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Abstract

We investigate the suitability of statistical model checking techniques for the analysis of probabilistic
models of software product lines with complex quantitative constraints and advanced feature installation
options. Such SPL models are defined in the probabilistic feature-oriented language QFLan. QFLan is a
rich process algebra whose operational behaviour interacts with a store of constraints and as such it allows
to separate product configuration from product behaviour. The resulting probabilistic configurations and
behaviour converge seamlessly in a semantics based on discrete-time Markov chains, thus enabling quan-
titative analysis. To this aim, we combine a Maude implementation of QFLan, integrated with Microsoft’s
SMT constraint solver Z3, with the distributed statistical model checker MultiVeStA. This enables analyses
that range from the likelihood of specific behaviour to the expected average cost of products, in terms of
feature attributes. We illustrate our approach by performing quantitative analyses on a bikes product line
case study.

1 Introduction

There is a lot of recent research on lifting successful high-level algebraic modelling languages and formal
verification techniques known from single (software) system engineering, such as process calculi and model
checking, to (software) product line engineering (SPLE), e.g. [2, 19, 14, 8, 24, 31, 32, 5]. The challenge
is to handle the variability inherent to SPLs, by which the number of possible products of an SPL may be
exponential in the number of features. In [7], we contributed with the feature-oriented language FLAN and
its implementation in Maude [15], allowing analyses ranging from consistency checking (by means of SAT
solving) to model checking.

In FLAN, a rich set of process-algebraic operators allows one to specify both the configuration and the
behaviour of products, while a constraint store allows one to specify all common constraints known from
feature models as well as additional action constraints typical of feature-oriented software development. The
execution of a process is constrained by the store (e.g. to avoid introducing inconsistencies), but a process can
also query the store (e.g. to resolve configuration options) or update the store (e.g. to add new features, even at
run time).

In [6], we subsequently equipped FLAN with the means to specify probabilistic models of SPLs, resulting in
PFLAN. The main distinguishing modelling feature of FLAN is the clean separation between the configuration
and run-time aspects of an SPL. PFLAN adds to this the possibility to equip each action (including those that
install a feature, possibly at run time) with a rate, which can represent uncertainty, a failure rate, randomisation,
or preferences. An executable implementation in Maude, together with the distributed statistical model checker
MultiVeStA [30], allows us to estimate the likelihood of specific configurations and behaviour of an SPL, and
thus to measure non-functional aspects such as quality of service, reliability, or performance.
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An emergent fact of our investigations is the urgent need to consider a number of further aspects in the
specification and analysis of behavioural models of SPLs, such as the staged configurations known from dy-
namic software product lines [17, 12] (e.g. removal and update of features) and quantitative constraints (e.g.
price constraints). Recent surveys on existing approaches on applying formal analysis techniques in SPLE [31]
and discussions on model checking SPL behaviour [7] reveal that there are currently no approaches dealing
with such aspects in a unifying framework. Indeed, we are aware of only a few, quite different, approaches
on probabilistic model checking of SPLs [20, 33, 18], whereas, to the best of our knowledge, [6] contains the
only other application of statistical model checking in SPLE and [16] is the only approach (in addition to ours)
to the model checking of SPL models with quantitative constraints over feature attributes. However, none of
those approaches is able to combine dynamic feature configurations, quantitative constraints and quantitative
analyses based on statistical model checking. We aim at filling this gap by extending our framework for the
formal specification and analysis of SPLs.

For this purpose, in this paper we enrich PFLAN with the possibility to uninstall and replace features at run
time and with quantitative constraint modelling options regarding the ‘cost’ of features, i.e. feature attributes
related to non-functional aspects such as price, weight, reliability, etc. In particular, the novel modelling options
we introduce are:

1. Arithmetic relations among feature attributes (e.g. the total cost of a set of features must be less than a
certain threshold);

2. Propositions relating the absence or presence of a feature to a quantitative constraint of type 1 (e.g. if a
certain feature is present, then the total cost of a set of features must be less than a certain threshold);

3. Richer action constraints involving quantitative constraints of type 1 (e.g. a certain action can be per-
formed only if the total cost of the set of features constituting the product is less than a certain threshold).

We call the new language presented in this paper QFLAN. The uninstallation and replacement of features can be
the result of malfunctioning or of the need to install a better version of the feature (e.g. a software update). We
will illustrate this in our case study, as well as the use of each of the above type of quantitative constraints over
feature attributes, by providing concrete examples. It is important to note that the above type of quantitative
constraints are significantly more complex than the ones that are commonly associated to attributed feature
models [10].

As feature attributes are typically not Boolean [16], the problem of deciding whether a product satisfies an
attributed feature model with quantitative constraints, requires more general satisfiability-checking techniques
than SAT solving. This naturally leads to the use of Satisfiability Modulo Theory (SMT) solvers like Microsoft’s
Z3 [25], which allow one to deal with richer notions of constraints like arithmetic ones. In fact, an important
contribution of this paper is the integration of SMT solving into our approach by means of a combination of
our Maude QFLAN interpreter and Z3.

