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Abstract

In the domain of biological classi�cation there are several taxon name matching
services that can search for a species scienti�c name in a large collection of
taxonomic names. Many of these services are available online, and many others
run on computers of individual scientists. While these systems may work very
well, most su�er from the fact that the list of names used as a reference, and
the criteria to decide on a match, are hard-coded in the engine that performs
the name matching. In this paper we present BiOnym, a taxon name matching
system that separates reference names lists, search criteria and matching engine.
The user is o�ered a choice of several taxonomic reference lists, including the
option to upload his/her own list onto the system. Furthermore, BiOnym is a
�exible work�ow, which embeds and combines techniques using lexical matching
algorithms as well as expert knowledge. It is also an open platform allowing
developers to contribute with new techniques. In this paper we demonstrate the
bene�ts brought by this approach in terms of the e�ciency and e�ectiveness of
the information retrieval process with respect to other solutions.
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1. Introduction

�What's in a name?� (Shakespeare, 1599: Romeo & Juliet, Act 2, Scene 2)

Querying that question in Google Scholar1 just in the �title of the article�
�eld will yield more than 3,400 records (as of November 2014) in a wide range
of domains of human activities. It has also been used many times as the title
of taxonomists' oral presentations (or as slide title) to convey the important
message that the proper management of scienti�c names of fossil and extant
living organisms is essential to the understanding and the management of bio-
diversity. Coining names for artefacts of the physical world and for human
conceptual constructions is essential to our communication. Scienti�c domains
are themselves named xxx-logy, the etymology of the ancient Greek su�x root
being �logos� (λογος) meaning a speech/discourse/debate; those would not be
possible without names.

In biological taxonomy, the meaning of that question becomes: what is to
be known through the scienti�c name about the organism it designates? The
fact is that all data, information and knowledge about species are �hooked�
to a scienti�c name. Therefore, (i) all what we know about a species can be
retrieved from the literature by looking for the species name, which can be seen
as indexing metadata (Patterson, 2014); (ii) di�erent information systems can
exchange data through species names, which can be seen as identi�ers.

There should be an unequivocal link between a name and an artefact or a
concept. This was clearly the goal when scienti�c names and their codes of
nomenclature were developed. With vernacular names, which usually originate
unplanned from common use, this is clearly not the case. However, even with
scienti�c names, this unequivocal relationship is not absolute. Patterson et al.
(2010) summarized the main issues that name matching encounters, among
them: plain simple misspellings (formally known as �lapsus calami� in the liter-
ature on nomenclature), new combinations, several name-as-string variants for
one name. These issues make it di�cult to use them as identi�ers. But they
are quite e�cient as indexing metadata to retrieve information on species.

To improve the role of scienti�c names as key to bind information from
di�erent sources, it is necessary to standardise their spelling and use. This is
achieved most often through a process of matching them with a Taxonomic

Authority File (TAF), i.e. a list of reference terms, including indication of
synonyms and variants of scienti�c names, their authorship and possibly their
data providers. The closer the match the better the chance that both systems
speak about the same taxonomic concept. The human brain is quite good
at matching names while detecting errors. But electronic systems match the
strings of characters that constitute names outside any context, which makes
them prone to compute false negatives. One understandable source of mistakes
is that colleagues of whom their mother tongue is written in a non-Roman

1scholar.google.com
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script are more likely to make spelling mistakes. For example, based on our
experience and partially supported by the statistics in Froese (1997), the number
of misspellings is high in Indian, Arabic, Chinese, and Russian journals.

Matching a string of characters is not enough to understand whether the
intended species concept is the same: similar names might cover di�erent species
concepts (homonyms), di�erent names might cover identical species concepts
(synonyms). Resolving these issues is a di�erent process from the taxon name
matching that we will focus on here. Taxon name matching is a necessary �rst
step, before the content (or in other words, the taxonomic concept covered by
the name) is considered. The second step, concept matching, generally involves
expert knowledge, and is considered the role of the Taxonomic Authority File:
it is through the TAF that taxonomists have made their expertise available
(Lambe, 2014), and allow us to judge whether names should be considered
valid or invalid, and to disambiguate homonyms. For example, this approach
is evident in the knowledge building process followed by the Catalogue of Life
(Bisby et al., 2004), FishBase (Froese and Pauly, 2000) and WoRMS (Costello
et al., 2013).

Several taxon name matching systems are available online, and many more
are no doubt living on computers of individual scientists; a brief overview of
those best known to the authors is included in Section 2, based on our knowledge
of the tools used by several scienti�c communities around taxa matching. While
these systems may work very well, many su�er from the fact that the list of
names used as a reference (the TAF), and the criteria to decide on a match,
are hard-coded in the engine that performs the name matching. The objective
of this paper is to describe the BiOnym taxonomic name matching system that
separates these elements.

In constructing such a system, it is not always possible to �nd the one
size that would satisfy all the needs; to our experience, in the area of taxon
name matching it seems that this �one size� is non-existent. Our ambition was
to create a �exible, highly customisable framework to facilitate taxon name
matching. This �exibility is deemed important for several reasons. First of all,
it is important for determining if the scope of the reference list used is as close as
possible to that of the list of names to be tested. For example, if a list of names
of �sh is compared with a very wide reference list such as the Interim Register
of Marine and Non-marine Genera (IRMNG, Rees (2008a)) or the Catalogue of
Life (Bisby, 2000), chances are that a lot of near-matches will actually be false
positives (or even full matches comparing zoological names against a botanical
TAF, and vice-versa). Consider the case of the genus �Tisbe Lilljeborg, 1853�, a
marine harpacticoid copepod. The genus is named after Thisbe, of �Thisbe and
Pyramus� fame, but actually misspells the name of the mythological character.
The correctly spelled �Thisbe Hübner, 1814� is a genus of butter�ies. If the
name �Thisbe� is used for a copepod, or in any marine context, it is very likely
to be a misspelling for Tisbe. If it is compared with a TAF of the wrong scope,
it might end up as the butter�y. On the other hand, if it is compared with a
TAF including exclusively marine names, or with a TAF speci�c for crustaceans,
�Thisbe� would likely be identi�ed as a misspelling of �Tisbe�. Another example
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is reported in Table 1.
Another reason why we need a �exible approach is that the objectives of

the end-users are not always the same, and dependent on the �use case�. One
possible use case for taxon name matching is to suggest, to some end user, a list
of alternative valid names, for a list of names (s)he wanted to test. In this case it
is important that the �correct� match is in the list of potential matches returned;
the fact that other, false matches are also returned is of secondary importance:
the �recall� should be as high as possible. Compare this with another potential
use case, where taxonomic name matching is used to automate the association
of names from a new dataset with names in a reference list. In this case it
would be important to have a single suggestion for the matching name - in
other words, that �precision� would be as high as possible. For this second use
case we can break up criteria even further, according to the weight a wrong
match would carry. If, for example, the taxon name matching was performed
in the framework of merging di�erent biogeographic data sets, the number of
false positives should be weighted against the number of distribution records
that cannot be used because no match was found. If, on the other hand, the
taxon name matching was performed in the framework of the completion of a
taxonomic reference list, false positives carry a much larger penalty, and should
be avoided as much as possible.

Thus, in the �rst use case, it will be important to have a �recall� that is
as high as possible; in the second use case, the �precision� will be the most
important criterion. Recall and precision, and other measures of the quality of
the matching process, will be further discussed in Section 5.1.

