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Abstract

Parameterized linear systems allow for modelling
and reasoning over classes of polyhedra. Collec-
tions of squares, rectangles, polytopes, and so on,
can readily be defined by means of linear systems
with parameters. In this paper, we investigate the
problem of learning a parameterized linear system
whose class of polyhedra includes a given set of ex-
ample polyhedral sets and it is minimal.

1 Introduction

Linear systems of inequalities over real numbers are basic
tools for representing and reasoning over polyhedral sets.
They have been extensively adopted in several fields of ar-
tificial intelligence, including geometric reasoning [Arnon,
19881, constraint (logic) programming [Jaffar et al., 1992],
robot motion planning [Hwang and Ahuja, 1992], computer
vision [Baumgart, 1975], resource planning [Wolfman and
Weld, 2001], pattern recognition and classification [Smaoui
et al., 2009], expert systems [McBride and O’Leary, 1993].
Suppose we are given two sample linear systems:
0<r<20<y<3 0<r<3,0<y<2

whose solutions, i.e., their polyhedra, describe a 2 x 3 and
a 3 x 2 rectangle respectively. What should be a generaliza-
tion of the two samples? Namely, how would we describe
a class of polyhedra including the two rectangles above, and
not much more? We call this kind of inferences the learning
from polyhedral sets problem. The language for represent-
ing generalizations is a minimalist extension of the expres-
sive power of linear systems admitting parameters among the
constant terms. For instance, 0 < z < a,0 < y < bis
a parameterized linear system, where a and b are parame-
ters and  and y are variables. The intended meaning of
a parameterized linear system [Gal, 1995; Kvasnica, 2009;
Pistikopoulos et al., 2007] is a class of polyhedra over vari-
ables, each obtained by instantiating the parameters. The pa-
rameterized system above then includes as special cases the
polyhedra of the two sample systems (fixing ¢ = 2,0 = 3
and a = 3,b = 2 respectively). However, the system is too
general, since there are rectangles a x b that are not proper
generalizations of the two systems. The parameterized sys-
tem 0 < x < a,0 <y <bh2<a<32<b< 3de
scribes a smaller class of polyhedra, still including the two
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samples, consisting of rectangles a x b whose sides are of
size between 2 and 3. An even smaller generalization is
0<2<a,0<y<5—-a2< a < 3: the two sample
polyhedra are obtained for a = 2 and a = 3 respectively. This
generalization captures the “convex” dependence between the
sides of the two sample rectangles. When the length of the x
side passes from 2 to 3, then the length of the y side linearly
passes from 3 to 2 (due to the bound 5 — a). The method we
devise for learning generalizations from example polyhedral
sets leads to this last parameterized system.

This paper is organized as follows. We recall basic nota-
tion in Section 2. Parameterized linear systems are described
in Section 3. The learning problem is introduced and investi-
gated in Section 4. Finally, we summarize our contribution.

2 Background

We adhere to standard notation of linear algebra [Schrijver,
1987]. R is the set of real numbers. Small bold letters (a,
b, ...) denote column vectors, while capital bold letters (A,
B, ...) denote matrices. 0 is a column vector with all el-
ements equal to 0. The transposed vector of a is denoted
by a”. The inner product is denoted by a’ - b. We write
A - x < b for a system of linear inequalities over the vari-
ables in x, also called a linear system. Given two linear
systems P and S, we write P, S to denote the linear sys-
tem consisting of the inequalities appearing in P or in S. A
polyhedron is the set of solution points of a linear system:
Sol(A -x < b) = {xg € R¥ | A.x, < b}. Polyhedra
are convex sets. The homogeneous version of a linear system
H(A-x <b)= A-x < 0is the linear system where constant
terms are replaced by 0’s. The characteristic cone, or simply
the cone, of a non-empty polyhedron Sol(P) is Sol(H (P)).
A polytope is the convex hull Convex Hull(xy,...,X,) of
a finite set of vectors X1, . .., X,, called vertices, namely the
smallest polyhedron containing all the vectors. With some
overload of terminology, by stating that a system P is the
convex hull of x1, ..., X, we actually mean that Sol(P) =
ConvexHull(xy,...,X,). A polyhedron is a polytope iff it
is upper and lower bounded along every dimension.
Consider two linear systems P; : A -x < b and P; :
C - x < d. The entailment problem consists of checking
whether every solution of P; is a solution of P», namely
whether Sol(P;) C Sol(P,) or, alternatively, whether the
first-order formula ¥x [P, — Ps] holds over the domain of



