composition and Orchestration
In addition to the description and invocation of single web services, it is of vital importance to
be able to combine several web service invocations to value-added composite web services or
(workflow) processes [7]. Essentially, such processes allow for the integration of arbitrary
local and remote web service calls. Several approaches to define specifications and languages
for service composition exist. The most common one is BPEL4WS (Business Process
Execution Language for Web Services) [23], which combines ideas from WSFL (Web
Services Flow Language) [166] and XLANG (XML Business Process Language) [171].
Similarly, the WS-Choreography specification [141] provides an information model that
describes the data and the relationships between them that is needed to define a choreography

DELOS WP1-Survey (SoA, P2P, Grid) Final 10/39

that describes the sequence and conditions in which the data exchanged between two or more
participants in order to meet some useful purpose. The Web Services Conversation Language
(WSCL) [163] allows the definition of business level conversations supported by a Web
service. WSCL specifies the XML documents being exchanged, and the allowed sequencing
of these document exchanges. WSCL conversation definitions are themselves XML
documents and can therefore be interpreted by Web services infrastructures and development
tools.

The Web Services Composite Application Framework (WS-CAF) [139] is a collection of
three specifications: Web Service Context (WS-CTX), Web Service Coordination Framework
(WS-CF), and Web Service Transaction Management (WS-TXM, see above; it includes a
solution to bridge different transaction models which is needed when multiple Web services
are used in combination to support information sharing and transaction processing). The Web
Service Context specification (WS-CTX) [143] provides an open, common, interoperable
runtime mechanism to manage, share, and access context information among related Web
services. The Web Service Coordination Framework (specification WS-CF) [140] defines a
software entity to handle context management. Web services in a composite application
register with a coordinator to ensure that messages and results are correctly communicated
and allow, e.g. the success or failure of an individual service to be tied to the success or
failure of the larger unit of work comprising multiple Web services.

For the execution of business processes (composite web services), several commercial
systems like the IBM WebSphere Choreographer [70] or BizTalk of Microsoft [86] exist.
These commercial systems follow a centralized approach, where every call to a service
provider returns to the process engine. Albeit navigation tasks can be distributed in a cluster,
storage of process instances is usually done by using a single, centralized database instance
(products like Oracle 10g [98] can also support clustered databases). In the distributed
Mentor-lite approach [58], the setting of the process engine in a cluster can be changed
actively using a configuration tool. In addition, various workflow and process management
systems have been developed in academia (e.g., SWORDIES [128], Panta Rhei [43],
MENTOR-lite [133], WISE [8], or OSIRIS [114], [115].
Crucial to processes is that they are executed and coordinated with dedicated transactional
guarantees. In the context of transactional workflows, the intersection of transaction and
process management, various contributions can be found in the literature (e.g., [57], [74]).
ConTracts [131] bring together aspects of programming languages for control flow
specifications and transactions. Each ConTract is considered as a long-running transaction.
Chen and Dayal propose to apply nested transactions for process execution (Open Process
Management [30]). Spheres of joint compensation [79] address the fault-tolerant execution of
single processes. Flexible transactions [46], [175] introduce advanced failure handling
strategies that can be applied to processes. This allows for the specification of alternative
executions that can be chosen in case of failures. Transactional processes [113] which are
supported by the OSIRIS system (Open Service Infrastructure for Reliable and Integrated
process Support [114]), combine these sophisticated failure handling strategies with the
guarantee to enforce consistent interactions of concurrent process executions. In the context of
the IBM WebSphere Choreographer [70], a distinction between microflows (short-running
business processes) and macroflows (long-running business processes) is made. Microflows
are non-interruptible and fully-automated processes which usually encompass only
transactional activities, i.e., activities whose resources support the XA protocol. In this case,
the execution of a microflow is atomic and the complete microflow is executed within a single
transaction. Macroflows, in contrast, are interruptible and can involve asynchronous activities

DELOS WP1-Survey (SoA, P2P, Grid) Final 11/39

or activities with human interaction. In a macroflow, each activity is executed within an
individual transaction. During the execution of a macroflow, the execution state is made
persistent in the underlying database, which allows for forward recovery in case of failures.
In terms of service discovery, existing systems usually implement either an approach based on
tModel types of WSDL (e.g., ServiceGlobe [75]), or include service discovery into the
process navigation (e.g., eFlow [27], ISEE [83], or CrossFlow [63]).

1.2 Peer-to-Peer Architectures
Peer-to-peer (P2P) architectures have become very popular for information systems in
general. Especially file-sharing applications like Napster, Gnutella, etc. have demonstrated the
potential strengths of P2P approaches, but have also pointed to more sophisticated and partly
controversial issues along technological, economic, and legal dimensions. Recent books that
aim to discuss all these aspects of P2P architectures are, for example, [99] and [111].

In addition to file sharing, other application areas of P2P technologies include instant
messaging, collaborative authoring and other groupware, publish-subscribe applications, etc.
For all these cases, P2P networks are the basic infrastructure for virtual communities that
share resources, computer resources like processors, memory, and disks as well as intellectual
resources like user annotations and recommendations.

In contrast to client-server systems, P2P architectures emphasize that all peers are equal and
autonomous and there is no central coordination of how peers share resources and interact
with each other. P2P should rather be self-organizing, even in the presence of many failures
and the high dynamics of large-scale systems. The following principles are widely seen as key
characteristics of a P2P system, distinguishing this system paradigm from other classes of
distributed computer systems:

• Decentralization: Each node of a P2P network can store and process data and can
exchange it with other nodes at its discretion. There is no central coordinator, which
could become a single-point-of-failure or a load bottleneck. All nodes have equal
capabilities and rights: they are peers.

• Sharing of distributed resources: Peers share physical resources like storage space,
computing power, and network bandwidth as well as logical resources like data,
metadata, statistics, etc.

• Autonomy: Each node has full control over its resource usage on behalf of other nodes
and its interactions with other nodes. The extent to which resources are shared with
other nodes may vary over time. In particular, nodes may temporarily leave the
network at arbitrary points or may become unavailable for other reasons, and they may
permanently leave the network without notice.

• Self-organization and autonomic behaviour: The data and load sharing among nodes
and their interactions are completely self-organized and should be adapted to changing
conditions dynamically and automatically. Every node should be autonomic in the
sense that none of its decisions for self-monitoring, self-management, self-healing, and
self-optimization requires input by human administration staff.

Historically, P2P architectures can be traced back to the early days of the Internet with simple
but completely decentralized services like the Usenet discussion forums. The breakthrough of

DELOS WP1-Survey (SoA, P2P, Grid) Final 12/39

P2P started with file-sharing systems like Napster and Gnutella for exchange of MP3 files and
other entertainment data. Such systems constituted what is today viewed as the first
generation of P2P systems. Both Napster and Gnutella are simple publish-subscribe systems.
Napster uses a central index for metadata (i.e., the locations of files); Gnutella uses a simple
message-flooding algorithm for locating files; this is very effective but potentially wasteful in
terms of its network costs.

The second generation of P2P file-sharing systems improved the Napster/Gnutella technology
by either distributing the index over a larger number of super-peers or reducing the messages
in the Gnutella-style flooding algorithm by appropriate routing protocols. This generation
includes systems such as Freenet, eDonkey, KaZaA (FastTrack), Morpheus, AudioGalaxy, or
JXTA. In addition to these commercial or semi-commercial systems, a number of more
advanced research prototypes have been developed in the last five years: Chord [124], CAN
[102], OceanStore [105], Pastry [106], Farsite [3], Pier [67], YouServ [14], Peers [101],
PlanetP [35], ODISSEA [123], to name just some of the most prominent ones.

The technical challenges that the P2P research community is addressing include “standard
issues” like efficient localization of data objects and request routing, and strategies for load
balancing, failure resilience, and replication. In addition, new challenges that were not
discussed in earlier forms of distributed systems are how to deal with denial-of-service
attacks, how to define and manage trust, privacy, and anonymity, and how to establish
incentive mechanisms for peers to contribute resources and active participation in the P2P
network. The importance of incentive mechanisms and fair sharing has become obvious with
the analysis of the so-called “free-riding” phenomenon in Gnutella, the fact that most nodes
merely download files without contributing any resources to others.

In addition to file-sharing and publish-subscribe, new application domains are emerging for
P2P systems. These include Web crawling [22] and search engines (see below), collaborative
work or games, collaborative data mining, electronic marketplaces, etc. Also, there is a strong
trend to combine P2P architectures with other modern technologies, most notably, Web
Services, Enterprise Application Integration (EAI), and Workflow Management [7].

P2P Approaches for Digital Libraries and Search Engines
In a P2P federation of digital libraries, every digital library acts as a peer, and additionally
every user and her PC-based software tools (e.g., for personalization) may be viewed as a
peer, too. Here, the term digital library is interpreted in a broad sense, including, for example,
software repositories, scientific databases (e.g., with gene expression data), thematically
specialized Internet portals, and also customized search engines for specific Web fragments.
The following considerations apply equally to queries over digital library federations and to
metasearch over multiple Web search engines. Key issues in this context are:

• Peer selection, traditionally known as database selection or query routing: When a
user has an information demand, to which peers does she send her query?

• Query execution: How is a query that involves multiple peers executed in a distributed
manner? How are execution plans dynamically adapted to an unpredictably changing
environment (e.g., because of failures, overload, or peers leaving the federation)?

• Result reconciliation: How are search results that are obtained from multiple peers
merged into a single ranked result list?

DELOS WP1-Survey (SoA, P2P, Grid) Final 13/39

• Maintenance of metadata and statistics: How are metadata and statistics about the
peers in the system maintained in a distributed manner? What kinds of caching and
replication strategies are appropriate? How aggressively should metadata and
statistical summaries be proactively disseminated among peers, using gossiping-style
protocols? To what extent are consistency and freshness of metadata and summaries
needed?

Recent research on P2P systems, such as Chord [124], CAN [102], Pastry [106], or P-Grid
[1], is based on various forms of distributed hash tables (DHTs) and supports mappings from
keys, e.g., titles or authors, to locations in a decentralized manner such that routing scales well
with the number of peers in the system. In such systems, an exact-match key lookup can
typically be routed to the proper peer(s) in at most O(log n) hops, and no peer needs to
maintain more than O(log n) routing information. These architectures can also cope well with
failures and the high dynamics of a P2P system as peers join or leave the system at a high rate
and in an unpredictable manner.

However, the above approaches are limited to exact-match, single keyword queries on keys.
This is insufficient when queries should return a ranked result list of the most relevant
approximate matches [29]. In the following we briefly discuss some existing approaches
towards P2P search with ranked results, obtained from different Web sites, databases, or
digital libraries.

Galanx [132] is a peer-to-peer search engine implemented using the Apache HTTP server and
BerkeleyDB. It directs user queries to relevant nodes by consulting local peer indexes similar
to our approach.

PlanetP [35] is a publish/subscribe service for P2P communities and the first system
supporting content ranking search. PlanetP distinguishes local indexes and a global index to
describe all peers and their shared information. The global index is replicated using a
gossiping algorithm. The system, however, is limited to a few thousand peers.

Odissea [123] assumes a two-layered search engine architecture with a global index structure
distributed over the nodes in the system. A single node holds the entire index for a particular
text term (i.e., keyword or word stem). Query execution uses a distributed version of Fagin's
threshold algorithm [47]. The system appears to cause high network traffic when posting
document metadata into the network, and the query execution method presented currently
seems limited to queries with one or two keywords only.

The system outlined in [104] uses a fully distributed inverted text index, in which every
participant is responsible for a specific subset of terms and manages the respective index
structures. Particular emphasis is put on three techniques to minimize the bandwidth used
during multi-keyword searches.

[81] considers content-based retrieval in hybrid P2P networks where a peer can either be a
simple node or a directory node. Directory nodes serve as super-peers, which may possibly
limit the scalability and self-organization of the overall system. The peer selection for
forwarding queries is based on the Kullback-Leibler divergence between peer-specific
statistical models of term distributions.