This paper is organized as follows: Section 2 reports an overview about
taxon name matching. Section 3 explains our approach step-by-step, from the
general rationale to the technical details. Section 4 explains the format of the
reference datasets used by our process to search for the correct transcription
of a species scienti�c name and the test dataset we prepared to evaluate the
performance of our system. Section 5 reports the evaluation of the performance
of each component of our method, both in terms of e�ciency and e�ectiveness.
Finally, Section 6 draws the conclusions.

2. Overview

Lexical matching is a standard computer application that crops up in sev-
eral circumstances, for example in the spell checker of a word processor. Many
general-purpose algorithms have been developed to support this matching (e.g.
the Damerau�Levenshtein distance, Bard (2007), based on the minimum edit
distance by Levenshtein (1966)) , n-grams (Owolabi and McGregor, 1988),
soundex (Odell, 1956) to name just a few, and which were used in the con-
text of BiOnym. In this section we give an overview of methods that apply such
techniques to taxon names matching.

Within the domain of taxonomic names/biological nomenclature, a consid-
erable amount of work has been invested by the international biodiversity com-
munity in the creation of the Global Names Architecture (GNA) (GNA, 2014),
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much of it supported by the Global Biodiversity Information Facility (GBIF)
(Edwards et al., 2000) and its ECAT programme (GBIF, 2014), and by the
Encyclopedia of Life (Wilson, 2003). The GNA has compiled a database of
taxonomic names and its variants: the Global Names Index (GNI) (Patterson
et al., 2010), which stands at nearly 20 million name strings. The GNI has
a search interface (GNI, 2014a), but as far as we are aware, only allows for
wildcard searching, and does not suggest similar names when searched with a
non-matching name.

One of the tools developed under the umbrella of the GNA is a parser (GNI,
2014b), which can be used to split a taxonomic name in its individual compo-
nents. The �GNI Parser�, developed as a Ruby gem by Dmitry Mozzherin, is
a component in several of the name matching services/applications discussed
below. A description of the parser can be found in Boyle et al. (2013).

Taxamatch (Rees, 2008b), an algorithm that includes �fuzzy� name match-
ing, is the basis for many applications of taxon name matching used by many bio-
diversity informatics systems (PESI, WoRMS, ALA, FishBase, etc.). The Taxa-
match reference implementation is accessible through a web interface (IRMNG,
2014), and uses the Interim Register of Marine and Non-marine Genera as its
Taxonomic Authority File. The interface allows for limited settings, most im-
portantly to limit the TAF to a subset of IRMNG.

Several other implementations of Taxamatch have been created (Rees, 2014).
The WoRMS Taxon match (WoRMS, 2014), uses a TAF speci�c for marine
species; it includes a PHP/MS SQL port of Taxamatch, and uses the GNI
Parser to split a name into its components.

In FishBase, there are two matching names systems installed (that do not
analyse the species name authority): one searching for one name entered inter-
actively by the user2, and one that analyses a list copy-pasted in a box (under
the section Tools as Match names3). Up to 2011, the entry search name used a
simple matching algorithm that looked �rst for the full match, then the names
matching the �rst three and last three letters of the entered name only, then
the �rst two and last two letters, then either the full genus or the full species.
It was a simple approach along the general philosophy of FishBase. Then the
Taxamatch algorithm (Rees, 2008b) was adapted and implemented. The search
consists of four steps: the full match, the Taxamatch, Genus or species full
match, match of the �rst two and last two letters. A variation on this matching
protocol was ported to Java for inclusion in BiOnym, and will be referred to as
the �GSAy� algorithm (�Genus-Species-Authority (year)�).

The Taxonomic Name Resolution Service (Boyle et al., 2013) builds on ex-
isting applications, including a PHP/MySQL port of Taxamatch, and the GNI
Parser. Names can be standardised against several TAFs, at the time of writing
all botanical. Though the focus of TNRS is on botany, its underlying design

2the general search page in www.�shbase.org
3http://www.�shbase.org/tools/upload/checkname.php
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can be expanded. The TNRS is accessible through a web interface4, and as a
REST service. The matching can be �ne-tuned by setting the required match
accuracy.

The approaches described so far, see the matching process as a work�ow.
A general approach to build such systems uses Work�ow Management Systems
(WMSs). A WMS strongly separates the algorithms processing from the in-
teraction among such algorithms. WMSs allow users with basic programming
experience to combine algorithms and perform complex analyses. Usually, these
systems rely on a common web area where the algorithms are published accord-
ing to supported protocols, e.g. OGC WPS (Lanig et al., 2008). Algorithms
are the atomic steps of the work�ows and cannot be altered by WMSs users.
De�nitions of input and output types and other metadata allow users to under-
stand and reuse algorithms developed by other users. Examples of WMSs are
Taverna (Oinn et al., 2006), used in the European Project BioVEL (BioVEL
Consortium, 2014), and Galaxy (Goecks et al., 2010), used in the biomedical
and computational biology domain.

The BiOnym approach strongly emphasizes decoupling taxa names match-
ers, allowing to change the order of the matchers when building a matching
work�ow. Such work�ow is assumed to be nested in a controlled environment,
surrounded by pre-processing and post-processing phases.

Many other tools, online or o�-line, exist to assist with taxon matching.
Examples are Taxonome (Kluyver and Osborne, 2013); the Global Biotic Inter-
actions programme (Global Biotic Interactions, 2014), which includes a taxon
name matching component and is supported by Encyclopedia of Life (Wilson,
2003); the R package Taxize (Chamberlain and Szöcs, 2013); Taxonomic Nomen-
clature Checker (Taxonomic Nomenclature Checker, 2014); the taxon name
parser of the Botanical Society of Britain and Ireland (Botanical Society of
Britain and Ireland, 2014). Several issues, and functional taxon matching tools,
have been posted by Rod Page on his blog site (Page, 2014). In this post,
tools are provided to use Google Re�ne to match a set of taxon names with one
or several reference �les; reference �les listed are EOL, NCBI, uBio, WoRMS,
GBIF and GNI.

Given the number of taxonomic name matching systems, one might doubt
the wisdom to produce yet another such system. But as noted before, the
existing systems are often very rigid, and o�er a solution within one particular
context only, often tied to a particular taxonomic group, and with one use-case
in mind. We set out to create a more generic system, by implementing the
matching process as a �exible work�ow, where many of the tuning parameters
are under the control of the end user.

4http://tnrs.iplantcollaborative.org
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3. The BiOnym Approach

The matching process follows a work�ow approach, starting with a pre-
processing step, followed by series of operators to do the actual matching, con-
cluding with a post-processing step. The pre-processing includes a parser, to
split a taxonomic name in its atomized components (e.g. splitting the string
in the name proper and the authority �eld), and a resolver to settle common
spelling variations (e.g. replacing all occurrences of �var.� to �v.�). The post-
processing step de�nes how the results of the matching process are presented to
the user. The matching itself is performed through a chain of atomic �matchers�,
where the output of each matcher is passed on as input for the next matcher in
the chain. Each matcher decides, on the basis of customizable criteria, whether
a pair of names should be considered as �matches�, and splits the input list in
�matched� and �non-matched� names. The matches go, with the criteria that
were used to establish the match, to post-processing; the non-matched names
are sent to the next matcher. Two broad categories of matchers are considered.
A �rst type uses some kind of distance, such as the Levenshtein or Soundex
distance. Another type of matcher, inspired by the �fuzzy� matching approach,
applies a transformation to both test and reference names (e.g. strip o� gender-
speci�c su�x of speci�c epithet, or �stemming�), and then looks for matches.
The matchers are con�gurable and it is possible to upload customized charac-
ter/string substitutions to con�gure the pre-processing step and transformations
used by the matchers.