Figure 1: A parameterized linear system and two instances.

the reals. If this is the case, we say that P, entails P. De-
ciding whether P; entails P, can be solved in polynomial
time [Subramani, 2009]. It suffices to show that for every in-
equality ¢’ - x < d; in P, the following linear programming
problem is either infeasible or its solution is bounded by d;:

max CT - X

A-x<b

The conclusion follows since linear programming problems
are solvable in polynomial time [Khachiyan, 1979] and there
is a finite number of inequalities in P,. As a consequence,
checking equality of polyhedra, namely whether Sol(P;) =
Sol(Ps), is also a problem in IP, since it reduces to show that
P entails P, and vice-versa.

3 Parameterized Linear Systems

A parameterized linear system over the reals is a system of
linear inequalities A - x < b+ M - r where variables in r are
parameters. The intended meaning of a parameterized linear
system is a collection of linear systems over variables in x,
each obtained by instantiating the parameters r. The notion of
parameterized polyhedra from [Loechner and Wilde, 1997]
models the solutions of parameterized linear systems.

Definition 3.1 A parameterized polyhedron is a collection of
polyhedra defined by fixing the value of parameters in a pa-
rameterized linear system: Sol(A -x < b+ M -r,ry) =
{x0 € RX |A - xg <b+M- ro}, whererg € RI*! is an
instance of the parameters r.

The Sol() function now returns the set of solution points
of a parameterized linear system for a specific assignment to
parameters. Let us introduce a notation for the class of poly-
hedra defined by a parameterized linear system. We define
JA-x<b+M-r]as

{Sol(A-x <b+M-r,ry) | ro € RI*I}.

Example 3.1 Figure I shows the parameterized linear sys-
tem (0 < z < a,0 <y < bx+y < ¢ where z,y are
variables and a, b, c are parameters. Several types of poly-
topes can be obtained as special cases: rectangled-isosceles
triangles by setting a,b, c to a same value (1 in the figure),
squares by setting a, b to a same value v, and ¢ > 2v (v =1
in the figure), rectangles by setting ¢ > a + b, and, in ad-
dition, some classes of right trapezoids, and some classes of
irregular pentagons.

The expressive power of parameterized linear systems is
limited by the fact that parameters can only appear in con-
stant terms. As an example, the class of rectangled triangles

cannot be defined because it requires inequalities with param-
eters appearing as coefficients of variables. For instance, the
inequality dz +y < cin place of x +y < cin Figure 1 would
allow for defining hypotenuses with any angle of inclination.

The notion of entailment has been extended to parameter-
ized linear system in [Eirinakis et al., 2012]. Let us recall
here the case of two systems with disjoint parameters.

Definition 3.2 P, = A; - x < by + M; - r entails P, =
Ay -x <by+M,-s withrNs =0, if for every ro € R/l
there exists sg € RI3! such that Sol(Py,ry) C Sol(Pa,sp).

Intuitively, P; entails P, if every parameter instance of P;
entails some parameter instance of P». Notice that entail-
ment is transitive. Finally, the homogeneous version of a pa-
rameterized linear system A -x < b + M - r is defined as
H(A-x <b+ M- r) = A-x < 0. This conservatively
extends the definition of H () for non-parameterized systems.

4 The Learning Problem

4.1 Problem Statement

Intuitively, learning from a collection of polyhedral sets con-
sists of computing a parameterized linear system P whose
class includes given sets Sol(A; - x < b;), withi=1... N.

Definition 4.1 (Generalization) A parameterized linear sys-
tem P is a generalization of the linear systems Py, ..., Py, if
fori=1...N, there exists r; s.t. Sol(P,r;) = Sol(P;).

In symbols, the definition can be re-stated by requiring:
[P] 2 {Sol(P;)|i=1...N}.

A basic question is whether there exists P such that [P] is
exactly the set {Sol(P;) | ¢ = 1...N}. The answer is posi-
tive when such a set is a singleton or consists of an empty and
a non-empty polyhedron.' In general, the answer is negative.

