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Abstract
Parameterized linear systems allow for modelling
and reasoning over classes of polyhedra. Collec-
tions of squares, rectangles, polytopes, and so on,
can readily be defined by means of linear systems
with parameters. In this paper, we investigate the
problem of learning a parameterized linear system
whose class of polyhedra includes a given set of ex-
ample polyhedral sets and it is minimal.

1 Introduction
Linear systems of inequalities over real numbers are basic
tools for representing and reasoning over polyhedral sets.
They have been extensively adopted in several fields of ar-
tificial intelligence, including geometric reasoning [Arnon,
1988], constraint (logic) programming [Jaffar et al., 1992],
robot motion planning [Hwang and Ahuja, 1992], computer
vision [Baumgart, 1975], resource planning [Wolfman and
Weld, 2001], pattern recognition and classification [Smaoui
et al., 2009], expert systems [McBride and O’Leary, 1993].

Suppose we are given two sample linear systems:
0 ≤ x ≤ 2, 0 ≤ y ≤ 3 0 ≤ x ≤ 3, 0 ≤ y ≤ 2

whose solutions, i.e., their polyhedra, describe a 2 × 3 and
a 3 × 2 rectangle respectively. What should be a generaliza-
tion of the two samples? Namely, how would we describe
a class of polyhedra including the two rectangles above, and
not much more? We call this kind of inferences the learning
from polyhedral sets problem. The language for represent-
ing generalizations is a minimalist extension of the expres-
sive power of linear systems admitting parameters among the
constant terms. For instance, 0 ≤ x ≤ a, 0 ≤ y ≤ b is
a parameterized linear system, where a and b are parame-
ters and x and y are variables. The intended meaning of
a parameterized linear system [Gal, 1995; Kvasnica, 2009;
Pistikopoulos et al., 2007] is a class of polyhedra over vari-
ables, each obtained by instantiating the parameters. The pa-
rameterized system above then includes as special cases the
polyhedra of the two sample systems (fixing a = 2, b = 3
and a = 3, b = 2 respectively). However, the system is too
general, since there are rectangles a × b that are not proper
generalizations of the two systems. The parameterized sys-
tem 0 ≤ x ≤ a, 0 ≤ y ≤ b, 2 ≤ a ≤ 3, 2 ≤ b ≤ 3 de-
scribes a smaller class of polyhedra, still including the two

samples, consisting of rectangles a × b whose sides are of
size between 2 and 3. An even smaller generalization is
0 ≤ x ≤ a, 0 ≤ y ≤ 5 − a, 2 ≤ a ≤ 3: the two sample
polyhedra are obtained for a = 2 and a = 3 respectively. This
generalization captures the “convex” dependence between the
sides of the two sample rectangles. When the length of the x
side passes from 2 to 3, then the length of the y side linearly
passes from 3 to 2 (due to the bound 5− a). The method we
devise for learning generalizations from example polyhedral
sets leads to this last parameterized system.

This paper is organized as follows. We recall basic nota-
tion in Section 2. Parameterized linear systems are described
in Section 3. The learning problem is introduced and investi-
gated in Section 4. Finally, we summarize our contribution.

2 Background
We adhere to standard notation of linear algebra [Schrijver,
1987]. R is the set of real numbers. Small bold letters (a,
b, . . . ) denote column vectors, while capital bold letters (A,
B, . . . ) denote matrices. 0 is a column vector with all el-
ements equal to 0. The transposed vector of a is denoted
by aT . The inner product is denoted by aT · b. We write
A · x ≤ b for a system of linear inequalities over the vari-
ables in x, also called a linear system. Given two linear
systems P and S, we write P, S to denote the linear sys-
tem consisting of the inequalities appearing in P or in S. A
polyhedron is the set of solution points of a linear system:
Sol(A · x ≤ b) = {x0 ∈ R|x| | A · x0 ≤ b}. Polyhedra
are convex sets. The homogeneous version of a linear system
H(A·x ≤ b) = A·x ≤ 0 is the linear system where constant
terms are replaced by 0’s. The characteristic cone, or simply
the cone, of a non-empty polyhedron Sol(P ) is Sol(H(P )).
A polytope is the convex hull ConvexHull(x1, . . . ,xn) of
a finite set of vectors x1, . . . ,xn, called vertices, namely the
smallest polyhedron containing all the vectors. With some
overload of terminology, by stating that a system P is the
convex hull of x1, . . . ,xn, we actually mean that Sol(P ) =
ConvexHull(x1, . . . ,xn). A polyhedron is a polytope iff it
is upper and lower bounded along every dimension.