Minerva [17] is a distributed search engine prototype based on P2P techniques. Every peer
has a full-fledged search engine with a (thematically focused) crawler and a local index whose
contents may be tailored to the user's specific interest profile. Peers are autonomous and post
meta-information about their bookmarks and index lists to a global directory, which is
efficiently implemented in a decentralized manner using Chord-style distributed hash tables.

DELOS WP1-Survey (SoA, P2P, Grid) Final 14/39

A query posed by one peer is first evaluated locally; if the result is unsatisfactory the query is
forwarded to selected peers. These peers are chosen based on a benefit/cost measure where
benefit reflects the thematic similarity of peers' interest profiles, derived from bookmarks, and
cost captures estimated peer load and response time. The meta-information that is needed for
making these query routing decisions is efficiently looked up in the global directory; it can
also be cached and proactively disseminated for higher availability and reduced network load.

Strategies for P2P request routing beyond simple key lookups but without considerations on
ranked retrieval have been discussed in [174], [33], [31], but are not directly applicable to our
setting. The construction of semantic overlay networks is addressed in [80], [34] using
clustering and classification techniques; these techniques would be orthogonal to our
approach. [126] distributes a global index onto peers using LSI dimensions and the CAN
distributed hash table. In this approach peers give up their autonomy and must collaborate for
queries whose dimensions are spread across different peers. [2] addresses the problem of
building scalable semantic overlay networks and identifies strategies for their traversal.

In addition to this recent work on P2P Web search, prior research on distributed IR and
metasearch engines is potentially relevant, too. [26] gives an overview of algorithms for
distributed IR like result merging and database content discovery. [56] presents a formal
decision model for database selection in networked IR. [93] investigates different quality
measures for database selection. [65], [82] study scalability issues for a distributed term
index.

A good overview of metasearch techniques is given by [84]. [168] discusses specific
strategies to determine potentially useful local search engines for a given user query.
Notwithstanding the relevance of this prior work, collaborative P2P search is substantially
more challenging than metasearch or distributed IR over a small federation of sources, as
these approaches mediate only a small and rather static set of underlying engines, as opposed
to the high dynamics of a P2P system.

1.3 Grid Infrastructure
A Grid infrastructure is a hardware and software infrastructure that concern with “coordinated
resource sharing and problem solving in dynamic, multi-institutional virtual organization”
[54]. The key concept is sharing and resources subject to sharing are computing and storage
devices, software, data, services and in general each kind of networked resource usable in a
remote way. This sharing is necessarily highly controlled as providers and consumers want to
clearly define what to share, who is allowed to share, and the conditions under which sharing
occurs. A Grid infrastructure aims to supply the ability to negotiate resource-sharing rules
among a set of providers and consumers and then to use the resulting pool of resources for
some purpose.

In order to better understand the notion of Grid infrastructure it is important to take a look at
its history. As reported in [18], three generation of the Grid systems can be identified. The
first generation, at that time termed metacomputing [121], dated from the early to mid 1990s,
puts the effort on linking supercomputing sites in order to provide computational resources to
high performance applications.

The second generation views the Grid as a viable distributed infrastructure on a global scale
that can support diverse application requiring large-scale computation and data. This view
introduces three main issues: (a) heterogeneity, resources are heterogeneous in nature and
span numerous administrative domains, (b) scalability, the number of available resources

DELOS WP1-Survey (SoA, P2P, Grid) Final 15/39

increases and they are also geographically distributed, this mean that the applications must be
latency tolerant in order to do not degrade their performance, and (c) adaptability, the
infrastructure is highly dynamic, resource failure is quite common, this mean that applications
must be able to extract the maximum performance from the available resources. In this second
generation Grids attention is also dedicated to the middleware required to support this vision.
Middleware has to be intended as a means for hiding the heterogeneous nature of the
resources, it aims to provide an environment enabling access and use, via standardized
interfaces, to a variety of them. During this phase many noteworthy projects, dealing with
various aspects of the Grid, have been undertaken. The most well known among these
projects is the Globus [61]. The toolkit developed by this project, which has been used by
several other projects, provides a collection of solutions to problems that frequently come up
when trying to build collaborative distributed applications. It has evolved from its first version
[51] to the current forth version. It offers building blocks and tools for application developers
and system integrators that are related with:
• Security: mainly related with authentication, authorization and delegation issues. It is

based on three components: WS Authentication and Authorization, Community
Authorization Service (CAS) and Delegation Service;

• Data Management: mainly related with data transfer (GridFTP and Reliable File Transfer
(RFT)) and management of mapping information from logical names for data items to
target names (Replica Location Service (RLS)). It will also include the OGSA-DAI [95]
component, i.e. a component allowing data access to relational databases and XML
repositories;

• Execution Management: it is based on the Grid Resource Allocation and Management
(GRAM), a service that provides a single interface for requesting and using remote system
resources for the execution of jobs;

• Information Services: the main component is the Monitoring and Discovery System
(MDS). It provides information about the available resources on the Grid and their status;

• Common Runtime Components: provides tools for building stateful Web services in three
programming languages: Java, C, and Python.

During this phase, several projects dealt with resource brokering and scheduling. Among
them we like to cite Condor [32], i.e. a software system for executing batch jobs on a variety
of UNIX platforms with strong fault tolerant mechanisms (checkpoint and migration of jobs),
and Storage Resource Broker [122], i.e. a middleware able to provide uniform access to
distributed storage resources across a range of storage devices, via a well-defined API. Other
project tried to integrate these components into coherent systems. For example, the European
DataGrid project [38], aimed to set up a computational and data-intensive Grid of resources
for the analysis of data coming from scientific exploration. Many of the products
(technologies, infrastructure etc.) of this project are going to be included in a new EU grid
project - “Enabling Grids for E-science in Europe” (EGEE) [44]. EGEE aims to build on
recent advances in grid technology and to develop a service grid infrastructure in Europe
which will be available to scientists 24 hours-a-day.

The third generation Grid systems, currently under development, move the emphasis on
distributed global collaboration following a service oriented approach and paying attention to
information layer issues. While the first two generation systems can be described in terms of
large scale data and computation, here the focus is really on virtual organizations and
distributed collaboration, i.e. distributed and loosely coupled users and resources will be

DELOS WP1-Survey (SoA, P2P, Grid) Final 16/39

enabled to group together in order to solve the new kinds of problems that the society have to
deal with.

Even if the past generation systems have proposed different Grid architectures e.g. the layered
architecture described in [54], it is now wide accepted that the service-oriented approach is
the most appropriate paradigm for the actual generation of Grid systems. This approach is
confirmed in [53], the paper introducing the Open Grid Service Architecture (OGSA). The key
concept in this architecture is the Grid Service, i.e. a network-enabled entity having a well
defined semantics in terms of mechanisms for dynamic service creation, lifetime management,
notification, manageability, naming and discovering of services instances. Computational
resources, storage resources, networks, programs, databases, and the like are all represented as
services.

In July 2003 the Open Grid Services Infrastructure (OGSI) specification was released by the
OGSI Working Group with the objective of defining a set of conventions and extensions on
the use of Web Service Definition Language and XML Schema to enable stateful Web
services. OGSI is set of WSDL specifications defining standard interfaces, behaviours, and
schema for Grid computing consistent with the OGSA vision. It introduces the idea of stateful
Web services and defines approaches for creating, naming, and managing the lifetime of
instances of services; for declaring and inspecting service state data; for asynchronous
notification of service state change; for representing and managing collections of service
instances; and for common handling of service invocation faults. These interfaces and
behaviors define the Grid Service.

Since the start of the OGSA development in early 2002 the world of Web services evolved
significantly by the emergence of a set of new Web service standards. In addition, since the
publication of OGSI 1.0, fierce discussion on the applied techniques between the Web service
and Grid service communities took place. In January 2004, experts from the Web Services
community proposed the WS-Resource framework (WSRF) [36] as a re-factoring and
evolution of OGSI aimed at exploiting new Web services standards, specifically WS-
Addressing. WSRF retains essentially all of the functional capabilities present in OGSI, while
changing some of the syntax and also adopting a different terminology in its presentation. In
addition, WSRF partitions OGSI functionality into six distinct, composable specifications that
are fully compatible with the existing established Web service specifications and concepts.
With WSRF the concept of a Grid service has not disappeared. The WS-Resource construct
defines creation, addressing, inspection and lifetime management of stateful resources, so-
called WS-Resources. It defines the relationship between Web services and stateful resources
in terms of the implied resource pattern that is built on Web service conventions. WSRF
models stateful resources with Web services as a stateless service that acts upon stateful
resources, it provides access to or manipulates a set of logical stateful resources (documents)
based on messages that it sends and receives. Both OGSA [53] and WSRF [36] will be
supported by the last release of the Globus Toolkit (GT4) announced for the beginning of
2005.

The experience done with OGSI and WSRF convinced the Grid community on using as much
as possible standards. Setting and using standards is a key to tackling heterogeneity and
encourage tooling and code re-use. In WSRF view Grid Services are naturally and critically
tied to Web Services and so must be built on top of Web service standards. However, there
are about 60 active WS-* specifications that represent critical features of Grid systems in
various areas1:

1 For each are we will just cite the involved specifications.

DELOS WP1-Survey (SoA, P2P, Grid) Final 17/39

• Core Infrastructure Specifications (XSD [173], WSDL [164], SOAP [118]);
• Service Discovery (UDDI [129], WS-Discovery [144], WS-IL [149]);
• Security (SAML [107], XACML [170], WS-Security [158], WS-SecurityPolicy [160],

WS-Trust [162], WS-SecureConversation [159], WS-Federation [146]);
• Messaging (WS-Addressing [134], WS-MessageDelivery [152], WS-Routing [157], WS-

RM [156], WS-Reliability [155], SOAP MTOM [119]);
• Notification (WS-Eventing [145], WS-Notification [137], JMS [72]);
• Workflow and Coordination (WS-CAF [139], WS-CTX [143], WS-CF [140], WS-TXM

[161], WS-Coordination [142], WS-AtomicTransaction [136], WS-BusinessActivity
[138], BTP [94], BPEL [24], WS-Choreography [141], WSCL [163]);

• Characteristics (WS-Policy, WS-Agreement);
• Metadata and State (RDF [103], DAML+OIL [37], OWL [100], WS-

DistributedManagement [165], WSDM-MUWS [91], WSDM-MOWS [90], WS-
MetadataExchange [153], WS-RF [36], ASAP [10], WS-GAF [147]).

It is of vital importance to keep order and harmonization among all these specifications. The
Web Services Interoperability Organization [150] is an open industry effort chartered to
promote Web Services interoperability across platforms, applications, and programming
languages. This organization brings together a diverse community of Web services leaders to
respond to customer needs by providing guidance, recommended practices, and supporting
resources for developing interoperable Web services. One of the results of this organization is
the profile, i.e. sets of Web services specifications that work together to support specific types
of solutions. The WS-I Basic Profile 1.1 incorporates just XSD, SOAP1.1, WSDL1.1 and
UDDI. It is probable that the 60 specifications will be checked out, evolved in the cauldron
the real word and best practice will identify new specification to be added to WS-I profile.

Related to standards, there is another interesting initiative that has been undertaken by the
Open Middleware Infrastructure Institute (OMII) of the University of Southampton. In its
strategy paper [9] the promoters of the initiative defines a web service specification profile
WS-I+ that builds upon the recognized WS-I Basic Profile adding some specifications: WS-
Addressing, WS-ReliableMessaging and the BPEL.

Finally, it is important to notice that Grid services must be able to communicate with other
services but also with human users. So, component models for resources automatically lead to
component models for the user interfaces. It is a good practice, also supported by existing
tools (e.g. GridSphere [64], Jetspeed [71]), to build the user interface of grid applications with
portals and portlets. Behind this models there are two noteworthy standards: the WSRP [167]
and the JSR168 [73].