Lemma 4.1 Let P be a generalization of Py,...,P,. As-
sume that there exist i, j such that ) # Sol(P;) # Sol(P;) #
(0. Then [P] D {Sol(P;) |i=1...N}.

Proof. For some r; # r;, we have Sol(P,r;) = Sol(P;)
and Sol(P,r;) = Sol(P;). Let x; € Sol(P,r;) # () and
x; € Sol(P,rj) # (. We have that (x; r;) and (x; r;)
are solutions of the non-parameterized linear system P con-
sidered over the space of variables plus parameters. Since
Sol(P) is a convex set, for every A € [0,1], we have that
A(x; r;) + (1 — N) (x5 r;) is a solution of P, which implies
Sol(P, (Ar; + (1 — N)r;j)) # 0. Since r; # r;, this im-
plies that [P] is infinite, hence it strictly includes the finite
set {Sol(P;)|i=1...N}. O

This motivates the introduction of the learning problem
from polyhedral sets as a search problem among the gener-
alizations of given polyhedral sets.

Definition 4.2 (Learning problem) Given N linear systems
P, = A, - x < by such that Sol(P;) # 0, withi = 1...N,
the learning problem consists of computing (if it exists) a gen-
eralization P of Py, ..., Pn.

"For singletons, fix P to any P;. In the latter case, by fixing P to
(P;,a = 0), where Sol(P;) # ) and a is a fresh parameter, it turns
out [P] = {Sol(P;),0}.
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The assumption that the polyhedral sets Sol(P;) are non-
empty is not a loss of generality. We can always restrict the
search to generalizations of non-empty sets, and then, from
one of such generalizations, compute a generalization that in-
cludes the empty set.

Lemma 4.2 Let P be a generalization of P, ..
Sol(P,r;) = Sol(F;), fori =1...N.

By defining S as the convex hull of r1,...,r,, we have
that P' = P, S is a generalization of Py, ..., Py such that
Sol(P’,r;) = Sol(F;), fori = 1...N, and such that for
some ro, Sol(P',rg) = 0.

Proof. Since r; € Sol(S), we readily have Sol(P’,r;) =
Sol(P,r;) = Sol(P;). Since Sol(S) is a polytope, hence
bounded, there exists ro & Sol(S). For such an ro we have
SOl(Pl,ro) ZQ U

Observe that a generalization may not always exist.

., PN, with

Example 4.1 Consider the linear systems v < 0 and y < 0.
Any generalization P must impose an upper bound on both x
(to cover the first system) and y (to cover the second system).
For every parameter instance v, there is then an upper bound
forboth z and y in Sol(P, rg). Since x < 0 imposes no upper
bound on y, we have Sol(P,rq) # Sol(xz < 0) for every ry.

The intuition underlying the example is formalized next in
a necessary condition for the existence of solutions to a learn-
ing problem. Later on, it will be shown to be also sufficient.

Lemma 4.3 If there exists a generalization of P, = A; - x <
b;, withi = 1... N, then all P;’s have the same cone, i.e., for
i,7=1...N wehave Sol(A; -x < 0) = Sol(A; -x <0).

Proof. Assume P = C-x < d + M - r is a generalization,
and Sol(A; - x < b;) = Sol(P,r;) = Sol(C-x < d+
M - r;), fori = 1...N. By the decomposition theorem
of polyhedra [Schrijver, 19871, the cones of those polyhedra
coincide, i.e., Sol(A; - x < 0) = Sol(C - x < 0). All cones
of the P;’s are then equivalent to Sol(C - x < 0). O

Recall that the cone of a polyhedron is its “infinite part”.
Hence, assuming that the polyhedral sets have a same cone
is not a dramatic restriction. As an example, if all polyhedral
sets are polytopes, they have a same cone — the singleton {0}.

4.2 Minimality and Representativeness

As it often occurs in (machine) learning from examples,
among the infinitely many generalizations, one wants to find
one that is most specific and/or representative of all general-
izations. Let us discuss these concepts in our context.