Consider two linear systems P1 : A · x ≤ b and P2 :
C · x ≤ d. The entailment problem consists of checking
whether every solution of P1 is a solution of P2, namely
whether Sol(P1) ⊆ Sol(P2) or, alternatively, whether the
first-order formula ∀x [P1 → P2] holds over the domain of
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x+ y ≤ c

x ≤ a

y ≤ b
a = b = c = 1 a = b = 1, c = 2

Figure 1: A parameterized linear system and two instances.

the reals. If this is the case, we say that P1 entails P2. De-
ciding whether P1 entails P2, can be solved in polynomial
time [Subramani, 2009]. It suffices to show that for every in-
equality cT ·x ≤ di in P2, the following linear programming
problem is either infeasible or its solution is bounded by di:

max cT · x
A · x ≤ b

The conclusion follows since linear programming problems
are solvable in polynomial time [Khachiyan, 1979] and there
is a finite number of inequalities in P2. As a consequence,
checking equality of polyhedra, namely whether Sol(P1) =
Sol(P2), is also a problem in P, since it reduces to show that
P1 entails P2 and vice-versa.

3 Parameterized Linear Systems
A parameterized linear system over the reals is a system of
linear inequalities A · x ≤ b+M · r where variables in r are
parameters. The intended meaning of a parameterized linear
system is a collection of linear systems over variables in x,
each obtained by instantiating the parameters r. The notion of
parameterized polyhedra from [Loechner and Wilde, 1997]
models the solutions of parameterized linear systems.
Definition 3.1 A parameterized polyhedron is a collection of
polyhedra defined by fixing the value of parameters in a pa-
rameterized linear system: Sol(A · x ≤ b + M · r, r0) =
{x0 ∈ R|x| | A · x0 ≤ b + M · r0}, where r0 ∈ R|r| is an
instance of the parameters r.

The Sol() function now returns the set of solution points
of a parameterized linear system for a specific assignment to
parameters. Let us introduce a notation for the class of poly-
hedra defined by a parameterized linear system. We define
[[A · x ≤ b + M · r]] as

{Sol(A · x ≤ b + M · r, r0) | r0 ∈ R|r|}.

Example 3.1 Figure 1 shows the parameterized linear sys-
tem 0 ≤ x ≤ a, 0 ≤ y ≤ b, x + y ≤ c, where x, y are
variables and a, b, c are parameters. Several types of poly-
topes can be obtained as special cases: rectangled-isosceles
triangles by setting a, b, c to a same value (1 in the figure),
squares by setting a, b to a same value v, and c ≥ 2v (v = 1
in the figure), rectangles by setting c ≥ a + b, and, in ad-
dition, some classes of right trapezoids, and some classes of
irregular pentagons.

The expressive power of parameterized linear systems is
limited by the fact that parameters can only appear in con-
stant terms. As an example, the class of rectangled triangles

cannot be defined because it requires inequalities with param-
eters appearing as coefficients of variables. For instance, the
inequality dx+y ≤ c in place of x+y ≤ c in Figure 1 would
allow for defining hypotenuses with any angle of inclination.

The notion of entailment has been extended to parameter-
ized linear system in [Eirinakis et al., 2012]. Let us recall
here the case of two systems with disjoint parameters.
Definition 3.2 P1 = A1 · x ≤ b1 + M1 · r entails P2 =
A2 · x ≤ b2 + M2 · s, with r ∩ s = ∅, if for every r0 ∈ <|r|

there exists s0 ∈ <|s| such that Sol(P1, r0) ⊆ Sol(P2, s0).

Intuitively, P1 entails P2 if every parameter instance of P1

entails some parameter instance of P2. Notice that entail-
ment is transitive. Finally, the homogeneous version of a pa-
rameterized linear system A · x ≤ b + M · r is defined as
H(A · x ≤ b + M · r) = A · x ≤ 0. This conservatively
extends the definition of H() for non-parameterized systems.

4 The Learning Problem
4.1 Problem Statement
Intuitively, learning from a collection of polyhedral sets con-
sists of computing a parameterized linear system P whose
class includes given sets Sol(Ai · x ≤ bi), with i = 1 . . . N .
Definition 4.1 (Generalization) A parameterized linear sys-
tem P is a generalization of the linear systems P1, . . . , PN , if
for i = 1 . . . N , there exists ri s.t. Sol(P, ri) = Sol(Pi).