BiOnym implements the approach described above, and is distributed as a
standalone open source software written in the Java language5. One running
instance of BiOnym has been integrated with the iMarine e-Infrastructure (Can-
dela et al., 2009)6, but the process is general enough to be separated from this
system. By using iMarine, BiOnym bene�ts from Cloud computing, sharing
and storage facilities. In particular, Cloud computing facilities (Candela et al.,
2013) are able to process the user's entries in parallel fashion: the input list
of species names is split into subsets and each subset is processed by one ma-
chine in the e-Infrastructure. Social networking and sharing facilities are used
to download and analyse the output or to share it with colleagues. Although
not indispensable for out process, these facilities enhance the potential of our
work�ow. On the other hand, also other taxa matching systems could bene�t
from the same facilities by following integration guidelines (Coro and Italiano,
2012). We give further details about the advantages and the modalities of inte-
grating parallelisable algorithms in iMarine in the paper by Coro et al. (2014).
Another advantage of using the BiOnym instance on iMarine, is that access
policies to authority �les are managed by the e-Infrastructure agreements with

5Available at https://svn.research-infrastructures.eu/public/d4science/gcube/trunk/data-
analysis/EcologicalEngineSmartExecutor/src/main/java/org/gcube/dataanalysis/executor/nodes/transducers/bionym/

6Web interfaces are available for use, after authentication, at
https://i-marine.d4science.org/group/bionym/bionym-app and at https://i-
marine.d4science.org/group/bionym/taxa-names-processing
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the data providers. The iMarine e-Infrastructure adopts users' privileges con-
trol and Virtual Research Environments mechanisms to manage visibility and
accessibility policies for users. In the Virtual Research Environment created
on the iMarine infrastructure for BiOnym, users are only presented access to
authority �les for which they have the necessary privileges.

To better explain the usage of the BiOnym work�ow by a �nal user, we report
a practical example. This use case reproduces a possible interaction between a
user and the work�ow.

The example use case is the following:

1. A set of scienti�c names is provided by a user as a raw CSV �le, through
a web interface (or directly when using BiOnym as a standalone process);

2. The �le is transformed into a table, containing pre-formatted entries, to
be used by the BiOnym work�ow;

3. The user wants to check the spelling of the scienti�c names in the �le,
possibly getting correct transcriptions for them. �Correct� spelling is to
be interpreted as corresponding with the TAF;

4. The user selects an authoritative collection of taxa names to use (e.g. Fish-
Base), either among a �nite choice proposed by the iMarine e-Infrastructure
(when using the instance on iMarine) or indicated by the user as an http
link (when using the standalone version). In particular, the user can pro-
vide a new authoritative collection under Darwin Core Archive format
(Wieczorek et al., 2012). (S)he can also indicate several of these lists;

5. The user con�gures the BiOnym work�ow in terms of (i) parsing proce-
dures, (ii) matching mechanisms to use, (iii) lexical similarity tolerance
parameters, (iv) accuracy of the recognition;

6. The system applies pre-parsing, parsing and post-parsing processing. Then,
it applies a chain of matchers to the user's inputs, against the selected ref-
erence taxa names collection;

7. The system produces a table containing possible correct transcriptions for
the entries, along with score indication and other metadata;

3.1. Taxon Names Parsing

The parsing of unstructured input data is a fundamental process that needs
to be performed as a preliminary step, before the actual matching identi�cation
can take place. Its purpose is to clearly identify, out of the unstructured input
data, the components relevant to the matching itself (the taxonomic atoms
plus the authority and year). Conversely, the Taxonomic Authority Files are
mostly available in Darwin Core Archive format. Thus, they clearly specify each
taxonomic name part and need not to be parsed.

The input data parsing in the BiOnym work�ow is a separate step with
respect to the matching, and encompasses optional pre- and post-parse trans-
formations. BiOnym pre-processes raw inputs before actually attempting to
parse their structure, and processes the parsed results to enhance the quality of
the identi�ed atoms. Pre-parse processing mainly consists of a step to sanitise
the input strings, e.g. removing question marks indicating uncertainty of the

8



identi�cation; removing �sp. nov.� and other quali�ers; making infra-speci�c
indicators uniform by replacing all occurrences of �var.� by �v.�, etc. Post-parse
processing assumes that the input string is correctly split into its atoms, and
attempts to improve the quality of the input using this new information (e.g.
checking and correcting capitalisation). Most of this pre- and post-parse pro-
cessing is accomplished through regular expressions (with proper substitutions).

Currently, BiOnym can invoke two di�erent parsers: the GNI Parser (intro-
duced in Section 2), and a parser embedded in the BiOnym software (REGEXP
or SIMPLE parser, Fiorellato (2015)). REGEXP provides good balance be-
tween speed and e�ectiveness: it is a heuristic parser relying principally on
regular expressions. It applies a chain of substitution rules, combined with
lexical similarities calculations, to extract the genus, species and authorship in-
dications from a species scienti�c name. In our experiments, we noticed that
the two currently available parsers (GNI and REGEXP) have complementary
behaviour, as discussed in Section 5.

The parsing of input data is a relevant step of the matching process and the
quality of the results achieved by the parser is crucial to the complete match-
ing work�ow of BiOnym. The BiOnym software architecture can be expanded
with additional parsers whose implementation could be arbitrary, but must be
wrapped in Java programming language. The technical documentation (Coro
and Italiano, 2012) provides speci�cations for the input and output formats
which these parsers must be compliant with.

3.2. Matchers

The BiOnym matchers are procedures that calculate similarity scores be-
tween 0 and 1: the score is calculated as the result of the comparison between
the two taxon name records representing a user's input record and a reference
record from a TAF. It is based on matcher-speci�c comparison logic.

Each matcher can access the full content of the two records being compared
(from kingdom to species and authorities, including year of description) and
can also take advantage of precomputed lexical indices contained in the TAFs,
including the simpli�ed atom forms, their soundexes and trigrams, as well as
the genus and species stemmed versions.

Being R = r0, r1, , rN the set of reference data assumed as targets of the
matching process and I = i0, i1, , iM the set of input data assumed as sources of
the matching process, every BiOnym matcher applies the algorithm in �gure 1.

Each matcher currently available in BiOnym implements the matching func-
tion decimal :: matcher.match({property}i, {property}r) in a di�erent way.
There are 6 matchers currently available in BiOnym, which we report into two
categories:

Purely lexical oriented:

• Levenshtein: a weighted combination of the relative lexicographic Lev-
enshtein distances (Bard, 2007), calculated between the scienti�c names
and the authorities of an input and a reference entry. A weight is also
applied to the relative lexicographic distance between the reported years,
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if available. The weights sum to 1 and are by default set to 0.57 for scien-
ti�c names, to 0.29 for authorities and to 0.14 for years distances. These
values were chosen on the basis of heuristic evaluations on our test sets,
but they can be modi�ed by a developer when integrating the matcher in
the BiOnym work�ow;

• Soundex: adopts the same weighted combination as the Levenshtein matcher,
but uses the relative Levenshtein distances of the soundex transcriptions
(Odell, 1956) of the scienti�c names and of the authorities. The default
weights are the same as the ones of the Levenshtein matcher.

• Trigram: calculates the relative size of the intersection between the tri-
grams (Owolabi and McGregor, 1988) of the scienti�c names and of the
authorities separately. For the years, the relative Levenshtein distance is
used. Weights are used to combine the scores and the default ones are the
same as the ones of the Levenshtein matcher.