Example 4.2 Consider the two linear systems x < 0,y < 0
and x < 2,y < 0. They can be obtained as instances of the
following two parameterized linear systems:

Pi=2<a,y<0,0<a<2 PB=2<ay<0,a<2

by setting a = 0 and a = 2 respectively. Therefore, both Py
and Ps are generalizations. However, Ps is obtained from Py
by removing the inequality 0 < a, hence [P2] D [P1] holds.
Py should then be considered more specific than Ps, since it
denotes fewer polyhedral sets.
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We define weak minimality by requiring that the domain of
parameters of P has no proper subset leading to a (smaller)
generalization.

Definition 4.3 (Weak minimality) A generalization P is
weakly minimal if there is no linear system S over the pa-

rameters of P such that P’ = P, S is a generalization and
[P] > [P

For any two weakly minimal generalizations P,S; and
P, S5 (where S7 and S denote non-shared inequalities over
the parameters), we have [P, S1] = [P, S1,52] = [P, S2].
Hence, the class of polyhedra of weakly minimal generaliza-
tions is unique. A stronger notion requires [P] to be minimal
with respect to all generalizations.

Definition 4.4 (Strong minimality) A generalization P is
strongly minimal if there is no generalization P’ such that
[P] > [F1

A third notion concerns a representativeness requirement.

Example 4.3 The polyhedra of the two systems in Exam-
ple 4.2 can be obtained by setting b = 0 and b = 2 respec-
tively in the following parameterized linear system:

P3:$§b,y§b,y§27b,0§b§2

Can Py and Ps; be compared against? First, observe that
[Ps] 2 [P1] and vice-versa. For example, the instance of P,
such that a = 1isx < 1,y < 0. The first inequality forces
b = 1in Ps, thus yielding x < 1,y < 1 whose polyhedron is
different from the one of v < 1,y < 0. Summarizing, P, and
Ps are incomparable w.r.t. set inclusion.

However, they are comparable using the weaker notion
of entailment. In fact, Py entails Ps, namely for every in-
stance ag of a, there is an instance by = ag of b such that
Sol(Py,ag) C Sol(Ps,by). The vice-versa does not hold. In
this sense, P) is a more representative generalization than P
since [ Py] contains (strictly) smaller polyhedra than [ Ps].

A tentative definition of representativeness would be the
following: A generalization is representative if it entails any
other generalization. Unfortunately, there is no generaliza-
tion that entails all other ones.

Example 4.4 Consider the linear systems:
P=x<3,y<3,z+y <3 P=x<1l,y<1

They can be obtained as instances of the parameterized lin-
ear system R = x < a,1 <a <3,y < a,x+y < 3 by
setting a = 3 for Py and a = 1 for P». They can be also
be obtained from the parameterized linear system Ry defined
as Ry with the additional inequality x + 2y < 3/2(a + 1),
which is redundant for both Py (where 3/2(a + 1) = 6) and
Py (where 3/2(a + 1) = 3) — see Figure 2 for a graphical
representation. However, the inequality is not necessarily re-
dundant for other instances of a. As an example, Figure 2
shows that for Ps defined by setting a = 2, the inequality
x4+ 2y < 3/2(a+ 1) = 4.5 is irredundant. Although Rs
entails R1, we cannot consider Ry as a candidate generaliza-
tion of Py and Ps. First, there is no rationale in arbitrarily
choosing a redundant inequality from infinitely many redun-
dant ones. Second, there is no best inequality to be chosen.



TR 2+2<6
< R

y<3 Yy <3

< N
r+y<3 J. sty <s
1 R N
| y=1 <1

z <3 w

P1 T73*> P2

Figure 2: Systems from Example 4.4.

The inequality x + 3y < (5a + 3)/2 is also redundant when
a = 3 and a = 1, and the parameterized system Rs obtained
by adding it to Ry entails Ry. We can repeat the reasoning by
adding infinitely many other inequalities, each time having a
system that entails the previous one.

As suggested by the example, it is reasonable to limit
the search space to generalizations whose inequalities over
variables appear in some system P; = A; - x < b;, for
i = 1...N, modulo normalization to unit length. Let ||c||
be the L? norm of a vector c.

Definition 4.5 A vector c is generated from A4, ..., A, if
c = 0 or there is a row dT of some A;, withi = 1...N,
such that c/||c|| = d/||d].