In symbols, the definition can be re-stated by requiring:

[[P ]] ⊇ {Sol(Pi) | i = 1 . . . N}.
A basic question is whether there exists P such that [[P ]] is
exactly the set {Sol(Pi) | i = 1 . . . N}. The answer is posi-
tive when such a set is a singleton or consists of an empty and
a non-empty polyhedron.1 In general, the answer is negative.
Lemma 4.1 Let P be a generalization of P1, . . . , Pn. As-
sume that there exist i, j such that ∅ 6= Sol(Pi) 6= Sol(Pj) 6=
∅. Then [[P ]] ⊃ {Sol(Pi) | i = 1 . . . N}.
Proof. For some ri 6= rj , we have Sol(P, ri) = Sol(Pi)
and Sol(P, rj) = Sol(Pj). Let xi ∈ Sol(P, ri) 6= ∅ and
xj ∈ Sol(P, rj) 6= ∅. We have that (xi ri) and (xj rj)
are solutions of the non-parameterized linear system P con-
sidered over the space of variables plus parameters. Since
Sol(P ) is a convex set, for every λ ∈ [0, 1], we have that
λ(xi ri) + (1 − λ)(xj rj) is a solution of P , which implies
Sol(P, (λri + (1 − λ)rj)) 6= ∅. Since ri 6= rj , this im-
plies that [[P ]] is infinite, hence it strictly includes the finite
set {Sol(Pi) | i = 1 . . . N}. �

This motivates the introduction of the learning problem
from polyhedral sets as a search problem among the gener-
alizations of given polyhedral sets.
Definition 4.2 (Learning problem) Given N linear systems
Pi = Ai · x ≤ bi such that Sol(Pi) 6= ∅, with i = 1 . . . N ,
the learning problem consists of computing (if it exists) a gen-
eralization P of P1, . . . , PN .

1For singletons, fix P to any Pi. In the latter case, by fixing P to
(Pi, a = 0), where Sol(Pi) 6= ∅ and a is a fresh parameter, it turns
out [[P ]] = {Sol(Pi), ∅}.
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The assumption that the polyhedral sets Sol(Pi) are non-
empty is not a loss of generality. We can always restrict the
search to generalizations of non-empty sets, and then, from
one of such generalizations, compute a generalization that in-
cludes the empty set.

Lemma 4.2 Let P be a generalization of P1, . . . , PN , with
Sol(P, ri) = Sol(Pi), for i = 1 . . . N .

By defining S as the convex hull of r1, . . . , rn, we have
that P ′ = P, S is a generalization of P1, . . . , PN such that
Sol(P ′, ri) = Sol(Pi), for i = 1 . . . N , and such that for
some r0, Sol(P ′, r0) = ∅.
Proof. Since ri ∈ Sol(S), we readily have Sol(P ′, ri) =
Sol(P, ri) = Sol(Pi). Since Sol(S) is a polytope, hence
bounded, there exists r0 6∈ Sol(S). For such an r0 we have
Sol(P ′, r0) = ∅. �

Observe that a generalization may not always exist.

Example 4.1 Consider the linear systems x ≤ 0 and y ≤ 0.
Any generalization P must impose an upper bound on both x
(to cover the first system) and y (to cover the second system).
For every parameter instance r0, there is then an upper bound
for both x and y in Sol(P, r0). Since x ≤ 0 imposes no upper
bound on y, we have Sol(P, r0) 6= Sol(x ≤ 0) for every r0.

The intuition underlying the example is formalized next in
a necessary condition for the existence of solutions to a learn-
ing problem. Later on, it will be shown to be also sufficient.

Lemma 4.3 If there exists a generalization of Pi = Ai · x ≤
bi, with i = 1 . . . N , then all Pi’s have the same cone, i.e., for
i, j = 1 . . . N we have Sol(Ai · x ≤ 0) = Sol(Aj · x ≤ 0).

Proof. Assume P = C · x ≤ d + M · r is a generalization,
and Sol(Ai · x ≤ bi) = Sol(P, ri) = Sol(C · x ≤ d +
M · ri), for i = 1 . . . N . By the decomposition theorem
of polyhedra [Schrijver, 1987], the cones of those polyhedra
coincide, i.e., Sol(Ai · x ≤ 0) = Sol(C · x ≤ 0). All cones
of the Pi’s are then equivalent to Sol(C · x ≤ 0). �

Recall that the cone of a polyhedron is its “infinite part”.
Hence, assuming that the polyhedral sets have a same cone
is not a dramatic restriction. As an example, if all polyhedral
sets are polytopes, they have a same cone – the singleton {0}.

4.2 Minimality and Representativeness
As it often occurs in (machine) learning from examples,
among the infinitely many generalizations, one wants to find
one that is most specific and/or representative of all general-
izations. Let us discuss these concepts in our context.

Example 4.2 Consider the two linear systems x ≤ 0, y ≤ 0
and x ≤ 2, y ≤ 0. They can be obtained as instances of the
following two parameterized linear systems:

P1 = x ≤ a, y ≤ 0, 0 ≤ a ≤ 2 P2 = x ≤ a, y ≤ 0, a ≤ 2

by setting a = 0 and a = 2 respectively. Therefore, both P1

and P2 are generalizations. However, P2 is obtained from P1

by removing the inequality 0 ≤ a, hence [[P2]] ⊃ [[P1]] holds.
P1 should then be considered more specific than P2, since it
denotes fewer polyhedral sets.