• Levenshtein + Soundex + Trigram: this matcher combines the scores
from each matcher for scienti�c names, authorities and years distances
separately. The combination is a weighted average of the scores. The
weights are uniform by default, but can be modi�ed by a developer when
integrating the matcher in the BiOnym work�ow.

Taxonomic names oriented:

• GSAy: the �Genus - Species - Authority - year� matcher di�ers from the
matchers described above, in the sense that it is speci�c for taxonomic
names. The di�erent words constituting the user's scienti�c name are
compared one by one with the words of the reference name. Matching is
�rst performed on the original words; afterwards comparisons are done on
words which have been �stemmed� (i.e. without su�x) and cleaned of non
in�uential characters. Di�erent weights can be assigned to the matching of
di�erent words: e.g., a di�erence in the year of description can contribute
less to the �nal distance score, than a di�erence in the genus or species
name. The default con�guration assigns equal weights to all the words.

• Taxamatch: the matcher developed by Rees (2008b) and cited in Section
2.

Both Taxamatch and GSAy were originally developed outside BiOnym, and
ported to Java to make them available for BiOnym. These matchers are speci�c
for matching of strings that are representations of taxonomic names. Both
incorporate knowledge of taxonomic literature. This sets them apart from the
four purely lexical matchers described above.

3.3. The Matching Process

BiOnym implements a chained process in which several matchers are called
in sequence. The �rst step is always the application of a complete scienti�c name
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parser. As explained in the previous sections, the aim of this step is to split the
input string into a species scienti�c name, followed by an authorship indication.
Furthermore, the scienti�c name is possibly divided into genus, subgenus and
species name indications. This step should help the next sequence of matchers
in recognizing the correct transcription for the input. One justi�cation for the
usage of a processes chain instead of a single matching step is also that the
dependency on the input parser must be �exible. A strong dependency on the
parser's output would in fact limit the performance of a matcher. Some of the
matchers in the chain can be more in�uenced by an error in the parsing step
(e.g. the Taxamatch matcher), while other ones can be more tolerant (e.g. the
Levenshtein matcher). This �exible behaviour by the chain is more evident
when analysing the performance on species names that contain errors that are
uniformly distributed along the string.

Figure 2 depicts one possible matching chain, which starts with the appli-
cation of the REGEXP parser and then applies a chain of matchers. In the
sequence, highest priority is given to the entries that are recognized by those
matchers who come �rst. Each matcher produces a list of possible transcrip-
tions for the parsed input string. On the other hand, if a transcription has been
recognized by a matcher at a previous step, with whatever score, it will not be
overwritten. The transcription, along with the score, remains the one recog-
nized by the previous matcher, even if the score given by the later matcher is
higher. In other words, the matchers which come later will �trust� the previous
ones. Two transcriptions are assumed to be equivalent if they present the same
complete scienti�c name, the same author and year indications and the same
identi�cation code according to the reference dataset. This is equivalent to pass,
at each step, only those names that have not been recognized by the previous
matcher. An alternative approach would have been to collect the scores from
the matchers and merge them in the end. Implementing this solution requires
combining heterogeneous matchers, this would introduce subjectivity when com-
paring scores from di�erent matchers, scores that are incommensurable and so
not simply comparable. Moreover, none of the (subjective) approaches we tried
resulted in a better �nal result than the hierarchical approach.

Thus, the matching chain we propose adopts an enrichment approach for the
list of matching names. Every matcher is allowed to produce a list of spelling
variations which enriches the previous one, without overwriting the list of vari-
ations already found. A possible drawback of such an approach is that, if a
previous matcher recognizes the correct reference entry with a low score, none
of the other matchers will raise this score, thus the correct answer will not be
at the top of the list. This phenomenon has the e�ect to increase the recall of
the system, but to lower the precision at the same time. In order to alleviate
this problem, it is wise to put less e�ective but highly precise matchers at the
�rst positions in the chain.

The matching chain allows any combination of matchers during the con�gu-
ration phase. Figure 3 depicts the web user interface we implemented, allowing
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users to con�gure the complete chain7. At the start, the user can chose to ac-
tivate or to disable pre-parse processing. The drop down menu allows choosing
the reference dataset against which the process applies the matchers. Then (s)he
can choose the sequence of matchers, the maximum length of the list produced
by each matcher and the recognition threshold for each matcher score, under
which the match will be not reported. At the end of the process, the system
returns a table with the list of possible matches for the input string. This list
can contain a maximum number of entries corresponding to the sum of the list
lengths allowed for the matchers. This is the theoretical case of a sequence of
matchers that were absolutely complementary. An example of output of on the
entry �Gadus morrhua (Linnaeus, 1758)� is reported in Table 2. The score is
given in decreasing order and the correct transcription is reported having the
scienti�c name separated from the authority. Furthermore, the identi�cation
code of the matching name in the reference source is reported for each entry.

The BiOnym matching process is optimized when the �rst matchers in the
chain are those which incorporate expert knowledge. Thus, the matches pro-
vided by these should have higher priority in the chain than purely lexicographic
matchers. We will show in Section 5 that such approach generates a matching
chain that commits complementary errors with respect to the single matchers.
Based on the performance evaluation and on the complementarity of the errors
by the matchers, we set up a default matching chain for those biologists that
are more interested into biodiversity studies. We supposed these scholars could
be more interested in (i) having di�erent performance with respect to a pure
lexicographic approach, and (ii) producing output that involved expert knowl-
edge embedded in the matchers. On the other hand, they would accept to have
a wider spectrum of proposals with valid alternatives. This implies to sacri�ce
the precision of the system with the advantage to have a wider choice of possi-
ble complementary alternatives (higher recall). This approach does not �t the
requirements of �shery managers, who are usually more interested in having
precise results in short time. This happens because they usually manage large
quantities of data to be checked.

As biodiversity-oriented matching chain, we propose just the process de-
picted in Figure 2, in which the GSAy matcher and Taxamatch appear at the
�rst places because they are based on expert knowledge, thus supposed to be
more strict in recognizing but also more precise. As application for �shery man-
agers, we would suggest a short and fast matching chain that applies a REGEXP
parsing step, followed by one Levenshtein matcher. In Section 5 we will justify
such choice based on the performance reports.

3.4. Post processing

Once the matching process is terminated, results have to be processed; what
exactly this post-processing entails is dependent on the particular use case. In

7Available, after authentication, at https://i-marine.d4science.org/group/bionym/bionym-
app
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many cases, where the end-user is trying to clean up an input list of names by
comparing it to a reference list, the post-processing might consist of presenting
a list of alternative names from the reference list for each of the names of the
input list. Another possible post-processing step might be to follow synonym
links in the TAF, to replace a (possibly originally misspelled) synonymous name
with the currently valid name.

BiOnym o�ers opportunities to customise the settings of the matching pro-
cess, so that end-users can look for the best settings corresponding to their
matching needs. This �exibility causes the need for a system to evaluate per-
formance of alternative settings. While developing BiOnym we built a system
to evaluate alternatives using trigraphs and AUC curves; the precise metrics
we used in this evaluation are the ones presented in Section 5. The evaluation
system was built with the R programming language and is described in detail in
Vanden Berghe et al. (2014). The R code is available from a public SVN code
repository8.

4. Data

In this section we describe the format of the reference datasets used by our
process and the test datasets we prepared to evaluate the process.