A parameterized linear system P =C -x < d+ M -ris
generated from A;-x < b, withi = 1... N, if for every row
¢’ x<d+mT -rinP, cis generated from A1, ..., A,.

We simply say that P is generated if the systems A; - x <
b; are clear from the context. We are now in the position to
define representativeness.

Definition 4.6 (Representativeness) A generalization is
representative among those generated from P; = A;-x < by,
with i = 1...N, if it is generated from P,..., Py, and
it entails any (parameter renamed apart) generalization
generated from Py, ..., Py.

Renaming apart parameters (i.e., substituting parameters
with fresh ones) prevents clashing of parameters, and it al-
lows for correctly applying Def. 3.2 of entailment.

4.3 The Base System

Inspired by the necessary condition of Lemma 4.3, we will be
looking for a generalization starting from all distinct inequal-
ities appearing in the input systems. Let us introduce first a
key tool for characterizing parameter instances leading to a
specific polyhedron.
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Definition 4.7 (Maxima) Let A - x < b be satisfiable linear
system, and C-x < d-+M-r be a parameterized linear system
with n inequalities: ¢!’ - x < d; + m? -r, fori=1...n.

The maxima of C - x < d+ M -rwrt. A-x < bis
the vector k = (ky, ..., ky,) where k;, fori = 1...n, is the
solution of the linear program:

max c! - x

A -x<b
If any linear program is unbounded, the maxima is undefined.

Intuitively, k; is the value, if it exists, for which the hyper-
plane ¢! - x = k; is incident to the polyhedron of A - x < b.
If Sol(A-x <b) C Sol(C-x <d+M-r,rg) for some
I, then it is necessarily the case that k < d + M - r. Notice
that the maxima does not depend on d nor on the parameters
r, but only on the cone of the parameterized system, namely
on C - x < 0. Also, notice that the maxima can be computed
in polynomial time, since it consists of solving n linear pro-
grams, each with polynomial complexity [Khachiyan, 1979].

Example 4.5 Consider the linear system 0 < y,x +y <
3,x < 2. In the space of its solutions, the maximum value of
—yis0, of x + 1y is 3, and of x is 2. Therefore, the maxima of
the parameterized system P consisting of —y < a,x +y <
b,x < ¢ w.rt. the linear system is (0,3,2). The instance of
inequalities in P where the RHS is given by the maxima is:
—y < 0,z +y < 3, < 2, which is precisely the origi-
nal linear system. Differently from what this example may
suggest, however, in general deciding whether a given linear
system belongs to the class of a parameterized linear system
is a NIP-complete problem (see [Ruggieri, 2012]).

We are now ready to introduce the base system.

Definition 4.8 (Base system) Given N linear systems P; =
A; - x < by such that Sol(P;) # 0, withi = 1...N,
and called A = {c/||c|| | cT isarow in A; for some i =
1,...,N}, thebase system is C - x < r,0 < d+ M- r
where:

o C-x < ris the set of inequalities c* - x < r for every
c € A and with r fresh parameter;

e 0 < d+ M risthe convex hull of kq, ..., ky, where
k; is the maxima of C - x < rw.rt. A; - x < b;, with
i=1...N.

The base system is undefined if any of the k;’s is undefined.

Intuitively, A is the set of LHS of inequalities in any of
the input systems, normalized to unit length —e.g., x < 0
and 2z < 3 contribute to the same x < rin C - x < r. The
maxima k; is the parameter instance for which C-x < r leads
to the polyhedron Sol(A; - x < b;) of the i*" input system.
Also, notice that the hypothesis that Sol(A; - x < b;) # 0 is
required by the definition of maxima.

Example 4.6 Consider the following sample systems:
0<y,z+y<3,x<2 0<y,z+y<1

0<yz+y<2



The base system P includes —y < a,x +y < b,x < ¢ plus
(a linear system denoting) the convex hull of the three max-
ima (0,3,2), (0,1,1), and (0, 2,2) over the space (a,b, c) of
parameters, namely:

a=0,<2c—1,c<2,c<)b

By construction [ P] includes the polyhedra of the sample sys-
tems. For instance, by fixing a = 0,b = 1,¢ = 1 we obtain
0 <y,z+y <1,z <1, whose polyhedron is the same of
the second system (the inequality x < 1 is redundant).