DELOS WP1-Survey (SoA, P2P, Grid) Final 18/39

Part 2: Digital Library Support
This part surveys current activities, projects, etc. that aim at applying service-oriented
architectures, peer-to-peer architectures and/or grid infrastructures to Digital Libraries and
Digital Library Management Systems. Section 2.1 starts with an overview on relevant DL
repositories. The following three sections (2.2 – 2.4) then report on ongoing activities (mostly
of DELOS WP 1 member institutions, but also from others in case detailed information was
accessible) to use SoA, P2P, and Grid concepts and systems for Digital Libraries.

2.1 Overview on DL Repositories
This section introduces several repository systems. A repository is a central place where data
is stored and maintained. For the systems presented in this section, the repository software is
released as open source product. Moreover, it has been equipped with some DL
functionalities, mainly the search feature and a user interface allowing have access to the
stored documents. Thanks to these features and characteristics, they are considered powerful
enough to meet the DL requirements of a number of communities and thus are usually
confused with DLMSs. In particular, they are used to implement Institutional Repositories.
An Institutional Repository is defined as a system providing a set of services to the members
of its community for the management and dissemination of digital materials created by the
institution and its community members (e.g., “A university-based institutional repository is a
set of services that a university offers to the members of its community for the management
and dissemination of digital materials created by the institution and its community members.
It is most essentially an organizational commitment to the stewardship of these digital
materials, including long-term preservation where appropriate, as well as organization and
access or distribution” [78]). We are firmly convinced that DLMSs are more than simple
repositories and are capable of improving and enhancing the services offered by an
Institutional Repository. However the software systems that are actually used represent a
reality w.r.t. DL researchers and systems have to compare with.

DSpace (MIT Libraries and Hewlett-Packard)
DSpace [42], [127] is an open source system designed to operate as a centralized repository
able to capture, store, index, preserve, and redistribute the intellectual output of a university’s
research faculty in digital formats. It manages and distributes digital items, made up of digital
files and allows for the creation, indexing, and searching of associated metadata to locate and
retrieve the items. It is designed mainly to support the long-term preservation of the digital
material stored in the repository.

From an architectural point of view the system is not designed to deal with any of the
distributed architectural framework object of this survey. Instead it is a centralized software
system organized into three layers: i.) the storage layer, which is responsible for physical
storage of metadata and content. It relies on the file system of the server to store the content
and on a RDBMS to store all information about the organization of content, metadata about
the content, information about users and authorization, and to maintain indices that users can
browse; ii.) the business logic layer deals with managing the content of the archive, users of
the archive, authorization; and iii.) the application layer contains components that com-
municate with the world outside of the individual DSpace installation, for example the Web
user interface and the Open Archives Initiative Protocol for Metadata Harvesting service.

DELOS WP1-Survey (SoA, P2P, Grid) Final 19/39

EPrints (University of Southampton)
EPrints [45] is a software tool, released as open source in 2000, that can be used for creating a
web-based archive/repository of files with associated metadata. The most common use for
EPrints is thus to enable the creation of a web accessible repository of some, or all, of an
institution’s research. In our best knowledge, on July 2005, there are 161 repositories running
EPrints software spread worldwide for a total of 86’609 records.

From an architectural point of view this system is designed as a centralized service to be
hosted on a single server. From a functional point of view, it offers similar features to those
presented for DSpace, e.g. submission, search, and browse.

Fedora (University of Virginia Library and Cornell University)
Fedora [48], [77] is an open source repository service for storing and managing complex
objects. At its core there is a powerful document model. In accordance to this model a Fedora
digital object is composed by i.) a unique identifier, ii.) a set of descriptive properties, iii.) a
set of data streams, and iv.) a set of disseminators. Data streams are containers used to
maintain both data and metadata belonging to an object. Disseminators are components
capable to associate an external service with the object in order to supply a virtual view of the
object itself, or of its data stream content. Thanks to the richness and flexibility of this model
many institutions are nowadays using the Fedora system.

From the perspective of this report, one of the most important features of Fedora is that it is
implemented as a set of web services and its full functionality, including its rich document
model, is exposed through well-defined web service APIs. Thanks to this feature, Fedora is
particularly appropriate to be used in a broader service oriented framework and act as the
storage layer for a variety of applications. This distinguishes Fedora from other repository
systems that are vertical applications for storing and manipulating complex objects through a
fixed user and management interface like DSpace and EPrints.

The Fedora architecture is composed by four services, the Fedora Repository service
represents the core one around which other services providing additional functionality exist,
i.e., the Fedora OAI Provider, the Fedora Search service, and the Fedora Preservation
Monitoring service. In our best knowledge, at the time of writing Fedora is migrating to this
new service oriented framework and new versions of the Fedora OAI Provider and Fedora
Search services will be release in Fedora 2.1 while the latter one will be implemented as part
of the phase II of the Fedora project. Instead the Fedora Repository service is available and
exposes API for i.) read/write operations necessary to manage a repository of complex digital
objects, ii.) read-only operations for accessing complex digital objects, and (iii) discovery
capabilities to locate digital objects via a simple search on the object properties or a browsing
of an RDF based index of the entire repository content.

Greenstone (University of Waikato)
Greenstone [62] is a suite of software for building and distributing digital library collections
that provides a way of organizing information and publishing them on the Internet or on
removable media like CD-ROM and DVD. A liaison with UNESCO and Human Info has
been a crucial factor in the development of Greenstone. Human Info began using Greenstone
to produce collections in 1998, and provided extensive feedback from user testing. UNESCO
wants to empower developing countries to build their own digital library collections and
selected Greenstone in 2000, arranges user testing, helps with internationalization, and

DELOS WP1-Survey (SoA, P2P, Grid) Final 20/39

mounts courses. Internationalization is another central goal, at the writing time the user
interface is available in 35 languages.

From the architectural point of view, a precise distinction must be done w.r.t. the different
versions of this software. The last version, Greenstone 3 [11], is a complete redesign and
reimplementation of the original Greenstone digital library software needed to overcome the
problem of it, e.g. lack of flexibility and expandability. The new version is designed with the
goal to meet the following requirements: backward compatibility w.r.t. collections, different
levels of customization, software modularity, service based, distributed architecture, future
compatibility, dynamic, etc. Worth noting two concepts: it is planned to use decoupled
services and a distributed architecture. At the writing time exists a very early pre-release of
this software and thus the information to make an in depth evaluation are not available,
however the premises seems reasonable.

2.2 Service-oriented Architectures for Digital Libraries
This section presents contributions to the application of service orientation to Digital Libraries
at different levels of abstraction. First, the architecture of a particular service for enriching DL
content by means of annotations is discussed. The following two approaches address the
overall architecture of a service-oriented DL (Knowledge Management DL, BRICKS, and
OpenDlib). Finally, the ETHZ/UMIT hyperdatabase approach supports the combination of
existing services by means of processes, thereby allowing for the creation of new (DL)
functionality.

Annotation Services for Digital Libraries (Uni Padova)
The notion of isolated applications or data is increasingly disappearing in favour of a
distributed and networked environment with an information centric view. This allows us to
provide integrated services and applications to users, without any distinction between local
and remote information resources.

In this context we can envisage a scenario in which a digital library system can become not
only a place where information resources can be stored and made available, but also a daily
work tool, which can be integrated into the way the user works, so that the user's intellectual
work and contents which are provided by the digital library can be merged together,
constituting a single working context. Thus the digital library is no longer perceived as
something external to the intellectual production process or as a mere consulting tool but as an
intrinsic and active part of the intellectual production process [4], [5], [6].

Annotations are effective means used in enabling this paradigm of interaction between users
and digital libraries, in fact annotations introduce a new content layer devoted to elucidate the
meaning of an underlying information resource and they can make hidden facets of the
annotated information resource more explicit. In particular, annotations allow users to
naturally create a hypertext that seamlessly merges personal contents with the contents
provided by the digital library. So, to give to the final users the possibility of dynamically
developing a hypertext of information that annotates the documents maintained in the digital
library of their interest, it becomes necessary to design an annotation service able to cooperate
with the digital library system. Architectural choices become a key factor for enabling the
design and development of an advanced annotation service capable of both modelling the
different facets of the annotation and effectively exploiting annotations for search and
retrieval purposes.

DELOS WP1-Survey (SoA, P2P, Grid) Final 21/39

In fact it is necessary to have an architecture able to support both the behaviour of the
annotation service in a modular way, so that we can easily add new functionalities to the
annotation service without the need of redesigning the architecture of the it, secondly, the
architecture has to be flexible enough to be implemented according to different architectural
paradigms, such as Web Services (WS) or Peer-to-Peer (P2P) architectures. Indeed a flexible
architecture allows the annotation service to have a great reach and a widespread usage, so
that users can benefit from its functionalities without limitations due to the architecture of a
particular digital library system, allowing a strict interaction between users and digital
libraries.

A Generic Service-Oriented Architecture for Knowledge Management (TU Crete)
TUC is currently working on the development of a generic Service-Oriented Architecture for
Knowledge Management in a distributed environment. The developed system is general-
purpose ontology-based P2P meta-data management system and its architecture can be used
in many different environments and application domains. The causation for building this
system is to enable knowledge management and sharing in an e-commerce environment
where thousands of companies offer and demand business services (web services) forming a
digital business ecosystem. The generic approach followed in this P2P metadata management
middleware that TUC is developing, can also be used in digital libraries in order to provide
distributed, advanced metadata management and to put into action business models that
exploit semantic ontologies. The entire system is based on the OMG MOF Metadata
Architecture, and the core services that it offers include:

• KB Service: It encapsulates all the functionality Knowledge Base and provides a
standard interface to the other service components.

• Recommender Service: It is responsible of handling user preferences in terms of
partnerships as well as services needed to compose more complex services.

• Semantic Registry Service: It provides a standard interface capable to implement
Semantic Registry Service functionality and provides standard representation
hierarchies and query facilities provided by the standard registries.

• Ontology Manager: Provides a GUI to the end user and it is used for the management
(creation/update/retrieve) of the ontologies.

• BML Editor: It is a Tool that uses the Business Ontologies (created with the Ontology
Editor) in order to describe business models, policies, assets, competencies, partners,
etc.

• Service Manifest Creator: It is a Tool that is used to integrate the semantic (business)
description and technical description (interfaces) of services into a single description
container named Service Manifest.

• Service Publisher: It is a tool that is used to publish Service Manifests to the Semantic
Registry.

• Service Browsing/Discovery Tool: It is a Tool that is used to contact the Semantic
Registry Service in order to browse and retrieve the contents of the Semantic Registry
of the DBE.

• User Profile Editor: A graphical tool that is used by the users in declaring their
preferences. Appropriate guidance is also given to the users with respect to the
specific business domain by exploiting domain specific ontologies.

DELOS WP1-Survey (SoA, P2P, Grid) Final 22/39

BRICKS: Building Resources for Integrated Cultural Knowledge Services
The aim of the BRICKS project (an FP6 integrated project) is to design and develop an open,
user- and service-oriented infrastructure to share knowledge and resources in the Cultural
Heritage domain [25]. This project began in January 2004, has a duration of 42 months and
involves 24 partners: 7 from academia, and the rest equally distributed between users and
industry.

From an architectural point of view, it has been decided that the BRICKS architecture will be
decentralised, based on a P2P paradigm, i.e. no central server will be employed. In particular,
the BRICKS P2P network will utilize the P-Grid [1] distributed hash table approach (P-Grid
DHT). Every institution joining a BRICKS installation is a node (a BNode in the BRICKS
jargon) of the BRICKS architecture. Each of the components constituting a BNode (the bricks
into BRICKS jargon depicted as vertical boxes in the picture) is a Web Service. These bricks
are classified into three categories:

• Fundamental bricks, i.e., services hosted on each BNode ensuring the proper
functioning of the node as member of BRICKS. The functionalities they provide are:
Decentralized XML Storage, Service Registration and Discovery, Index management.

• Core bricks, i.e., services needed to provide local user of the BNode to have access to
BRICKS. They include User Management, Authentication and Authorization, Search
and Browse.

• Basic bricks, i.e., optional services that are deployed on a BNode if the functionalities
they provide are needed on the single node. They include: Content Management,
Metadata Management, Accounting, IPR Protection, Annotation Management, and
Service Composition.