We define weak minimality by requiring that the domain of
parameters of P has no proper subset leading to a (smaller)
generalization.

Definition 4.3 (Weak minimality) A generalization P is
weakly minimal if there is no linear system S over the pa-
rameters of P such that P ′ = P, S is a generalization and
[[P ]] ⊃ [[P ′]].

For any two weakly minimal generalizations P, S1 and
P, S2 (where S1 and S2 denote non-shared inequalities over
the parameters), we have [[P, S1]] = [[P, S1, S2]] = [[P, S2]].
Hence, the class of polyhedra of weakly minimal generaliza-
tions is unique. A stronger notion requires [[P ]] to be minimal
with respect to all generalizations.

Definition 4.4 (Strong minimality) A generalization P is
strongly minimal if there is no generalization P ′ such that
[[P ]] ⊃ [[P ′]].

A third notion concerns a representativeness requirement.

Example 4.3 The polyhedra of the two systems in Exam-
ple 4.2 can be obtained by setting b = 0 and b = 2 respec-
tively in the following parameterized linear system:

P3 = x ≤ b, y ≤ b, y ≤ 2− b, 0 ≤ b ≤ 2

Can P1 and P3 be compared against? First, observe that
[[P3]] 6⊇ [[P1]] and vice-versa. For example, the instance of P1

such that a = 1 is x ≤ 1, y ≤ 0. The first inequality forces
b = 1 in P3, thus yielding x ≤ 1, y ≤ 1 whose polyhedron is
different from the one of x ≤ 1, y ≤ 0. Summarizing, P1 and
P3 are incomparable w.r.t. set inclusion.

However, they are comparable using the weaker notion
of entailment. In fact, P1 entails P3, namely for every in-
stance a0 of a, there is an instance b0 = a0 of b such that
Sol(P1, a0) ⊆ Sol(P3, b0). The vice-versa does not hold. In
this sense, P1 is a more representative generalization than P3

since [[P1]] contains (strictly) smaller polyhedra than [[P3]].

A tentative definition of representativeness would be the
following: A generalization is representative if it entails any
other generalization. Unfortunately, there is no generaliza-
tion that entails all other ones.

Example 4.4 Consider the linear systems:

P1 = x ≤ 3, y ≤ 3, x+ y ≤ 3 P2 = x ≤ 1, y ≤ 1

They can be obtained as instances of the parameterized lin-
ear system R1 = x ≤ a, 1 ≤ a ≤ 3, y ≤ a, x + y ≤ 3 by
setting a = 3 for P1 and a = 1 for P2. They can be also
be obtained from the parameterized linear system R2 defined
as R1 with the additional inequality x + 2y ≤ 3/2(a + 1),
which is redundant for both P1 (where 3/2(a + 1) = 6) and
P2 (where 3/2(a + 1) = 3) – see Figure 2 for a graphical
representation. However, the inequality is not necessarily re-
dundant for other instances of a. As an example, Figure 2
shows that for P3 defined by setting a = 2, the inequality
x + 2y ≤ 3/2(a + 1) = 4.5 is irredundant. Although R2

entailsR1, we cannot considerR2 as a candidate generaliza-
tion of P1 and P2. First, there is no rationale in arbitrarily
choosing a redundant inequality from infinitely many redun-
dant ones. Second, there is no best inequality to be chosen.
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x+ 2y ≤ 6

x+ y ≤ 3

x ≤ 3

y ≤ 3

P1

x+ 2y ≤ 3

x+ y ≤ 3

x ≤ 1
y ≤ 1

P2

x+ 2y ≤ 4.5

x+ y ≤ 3

x ≤ 2

y ≤ 2

P3

Figure 2: Systems from Example 4.4.

The inequality x + 3y ≤ (5a + 3)/2 is also redundant when
a = 3 and a = 1, and the parameterized system R3 obtained
by adding it toR2 entailsR2. We can repeat the reasoning by
adding infinitely many other inequalities, each time having a
system that entails the previous one.

As suggested by the example, it is reasonable to limit
the search space to generalizations whose inequalities over
variables appear in some system Pi = Ai · x ≤ bi, for
i = 1 . . . N , modulo normalization to unit length. Let ‖c‖
be the L2 norm of a vector c.

Definition 4.5 A vector c is generated from A1, . . . ,An if
c = 0 or there is a row dT of some Ai, with i = 1 . . . N ,
such that c/‖c‖ = d/‖d‖.