By construction, the base system is generated from the in-
put systems, and its class of polyhedra includes the ones of
the input systems. Moreover, it entails any parameterized sys-
tem satisfying such two properties.

Lemma 4.4 [f the base system is defined, then it is a repre-
sentative generalization.

Proof. Let Pbe C-x <r,0 < d+ M- r as in Def. 4.8.
Also,let P,be A; -x < b;fori=1...N.

P is clearly generated from P, ..., Py. Let us show it is
a generalization. Let: = 1... N, and k; be the maxima of
C-x <rwrt. A;-x < b;. By definitionof 0 < d+M-r, we
have that 0 < d+M-k; holds, and then Sol(P, k;) = Sol(C-
x < k;). By definition of maxima, we have Sol(C - x <
k;) D Sol(A; - x < b;). Moreover, since C includes every
row of A (possibly after normalization), we also have Sol(C-
x < k;) € Sol(A; - x < b;). Summarizing, Sol(P,k;) =

Consider now representativeness. Let us show that P en-
tails any () that is a (renamed apart) generalization generated
from Py,..., Py. Without any loss of generality, () is of
the foom C’' - x < t,0 < d + M -t, withtNr = 0,
and C’ has unit rows. As a consequence, 0 < d' + M’ - t
includes the convex hull of the maxima t; of C' - x < t
wrt. A; - x < by, namely ConvexHull(ty,...,ty). Let
nowrg € Sol(0 <d+M-r). Since0 <d+ M- risa
polytope, ry can be written as a convex combination of its ver-
tices, namely rg = ;-1 n7:k;, where 3,1 n7v; = 1 and
v > 0fort=1...N.Lettg = ;-1 n7it;. We claim that
Sol(P,ry) C Sol(Q,tg). Let T -x < t be the 5" inequality
of C’ - x < to. We show that Sol(P, o) C Sol(cT - x < tg)
where tg = X;—1..n7:ti; is the convex combination of the
jt" elements tij of t1,...,ty. Since @ is generated and C’
consists of unit rows, we have that any row ¢’ of C' is a
row of C as well. This implies that maz{c’ - x¢ | xo €
Sol(P,k;)} = k;j, where k;; is the j'* element of the max-
ima k;. Since Sol(P,k;) = Sol(Q, t;) C Sol(cT - x < t;5),
this implies k;; < t;; for ¢ = 1...N. This implies,
Sol(P,ry) C Sol(c’ -x < Yim1. ~NvYiki) € Sol(c” - x <
Yimi NYtij) = Sol(c” - x < tg). Summarizing, we con-
clude that P entails (). O

We are now in the position to show that the necessary con-
dition of Lemma 4.3 for the existence of solutions to the
learning problem is also sufficient.

Lemma 4.5 A generalization of Pi,..., Py exists iff the
base system of Py, ..., Py is defined iff Py, ..., Py have the

same cone.
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Proof. We split the proof into three claims.

(1) If a generalization exists then Py, ..
same cone. This is Lemma 4.3.

(2) If Py,..., Py have the same cone then the base sys-
tem is defined. We show the contrapositive. Assume there
exists i = 1...N and Sol(A; - x < b;) # () such that k;
is undefined. This means that there exists 7 = 1... /N and
Sol(A; - x < b;) # () such that for some row ¢’ - x < bin
A -x < bj it turns out that maz{c’ /||c|| - x | A; - x < b;}
is unbounded. By the decomposition theorem of polyhedra
[Schrijver, 19871, this implies that maz{c’ /||c||-x | A;-x <
0} is unbounded. As a consequence, Sol(A; - x < 0) #
Sol(A; - x < 0) since maz{c?/|lc|| - x| A; -x < 0} is
clearly bounded by 0.

(3) If the base system is defined then a generalization exists.
This is precisely Lemma 4.4. |

., PN have the

Example 4.7 Consider the linear systems from Example 4.1.
We have that C-x < r in the base systemisx < a,y < b. The
maxima of C-x < r w.r.t. the system x < 0 is undefined since
max{y |x < 0} is unbounded. Hence there is no a,b such
that x < a,y < b can lead to the polyhedron Sol(x < 0).