OpenDLib: a Digital Library Management System (CNR-ISTI)
OpenDLib [97] is digital library management system, i.e. a system able to support a cost-
effective digital library creation and operational model. From an architectural point of view it
consists of an open federation of services that can be distributed and replicated on the pool of
servers belonging to the supporting institutions.

The OpenDLib system is able to grow over time along several dimensions, e.g. services,
metadata formats supported, host servers, user communities, searchable metadata, handled
manifestations, etc. In particular, it supports three kinds of dynamic service expansions: (i)
new services can be added; (ii) new instances of a replicated or distributed service can be
mounted on either an existing or a new hosting server; (iii) the configurations of the services
can be modified so that they can handle new document types, new metadata formats and
support new usages.

The interaction among the OpenDLib services is more complex than a simple client-server
communication. A service can act both as a provider and as a consumer, and sharing
relationships exists a priori among a subset of the services. Moreover, the topology of the
communication among the different service instances allocated on different servers is
dynamic since it takes into account load balancing and bandwidth monitoring techniques.

These features of the architecture provide a great flexibility in the management of a digital
library. For example, an institution can decide to maintain an instance of a repository service
in order to locally control its own documents and to share all the other services with other
institutions, a new index service can be added to support another language; a new query
mediator service can mounted to better support an enhanced workload.

DELOS WP1-Survey (SoA, P2P, Grid) Final 23/39

Hyperdatabases for Service Composition & Process Management (ETH Zürich/UMIT)
The hyperdatabase vision [108], [109], [110] was established at ETH Zürich several years ago
as an answer to the substantial changes in IT technology and its impact on information
systems as well as an answer to what extent traditional database technology could lead to a
new and a more radical departure from traditional existing information infrastructure and
middleware. While a database system handles data records, a hyperdatabase system deals with
services and service invocations. Services in turn may be using a database system. Therefore,
the name hyperdatabase, i.e., a software layer for services on top of databases, has been given
to this vision. In short, a hyperdatabase (HDB) takes care of optimal routing similar to query
optimization in a conventional database and it provides process support with transactional
guarantees over distributed components using existing services as a generalization of
traditional database transactions [112], [113]. By using processes, existing services can be
combined (by defining control and data flow dependencies between them), thereby
implementing new, advanced services. The HDB provides sophisticated routing strategies to
dynamically choose among the available providers of services at run-time using approximate
knowledge about availability and load.

Most importantly and in contrast to traditional database technology, a hyperdatabase does not
follow a monolithic system architecture but is fully distributed over all nodes representing
peers in a network of a community. Every node is equipped with an additional thin software
layer, a so-called hyperdatabase layer (HDB layer). The HDB layer extends existing layers
like the TCP/IP stack with process related functionalities, e.g., routing of requests.

OSIRIS (Open Service Infrastructure for Reliable and Integrated process Support) is a
hyperdatabase implementation which has been started at ETH Zürich and which is now jointly
continued at ETH Zürich and at UMIT. Process management is vital to Digital Libraries in
order to combine and integrate services to a coherent whole, i.e., to access information from
different content sources, to provide advanced content-based search functionality within a DL,
or to transform the retrieved data into a user desired format [87], [169].

2.3 Peer-to-Peer Architectures for Digital Libraries
In what follows, the approaches presented use to variants of P2P architectures for the
realization of DL management systems. First, these are super peer architectures that contain
selected, specialized peers that manage sets of “normal” peers (the OFFIS super peer network
and the TUC Knowledge Management approach). Second, MINERVA, GHT*, and OSIRIS
consider P2P architectures with all equal peers. MINERVA is a P2P search engine that
supports federated search over digital libraries and other information sources. GHT*
addresses special queries (range and k-nearest neighbours queries) on metric space data.
Finally, OSIRIS uses P2P data management for distributed process management, i.e., the
execution of process-based DL services without any centralized control.

Super Peer Networks (OFFIS Oldenburg)

The research of OFFIS focuses on super peer networks. Super peer networks have some
advantages in comparison to pure peer-to-peer networks. They combine the efficiency of the
centralized client-server model with the autonomy, load balancing, and robustness of
distributed search. They also take advantage of the heterogeneity of capabilities across peers.
A super peer can independently route messages within its cluster. Queries to selected

DELOS WP1-Survey (SoA, P2P, Grid) Final 24/39

organizational units do not flood the entire network, but can be routed directly. The
hierarchical super peer network supports the flexibility and self-organization of widely
distributed, loosely coupled, and autonomous digital library systems [21]. The architecture
allows for the search over collections of arbitrary artefacts as for example traditional
documents, on-line books, digital images, and videos, which is a basic service requirement for
digital libraries. Beyond, the network enables library users to also store, administer, and
classify their own artefacts. Thus, it supports scenarios like the construction of personal or
group reference libraries and collaborative authoring. Other application areas for hierarchical
super peer networks are the medical sector in order to solve the availability problem for
distributed patient records [19] and the support of distributed software development [20].

P2P Knowledge Management (TU Crete)
The previously described Knowledge Management system is under development at TU Crete
and it will be built with the principles of Service Oriented Architecture in mind. That is, the
various back-end components (KB, Recommender, etc.) will be provided also as offered
services to the users of the system. The system is currently extended from a centralized
implementation to a P2P one. Some of the research issues related to the P2P Knowledge
Management that are being examined are the following:

• Ontology management (insertion, maintenance, conflict resolution and utilization) in
P2P systems combining MOF Repositories and Relational Databases at each peer
following a Service Oriented Architecture.

• Business model and business process ontologies, environmental ontologies, domain
specific ontologies and their use and interplay in a dynamic service environment.

• Distributed Semantic Recommendation and Service Composition mechanisms
• Self-organization of the P2P network.

The architecture follows the super peer network paradigm for the efficiency benefits that it
presents and its capability of taking advantage of the heterogeneity of the peers by assigning
greater responsibility to those peers that are more capable to handle it. However the choice of
the super peer model does not solve all the problems that the Knowledge Management
requirements poses, since the design should consider several of challenging issues like:
dynamic self-organization of peers and super peers, performance trade offs, load-balancing
among equivalent peers and among simple peers and super peers, avoidance of single-point of
failure in the super peers, search performance using super peers, data placement and indexing
across super peers and other research issues. The on-going research will address the above
issues and will be based on state of the art semantic models as well as data representation
interchange standards: OMG’s Model Drivel Architecture (MDA) that provides an open,
vendor-neutral approach to the challenge of interoperability, building upon and leveraging the
value of OMG's established modelling standards as well as the Unified Modelling Language
(UML), Meta-Object Facility (MOF), XML Metadata Interchange (XMI) etc.

The Minerva P2P Search Engine (MPII)

The Minerva project [15], [16], [17] at the Max-Planck Institute of Computer Science pursues
a P2P architecture for federated search over digital libraries and other information sources as
well as Web search for advanced information demands. Each peer, for example, a digital
library or a power-user's personal agent, is considered autonomous and has its own local
search engine with a corresponding local index. Peers share their local indexes (or specific
fragments of local indexes) by posting meta-information into the P2P network. This meta-

DELOS WP1-Survey (SoA, P2P, Grid) Final 25/39

information contains compact statistics and quality-of-service information, and effectively
forms a global directory. However, this directory is implemented in a completely
decentralized and largely self-organizing manner. More specifically, we maintain it as a
distributed hash table (DHT) using the (re-implemented and adapted) algorithms of the Chord
system. Each per-peer engine uses the global directory to identify candidate peers that are
most likely to provide good query results. A query posed by a user is first executed on the
user's own peer, but can additionally be forwarded to other peers for better result quality. The
local results obtained from there are merged by the query initiator.

Particular emphasis is paid to query routing, the decision to which other peers a given search
request is forwarded. A "good" peer in this regard should have thematically relevant index
contents, which could be measured by statistical notions of similarity between peers. Both
query routing and the formation of "statistically semantic" overlay networks could greatly
benefit from collective human inputs in addition to standard statistics about terms, links, etc.:
knowing the bookmarks and query logs of thousands of users would be a great resource to
build on.

A first prototype of the Minerva system is running and serves as an experimental platform for
studying query routing strategies and other aspects of P2P information search.

GHT*: A Scalable P2P System (MUNI)
GHT* [12] is a scalable P2P system allowing execution of range and k-nearest neighbours
queries on metric space data. The structure distributes data among network peers, utilizing
additional peers as the size of the data-set scales up. The response to similarity queries
remains practically constant, because the queries are executed in parallel on respective peers.
In addition, the latency of the whole system is better as opposed to a centralized metric index,
because different peers behave practically independently on each other and queries are solved
only on a subset of peers.

In general, GHT* consists of network nodes, peers, that can insert, store, and retrieve objects
using similarity queries. The GHT* architecture assumes that:

• Peers communicate through the message-passing paradigm.
• Each peer participating in the network has a unique Network Node IDentifier (NNID).
• Each peer maintains data objects in a set of buckets. Within a peer, the Bucket

IDentifier (BID) is used to address a bucket.
• Each object is stored exactly in one bucket.

The GHT* exploits Generalized Hyperplane Trees (GHT) [130], which is a metric space
indexing technique for centralized systems. Practically, a modified form of GHT called
Address Search Tree (AST) is present in every participating peer – the structure is used to
navigate the queries to particular peers holding the data. It is a binary search tree, where its
inner nodes hold routing information and the leaf nodes represent pointers to the data.
Specifically, the inner nodes always store a pair of pivots – these are some representative
metric objects from the data-set – and respective pointers to the left and the right subtrees.

The data objects are stored in buckets that are held either locally (thus we can address the
bucket by its BID) or on another peer, which can be identified by a proper NNID. Therefore,
the AST has always one of those two types of pointers in leaf nodes.

When searching for a place where to store a new object, we start in the root of the AST of the
peer that issued the query. We compute distances between the inserted object and the pivots in

DELOS WP1-Survey (SoA, P2P, Grid) Final 26/39

inner nodes while traversing the tree using following rule. If the distance to the first pivot is
smaller than the distance to the second one, we navigate to the left subtree of that inner node.
Otherwise, the right subtree is considered. This process is recursively repeated until a leaf
node is reached. Whenever the navigation procedure reaches the leaf node of the AST, the
inserted object is stored either locally in the respective bucket (if a BID identifier is found) or
on a remote peer (if an NNID identifier is encountered).

By analogy to insertion, the range search also starts by traversing the local AST of the
querying peer. However, the traversing condition is modified. The specified radius of the
range search is used when determining if the left of right subtree has to be considered. As
opposed to insertion, both the paths can match and thus both the subtrees must be traversed.
We again repeat this procedure recursively until all the matching leaves are found. Then we
forward the query to all peers that are identified by NNIDs in the leaves. We execute range
query in local buckets for all BID pointers in the leaves. In general, the query is usually
forwarded to more peers, where the local buckets are searched. Thus, the query is effectively
parallelized on different peers and the results are just concatenated together afterwards.
Because the size of a bucket is limited, the parallelization grows with the size of the data-set
and, therefore, the response time remains practically constant.

The GHT* structure is also able to perform k-nearest neighbors queries. The algorithm for
executing kNN queries is based on the range searches. Let q be the query object and k the
number of nearest neighbours to retrieve. The kNN algorithm first traverses the AST using the
similar strategy as if it is inserting object q. With this strategy, the bucket, where q would be
inserted, is found. Then, we search all the objects in this bucket and compute distance to the
query object. If the bucket contains more than or exactly k objects, we get the distance to the
kth object and execute a range search with query object q and this distance. In the other case,
we have to estimate the range search radius by another technique. Algorithms resolving this
problem were presented in [13]. The result of the range search is then pruned so that there are
exactly k objects left – they are the solution of the kNN query.