A parameterized linear system P = C · x ≤ d + M · r is
generated from Ai ·x ≤ bi, with i = 1 . . . N , if for every row
cT · x ≤ d+ mT · r in P , c is generated from A1, . . . ,An.

We simply say that P is generated if the systems Ai · x ≤
bi are clear from the context. We are now in the position to
define representativeness.

Definition 4.6 (Representativeness) A generalization is
representative among those generated from Pi = Ai ·x ≤ bi,
with i = 1 . . . N , if it is generated from P1, . . . , PN , and
it entails any (parameter renamed apart) generalization
generated from P1, . . . , PN .

Renaming apart parameters (i.e., substituting parameters
with fresh ones) prevents clashing of parameters, and it al-
lows for correctly applying Def. 3.2 of entailment.

4.3 The Base System
Inspired by the necessary condition of Lemma 4.3, we will be
looking for a generalization starting from all distinct inequal-
ities appearing in the input systems. Let us introduce first a
key tool for characterizing parameter instances leading to a
specific polyhedron.

Definition 4.7 (Maxima) Let A ·x ≤ b be satisfiable linear
system, and C·x ≤ d+M·r be a parameterized linear system
with n inequalities: cTi · x ≤ di + mT

i · r, for i = 1 . . . n.
The maxima of C · x ≤ d + M · r w.r.t. A · x ≤ b is

the vector k = (k1, . . . , kn) where ki, for i = 1 . . . n, is the
solution of the linear program:

max cTi · x
A · x ≤ b

If any linear program is unbounded, the maxima is undefined.

Intuitively, ki is the value, if it exists, for which the hyper-
plane cTi · x = ki is incident to the polyhedron of A · x ≤ b.
If Sol(A · x ≤ b) ⊆ Sol(C · x ≤ d + M · r, r0) for some
r0, then it is necessarily the case that k ≤ d + M · r. Notice
that the maxima does not depend on d nor on the parameters
r, but only on the cone of the parameterized system, namely
on C · x ≤ 0. Also, notice that the maxima can be computed
in polynomial time, since it consists of solving n linear pro-
grams, each with polynomial complexity [Khachiyan, 1979].

Example 4.5 Consider the linear system 0 ≤ y, x + y ≤
3, x ≤ 2. In the space of its solutions, the maximum value of
−y is 0, of x+ y is 3, and of x is 2. Therefore, the maxima of
the parameterized system P consisting of −y ≤ a, x + y ≤
b, x ≤ c w.r.t. the linear system is (0, 3, 2). The instance of
inequalities in P where the RHS is given by the maxima is:
−y ≤ 0, x + y ≤ 3, x ≤ 2, which is precisely the origi-
nal linear system. Differently from what this example may
suggest, however, in general deciding whether a given linear
system belongs to the class of a parameterized linear system
is a NP-complete problem (see [Ruggieri, 2012]).

We are now ready to introduce the base system.

Definition 4.8 (Base system) Given N linear systems Pi =
Ai · x ≤ bi such that Sol(Pi) 6= ∅, with i = 1 . . . N ,
and called A = {c/‖c‖ | cT is a row in Ai for some i =
1, . . . , N}, the base system is C · x ≤ r,0 ≤ d + M · r
where:

• C · x ≤ r is the set of inequalities cT · x ≤ r for every
c ∈ A and with r fresh parameter;

• 0 ≤ d + M · r is the convex hull of k1, . . . ,kN , where
ki is the maxima of C · x ≤ r w.r.t. Ai · x ≤ bi, with
i = 1 . . . N .

The base system is undefined if any of the ki’s is undefined.

Intuitively, A is the set of LHS of inequalities in any of
the input systems, normalized to unit length – e.g., x ≤ 0
and 2x ≤ 3 contribute to the same x ≤ r in C · x ≤ r. The
maxima ki is the parameter instance for which C·x ≤ r leads
to the polyhedron Sol(Ai · x ≤ bi) of the ith input system.
Also, notice that the hypothesis that Sol(Ai · x ≤ bi) 6= ∅ is
required by the definition of maxima.

Example 4.6 Consider the following sample systems:

0 ≤ y, x+ y ≤ 3, x ≤ 2 0 ≤ y, x+ y ≤ 1

0 ≤ y, x+ y ≤ 2
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The base system P includes −y ≤ a, x + y ≤ b, x ≤ c plus
(a linear system denoting) the convex hull of the three max-
ima (0, 3, 2), (0, 1, 1), and (0, 2, 2) over the space (a, b, c) of
parameters, namely:

a = 0, b ≤ 2c− 1, c ≤ 2, c ≤ b
By construction [[P ]] includes the polyhedra of the sample sys-
tems. For instance, by fixing a = 0, b = 1, c = 1 we obtain
0 ≤ y, x + y ≤ 1, x ≤ 1, whose polyhedron is the same of
the second system (the inequality x ≤ 1 is redundant).