4.1. Reference Files: the Taxonomic Authority Files

BiOnym o�ers the user a choice of several Taxonomic Authority Files (TAFs),
including the option to provide his/her own list. When using the instance on
the iMarine e-Infrastructure, internationally recognized references are dynami-
cally linked to the e-Infrastructure resources; this avoids issues with intellectual
property rights, and eliminates the inconvenience of keeping the TAFs up to
date on the iMarine infrastructure. The following lists were available in the
e-Infrastructure at the time of writing: Catalogue of Life, FishBase, World Reg-
ister of Marine Species, Interim Register of Marine and Non-marine Genera,
National Center for Biotechnology Information, and the Integrated Taxonomic
Information System.

We used taxonomic tables containing lists from the Ocean Biogeographic
Information System (OBIS) contributors (Berghe et al., 2010) as authority �les
to test our process. This was done for practical reasons, and in no way implies
that BiOnym would want to promote these working tables as real taxonomic
reference �les. Next section explains our rationale to select these tables as TAFs
and as test sets. In much of our testing, we used FishBase as the authority
�le. As of May 2014, it contains about 87,000 names of which about 9,200
are misspellings that may substantially decrease the number of false positive.
It contains information on names (type of synonymy, misspelling, etc.) that
may help to re�ne the post-processing step, including links to Catalog of Fishes
(Reis, 2000) for on-the-�y checking of latest validity assessment.

8https://svn.d4science.research-infrastructures.eu/
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The Taxonomic Authority Files (TAFs) to provide to BiOnym should follow
a format based on the Darwin Core Archive (DwCA) speci�cations (Wieczorek
et al., 2012). This TAF Format includes results of several calculations, such
as stemming, to speed up string matching processes. The TAF �les can also
store standard taxonomic classi�cation or to vernacular names. When taxa
and vernacular names come from the same sources, they are linked with cross
reference identi�ers.

The stored TAFs can be accessed by the BiOnym work�ow via multiple pro-
tocols including HTTP(S), FTP(S) or Java classpath. Data from the TAFs are
streamed upon request, thus they are not kept in memory for the full duration of
the matching process. This ensures that BiOnym will have a memory footprint
suited to the processing machine.

TAFs are stored as compressed CSV �les. The structure of TAFs includes all
the taxonomic ranks (from kingdom to infraspecies), and taxonomic authority,
for each entry. The entry has a unique ID, which is possibly the one reported
by the original data source provider (e.g. WoRMS:300760). Furthermore, for
each entry, a TAF reports the following pre-computed information:

1. a simpli�ed version of the atom. E.g. the entry is reported in ASCII,
uppercase with non-letter characters removed;

2. the full sequence of trigrams (Owolabi and McGregor, 1988);

3. the soundex transcription, also for the entire scienti�c name;

4. the stemmed version, with double letters replaced by single ones and Latin
su�xes removed. The stemming phase applies to genus and species atoms
only.

As example, we report the TAF line for Latimeria chalumnæ:

1. Simpli�ed version: LATIMERIA CHALUMNAE. Here, also the original
æis transformed into AE;

2. Trigrams: LA LAT ATI TIM IME MER ERI RIA IA CH CHA HAL ALU
LUM UMN MNA NAE AE;

3. Soundex: L356 (for �LATIMERIA�), C450 (for �CHALUMNAE�), L356245
(for �LATIMERIA CHALUMNAE�)

Stemming genus and species is accomplished by removing double letters and
common su�xes from the original, simpli�ed strings. Thus, the stemmed ver-
sions of Gadus (genus) and mediterraneus (species) would be GAD for the genus
and MEDITERANE for the species name, where the double R was removed too.
The same set of pre-computed values, without the stemming step, is produced
also in vernacular names TAFs.

As the process of stemming genus and species is potentially relevant for
multiple distinct matchers, it is accomplished at TAF generation level rather
than at runtime. Furthermore, the double-letter removal at stem level �attens
the di�erences that can be encountered within di�erent spellings of the same
scienti�c name, both for input and for reference data. Still, also when not
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using stemmed genus and species, double letters could be removed during the
preprocessing phase but this will have an impact on input data only.

BiOnym includes a standalone command line tool that can produce TAF
�les out of any valid DwCA �le. Currently, TAF �les are not shipped with
the BiOnym software distribution. Some of them are available in the iMarine
e-Infrastructure after the original data providers have established access and
citation policies. Alternatively, users can produce their own TAF �les directly,
assuming they have access to the DwCAs of interest; this also facilitates build-
ing TAFs with the right taxonomic scope, which is important in avoiding false
positives.

4.2. Test Data

In order to check the performance of BiOnym, we needed test input lists
of names, for which the correct spelling was known. For this, we used a dou-
ble approach. Part of our testing was done on the basis of OBIS data, using
OBIS quality-controlled names as TAF, and the names as submitted by OBIS
providers as test names. In what follows the latter are referred to as �real
misspellings�. In a second approach we introduced character substitutions in
a list of known-good names. We will refer to these misspellings as �simulated
misspellings�.

To generate input lists of real misspellings, we took samples of names from
the Ocean Biogeographic Information System database. Taxonomic names, as
found in the submissions of contributors of OBIS biogeographic information,
have been curated, and manually merged into the table with taxonomic names
already present in OBIS. We refer to these as �harmonised names�. The �rst goal
of this process is to harmonise the spelling, and create a consistent list of names.
The consequence, as regards BiOnym, was that we had many name strings, as
they circulated �in the wild�, that were manually matched with a reference
list with consistent, harmonised spelling. This allowed us to set up experiments
where the �correct spelling� was known, and so to discriminate between true and
false positives. In the 2011 version of the OBIS data we used, there were 424,500
di�erent name string records, corresponding to 202,726 harmonised names.

We took complete scienti�c names, verbatim as coming from OBIS data
contributors, and selected those that were di�erent from the correct name string.
There are several reasons why name strings would be di�erent from the standard
form. Apart from straightforward typos and other spelling variations, often the
name �eld included information that was supposed to be in other �elds, such
as information on gender, life stage or reliability of the identi�cation of the
specimen. We knew the correct version of the name, as this was determined in
the process of curating the OBIS data. We were also able to restrict these real
misspellings to names of Pisces, through OBIS' link with the taxonomy. We
used 32 sets containing 1024 taxa names with associated authorship to evaluate
the performance of our system, both against WoRMS and against FishBase (on
which the �sh part of WoRMS is based). We also sent the same names to the
Taxamatch process hosted by WoRMS.
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For the lists of simulated misspellings, we produced arti�cial misspelling
errors by implementing a procedure, in the R programming language, that in-
troduced lexical errors in the scienti�c names. It produced random alterations
of string characters at random positions; R code is open source and publicly
available9. In other words, it simulates random noise in the string transcrip-
tion. The noise is introduced at places they are likely to occur, e.g. in the
declension. As for the real misspellings, we generated 32 sets of 1024 misspelled
names.

Examples of real misspellings are Abudefduf sp, Abudefduf dicki (instead of
Abudefduf dickii). Examples of simulated misspellings are Abramis micuopteryx
Dalenciennes, 1845 (instead of Abramis micropteryx Valenciennes, 1844), Aeto-
mylaeus hulepti Smitm, 1961 (instead of Aetomylaeus huletti Smith, 1953). For
both real and simulated misspellings, the �les used in the analysis are publicly
available10.