Peer-to-Peer Process Execution with the OSIRIS Hyperdatabase (ETH Zürich / UMIT)
The decentralized and distributed process engine OSIRIS follows the principles of a
hyperdatabase system. The main emphasis of the OSIRIS design was to avoid any central
component for process navigation. Rather, a process instance involves only nodes that provide
a service for that process. To do so, each HDB layer (i.e., the software layer that has to be
available with each service provider) requires global meta information, in particular
information about other service providers and their current load. Therefore, the efficient
replication of global meta information is important. Essentially, global repositories maintain
the global meta information about the service providers in the community. Each HDB layer
replicates those pieces of meta information it needs to fulfil its tasks.

Process execution in OSIRIS follows a true peer-to-peer approach touching only nodes that
provide a service for the process, and accessing meta information only locally [114], [115].
Meta data replication, on the other hand, is based on a hierarchical organization with central
repositories (although distributed over a set of nodes), and clients (= HDB layers) replicating
from them. Most importantly for true peer-to-peer process management, process execution
and meta data replication run independently from each other.

Usually, several providers offer semantically equivalent services. To simplify the discovery of
services, OSIRIS deploys a publish and subscribe (pub/sub) mechanism for service

DELOS WP1-Survey (SoA, P2P, Grid) Final 27/39

invocations: a service provider subscribes for the execution of its services at a global service
repository (similar to a UDDI repository). If a client requests a service, it publishes this
request with the service type as the topic, and the local HDB layer selects and invokes one of
the available services. In OSIRIS, this means that a process instance is migrated by publishing
the instance data with the service topics of subsequent steps. Essentially, there is no central
pub/sub component routing publications. Rather, each hyperdatabase layer holds local
replicas of the global subscription lists and migrates process instances in a peer-to-peer way,
i.e., plays the role of a pub/sub broker.

2.4 Grid Infrastructures for Digital Libraries
The application of Grid infrastructures for DLs either considers i.) the “gridification” of
selected DL functionality (the TUC approach to index and access 2D and 3D data in a grid),
ii.) the application of grid features like on-demand deployment of services and load balancing
to the management and execution of DL processes in the OSIRIS hyperdatabase approach,
and iii.) the implementation of a DL on top of a Grid environment as it is done in the
DILIGENT project.

Grid Infrastructures for Scientific and Engineering Applications (TU Crete)
TUC is currently surveying the state of the art in the field of exploiting Grid infrastructures
for supporting scientific and engineering applications based on big digital libraries of 2D and
3D content that are stored on the Grid. The main areas of research interest include:

• Semantic modelling of 2D and 3D objects using domain specific ontologies that
capture the semantics of specific application domains (e.g. meteorology, engineering,
health) including the modelling of simulation environments.

• Query and manipulation languages for 2D and 3D objects that are exploiting the
semantics of the content.

• Semantic indexing of the content to provide efficient access and retrieval of 2D and
3D objects that reside on the Grid.

OSIRIS: A Grid-Enabled Hyperdatabase System for Processes (ETH Zürich / UMIT)
The OSIRIS hyperdatabase implementation supports several grid features, especially in terms
of sophisticated routing of service requests, load balancing, and service management.

The OSIRIS load balancer chooses the provider that is best suited to offer the service to be
invoked next in the context of a particular process instance. For that purpose, the Load
Balancing module replicates data from the global Load Repository via the Replication
Manager. Since load information is not critical, approximate load information at each peer
about other service providers is sufficient. Therefore, less strict freshness predicates can be
used as in the case of replicating process information (i.e., information about the next service
to be executed in the context of a process). The use of a lazy replication approach for load
balancing information is a key characteristic of OSIRIS and important to achieve a high
degree of scalability in decentralized peer-to-peer process execution [114], [115].

OSIRIS also supports the management of executables of services. When no or only highly
loaded providers for a certain service exist, a particular service instance can be installed on a
less loaded node in the network (given that this node has the required processing, network,

DELOS WP1-Survey (SoA, P2P, Grid) Final 28/39

and/or storage capabilities), thereby also increasing the degree of scalability that can be
achieved for decentralized peer-to-peer process execution.

DILIGENT: a DIgital Library Infrastructure on Grid ENabled Technology (CNR-ISTI)
The DILIGENT project [41] aims to create a knowledge infrastructure that will allow
members of dynamic user communities to build on-demand transient digital libraries (DLs)
capable to satisfy their needs. These DLs will be created by exploiting shared resources, i.e.
content repositories, applications, services, storage and computing elements, etc, offered by
the infrastructure.

From an architectural point of view the DILIGENT infrastructure will be composed of a set of
interacting services providing: i) a set of typical DL functions, like search, annotation,
personalization, document visualization; ii) access to information sources and applications
provided by third-parties; iii) features necessary for handling the shared content and
application resources; and iv) support for the creation and operation of on-demand, transient
DLs. These services will exploit the high computational and storage capabilities of the Grid
infrastructure released by the EGEE project [43] in order to support complex and time
consuming functionalities, while focusing on optimizing resource usage and satisfying QoS
contracts.

The DILIGENT services will be logically partitioned into three layers:
• DILIGENT Collective Layer. This layer is composed by services that enhance existing

Grid collective services, i.e. those global services needed to manage interactions
among resources, with functionalities capable to support the complex services
interactions required by the Digital Library Layer. It will consists of (a) an
Information Service for discovering and monitoring distributed resources, (b) a
Broker&Matchmaker Service for obtaining an optimal distribution of services and
resources across the infrastructure, (c) a Keeper Service for bridging together the set
of resources belonging to a DL and (d) a Dynamic VO Support Service for the
creation of the operational secure context associating users, user requests and
resources belonging to the DL according to the sharing policies and agreements.

• Digital Library Layer. It consists of a set of reliable and dependable services covering
the core functionalities required by DL applications. This set provides submission,
indexing and discovery of mixed-media objects and the management and processing
of these objects through annotation, composition, cooperative editing, etc. Each
service of this area will likely represent an enhancement of the functionalities
provided by the equivalent no-Grid-aware service and will be designed to take full
advantage of the scalable, secure, and reliable Grid infrastructure.

• Application-Specific Layer. This layer contains the set of services provided by user
communities that decided to share their legacy content and application-specific
resources.

3 Discussion and Open Issues
Service-oriented architectures, peer-to-peer architectures and Grid infrastructures provide
powerful support for the realization of next generation DLs.

Service-oriented architectures SoA are more and more becoming the core backbone of next
generation DLs and DL management systems. In addition, the definition, invocation, and

DELOS WP1-Survey (SoA, P2P, Grid) Final 29/39

description of services (service directories) as well as the possibility to build sophisticated
applications by means of service composition will significantly support DL applications.
However, in addition to the underlying SoA-based DL infrastructure, significant work needs
to be done in the context of defining and implementing self-contained, modular DL services
that can be re-used in different DL applications.

Peer-to-peer architectures allow for a complete decentralization, i.e., DLs that do neither have
any global control nor any kind of censorship. Essentially, P2P aspects are applied to data and
service management. In addition, P2P data management provides self-organization capa-
bilities that are highly important in the presence of many failures and that allow to address the
high dynamics of large-scale DLs.

Grid infrastructures, finally, support the efficient use of resources by means of automatic
service installation and deployment (self-adaptability), load balancing, and scheduling. Due to
dynamic replication of content and services, a high degree of availability can be achieved. In
addition, based on the features of existing Grid infrastructures, authentication and autho-
rization can be seamlessly integrated into a grid-enabled DL.

Despite of the separate introduction and discussion of the three technologies, there are many
similarities and analogies. First, all three approaches are distributed ones that make use of
functionality offered by different providers and that make this distribution transparent to the
user. Second, from a DL point of view, they support in a way or another the notion of
sharing/reuse (of content, services, etc.). Third, although we have independently discussed
service-oriented architectures, P2P architectures and Grid infrastructures, it has to be noted
that these are by far no orthogonal technologies. Rather, all three strongly converge and
differences between technologies more and more diminish. This convergence is mostly driven
by applying/extending existing standards towards the common notion of Web services.
Current tends in Grid infrastructures, for instance, make intensive use of service-oriented
concepts (service grids actually apply web service standards for the definition, description,
etc. of grid services). Similarly, P2P approaches are more and more penetrating (meta) data
management in Grid infrastructures.

While most requirements that have been identified in the introduction can be directly
supported by either of these technologies, there are still requirements that are not directly
covered by these technologies and require further consideration. This either calls for the
implementation of specialized (grid-aware, P2P) services (e.g., context- and location-aware
services, complex queries across media types, etc.) or requires orthogonal extensions (e.g.,
support for highly dependable and reliable systems, continuous processing of sensor data,
monitoring of users, or support for mobile devices that allows switching between
connected/disconnected modes, etc.).
Since different DL applications have different requirements, there is not a universal DL
architecture that supports everything, nor is there a unique recipe on how to construct a novel
DL management system. Rather, as we have pointed out in this survey, service-oriented
architectures, peer-to-peer architectures, and Grid infrastructures, provide the basic building
blocks that can be combined based on the concrete requirements of a DL application.
Based on this survey on SoA, P2P and Grid for Digital Libraries, a particularly important next
step will be the definition and introduction of a model for DL management systems (A
Reference Model for Digital Library Management Systems), i.e., a formal and conceptual
framework describing the characteristics of these systems. Essentially, this reference model
has to identify the different components of a DL management system and to define and
specify these components and their interrelations.

DELOS WP1-Survey (SoA, P2P, Grid) Final 30/39

References
[1] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth, M. Punceva,

R. Schmidt. P-Grid: A Self-organizing Structured P2P System. SIGMOD Record,
Volume 32, 2003.

[2] K. Aberer, P. Cudre-Mauroux, M. Hauswirth, T. Van Pelt. GridVine: Building
Internet-Scale Semantic Overlay Networks. In: Proceedings of the 3rd International
Semantic Web Conference, 2004.

[3] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J .R. Douceur, J. Howell,
J. R. Lorch, M. Theimer, R. Wattenhofer. FARSITE: Federated, Available, and
Reliable Storage for an Incompletely Trusted Environment. In: Proceedings of the
OSDI Conference, 2002.

[4] M. Agosti, N. Ferro. An Information Service Architecture for Annotations, In:
M. Agosti, H.-J. Schek, and C. Türker (Eds), Digital Library Architectures: Peer-to-
Peer, Grid, and Service-Orientation, Pre-proceedings of the 6th Thematic Workshop of
the EU Network of Excellence DELOS. Edizioni Libreria Progetto, Padova, Italy,
2004, 115-126.

[5] M. Agosti, N. Ferro. Annotations: Enriching a Digital Library, In: T. Koch, I.T.
Solvberg (Eds). Proceedings of the 7th European Conference on Research and
Advanced Technology for Digital Libraries (ECDL 2003), Trondheim, Norway,
August 2003. Springer, Berlin/Heidelberg, 2003, 88-100.

[6] M. Agosti, N. Ferro, I. Frommholz, U. Thiel. Annotations in Digital Libraries and
Collaboratories - Facets, Models and Usage, In: Proceedings of the 8th European
Conference on Research and Advanced Technology for Digital Libraries (ECDL
2004). Springer, Berlin/Heidelberg, Germany, LNCS 3232, 2004, 244-255.

[7] G. Alonso, F. Casati, H. Kuno, V. Machiraju. Web services - Concepts, Architectures
and Applications, Springer, 2004.

[8] G. Alonso, U. Fiedler, C. Hagen, A. Lazcano, H. Schuldt, N. Weiler: WISE: Business
to Business E-Commerce. In: Proceedings of the 9th International Workshop on
Research Issues in Data Engineering: Information Technology for Virtual Enterprises
(RIDE-VE'99), Sydney, Australia, March 1999.

[9] M. Atkinson, D. DeRoure, A. Dunlop, G. Fox, P. Henderson, T. Hey, N. Paton,
S. Newhouse, S. Parastatidis, A. Trefethen , and P. Watson. Web Service Grids: An
Evolutionary Approach. http://omii.ac.uk/WSG/WebServiceGrids.pdf

[10] ASAP: The OASIS Asynchronous Service Access Protocol (ASAP).
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=asap

[11] D. Bainbridge, K. J. Don, G. Buchanan, I. H. Witten, S. Jones, M. Jones, M. I. Barr,
Dynamic Digital Library Construction and Configuration. In Proceedings of 8th
European Conference Research and Advanced Technology for Digital Libraries,
ECDL 2004, pages 1-13, Bath, UK. LNCS 2004.