By construction, the base system is generated from the in-
put systems, and its class of polyhedra includes the ones of
the input systems. Moreover, it entails any parameterized sys-
tem satisfying such two properties.

Lemma 4.4 If the base system is defined, then it is a repre-
sentative generalization.

Proof. Let P be C · x ≤ r, 0 ≤ d + M · r as in Def. 4.8.
Also, let Pi be Ai · x ≤ bi for i = 1 . . . N .
P is clearly generated from P1, . . . , PN . Let us show it is

a generalization. Let i = 1 . . . N , and ki be the maxima of
C·x ≤ r w.r.t. Ai ·x ≤ bi. By definition of 0 ≤ d+M·r, we
have that 0 ≤ d+M·ki holds, and then Sol(P,ki) = Sol(C·
x ≤ ki). By definition of maxima, we have Sol(C · x ≤
ki) ⊇ Sol(Ai · x ≤ bi). Moreover, since C includes every
row of A (possibly after normalization), we also have Sol(C·
x ≤ ki) ⊆ Sol(Ai · x ≤ bi). Summarizing, Sol(P,ki) =
Sol(Ai · x ≤ bi).

Consider now representativeness. Let us show that P en-
tails any Q that is a (renamed apart) generalization generated
from P1, . . . , PN . Without any loss of generality, Q is of
the form C′ · x ≤ t,0 ≤ d′ + M′ · t, with t ∩ r = ∅,
and C′ has unit rows. As a consequence, 0 ≤ d′ + M′ · t
includes the convex hull of the maxima ti of C′ · x ≤ t
w.r.t. Ai · x ≤ bi, namely ConvexHull(t1, . . . , tN ). Let
now r0 ∈ Sol(0 ≤ d + M · r). Since 0 ≤ d + M · r is a
polytope, r0 can be written as a convex combination of its ver-
tices, namely r0 = Σi=1...Nγiki, where Σi=1...Nγi = 1 and
γi ≥ 0 for i = 1 . . . N . Let t0 = Σi=1...Nγiti. We claim that
Sol(P, r0) ⊆ Sol(Q, t0). Let cT ·x ≤ t be the jth inequality
of C′ · x ≤ t0. We show that Sol(P, r0) ⊆ Sol(cT · x ≤ t0)
where t0 = Σi=1...Nγitij is the convex combination of the
jth elements tij of t1, . . . , tN . Since Q is generated and C′

consists of unit rows, we have that any row cT of C′ is a
row of C as well. This implies that max{cT · x0 | x0 ∈
Sol(P,ki)} = kij , where kij is the jth element of the max-
ima ki. Since Sol(P,ki) = Sol(Q, ti) ⊆ Sol(cT · x ≤ tij),
this implies kij ≤ tij for i = 1 . . . N . This implies,
Sol(P, r0) ⊆ Sol(cT · x ≤ Σi=1...Nγikij) ⊆ Sol(cT · x ≤
Σi=1...Nγitij) = Sol(cT · x ≤ t0). Summarizing, we con-
clude that P entails Q. �

We are now in the position to show that the necessary con-
dition of Lemma 4.3 for the existence of solutions to the
learning problem is also sufficient.

Lemma 4.5 A generalization of P1, . . . , PN exists iff the
base system of P1, . . . , PN is defined iff P1, . . . , PN have the
same cone.

Proof. We split the proof into three claims.
(1) If a generalization exists then P1, . . . , PN have the

same cone. This is Lemma 4.3.
(2) If P1, . . . , PN have the same cone then the base sys-

tem is defined. We show the contrapositive. Assume there
exists i = 1 . . . N and Sol(Ai · x ≤ bi) 6= ∅ such that ki

is undefined. This means that there exists j = 1 . . . N and
Sol(Aj · x ≤ bj) 6= ∅ such that for some row cT · x ≤ b in
Aj · x ≤ bj it turns out that max{cT /‖c‖ · x |Ai · x ≤ bi}
is unbounded. By the decomposition theorem of polyhedra
[Schrijver, 1987], this implies thatmax{cT /‖c‖·x |Ai ·x ≤
0} is unbounded. As a consequence, Sol(Aj · x ≤ 0) 6=
Sol(Ai · x ≤ 0) since max{cT /‖c‖ · x | Aj · x ≤ 0} is
clearly bounded by 0.

(3) If the base system is defined then a generalization exists.
This is precisely Lemma 4.4. �

Example 4.7 Consider the linear systems from Example 4.1.
We have that C·x ≤ r in the base system is x ≤ a, y ≤ b. The
maxima of C ·x ≤ r w.r.t. the system x ≤ 0 is undefined since
max{y |x ≤ 0} is unbounded. Hence there is no a, b such
that x ≤ a, y ≤ b can lead to the polyhedron Sol(x ≤ 0).