Formally, our statistical model checking approach is to perform a sufficient number of probabilistic simu-
lations of an SPL model to obtain statistical evidence (with a predefined level of statistical confidence) of the
quantitative properties being verified. Such properties are formulated in MultiVeStA’s property specification
language MultiQuaTEx [30]. Statistical model checking offers unique advantages over exhaustive (probabilis-
tic) model checking. First, statistical model checking does not need to generate entire state spaces and hence
scales better without suffering from the combinatorial state-space explosion problem typical of model check-
ing. In particular in the context of SPLs, given their possibly exponential number of products, this outweighs
the main disadvantage of having to give up on obtaining exact results (100% confidence) with exact analysis
techniques like (probabilistic) model checking. Second, statistical model checking scales better with hardware
resources since the set of simulations to be carried out can be trivially parallelised and distributed. MultiVeStA,
indeed, can be run on multi-core machines, clusters or distributed computers with almost linear speedup. A
unique advantage of MultiVeStA is that it can use the same set of simulations for checking several properties at
the same time, thus offering even further reductions of computing time. Further details on (probabilistic) model
checking can be found in [3] and on statistical model checking in [23, 22].
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Figure 1: Attributed feature model of bikes product line (with shorthand names)

The paper outline is as follows. Section 2 contains a bikes product lines case study. Section 3 presents
QFLAN, followed by a QFLAN model of the case study in Section 4. MultiVeStA is introduced in Section 5,
followed by experimental quantitative analyses of the case study in Section 6. Section 7 summarises our
contributions and future work.

2 Bikes Product Line Case Study

We describe in this section a case study that has motivated the extension of our approach to the modelling and
analysis of behavioural SPL models and that we have used to validate our novel solutions. We use the case
study here as a running example to illustrate the main concepts of our approach and to provide intuitive cases
of its possibilities and limitations.

The case study stems from an ongoing collaboration with PisaMo S.p.A., an in-house public mobility
company of the Municipality of Pisa, in the context of the European project Quanticol (www.quanticol.
eu). PisaMo introduced the public bike-sharing system CicloPi in the city of Pisa two years ago. This bike-
sharing system is supplied by Bicincittà S.r.l. (www.bicincitta.com).

To create an attributed feature model of a product line of bikes, we performed requirements elicitation on
a set of documents generously shared with us by Bicincittà. This allowed us to extract the main features of the
bikes they sell as part of the bike-sharing system, including indicative prices, and to identify their commonalities
and variabilities. We then added some features that we found by reading through a number of documents on
the technical characteristics and prices of bikes and their components as currently being sold by major bike
vendors. The resulting model has thus more variability than typical in bike-sharing systems. Indeed, vendors of
such systems traditionally allow little variation to their customers (e.g. most vendors only sell bikes with a so-
called step-thru frame, a.k.a. open frame or low-step frame, typical of utility bikes instead of considering other
kind of frames as we do), in part due to the difficulties of analysing systems with high variability to provide
guarantees on the deployed products and services. We believe that the progress of SPL analysis techniques
(including the contribution of this paper) will help the adoption and hence the provision of richer (bike-sharing)
systems with higher variability.

The resulting attributed feature model is depicted in Fig. 1. Without taking the attributes into account this
feature model of 21 features gives rise to 1, 314 different products. Of course, quantitative constraints over
feature attributes can partially reduce the number of products (e.g. some bikes may be too expensive, or too
heavy) but not so much as to mitigate the inherent exponential explosion. Such constraints and feature attributes
are specified as follows. Each feature is equipped with a set of non-functional attributes, like price and weight
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Figure 2: Sketch of bike-sharing behaviour

or load , which represent the specific feature’s price in euros, weight in kilos, and computational load, respec-
tively.1 The set of all features of the product line isF = {b, l , i , e, g , u, k , f , y , r ,w , o, a, t , s, d , h,m,n, u, c}.
A product P from the product line is a non-empty subset PF ⊆ F that moreover fulfills the additional quan-
titative constraints defined over features and attributes. As we have seen in the Introduction, these can range
from rather simple constraints (e.g. price(u) ≤ 20, i.e. the price of the computational unit should be less than
20 euros) to quite more complex ones (e.g. g 6∈ PF →

∑
f∈PF

weight(f) ≤ 10, i.e. if the bike does not
have an engine then it cannot weigh more than 10 kilos). Without such constraints, deciding whether a product
satisfies a feature model reduces to Boolean satisfiability (SAT), which can efficiently be computed with SAT
solvers [4]. However, in this paper we specifically allow such quantitative constraints, which requires the use
of SMT solvers like Microsoft’s Z3 [25].

For our case study, we consider the following constraints:

(C1)
∑

f∈PFprice(f)≤600: a bike may cost at most 600 euros;

(C2)
∑

f∈PFweight(f)≤15: a bike may weigh up to 15 kilos;

(C3)
∑

f∈PF load(f) ≤ 100%: a bike’s total computational load may not exceed 100%.