[12] M. Batko, C. Gennaro, P. Savino, P. Zezula: Scalable Similarity Search in Metric
Spaces. In: Digital Library Architectures: Peer-to-Peer, Grid, and Service-Orientation,
Pre-proceedings of the 6th Thematic Workshop of the EU Network of Excellence
DELOS, S. Margherita di Pula, Cagliari, Italy (2004), 213–224.

http://omii.ac.uk/WSG/WebServiceGrids.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=asap

DELOS WP1-Survey (SoA, P2P, Grid) Final 31/39

[13] M. Batko, C. Gennaro, P. Zezula: A Scalable Nearest Neighbour Search in P2P
Systems. In: VLDB Workshop On Databases, Information Systems and Peer-to-Peer
Computing, Toronto, Canada (2004).

[14] M. Bawa, R. J. Bayardo Jr., S. Rajagopalan, E. Shekita. Make it Fresh, Make it Quick
- Searching a Networks of Personal Webservers, In: WWW Conference, 2003.

[15] M. Bender, S. Michel, C. Zimmer, G. Weikum: Towards Collaborative Search in
Digital Libraries Using Peer-to-Peer Technology. In: M. Agosti, H.-J. Schek, and C.
Türker (Eds), Digital Library Architectures: Peer-to-Peer, Grid, and Service-
Orientation, Pre-proceedings of the 6th Thematic Workshop of the EU Network of
Excellence DELOS. Edizioni Libreria Progetto, Padova, Italy, 2004, pages 61-72.

[16] M. Bender, S. Michel, G. Weikum, C. Zimmer: Bookmark-driven query routing in
peer-to-peer web search. In: Proceedings of the SIGIR Workshop on Peer-to-Peer
Information Retrieval: pages 46-57.

[17] M. Bender, S. Michel, G. Weikum, C. Zimmer: The MINERVA Project: Database
Selection in the Context of P2P Search. In: Proceedings of the 11th German Database
Conference, Karlsruhe, Germany, 2005

[18] F. Berman, G. Fox, and A. Hey, Grid Computing: Making the Global Infrastructure a
Reality. John Wiley & Sons, April 2003. ISBN: 0470853190.

[19] L. Bischofs, W. Hasselbring: A Hierarchical Super Peer Network for Distributed
Software Development. In: Proceedings of the Workshop on Cooperative Support for
Distributed Software Engineering Processes (CSSE 2004). Linz, Austria, 2004,
September.

[20] L. Bischofs, W. Hasselbring, H. Niemann, H. Schuldt, M. Wurz: Verteilte
Architekturen zur intra- und inter-institutionellen Integration von Patientendaten. In:
Tagungsband der 49. Jahrestagung der Deutschen Gesellschaft für Medizinische
Informatik, Biometrie und Epidemiologie (GMDS 2004) (2004), September

[21] L. Bischofs, W. Hasselbring, J. Schlegelmilch, U. Steffens: A Hierarchical Super Peer
Network for Distributed Artifacts. In: Pre-proceedings of the 6th Thematic Workshop
of the EU Network of Excellence DELOS. S. Margherita di Pula (Cagliari), Italy,
2004, pp. 105-114

[22] P. Boldi and B. Codenotti and M. Santini and S. Vigna. Ubicrawler: A scalable fully
distributed web crawler. In: Proceedings of the 8th Australian World Wide Web
Conference (AusWeb02), 2002.

[23] BPEL4WS: The Business Process Execution Language for Web Services.
http://www-128.ibm.com/developerworks/library/ws-bpel/

[24] BPEL: The Business Process Execution Language for Web Services. http://www-
106.ibm.com/developerworks/library/ws-bpel/

[25] BRICKS Community. http://www.brickscommunity.org
[26] J. Callan. Distributed Information Retrieval. Advances in Information Retrieval.

Kluwer Academic Publishers, 2002.
[27] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, M. Shan. Adaptive and Dynamic

Service Composition in eFlow. In B.Wangler and L. Bergman, editors, Advanced
Information Systems Engineering, Proc. of the 12th Int. Conf., CAiSE 2000,
Stockholm, Sweden, June 5–9, 2000, Lecture Notes in Computer Science, Vol. 1789,
pages 13–31. Springer-Verlag, Berlin, 2000.

http://www-128.ibm.com/developerworks/library/ws-bpel/
http://www-106.ibm.com/developerworks/library/ws-bpel/
http://www-106.ibm.com/developerworks/library/ws-bpel/
http://www.brickscommunity.org/

DELOS WP1-Survey (SoA, P2P, Grid) Final 32/39

[28] E. Cerami. Web Services Essentials. O'Reilly, 2002.
[29] S. Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext Data.

Morgan Kaufmann, 2002.
[30] Q. Chen, U. Dayal. A Transactional Nested Process Management System. In:

Proceedings of the 12th International Conference on Data Engineering (ICDE'96),
pages 566-573, New Orleans, Louisiana, USA, 1996.

[31] E. Cohen, A. Fiat, H. Kaplan. Associative Search in Peer to Peer Networks:
Harnessing Latent Semantics. In: Proceedings of the IEEE INFOCOM'03 Conference,
2003.

[32] Condor: The Condor® Project Homepage. http://www.cs.wisc.edu/condor/
[33] A. Crespo, H. Garcia-Molina. Routing Indices for Peer-to-Peer Systems. In:

Proceedings of the 28th Conference on Distributed Computing Systems, 2002.
[34] A. Crespo, H. Garcia-Molina. Semantic Overlay Networks for P2P Systems. Technical

report, Computer Science Department, Stanford University, October 2002.
[35] F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen: PlanetP: Using

Gossiping to Build Content Addressable Peer-to-Peer Information Sharing
Communities. In: Proceedings of the 12th International Symposium on High
Performance Distributed Computing (HPDC), 2003.

[36] K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukin, D. Snelling,
S. Tuecke, and W. Vambenepe. The WS-Resource Framework. White paper, 2004.

[37] DAML+OIL: The W3C DAML+OIL Reference Description. http://www.w3.org/
TR/daml+oil-reference

[38] DataGrid: The DataGrid Project website. http://www.eu-datagrid.org
[39] DECmessageQ. http://h18000.www1.hp.com/info/SP3409/SP3409PF.PDF
[40] H. Deitel, P. Deitel, B. DuWaldt, L. Trees Web Services: A Technical Introduction.

Prentice Hall, 2002.
[41] DILIGENT website. http://www.diligentproject.org
[42] DSpace official website. http://www.dspace.org/
[43] J. Eder, H. Groiss, W. Liebhart. The Workflow Management System Panta Rhei. In: A.

Dogac, L. Kalinichenko, T. Özsu, A. Sheth. Workflow Management Systems and
Interoperability, Proceedings of the NATO Advanced Study Institute (ASI) on
Workflow Management Systems, pp. 129-144. Istanbul, Turkey, Springer, 1998.

[44] EGEE: The EGEE Project website. http://www.eu-egee.org
[45] EPrints website. http://software.eprints.org
[46] A. Elmagarmid, Y. Leu, W. Litwin, M. Rusinkiewicz. A Multidatabse Transaction

Model for InterBase. In: Proceedings of the 16th International Conference on Very
Large Databases (VLDB'90), pages 507-518, Brisbane, Australia, August 1990.

[47] R. Fagin. Combining fuzzy information from multiple systems. SIGMOD Record 31,
2002.

[48] Fedora website. http://www.fedora.info/
[49] I. Foster. What is the Grid? A Three Point Checklist. GRID Today, July 20, 2002.

http://www.cs.wisc.edu/condor/
http://www.w3.org/%20TR/daml+oil-reference
http://www.w3.org/%20TR/daml+oil-reference
http://www.eu-datagrid.org
http://h18000.www1.hp.com/info/SP3409/SP3409PF.PDF
http://www.diligentproject.org
http://www.dspace.org/
http://www.eu-egee.org
http://software.eprints.org
http://www.fedora.info/

DELOS WP1-Survey (SoA, P2P, Grid) Final 33/39

[50] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D. F. Ferguson, F. Leymann,
M. Nally, T. Storey, W. Vambenepe, and S. Weerawarana. Modeling Stateful
Resources with Web Services. White paper, 2004.

[51] I. Foster, C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit.
International Journal of Supercomputer Applications, 11(2):115-128, 1997.

[52] I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, Second edition, November 2003. ISBN:
1558609334.

[53] I. Foster, C. Kesselman, J. Nick, S. Tuecke. The Physiology of the Grid: An Open
Grid Service Architecture for Distributed Systems Integration. Open Grid Service
Infrastructure Working Group, Global Grid Forum, June 2002.

[54] I. Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling Scalable
Virtual Organization. The International Journal of High Performance Computing
Applications, 15(3):200-222, 2001.

[55] I. Foster and A. Iamnitchi. On Death, Taxes, and the Convergence of Peer-to-Peer
and Grid Computing. In M. F. Kaashoek and I. Stoica, editors, Peer-toPeer Systems II,
2nd International Workshop, IPTPS 2003, Revised Papers, volume 2735, pages 118-
128, 2003.

[56] N. Fuhr. A Decision-Theoretic Approach to Database Selection in Networked IR.
ACM Transactions on Information Systems, 1999.

[57] D. Georgakopoulos, M. Hornick, A. Sheth. An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure. In: Distributed and
Parallel Databases, 3(2), pages 119-153, April 1995.

[58] M. Gillmann, G. Weikum, W. Wonner. Workflow Management with Service Quality
Guarantees. In M. J. Franklin, B. Moon, A. Ailamaki, editors, Proc. of the 2002 ACM
SIGMOD Int. Conf. on Management of Data, Madison, Wisconsin, June 3–6, 2002,
pages 228–239, ACM Press, 2002.

[59] GGF: The Global Grid Forum website. http://www.ggf.org
[60] Globus: The Globus Alliance website. http://www.globus.org
[61] GlobusToolkit: The Globus Toolkit website. http://www.globus.org/toolkit/
[62] Greenstone website. http://www.greenstone.org
[63] P. Grefen, K. Aberer, H. Ludwig, Y. Hoffner. CrossFlow: Cross-Organizational

Workflow Management for Service Outsourcing in Dynamic Virtual Enterprises. IEEE
Data Engineering Bulletin, 24(1):52–57, 2001.

[64] GridSphere: The GridSphere website. http://www.gridsphere.org
[65] T. Grabs, K. Böhm, H.-J. Schek. PowerDB-IR: Information Retrieval on Top of a

Database Cluster. In Proceedings of the 10th International Conference on Information
and Knowledge Management, 2001.

[66] G. Hohpe, B. Woolf. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions, Addison-Wesley, 2003.

[67] R. Huebsch, J. M. Hellerstein, N. Lanham, B. Thau Loo, S. Shenker, I. Stoica.
Querying the Internet with PIER, In Proceedings of the VLDB Conference, 2003.

[68] IBM MQseries. http://www.ibm.com/software/mqseries/

http://www.ggf.org
http://www.globus.org
http://www.globus.org/toolkit/
http://www.greenstone.org
http://www.gridsphere.org
http://www.ibm.com/software/mqseries/

DELOS WP1-Survey (SoA, P2P, Grid) Final 34/39

[69] IBM On Demand Computing. http://www-1.ibm.com/services/us/
index.wss/rs/imc/a1002907?cntxtId=a1000074

[70] IBM WebSphere Application Server Enterprise Process Choreographer.
http://www7b.software.ibm.com/wsdd/zones/was/wpc.html

[71] Jetspeed: The Jetspeed website. http://portals.apache.org/jetspeed-2/
[72] JMS: The Java Message Service website. http://java.sun.com/

products/jms/
[73] JSR168: Portlet Specifications. http://jcp.org/en/jsr/detail?id=168
[74] M. Kamath, K. Ramamritham. Correctness Issues in Workflow Management. In:

Distributed Systems Engineering Journal, 3(4), pages 213-221, December 1996.
[75] M. Keidl, S. Seltzsam, K. Stocker, A. Kemper. ServiceGlobe: Distributing E-Services

Across the Internet. In Proc. of the 28th Int. Conf. on Very Large Data Bases, VLDB
2002, Hong Kong, China, pages 1047–1050. Morgan Kaufmann Publishers, 2002.