5. Results

In this section, we report the performance of our system at several levels.
We compare the e�ectiveness of two parsing procedures, one of which is a state-
of-the-art expert system for scienti�c names used both by the WoRMS (Costello
et al., 2013) and the IRMNG (Rees, 2008a) data providers. On the other hand,
we report the performance of each matcher involved in the work�ow we con�g-
ured for biodiversity scholars (see Figure 2). Finally, we investigate the degree
of complementarity of simple work�ows with respect to a complete work�ow
and the e�ciency of the process.

5.1. Evaluation Metrics

In order to evaluate the parsers in terms of accuracy and processing speed,
we used the test datasets described in Section 4.2. Accuracy is measured as the
fraction of correctly parsed names with respect to the total number of names
provided to the system. Human expert opinion was used to verify the cases
of disagreement between the two parsers (GNI and REGEXP). Evaluation was
made both on the e�ort for distinguishing genus from species names and for
separating author names from years.

We used the test datasets described in Section 4.2 also for evaluating the
complete work�ow. On these benchmarks, we measured standard quantities
used in the evaluation of Information Retrieval systems (Harman, 2011; Wikipedia,
2015). In particular, we averaged the following quantities on the 32 sets for each
type of input:

9At this link, provided by a CNR high-availability distributed storage system
http://goo.gl/WoPJOH

10At this link, provided by a CNR high-availability distributed storage system
http://goo.gl/5Fcwu0

16



RecognitionPercentage =
TruePositives

Total Number of Input SpeciesNames

Precision =
TruePositives

TruePositives+ FalsePositives

Recall =
TruePositives

TruePositives+ FalseNegatives

Fmeasure = 2 ∗ Precision ∗Recall

Precision+Recall

We report such quantities in the evaluation tables, to assess the di�erences in
the quality of the systems. Finally, we evaluated the e�ciency of our system,
at the level of the overall computation time of the entire work�ow as well as of
the matchers. We show the bene�ts coming from the usage of Cloud computing
and the pros and cons of using smart search strategies for lexical similarities.

5.2. Parsing

In order to evaluate the di�erences in the accuracy of two parsers currently
available in BiOnym (GNI and REGEXP), we tested their behaviour on a set
of 1023 real misspelled names. We focused on the discrepancies between results
produced by each parser. Whenever the two parsers identi�ed di�erent atoms
for a given input data, we let a human expert decide which of the two parsers
had returned the correct result. A comparison is reported in Table 3-a, where
the parsers were asked to distinguish between genus and species only. The
agreement between the GNI and REGEXP parsers was 90.32%.

To better investigate disagreement cases, we used human experts' evaluation
on the 99 di�erently parsed results. The result is reported in Table 3-b: 53.53%
of the results from REGEXP were correct, while GNI correctly parsed only the
5.05% of the entries. Additionally, 55.55% of the GNI results were con�rmed
to be wrong (9.09% for REGEXP) and both the parsers produced a number of
uncertain results ranging from 37.37% (REGEXP) to 39.39% (GNI).

A comparison on the parsing of authorities and authority years is reported
in Table 3-c. Also in this case the 76 disagreement cases were evaluated by a
human expert (Table 3-d). The GNI and REGEXP parsers produced parsed au-
thorities and years that were identical in 92.57% of the cases. For the remaining
7.43%, the REGEXP produced 93.42% of correct results while GNI only 2.63%.
Additionally, 96.05% of the GNI results for di�erently parsed entries where con-
�rmed as wrong (3.94% in the case of REGEXP) and both parsers produced a
number of uncertain results ranging from 1.31% (GNI) to 2.63% (REGEXP).

Table 4 gives a qualitative comparison of the parsers used by BiOnym. We
associated a quality indication to three aspects we consider crucial in these
systems. In terms of computational e�ciency, the GNI parser took almost 65
seconds to parse scienti�c names and authorities for 1023 entries. The scienti�c
names were submitted in batches of 100 entries per request, which resulted in
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63.13 ms per entry. On the other hand, the REGEXP parser took 219 ms (0.21
ms per entry), with the 1023 entries submitted as a single batch. Thus, REG-
EXP resulted to be about 295 times faster than GNI. Times were measured on
an i5-3470 CPU @ 3.20 GHz with 8.00 GB of RAM, running Windows 7 and
with a broadband Internet connection measured as A+ both on National and
Global Grades via Ookla Speedtest11. From the point of view of parsing �re-
silience� to noise, GNI has the disadvantage to be strictly related to the expert
rules it embeds. Thus, it is more sensitive to noise with respect to the REGEXP
parser, which is based on algorithms commonly used for syntax correction and
on general parsing rules. For what regards accuracy, interpreted as the correct
parsing rate of non-noisy data, GNI is better than REGEXP, because it can
parse also taxonomic names over the genus rank. Furthermore, the GNI expert
rules are speci�cally designed to manage taxonomic names notations. The in-
put data we used for this experiment are publicly available12. Also GNI and
REGEXP parsed results for these same inputs are publicly provided13.

We experienced that the quality of the input parsers depends on the appli-
cation context. Our impression is that the GNI Parser is more suited to parse
raw input data that are complex and well structured, correct capitalization for
both scienti�c names and authorships. On the other hand, the REGEXP parser
is more robust, possibly better suited when short parsing time is required. Usu-
ally, this is the case when a large amount of input data must be parsed and the
quality of the input names is relatively low. Indeed, we noticed that sub-optimal
results can be tolerated when dealing with extremely noisy input data.

5.3. Matchers

Table 5-a reports the performance of several simple work�ows made up of
one REGEXP parser step, followed by only one matcher. The performance
is reported on the �real misspelling� names recognition. From Table 5-a it is
notable that the recognition percentage decreases when the maximum number
of suggested transcriptions increases. In the same way, the F measure increases
for almost all the matchers when the output list is shorter. This increment in
the F measure is due to the increase of the Precision and to the fact that the
Recall remains high even if the output list is shorter. The best matcher on real
names is the Trigram-based work�ow. Nevertheless, the GSAy-based is the one
losing the least amount of recognition percentage when the number of outputs
changes.

Table 5-b reports the performance of the simple work�ows on the simulated
misspellings. With high degree of noise Levenshtein performs much better than
the others. More rigid matchers, like GSAy and Taxamatch, gain lower per-
formance. The Trigram-based work�ow su�ers from the fact that errors are

11Interface available at http://www.speedtest.net
12At this link, provided by a CNR high-availability distributed storage system

http://goo.gl/dlXaC0
13At this link, provided by a CNR high-availability distributed storage system

http://goo.gl/0l1NV4 and http://goo.gl/anqxw5
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uniformly distributed along the string, thus all the trigrams are likely to con-
tain errors. The good performance of Levenshtein distance stems from the fact
that the calculated distance is not in�uenced by the position of the discrepancies
between the two strings.

5.4. Work�ow

In order to assess the quality of BiOnym, we compared the performance of
several con�gurations of the work�ow. In particular, as benchmark system we
used a work�ow that invoked either the REGEXP or the GNI parser, followed
by:

1. The GSAy matcher, with recognition threshold equal to 0.6 and 10 maxi-
mum allowed transcriptions;

2. The Taxamatch algorithm, with recognition threshold equal to 0.6 and 10
maximum allowed transcriptions;

3. The Levenshtein matcher, with recognition threshold equal to 0.4 and 10
maximum allowed transcriptions;

4. The Trigram matcher, with recognition threshold equal to 0.4 and 10
maximum allowed transcriptions;

We chose this work�ow on a heuristic basis. Tests aimed at building a se-
quence that exploited complementary information as far as possible. For such
reason, we did not add the Soundex-based matchers, because these use a lexi-
cographic approach that was very similar to the Levenshtein one.