4.4 Tackling Minimality: Parameter Elimination

The base system is a generalization and it is representative
among those generated. Moreover, it is weakly minimal. This
is an immediate consequence of the fact every parameter in-
stance in its domain leads to a different polyhedron.

Lemma 4.6 Ler P be the base system, and Sol(P,rq) # 0.
For every, rg # r1 we have Sol(P,rg) # Sol(P,ry).

Proof. The conclusion is immediate if Sol(P,r1) = 0. As-
sume Sol(P,r1) # 0. Letr =Y., 5 Aik; be any parame-
ter instance in the convex hull of the maxima kq, ..., ky (see
Def. 4.8). We claim that r is the maxima of P w.r.t. Sol(P,r).
This implies that if Sol(P, rg) = Sol(P,ry) thenry = ry be-
cause Sol(P,rg) # () and Sol(P,r1) # () imply that ro and
ry are in the convex hull of ky,...,ky. Let us show our
claim. Letc? -x < r; be the jth inequality in C - x < r (see
Def. 4.8). By definition of maxima, for ¢ = 1... N, there
exists x; € Sol(P;) = Sol(P,k;) such that ch -x;5 = kj.
Calledx’ =%, ; , AiX;, we have that:

x ¢ SOZ(P, Z )\zkz) C}—' x = Z Aikij
i=1...N i=1...N

Since c? -x < >, nAikgj is an inequality in P

for parameters r = ). i—1.. N Aiki, we conclude that
> i—1...v Aiki; is the maximum of ¢] -x in Sol(P, r). Hence,
> i1 N Aiki = ris the maxima of P in Sol(P,r). O

However, the base system is not necessarily strongly min-
imal nor minimal as per number of parameters. Example 4.6
suggests that the parameter a can be removed since a = 0
holds. A simple way of reducing parameters is Gaussian
elimination restricted to parameter-only expressions.

Definition 4.9 The Gauss-elimination of a parameter r from
a parameterized linear system P occurs if an equality r =
d+m” -risin P. The system obtained by replacing every
occurrence of v in P by d +m” - r is denoted by G(P, ).



P islogically equivalent to G(P, ), = d+m? -r. Hence:
[P] = [G(P,r),r =d+mT -r] = [G(P,r)]U{0}. When
P is the base system, (} € [P] (since the domain of param-
eters is a polytope), and then [P] = [G(P,r)]. Moreover,
since parameters are replaced by an expression of parame-
ters only, G(P,r) is generated. Summarizing, the properties
of being generated, representative, and weakly minimal are
maintained for G(P, ), and this holds also for repeated ap-
plications of Gauss-elimination.

Example 4.8 Reconsider P from the Example 4.6. The pa-
rameter a can be eliminated, since a = 0 appears in P.
G(P,a)isthen0 < y,z+y < bz <c¢b<2c—1,¢c<
2,¢ < b. G(P,a) is generated and [ P] = [G(P,r)].

More general variable elimination methods can also be ap-
plied, with the proviso that parameter elimination should re-
sult into a generated system. We ensure this by a syntactically
restriction on the Fourier-Motzkin elimination procedure.

Definition 4.10 The restricted Fourier-Motzkin elimination
of r from P occurs if all upper bounds on r in P involve
parameters only, namely they can be written in of the form
r < d+m7 - r, with r vector of parameters (not including
r). The system obtained by Fourier-Motzkin-elimination of v
from P is denoted by F(P,r).

In the Fourier-Motzkin elimination procedure (see [Schri-
jver, 1987]), every lower bound d; + mlT r+cf - x<ris
replaced by inequalities d; + m? -r+c?-x < dy + mi - r for
all upper bounds 7 < dy + ml - r. The syntactic restriction
that variables do not appear in upper bounds maintains the
property of being a generated system, yet being a sufficient
condition only. It also implies:

[P] 2 [F(Pr)]. (1
and then F'(P,r) entails P.