[76] D. Krafzig, K. Banke, D. Slama. Enterprise SOA: Service-Oriented Architecture Best
Practices. Prentice Hall, 2004.

[77] C. Lagoze, S. Payette, E. Shin, C. Wilper, Fedora: An Architecture for Complex
Objects and their Relationships. Forthcoming in Journal of Digital Libraries, Special
Issue on Complex Objects, Springer 2005.

[78] C. A. Linch, Institutional Repositories: Essential Infrastructure for Scholarship in the
Digital Age. ARL, no. 226 (February 2003): 1-7. http://www.arl.org/
newsltr/226/ir.html

[79] F. Leymann. Supporting Business Transactions via Partial Backward Recovery in
Workflow Management Systems. In: Proceedings of Datenbanksysteme in Büro,
Technik und Wissenschaft (BTW'95), pages 51-70, Dresden, Germany, March 1995.

[80] A. Löser, F. Naumann, W. Siberski, W. Nejdl, U. Thaden. Semantic Overlay Clusters
within Super-Peer Networks. In: Proceedings of the International Workshop on
Databases, Information Systems and Peer-to-Peer Computing, 2003.

[81] J. Lu, J. Callan. Content-based Retrieval in Hybrid Peer-to-Peer Networks. In:
Proceedings of the 12th International Conference on Information and Knowledge
Management, 2003.

[82] S. Melnik, S. Raghavan, B. Yang, H. Garcia-Molina. Building a Distributed Full-Text
Index for the Web. ACM Transactional Information Systems, 2001.

[83] J. Meng, S. Su, H. Lam, A. Helal. Achieving Dynamic Inter-Organizational Workflow
Management by Integrating Business Processes, Events and Rules. In Proc. of the 35th
Hawaii International Conference on System Sciences (HICSS-35 2002), January, Big
Island, HI, USA, IEEE Computer Society, 2002.

[84] W. Meng, C. T. Yu, K.-L. Liu. Building Efficient and Effective Metasearch Engines.
ACM Computing Surveys 34, 2002.

[85] Message Oriented Middleware Resources: http://www.huihoo.com/
middleware/mom/mom_links.html

[86] B. Metha, M. Levy, G. Meredith, T. Andrews, B. Beckman, J. Klein, A. Mital. BizTalk
Server 2000 Business Process Orchestration. IEEE Data Engineering Bulletin,
24(1):35–39, 2001

http://www-1.ibm.com/services/us/%20index.wss/rs/imc/a1002907?cntxtId=a1000074
http://www-1.ibm.com/services/us/%20index.wss/rs/imc/a1002907?cntxtId=a1000074
http://www7b.software.ibm.com/wsdd/zones/was/wpc.html
http://portals.apache.org/jetspeed-2/
http://java.sun.com/%20products/jms/
http://java.sun.com/%20products/jms/
http://jcp.org/en/jsr/detail?id=168
http://www.arl.org/newsltr/226/ir.html
http://www.arl.org/newsltr/226/ir.html
http://www.huihoo.com/%20middleware/mom/mom_links.html
http://www.huihoo.com/%20middleware/mom/mom_links.html

DELOS WP1-Survey (SoA, P2P, Grid) Final 35/39

[87] M. Mlivoncic, C. Schuler, C. Türker: Hyperdatabase Infrastructure for Management
and Search of Multimedia Collections. Digital Library Architectures: Peer-to-Peer,
Grid, and Service-Orientation, Proc. of the 6th Thematic Workshop of the EU Network
of Excellence DELOS on Digital Library Architectures, S. Margherita di Pula
(Cagliari), Italy, June 2004.

[88] Microsoft DCOM. http://www.microsoft.com/com/default.mspx
[89] Microsoft Message Queuing. http://www.microsoft.com/windows2000/

technologies/communications/msmq/default.asp
[90] MOWS: The OASIS Web Services Distributed Management: Management of Web

Services. http://www.oasis-open.org/committees/download.php/6255/
cd-wsdm-mows-0.5-20040402.pdf

[91] MUWS: The OASIS Web Services Distributed Management: Management Using
Web Services. http://www.oasis-open.org/committees/download.php/
6234/cd-wsdm-muws-0.5.pdf

[92] E. Newcomer, G. Lomow. Understanding SOA with Web Services. Addison-Wesley,
2004.

[93] H. Nottelmann, N. Fuhr. Evaluating Different Methods of Estimating Retrieval Quality
for Resource Selection. In: Proceedings of the 26th annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, 2003.

[94] OASIS: The OASIS Business Transactions. http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=business-transaction

[95] OGSA-DAI: The OGSA-DAI website. http://www.ogsadai.org
[96] OMG Corba. http://www.omg.org/gettingstarted/corbafaq.htm
[97] OpenDLib: http://www.opendlib.com
[98] Oracle Database 10g: The Database for the Grid. http://otn.oracle.com/

products/database/oracle10g/
[99] A. Oram. Peer-to-peer: Harnessing the Power of Disruptive Technologies. O’Reilly,

2001.
[100] OWL: The W3C OWL Web Ontology Language. http://www.w3.org/TR/

2004/REC-owl-features-20040210/
[101] The Peers Group. Peer-to-Peer Research at Stanford. ACM SIGMOD Record,

September 2003.
[102] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker. A Scalable Content-

Addressable Network, In: Proceedings of ACM SIGCOMM, 2001.
[103] RDF: The W3C Resource Description Framework (RDF). http://www.w3.org/

RDF/
[104] P. Reynolds, A. Vahdat: Efficient Peer-to-Peer Keyword Searching. ACM/IFIP/

USENIX International Middleware Conference, 2003.
[105] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz. Pond:

The Oceanstore Prototype. In: Proceedings of USENIX File and Storage Technologies
FAST, 2003.

[106] A. Rowstron, P. Druschel. Pastry: Scalable, Distributed Object Location and Routing
for Large-Scale Peer-to-Peer Systems. In: IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), 2001.

http://www.microsoft.com/com/default.mspx
http://www.microsoft.com/windows2000/%20technologies/communications/msmq/default.asp
http://www.microsoft.com/windows2000/%20technologies/communications/msmq/default.asp
http://www.oasis-open.org/committees/download.php/6255/%20cd-wsdm-mows-0.5-20040402.pdf
http://www.oasis-open.org/committees/download.php/6255/%20cd-wsdm-mows-0.5-20040402.pdf
http://www.oasis-open.org/committees/download.php/%206234/cd-wsdm-muws-0.5.pdf
http://www.oasis-open.org/committees/download.php/%206234/cd-wsdm-muws-0.5.pdf
http://www.oasis-open.org/%20committees/tc_home.php?wg_abbrev=business-transaction
http://www.oasis-open.org/%20committees/tc_home.php?wg_abbrev=business-transaction
http://www.ogsadai.org
http://www.omg.org/gettingstarted/corbafaq.htm
http://www.opendlib.com
http://otn.oracle.com/%20products/database/oracle10g/
http://otn.oracle.com/%20products/database/oracle10g/
http://www.w3.org/TR/%202004/REC-owl-features-20040210/
http://www.w3.org/TR/%202004/REC-owl-features-20040210/
http://www.w3.org/%20RDF/
http://www.w3.org/%20RDF/

DELOS WP1-Survey (SoA, P2P, Grid) Final 36/39

[107] SAML: The OASIS Security Services. http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=security

[108] H.-J. Schek, K. Böhm, T. Grabs, U. Röhm, H. Schuldt, R. Weber. Hyperdatabases. In
Proceedings of the 1st International Conference on Web Information Systems
Engineering (WISE’00), pages 14–23, Hong Kong, China, June 2000.

[109] H.-J. Schek, H. Schuldt, C. Schuler, R. Weber. Infrastructure for Information Spaces.
In Proceedings of Advances in Databases and Information Systems, 6th East European
Conference, ADBIS 2002, volume 2435 of Lecture Notes in Computer Science, pages
23–36, Bratislava, Slovakia, September 2002. Springer.

[110] H.-J. Schek, H. Schuldt, R. Weber. Hyperdatabases – Infrastructure for the
Information Space. In Proceedings of the 6th IFIP 2.6 Working Conference on Visual
Database Systems (VDB’02), Brisbane, Australia, May 2002.

[111] D. Schoder, K. Fischbach, R. Teichmann. Peer-to-Peer. Springer, 2002.
[112] H. Schuldt. Process Locking: A Protocol based on Ordered Shared Locks for the

Execution of Transactional Processes. In Proceedings of the 20th ACM Symposium on
Principles of Database Systems (PODS’01), pages 289–300, Santa Barbara,
California, USA, May 2001. ACM Press.

[113] H. Schuldt, G. Alonso, C. Beeri, H.-J. Schek: Atomicity and Isolation for
Transactional Processes. In: ACM Transactions on Database Systems (TODS) 27(1),
March 2002.

[114] C. Schuler, R. Weber, H. Schuldt, and H. -J. Schek: Peer–to–Peer Process Execution
with OSIRIS. In: Proceedings of the 1st International Conference on Service-Oriented
Computing, Trento, Italy, December 2003.

[115] C. Schuler, R. Weber, H. Schuldt, H.-J. Schek: Scalable Peer-to-Peer Process
Management - The OSIRIS Approach. In: Proceedings of the 2nd International
Conference on Web Services (ICWS'2004), pages 26-34, San Diego, CA, USA, July
2004. IEEE Computer Society.

[116] SOA and Web Services: http://www-106.ibm.com/developerworks/
webservices/newto/

[117] SOAP: W3C SOAP 1.2 Primer: http://www.w3.org/TR/2003/REC-soap12-
part0-20030624/

[118] SOAP: The W3C SOAP. http://www.w3.org/TR/soap/
[119] SOAP Message Security: The OASIS Web Services Security.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-
message-security-1.0.pdf

[120] SOAP-MTOM: The W3C SOAP Message Transmission Optimization Mechanism
(SOAP-MTOM). http://www.w3.org/TR/2004/WD-soap12-mtom-20040608/

[121] L. Smarr and C. E. Catlett. Metacomputing. In Communications of the ACM , 35 (6):
44-52, 1992.

[122] SRB: The SDSC Storage Resource Broker (SRB) Homepage.
http://www.npaci.edu/DICE/SRB/

[123] T. Suel, C. Mathur, J. Wu, J. Zhang, A. Delis, M. Kharrazi, X Long, and K.
Shanmugasundaram. ODISSEA: A Peer-to-Peer Architecture for Scalable Web Search
and Information Retrieval, In: Proceedings of the 6th International Workshop on the
Web and Databases (WebDB), 2003.

http://www.oasis-open.org/%20committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/%20committees/tc_home.php?wg_abbrev=security
http://www-106.ibm.com/developerworks/%20webservices/newto/
http://www-106.ibm.com/developerworks/%20webservices/newto/
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://www.w3.org/TR/soap/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/TR/2004/WD-soap12-mtom-20040608/
http://www.npaci.edu/DICE/SRB/

DELOS WP1-Survey (SoA, P2P, Grid) Final 37/39

[124] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,
H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Protocol for Internet
Applications. IEEE/ACM Transactions on Networking, 2003.

[125] Z. Stojanovic, A. Dahanayake. Service-oriented Software System Engineering
Challenges and Practices. Idea Group Publishing, 2004.

[126] C. Tang, Z. Xu, S. Dwarkadas. Peer-to-Peer Information Retrieval Using Self-
Organizing Semantic Overlay Networks. In Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for computer communications,
2003.

[127] R. Tansley, M. Bass, D. Stuve, M. Branschofsky, D. Chudnov, G. McClellan, M.
Smith, The DSpace Institutional Digital Repository System: Current Functionality. In
Proceedings of the third ACM/IEEE-CS Joint Conference on Digital libraries (JCDL
‘03), pages 87-97, Houston, Texas. IEEE Computer Society, 2003.