We compared the BiOnym work�ows with the Taxamatch-based system pro-
vided via Web Service by the WoRMS data provider. This system applies a
parsing step, based on the GNI parser, followed by a set of expert rules and
lexicographic distances. The comparison we report is consistent, because we
used the datasets described in Section 4.2, which rely on the Pisces Class of
WoRMS.

Tables 6-a and 6-b report the result of such comparison on real and simu-
lated misspellings respectively. The BiOnym work�ow uses the GNI parser and
the REGEXP parsers alternatively. We report the performance as a function of
the variation of the maximum number of allowed matches in the �nal output.
Furthermore, in the tables we report the performance of the simple Levenshtein-
based work�ow used in the previous section. We chose this system because of its
high performance, and because it is more stable when passing from real to arti-
�cial inputs. The recognition percentage of BiOnym decreases when the output
length decreases. On the other hand, the F measure increases with decreasing
the output length, which suggests that this con�guration of the work�ow would
make BiOnym perform well when used as an information retrieval system.

The tables highlight that the WoRMS taxa matching algorithm performs
very well on real misspellings, while it lacks of robustness on simulated mis-
spellings. On the other hand, BiOnym gains higher recognition performance
when the output length is 10, but it is worse than the Taxamatch-based system
if viewed as an information retrieval system, because the F measure is lower.
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The Levenshtein-based work�ow gains higher recognition performance than the
complete BiOnym and is comparable to the Taxamatch-based system in terms
of F measure, when the output list length is �xed to 1. Even if the recognition
percentage of BiOnym is generally lower than the Levenshtein-based work�ow,
its usage is justi�ed by the complementary errors it is able to detect. Detect-
ing such errors, in fact, is very important in biodiversity-oriented applications,
despite some loss in performance.

5.5. Complementarity Analysis

Table 7 reports the percentages of complementary errors committed by the
work�ows. In particular, it reports the percentage of species recognized by the
work�ows on the left side of the table with respect to those at the upper side
of the table. The work�ows with the highest performance gain highest comple-
mentarity percentages. We report the comparison both on real misspellings and
on simulated misspellings, in order to highlight the behaviours in completely
di�erent scenarios. The highest percentages are always recorded with respect
to the GSAy matcher, which only uses expert rules. With the term �BiOnym
work�ow�, we mean the one used in the evaluation of the previous section, made
up of a sequence of matchers beginning with GSAy and ending with the Trigram
matcher. Furthermore, for this experiment we allowed up to ten names in the
output list and used the REGEXP parser. Although this work�ow gains lower
performance with respect to the Trigram and Levenshtein-based work�ows, it
still recognizes complementary species names. These cases can be very inter-
esting from the point of view of a biodiversity researcher, but they could be a
hindrance to those operators who must correct a huge amount of taxa names.
Examples of complementary species names highlight the di�erences in the be-
haviour of the matchers: the Trigram-based work�ow is able to recognize �Gobio
gobio saramaticus Berg, 1949� as the correct name for the input �Gobio gobio

saramatwcxs Berg, 1949�, while the Levenshtein-based is not able to recognize
it. This happens because the errors in the string are concentrated only in one of
the trigrams and the string is quite long. Thus, the Levenshtein-based work�ow
is more in�uenced by the length of the string, while Trigram-based work�ow
only cares about how many trigrams the reference and the input strings have
in common. This is the main reason why the Trigram-based work�ow gains the
highest performance on the real misspellings.

Another example is the input �Arvoglhssus thoro Kyle, 1913�, which GSAy
correctly recognizes as �Arnoglossus thori Kyle, 1913�, and that Taxamatch can-
not recognize. This is due to the concentration of one of the errors in the declen-
sion of �thori�, which is ignored by GSAy but taken into account by Taxamatch.
GSAy compares only the stems of the words, thus it �nds a correspondence
between the species names and the authorships and gives a non-zero score. On
the other hand, Taxamatch detects mismatches between the genus names and
between the species names, thus it discards it as a match.
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5.6. E�ciency

A comparison between the e�ciency of the parsers has already been reported
in Section 5.2, where we highlighted that using the GNI parser may enhance
accuracy in some contexts at the expense of e�ciency. For what regards the
work�ows, we compared e�ciency as the total execution time when invoked by
a remote thin client. On one side, we setup a web client that interrogated the
BiOnym work�ow instance residing on an iMarine Web Server (Candela et al.,
2013). The BiOnym work�ow used in this comparison is the default one de-
scribed in Section 3.3 and used in Section 5.4. Another web client invoked a
remote WoRMS Web Service hosting the Taxamatch algorithm we have taken
as reference so far. For this comparison, we used WoRMS as TAF. In the evalua-
tion, we calculated the average time required to produce results for 1024 species
names containing real misspellings. The WoRMS service could be invoked for
50 species at time, while BiOnym could be invoked on the 1024 species directly.
In the process, BiOnym applied four matchers sequentially, while the WoRMS
Taxamatch was an all-in-one procedure. The iMarine e-Infrastructure service
hosting BiOnym was able to parallelize the execution on 21 machines running
CentOS 5.7 x86 64 operating systems, with 2 CPUs, 2 GB of RAM and 10 GB
of disk space. Each machine received a set of 50 species at time to be processed
using BiOnym.

In the end, the average recorded time was 7.3 minutes for BiOnym and
19.6 minutes for Taxamatch. A sequential run of BiOnym would have required
much more time but the bene�ts of the parallelisation emerge. The shorter
execution time for BiOnym justi�es the usage of Cloud computing. This allows
building long chains of matchers and exploiting the complementary behaviour
of the matchers, which also results in higher accuracy.

6. Discussion

In the introduction to this paper, we have stressed the importance of names
as identi�ers, facilitating the integration of information from di�erent sources.
Obviously, in order to play this role, these names have to be kept as �clean� as
possible to recover data, information and knowledge about species (or taxa in
general), and to be able to �nd natural resource management recommendations
and regulations for local (e.g., protected area) and/or global levels (international
conventions on biodiversity: CBD, CITES, RAMSAR, etc.).

Generic search engines like Google are already doing a great job with lexical
tools. But they fail to �nd the spelling variants stored in online systems such as
WoRMS. Dedicated tools like those implemented using Taxamatch (WoRMS,
PESI, GNA/GNI, CoL, etc.) and BiOnym are much more e�cient in their -
much narrower - application domain. There are certainly synergies to be looked
for and developed to further implement the semantic web.

Beside databases, names are also conveyed through articles in scienti�c jour-
nals, faunas and �oras, �eld guides, etc. We may regret that scienti�c journal
editors in general did not integrate in their reviews the correction of scienti�c
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names. It is clear that 30 years ago, informatics tools were not developed or
made available as they are today. Although some progress was made (e.g., Pen-
Soft Publ.), journals that do not deal with biodiversity directly but rather do
(molecular) biology in general are still ignoring that important aspect up to
the point that scienti�c names are not used at all. This is notable from several
journal guidelines that indicate heterogeneous usages of scienti�c names (e.g.,
Biological Abstracts (2015); Bragantia (2015); Journal of Nematology (2015)),
that sometimes even suggest using common names instead of scienti�c names.
Tools such as Taxamatch and BiOnym will be able to assist authors and editors
by o�ering facilities to harmonise spelling of taxonomic names, and to prevent
misspelled names from polluting the literature.