4.4 Tackling Minimality: Parameter Elimination
The base system is a generalization and it is representative
among those generated. Moreover, it is weakly minimal. This
is an immediate consequence of the fact every parameter in-
stance in its domain leads to a different polyhedron.
Lemma 4.6 Let P be the base system, and Sol(P, r0) 6= ∅.
For every, r0 6= r1 we have Sol(P, r0) 6= Sol(P, r1).
Proof. The conclusion is immediate if Sol(P, r1) = ∅. As-
sume Sol(P, r1) 6= ∅. Let r =

∑
i=1...N λiki be any parame-

ter instance in the convex hull of the maxima k1, . . . ,kN (see
Def. 4.8). We claim that r is the maxima of P w.r.t. Sol(P, r).
This implies that if Sol(P, r0) = Sol(P, r1) then r0 = r1 be-
cause Sol(P, r0) 6= ∅ and Sol(P, r1) 6= ∅ imply that r0 and
r1 are in the convex hull of k1, . . . ,kN . Let us show our
claim. Let cTj · x ≤ rj be the jth inequality in C · x ≤ r (see
Def. 4.8). By definition of maxima, for i = 1 . . . N , there
exists xi ∈ Sol(Pi) = Sol(P,ki) such that cTj · xij = kij .
Called x′ =

∑
i=1...N λixi, we have that:

x′ ∈ Sol(P,
∑

i=1...N

λiki) cTj · x′ =
∑

i=1...N

λikij

Since cTj · x ≤ ∑
i=1...N λikij is an inequality in P

for parameters r =
∑

i=1...N λiki, we conclude that∑
i=1...N λikij is the maximum of cTj ·x in Sol(P, r). Hence,∑
i=1...N λiki = r is the maxima of P in Sol(P, r). �

However, the base system is not necessarily strongly min-
imal nor minimal as per number of parameters. Example 4.6
suggests that the parameter a can be removed since a = 0
holds. A simple way of reducing parameters is Gaussian
elimination restricted to parameter-only expressions.
Definition 4.9 The Gauss-elimination of a parameter r from
a parameterized linear system P occurs if an equality r =
d + mT · r is in P . The system obtained by replacing every
occurrence of r in P by d+ mT · r is denoted by G(P, r).
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P is logically equivalent toG(P, r), r = d+mT ·r. Hence:
[[P ]] = [[G(P, r), r = d+ mT · r]] = [[G(P, r)]] ∪ {∅}. When
P is the base system, ∅ ∈ [[P ]] (since the domain of param-
eters is a polytope), and then [[P ]] = [[G(P, r)]]. Moreover,
since parameters are replaced by an expression of parame-
ters only, G(P, r) is generated. Summarizing, the properties
of being generated, representative, and weakly minimal are
maintained for G(P, r), and this holds also for repeated ap-
plications of Gauss-elimination.

Example 4.8 Reconsider P from the Example 4.6. The pa-
rameter a can be eliminated, since a = 0 appears in P .
G(P, a) is then 0 ≤ y, x + y ≤ b, x ≤ c, b ≤ 2c − 1, c ≤
2, c ≤ b. G(P, a) is generated and [[P ]] = [[G(P, r)]].

More general variable elimination methods can also be ap-
plied, with the proviso that parameter elimination should re-
sult into a generated system. We ensure this by a syntactically
restriction on the Fourier-Motzkin elimination procedure.

Definition 4.10 The restricted Fourier-Motzkin elimination
of r from P occurs if all upper bounds on r in P involve
parameters only, namely they can be written in of the form
r ≤ d + mT · r, with r vector of parameters (not including
r). The system obtained by Fourier-Motzkin-elimination of r
from P is denoted by F (P, r).

In the Fourier-Motzkin elimination procedure (see [Schri-
jver, 1987]), every lower bound d1 + mT

1 · r + cT · x ≤ r is
replaced by inequalities d1+mT

1 ·r+cT ·x ≤ d2+mT
2 ·r for

all upper bounds r ≤ d2 + mT
2 · r. The syntactic restriction

that variables do not appear in upper bounds maintains the
property of being a generated system, yet being a sufficient
condition only. It also implies:

[[P ]] ⊇ [[F (P, r)]]. (1)

and then F (P, r) entails P .