[128] D. Tombros, K. Dittrich. SWORDIES - Swiss Workflow Management in Distributed
Environments. In Informatik/ Informatique, Journal of the Swiss Computer Science
Society. No. 3 June 1999.

[129] UDDI: The UDDI website. http://www.uddi.org/
[130] J. Uhlmann: Satisfying General Proximity / Similarity Queries with Metric Trees. IPL:

Information Processing Letters, 40 (1991), 175–179.
[131] H. Wächter, A. Reuter. The ConTract Model. In: A. Elmagarmid (ed.), Database

Transaction Models for Advanced Applications, chapter 7, Morgan Kaufmann
Publishers, 1992.

[132] Y. Wang, L. Galanis, D. de Witt. GALANX: An Efficient Peer-to-Peer Search Engine
System. Available at http://www.cs.wisc.edu/~yuanwang

[133] D. Wodtke, J. Weißenfels, G. Weikum, A. Kotz Dittrich: The Mentor Project: Steps
Toward Enterprise-Wide Workflow Management. In: Proceedings of the 12th
International Conference on Data Engineering, pp 556-565, New Orleans, 1996.

[134] WS-Addressing: The Web Services Addressing. http://www-106.ibm.com/
developerworks/library/specification/ws-add/

[135] WS-Agreement: The Web Services Agreement. http://www.gridforum.org/
Meetings/GGF11/Documents/draft-ggf-graap-agreement.pdf

[136] WS-AtomicTransaction: The Web Services Atomic Transaction. http://www-
106.ibm.com/developerworks/library/ws-atomtran/

[137] WS-BaseNotification, WS-BrokeredNotification, WS-Topics: The Web Services
Notification Family Standards. http://www-106.ibm.com/developerworks/
library/specification/ws-notification/

[138] WS-BusinessActivity: The Web Services Business Activity Framework.
http://www-106.ibm.com/developerworks/webservices/library/ws-busact/

[139] WS-CAF: The Web Services Composite Application Framework.
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CAF-Primer.pdf

[140] WS-CF: The Web Services Coordination Framework. http://www.arjuna.com/
library/specs/ws_caf_1-0/WS-CF.pdf

[141] WS-Choreography: The W3C Web Services Choreography (WS-Choreography).
http://www.w3.org/2002/ws/chor/

http://www.uddi.org/
http://www.cs.wisc.edu/~yuanwang
http://www-106.ibm.com/%20developerworks/library/specification/ws-add/
http://www-106.ibm.com/%20developerworks/library/specification/ws-add/
http://www.gridforum.org/%20Meetings/GGF11/Documents/draft-ggf-graap-agreement.pdf
http://www.gridforum.org/%20Meetings/GGF11/Documents/draft-ggf-graap-agreement.pdf
http://www-106.ibm.com/developerworks/library/ws-atomtran/
http://www-106.ibm.com/developerworks/library/ws-atomtran/
http://www-106.ibm.com/developerworks/%20library/specification/ws-notification/
http://www-106.ibm.com/developerworks/%20library/specification/ws-notification/
http://www-106.ibm.com/developerworks/webservices/library/ws-busact/
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CAF-Primer.pdf
http://www.arjuna.com/%20library/specs/ws_caf_1-0/WS-CF.pdf
http://www.arjuna.com/%20library/specs/ws_caf_1-0/WS-CF.pdf
http://www.w3.org/2002/ws/chor/

DELOS WP1-Survey (SoA, P2P, Grid) Final 38/39

[142] WS-Coordination: The Web Services Coordination. http://www-106.ibm.com/
developerworks/library/ws-coor/

[143] WS-CTX: The Web Services Context. http://www.arjuna.com/library/
specs/ws_caf_1-0/WS-CTX.pdf

[144] WS-Discovery: The Web Services Dynamic Discovery Specification.
http://msdn.microsoft.com/ws/2004/02/discovery

[145] WS-Eventing: The Web Services Eventing. http://msdn.microsoft.com/
library/en-us/dnglobspec/html/WS-Eventing.asp

[146] WS-Federation: The Web Services Federation Language.
http://www-106.ibm.com/developerworks/library/ws-fedworld/

[147] WS-GAF: The Web Services Grid Application Framework.
http://www.neresc.ac.uk/ws-gaf/

[148] WS-I basic profile: http://www.ws-i.org/Profiles/BasicProfile-1.0-
2004-04-16.html

[149] WS-IL: The Web Services Inspection Language. http://www-106.ibm.com/
developerworks/webservices/library/ws-wsilspec.html

[150] WS Interoperability: The Web Services Interoperability Organization Website.
http://www.ws-i.org/

[151] WS-Manageability: ftp://www6.software.ibm.com/software/developer/
library/ws-manage.pdf

[152] WS-MessageDelivery: The W3C Web Services Message Delivery.
http://www.w3.org/Submission/ws-messagedelivery/

[153] WS-MetadataExchange: The Web Services Metadata Exchange. http://www-
106.ibm.com/developerworks/library/specification/ws-mex/

[154] WS-Policy: The Web Services Policy Framework. http://www-106.ibm.com/
developerworks/library/specification/ws-polfram/

[155] WS-Reliability: The OASIS Web Services Reliable Messaging.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrm

[156] WS-RM: The Web Services Reliable Messaging. http://www-106.ibm.com/
developerworks/webservices/library/ws-rm/

[157] WS-Routing: The Web Services Routing Protocol. http://msdn.microsoft.com/
library/en-us/dnglobspec/html/ws-routing.asp

[158] WS-Security: http://www-106.ibm.com/developerworks/webservices/
library/ws-secure/

[159] WS-SecureConversation: The Web Services Secure Conversation Language.
http://www-106.ibm.com/developerworks/library/specification/ws-secon/

[160] WS-SecurityPolicy: The Web Services Security Policy. http://www-
106.ibm.com/developerworks/library/ws-secpol/

[161] WS-TXM: The Web Services Transaction Management.
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-TXM.pdf

[162] WS-Trust: The Web Services Trust Language. http://www-106.ibm.com/
developerworks/library/specification/ws-trust/

[163] WSCL: The W3C Web Services Conversation Language (WSCL).
http://www.w3.org/TR/wscl10/

http://www-106.ibm.com/%20developerworks/library/ws-coor/
http://www-106.ibm.com/%20developerworks/library/ws-coor/
http://www.arjuna.com/library/%20specs/ws_caf_1-0/WS-CTX.pdf
http://www.arjuna.com/library/%20specs/ws_caf_1-0/WS-CTX.pdf
http://msdn.microsoft.com/ws/2004/02/discovery/
http://msdn.microsoft.com/%20library/en-us/dnglobspec/html/WS-Eventing.asp
http://msdn.microsoft.com/%20library/en-us/dnglobspec/html/WS-Eventing.asp
http://www-106.ibm.com/developerworks/library/ws-fedworld/
http://www.neresc.ac.uk/ws-gaf/
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www-106.ibm.com/%20developerworks/webservices/library/ws-wsilspec.html
http://www-106.ibm.com/%20developerworks/webservices/library/ws-wsilspec.html
http://www.ws-i.org/
ftp://www6.software.ibm.com/software/developer/%20library/ws-manage.pdf
ftp://www6.software.ibm.com/software/developer/%20library/ws-manage.pdf
http://www.w3.org/Submission/ws-messagedelivery/
http://www-106.ibm.com/developerworks/library/specification/ws-mex/
http://www-106.ibm.com/developerworks/library/specification/ws-mex/
http://www-106.ibm.com/%20developerworks/library/specification/ws-polfram/
http://www-106.ibm.com/%20developerworks/library/specification/ws-polfram/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrm
http://www-106.ibm.com/%20developerworks/webservices/library/ws-rm/
http://www-106.ibm.com/%20developerworks/webservices/library/ws-rm/
http://msdn.microsoft.com/%20library/en-us/dnglobspec/html/ws-routing.asp
http://msdn.microsoft.com/%20library/en-us/dnglobspec/html/ws-routing.asp
http://www-106.ibm.com/developerworks/webservices/%20library/ws-secure/
http://www-106.ibm.com/developerworks/webservices/%20library/ws-secure/
http://www-106.ibm.com/developerworks/library/specification/ws-secon/
http://www-106.ibm.com/developerworks/library/ws-secpol/
http://www-106.ibm.com/developerworks/library/ws-secpol/
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-TXM.pdf
http://www-106.ibm.com/%20developerworks/library/specification/ws-trust/
http://www-106.ibm.com/%20developerworks/library/specification/ws-trust/
http://www.w3.org/TR/wscl10/

DELOS WP1-Survey (SoA, P2P, Grid) Final 39/39

[164] WSDL: The W3C Web Services Description Language (WSDL).
http://www.w3.org/TR/wsdl

[165] WSDM: The OASIS Web Services Distributed Management. http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsdm

[166] WSFL: Web Services Flow Language. http://www.ibm.com/software/
solutions/webservices/pdf/WSFL.pdf

[167] WSRP: The OASIS Web Services for Remote Portlets. http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsrp

[168] Z. Wu, W. Meng, C. T. Yu, Z. Li. Towards a Highly-Scalable and Effective
Metasearch Engine. Word Wide Web Conference, 2001.

[169] M. Wurz, G. Brettlecker, H. Schuldt. Data Stream Management and Digital Library
Processes on Top of a Hyperdatabase and Grid Infrastructure. In: Pre-Proceedings of
the 6th Thematic Workshop of the EU Network of Excellence DELOS: Digital Library
Architectures - Peer-to-Peer, Grid, and Service-Orientation (DLA 2004), pages 37-48,
Cagliari, Italy, June 2004, Edizioni Progetto Padova.

[170] XACML: The OASIS eXtensible Access Control Markup Language (XACML).
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

[171] XLANG – Web Services for Business Process Design.
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm

[172] XML: eXtended Markup Language. http://www.w3.org/TR/REC-xml
[173] XML Schema: The W3C XML Schema. http://www.w3.org/XML/Schema
[174] B. Yang, H. Garcia-Molina. Improving Search in Peer-to-Peer Networks. Proceedings

of the 22nd International Conference on Distributed Computing Systems, 2002.
[175] A. Zhang, M. Nodine, B. Bhargava. Global Scheduling for Flexible Transactions in

Heterogeneous Distributed Database Systems. In: IEEE Transactions on Knowledge
and Data Engineering (TKDE), 13(3), pages 439-450, 2001.

http://www.w3.org/TR/wsdl
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.ibm.com/software/%20solutions/webservices/pdf/WSFL.pdf
http://www.ibm.com/software/%20solutions/webservices/pdf/WSFL.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.gotdotnet.com/team/xml%20wsspecs/xlang-c/default.htm
http://www.w3.org/TR/REC-xml
http://www.w3.org/XML/Schema

	DELOS – Deliverable 1.1.1
	
	WP 1: Survey on
	Peer-to-Peer Architectures, Grid Infrastructures, and Service-oriented Architectures for Digital Libraries
	
	 Introduction
	Current Digital Libraries (DLs) are usually content-centric, special-purpose systems that are targeted for storing static digital content and are in most cases used for library and/or cultural heritage applications. A result of this content-centric approach is that systems tend to be tailored to concrete application domains rather than being of general applicability.
	Part 1: State-of-the-Art
	1.1 Service-oriented Architectures
	1.2 Peer-to-Peer Architectures
	1.3 Grid Infrastructure

	 Part 2: Digital Library Support
	2.1 Overview on DL Repositories
	2.2 Service-oriented Architectures for Digital Libraries
	BRICKS: Building Resources for Integrated Cultural Knowledge Services
	OpenDLib: a Digital Library Management System (CNR-ISTI)

	2.3 Peer-to-Peer Architectures for Digital Libraries
	2.4 Grid Infrastructures for Digital Libraries
	DILIGENT: a DIgital Library Infrastructure on Grid ENabled Technology (CNR-ISTI)

	3 Discussion and Open Issues