In addition, these tools could also be used for searching the literature by
generating possible (reasonable) spelling variants to be matched, with the pur-
pose of query expansion. It can be done automatically like in the case of the
letter simpli�cation in the fuzzy matcher (Taxamatch), or by customising expert
rules: e.g., if the user searches for �longirostris�, then search also for �longinasus�,
�longirhynchus� and all the possible variations of �rhynchus�.

In this paper, we have demonstrated that BiOnym compares favourably with
other systems, both in terms of e�ciency (time needed to perform a comparison)
and e�ectiveness (quality of the results of the comparison). This does not come
as a surprise, since during the development of BiOnym, the achievements of
the others were taken into consideration. The philosophy of BiOnym's develop-
ment was to make it possible to incorporate e�orts by others, managing related
acknowledgment. BiOnym is meant to be an open framework for continuous
development, not a monolithic, static, software tool. BiOnym is open for any
scientist, and anyone can contribute with matchers or parsers, or can explore
existing ones. This allows quantitatively comparing the performance of di�erent
matchers and their settings. Most importantly, using the BiOnym instance on
iMarine allows researchers to concentrate on taxonomic name matching rather
than on developing data access or processing facilities. Currently, BiOnym is
being used by more than 20,000 users per month via the iMarine e-Infrastructure
and we foresee that this number is going to increase.
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Spelling variations
Asthenognathas inaefaipes
Asthenognathus inaeqipes
Asthenognathus maefaipes
Astheognathus inaequipes
Asthenognathus inaeguipes
Astheognathus inaeqinipes
Asthenognathus inaequipes

Table 1: Variations on a theme: spelling variations for Asthenognathus inaequipes, a crab
species from the Varunidae family. All spelling variations were taken from data contributions
to OBIS (Berghe et al., 2010). Here, only variations in the name proper are shown; the number
of di�erent spellings of the taxonomic authority is often much higher.
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Scienti�c Name
as in TAF

Authority
as in TAF

Matching
Score

ID

Gadus
morhua

Linnaeus, 1758 0.91 FISHBASE:69

Gadus
macrocephalus

Tilesius, 1810 0.66 FISHBASE:308

Galeus
murinus

(Collett, 1904) 0.62 FISHBASE:808

Gadella
maraldi

(Risso, 1810) 0.60 FISHBASE:2011

Gadus
ogac

Richardson, 1836 0.60 FISHBASE:309

Garra
mirofrontis

Chu & Cui, 1987 0.58 FISHBASE:60455

Garra
mamshuqa

Krupp, 1983 0.57 FISHBASE:27887

Garra
mullya

(Sykes, 1839) 0.56 FISHBASE:24477

Lates
mariae

Steindachner, 1909 0.56 FISHBASE:9898

Gadella
macrura

Sazonov &
Shcherbachev,

2000
0.55 FISHBASE:60872

Table 2: Output of the default BiOnym matching chain on the input string Gadus morrhua
(Linnaeus, 1758) where the speci�c epithet morrhua with double �r� is a misspelling and the
presences of brackets around the authority is a mistake.
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a. Comparison of parsing times
GNI parsing time (ms) 64582
REGEXP parsing time (ms) 219
Number of Inputs 1023
Identically parsed 924
Di�erently parsed 99

b. Evaluation of parsing
results by human expert

GNI REGEXP
Correct results 5 53
Wrong results 55 9
Uncertain results 39 37

c. Agreement between the parsers
Number of Inputs 1023
Identically parsed 947
Di�erently parsed 76

d. Evaluation of the parsing
disagreement entries by human expert

GNI REGEXP
Correct results 2 71
Wrong results 73 3
Uncertain results 1 2

Table 3: a. Parsing times and scienti�c names parsing equivalence for GNI and REGEXP.
b. Evaluation by human expert of scienti�c names parsing by GNI and REGEXP, on 99
disagreement entries. c. Summary of the agreement between GNI and REGEXP on authorities
and authority years parsing. d. Evaluation by human expert of authorities and authority years
parsing by GNI and REGEXP on 76 disagreement entries.
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Parsing
Speed

Parsing
Resilience

Accuracy

GNI

POOR
Being invoked

as a remote process,
it requires additional
overhead for both
serialization and
deserialization of

inputs and outputs,
besides the actual
time required
by the parsing

GOOD
The parser

is quite sensitive
to noise and

capitalization issues
and thus might

produce sub-optimal
results in

circumstances
where author names

(for instance)
are provided
in lowercase

EXCELLENT
Potentially it
can return all
the taxonomic
atoms from
kingdom to
infra-speci�c
epithets,
including
authority
references

and co-autorship.

REGEXP

EXCELLENT
Being executed
locally, on the
same machine
hosting the

parser wrapper,
it doesn't
require any
serialization

and
deserialization
overhead.
Also, the

parsing itself
is fast by

design at the
expense of
accuracy.

GOOD
Can identify

taxonomic atoms
out of most
of the more

common pattern.
It is robust
to noise in

the input data.

GOOD
As it is designed
mostly to be fast
and resilient,
it focuses on

identifying only
genus, species
and authority
information.

Other taxonomic
atoms are either

discarded
or misinterpreted.

Table 4: Comparison between the behaviour of two species scienti�c names parsers. We
associated a quality evaluation to three aspects we �nd crucial for such systems.
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Perc. of Complementary Recognitions on Real Misspellings
using 10 outs and REGEXP parser
(rows with respect to columns)

GSAy Taxam. Levensht. Trigram BiOn.WF
GSAy 1.70 0.00 0.00 0.00
Taxam. 55.31 1.35 0.21 0.098
Levensht. 75.20 22.93 0.18 10.43
Trigram 77.73 24.34 2.71 10.88
BiOnymWF 67.25 13.73 2.48 0.39

Perc. of Complementary Recognitions on Simulated Misspellings
using 10 outs and REGEXP parser
(rows with respect to columns)

GSAy Taxam. Levensht. Trigram BiOn.WF
GSAy 0.02 0.00 0.14 0.00
Taxam. 68.91 0.27 30.53 0.18
Levensht. 94.16 25.55 46.29 2.99
Trigram 48.05 0.04 9.55 1.46
BiOnymWF 91.42 22.71 0.25 44.98

Table 7: Percentages of complementary errors committed by one work�ow with respect to
another. The table reports the percentage of species names recognized by the work�ow on the
left side with respect to the work�ow on the top side.
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match ( I , R) := func t i on ( I , R) {
for each i in I {
for each r in R {

sco r e ( i , r ) := matcher . match ( i , r ) ;
i f ( s c o r e ( i , r ) >= matcher .RECOGNITION_THRESHOLD)

r e s u l t s ( i ) := r e s u l t s ( i ) U { r , s c o r e ( i , r ) } ;
}

}

for each r e s u l t in r e s u l t s {
i f ( r e s u l t . s i z e ( ) > matcher .MAX_TRANSCRIPTIONS_PER_INPUT) {
r e s u l t := r e s u l t . sortByScoreDescending ( ) ;
r e s u l t := r e s u l t . subset (0 , matcher .MAX_TRANSCRIPTIONS_PER_INPUT − 1 ) ;

}
}

return r e s u l t s ;
}

Figure 1: General algorithm of one matching step, in pseudocode. The di�erences among the
BiOnym matchers are in the way the similarity score is calculated.
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Figure 2: Representation of the work of a BiOnym Work�ow, based on the FishBase TAF.
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Figure 3: The BiOnym work�ow web interface allows users to con�gure and run the matching
chain on the complete scienti�c name of a species.
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