Example 4.9 Reconsider P’ = G(P,a) from Example 4.8.
Let us eliminate b. The only upper bound is b < 2c¢ — 1.
Hence, F(P',b)is0<y,z+y<2c—1,2<¢,1<c¢c<
2. Let us instead eliminate c. There are two upper bounds
¢ <2,¢c<b Hence, F(P',c)is0 < yx+y < ba <
2,2 < b,1 <b,b < 3. The inclusions [P'] 2 [F(P’,b)]
and [P'] 2 [F (P, ¢)] clearly hold by setting b = 2c— 1 and
¢ = min{2,b} in P’ respectively.

Since the inclusion (1) can be strict, the property of be-
ing a generalization may be lost after restricted Fourier-
Motzkin elimination. Thus, it has to be explicitly checked.
Thanks to Lemma 4.6, F(P,r) is a generalization iff
Sol(F(P,r),k;) = Sol(P;) fori = 1...N, where k] is ob-
tained by eliminating the » component from the vector of pa-
rameters k; such that Sol(P, k;) = Sol(FP;). Notice that such
a condition can be checked in polynomial time, whilst the full
membership procedure is NP-complete [Ruggieri, 2012]. In
case F'(P,r) is a generalization, it is representative (since (1)
implies that F'(P,r) entails P, which is representative) and
weakly minimal (again by (1) and Lemma 4.6).

Example 4.10 Reconsider F(P',b) from the Example 4.9.
Recall that the maxima of the base system are (0,3,2),

(0,1,1) and (0,2,2). Their projection over the single pa-
rameter ¢ in F(P',b) is (2), (1), and (2). They lead to the
Sollowing two instances of F(P',b):
0<y,r+y<3,x<2 0<y,z4+y<l,z<1
The polyhedron of the first sample system in Example 4.6 is

not covered. Hence, F(P’,b) is not a generalization. As for
F (P, ¢), the projected maxima (3), (1), and (2) lead to:
0<y,z+y<3,z<2 0<y,z+y<1l,z<1
O<yz+y<2z<2
Since x < 1 and x < 2 in the second and in the third systems
are redundant, we obtain the polyhedra of the three sample

systems of Example 4.6. Hence, F(P’,c) is a generalization,
and then it is representative and weakly minimal.

Summarizing, a parameter elimination procedure consists of
performing Gauss and restricted Fourier-Motzkin elimina-
tions while possible. Gauss eliminations should be given pri-
ority since they remove inequalities, while not adding new
ones. Restricted Fourier-Motzkin eliminations are performed
only if they result in a generalization. The final system is
a representative generalization and weakly minimal, yet not
strongly minimal. However, strongly minimal generaliza-
tions do not necessarily define a unique class of polyhedra.

Example 4.11 Consider three linear systems:
z<0,y<0 r<1ly<2 r<2,y<1
The base system P includes x < a,y < b plus (a linear

system denoting) the convex hull of the maxima (0,0), (1,2),
and (2, 1) over the space (a,b) of parameters:

a+b<3,b<2a,a<2b

By eliminating the parameter b from P, we obtain P, =
F(P,b) consisting of x < a,y <3 —a,y < 2a,0<a<2
Py, turns out to be a generalization: fixa = 0, a = 1, and
a = 2 respectively for the three systems. Analogously, by
eliminating a from P, we obtain P, = F (P, a) consisting of
z < 2bjxr < 3—-0by <b,0< b < 2 whichis a gener-
alization as well. We observe that [P,] N [Py] consists only
of the polyhedra of the tree linear systems above. As a con-
sequence, the strongly minimal generalization included in or
equal to Py, and the one included in or equal to P, necessarily
define different classes of polyhedra.

5 Conclusions

We have introduced and investigated the problem of learning
the definition of a class of polyhedra from sample polyhedral
sets. Our approach consists of building a base system and
then of eliminating parameters. Non-polynomial time steps
include the computation of the convex hull of maxima and
the use of the Fourier-Motzkin procedure in parameter elimi-
nation, which can be exponential in the worst case. An imple-
mentation of our approach has been developed in SWI-Prolog
[Wielemaker et al., 2012], using a library on constraint logic
programming (CLP) over the reals [Jaffar et al., 1992]. CLP
offers powerful amalgamation features: linear systems can be
represented using the language of constraints, thus exploit-
ing language primitives for solving linear programming prob-
lems, entailments, simplifications, and so on. Source code
can be downloaded from the home page of the author.
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