Example 4.9 Reconsider P ′ = G(P, a) from Example 4.8.
Let us eliminate b. The only upper bound is b ≤ 2c − 1.
Hence, F (P ′, b) is 0 ≤ y, x+ y ≤ 2c− 1, x ≤ c, 1 ≤ c, c ≤
2. Let us instead eliminate c. There are two upper bounds
c ≤ 2, c ≤ b. Hence, F (P ′, c) is 0 ≤ y, x + y ≤ b, x ≤
2, x ≤ b, 1 ≤ b, b ≤ 3. The inclusions [[P ′]] ⊇ [[F (P ′, b)]]
and [[P ′]] ⊇ [[F (P ′, c)]] clearly hold by setting b = 2c−1 and
c = min{2, b} in P ′ respectively.

Since the inclusion (1) can be strict, the property of be-
ing a generalization may be lost after restricted Fourier-
Motzkin elimination. Thus, it has to be explicitly checked.
Thanks to Lemma 4.6, F (P, r) is a generalization iff
Sol(F (P, r),k′

i) = Sol(Pi) for i = 1 . . . N , where k′
i is ob-

tained by eliminating the r component from the vector of pa-
rameters ki such that Sol(P,ki) = Sol(Pi). Notice that such
a condition can be checked in polynomial time, whilst the full
membership procedure is NP-complete [Ruggieri, 2012]. In
case F (P, r) is a generalization, it is representative (since (1)
implies that F (P, r) entails P , which is representative) and
weakly minimal (again by (1) and Lemma 4.6).

Example 4.10 Reconsider F (P ′, b) from the Example 4.9.
Recall that the maxima of the base system are (0, 3, 2),

(0, 1, 1) and (0, 2, 2). Their projection over the single pa-
rameter c in F (P ′, b) is (2), (1), and (2). They lead to the
following two instances of F (P ′, b):

0 ≤ y, x+ y ≤ 3, x ≤ 2 0 ≤ y, x+ y ≤ 1, x ≤ 1

The polyhedron of the first sample system in Example 4.6 is
not covered. Hence, F (P ′, b) is not a generalization. As for
F (P ′, c), the projected maxima (3), (1), and (2) lead to:

0 ≤ y, x+ y ≤ 3, x ≤ 2 0 ≤ y, x+ y ≤ 1, x ≤ 1

0 ≤ y, x+ y ≤ 2, x ≤ 2

Since x ≤ 1 and x ≤ 2 in the second and in the third systems
are redundant, we obtain the polyhedra of the three sample
systems of Example 4.6. Hence, F (P ′, c) is a generalization,
and then it is representative and weakly minimal.
Summarizing, a parameter elimination procedure consists of
performing Gauss and restricted Fourier-Motzkin elimina-
tions while possible. Gauss eliminations should be given pri-
ority since they remove inequalities, while not adding new
ones. Restricted Fourier-Motzkin eliminations are performed
only if they result in a generalization. The final system is
a representative generalization and weakly minimal, yet not
strongly minimal. However, strongly minimal generaliza-
tions do not necessarily define a unique class of polyhedra.
Example 4.11 Consider three linear systems:

x ≤ 0, y ≤ 0 x ≤ 1, y ≤ 2 x ≤ 2, y ≤ 1

The base system P includes x ≤ a, y ≤ b plus (a linear
system denoting) the convex hull of the maxima (0, 0), (1, 2),
and (2, 1) over the space (a, b) of parameters:

a+ b ≤ 3, b ≤ 2a, a ≤ 2b

By eliminating the parameter b from P , we obtain Pb =
F (P, b) consisting of x ≤ a, y ≤ 3 − a, y ≤ 2a, 0 ≤ a ≤ 2.
Pb turns out to be a generalization: fix a = 0, a = 1, and
a = 2 respectively for the three systems. Analogously, by
eliminating a from P , we obtain Pa = F (P, a) consisting of
x ≤ 2b, x ≤ 3 − b, y ≤ b, 0 ≤ b ≤ 2, which is a gener-
alization as well. We observe that [[Pa]] ∩ [[Pb]] consists only
of the polyhedra of the tree linear systems above. As a con-
sequence, the strongly minimal generalization included in or
equal to Pb and the one included in or equal to Pa necessarily
define different classes of polyhedra.

5 Conclusions
We have introduced and investigated the problem of learning
the definition of a class of polyhedra from sample polyhedral
sets. Our approach consists of building a base system and
then of eliminating parameters. Non-polynomial time steps
include the computation of the convex hull of maxima and
the use of the Fourier-Motzkin procedure in parameter elimi-
nation, which can be exponential in the worst case. An imple-
mentation of our approach has been developed in SWI-Prolog
[Wielemaker et al., 2012], using a library on constraint logic
programming (CLP) over the reals [Jaffar et al., 1992]. CLP
offers powerful amalgamation features: linear systems can be
represented using the language of constraints, thus exploit-
ing language primitives for solving linear programming prob-
lems, entailments, simplifications, and so on. Source code
can be downloaded from the home page of the author.
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