Constraints (C1)–(C3) are part of the constraint store of our QFLAN model of the case study. As such, they
prohibit the execution of any action (e.g. the run-time (un)installation or replacement of features) that would
violate these constraints since its execution would result in an inconsistent constraint store. Furthermore, the
store also contains two constraints similar to (C1) as constraints on actions, which explicitly specify the precise
subset of actions that are affected by them. These constraints are used in the behavioural part of our model,
discussed below, to forbid selling bikes that cost less than 250 euros (C4) and to forbid dumping broken (and
irreparable) bikes that cost more than 400 euros (C5):

(C4) do(sell) →
∑

f∈PF
price(f) ≥ 250;

(C5) do(irreparable) →
∑

f∈PF
price(f) ≤ 400.

The behaviour associated to our bikes product line is based on a bike-sharing scenario that we abstracted
from the bike-sharing system CicloPi with some additional behaviour concerning not yet realised features such
as the use of electric bikes and the possible run-time installation of apps. A rough sketch of it is depicted in
Fig. 2.

Initially, we assume that a pre-configured bike, containing precisely one of the alternative subfeatures from
each of the core features Wheels and Frame , arrives at the initial state FACTORY (a process). In our case study,
we assume such an initial product from the bikes product line to contain the feature set {y , d}. At this point it
is important to underline that all actions that we are to describe next actually have an associated rate (omitted
in Fig. 2) in the QFLAN model of our case study (described in Section 4).

In FACTORY (e.g. of Bicincittà), further features may be installed or replaced (e.g. different wheels or a
different frame). At a certain point, the configured bike may be sold (as part of a bike-sharing system), but only
if it costs at least 250 euro (to satisfy constraint (C4) on action sell ), after which it arrives in the DEPOT (e.g. of

1We assume b, l , e , u , f , and t to have the sum of the attributes of their respective subfeatures as attribute values.
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PisaMo). It may then be ready to be deployed as part of the bike-sharing system run from this depot, or it may
first need to be further fine-tuned by (un)installing or replacing factory-installed features. Once it is deployed,
it actually results PARKED in one of the docking stations of the bike-sharing system (e.g. CicloPi).

A user may book a PARKED bike, resulting in a MOVING bike. While biking, a user may decide to listen to
music or switch on the light, in case the corresponding features have been installed. If a user wants to consult
one of the apps (a map, a navigator, or a guide), then (s)he first needs to stop biking, resulting in a HALTED

bike, from where (s)he may start to bike again or park the bike in a docking station. Unfortunately, the bike
may also break, resulting in a BROKEN bike. Hence, assistance from the bike-sharing system exploiter arrives.
If the bike can be fixed, it is brought to the DEPOT. If the damage is too severe, and the bike has a price of
at most 400 euros (to satisfy constraint (C5) on action irreparable), then we dump the bike in the TRASH.
At regular intervals, assistance from the bike-sharing system exploiter takes a PARKED bike to the DEPOT for
maintenance.

The above described behaviour is probabilistic, in the sense that in the presence of several enabled actions
some may occur with a higher likelihood than others. Such a probabilistic specification models the uncertainty
of the behaviour of the bike, its components, and its interacting environment (the users, the exploiters, road
conditions, etc.).

Some typical properties of interest on the case study are:

(P1) Average price, weight and load of a bike when it is deployed for the first time, or as time progresses;

(P2) For each of the 15 primitive features that appear as leaves in the feature model of Fig. 1, the probability
to have it installed when a bike is deployed for the first time, or as time progresses;

(P3) The probability for a bike to be disposed;

(P4) The probability to uninstall a factory-installed feature of a bike during a given time interval after it was
sold.

When analysed at the first deployment of a bike, P1 and P2 are useful for studying a sort of initial scenario,
in order to estimate the required initial investments and infrastructures. For instance, bikes with a high price
and a high load (i.e. with a high technological footprint) or equipped with a battery might require docking
stations with specific characteristics or they might have to be collected for the night to be stored safely. Instead,
analysing P1 and P2 as time progresses provides an indication of how those values evolve, e.g. to estimate the
average value in euros of a deployed bike and the monetary consequences of its loss.

From a more general perspective, properties like P2 measure how often (on average) a feature is actually in-
stalled in a product from a product line, which is important information for those responsible for the production
or programming of a specific feature or software module. Property P3 is similar.

Property P4, finally, is useful for analysing the effect of the factory’s pre-configuration choices, and to adapt
them to better fit specific scenarios. It might be worth, e.g., to reconsider the installation of a certain feature if
there is a high probability of uninstalling it shortly after.

In the sequel we show how we can specify the case study in QFLAN and analyse above properties with its
tool support.

3 Syntax and Semantics of QFLan

The feature-oriented language QFLAN is an evolution of probabilistic PFLAN [6], a process algebra that
separates declarative (pre-)configuration from procedural run-time aspects. The FLAN family (FLAN [7],
PFLAN [6], QFLAN) is inspired by the concurrent constraint programming paradigm of [27], its adoption
in process calculi [13], and its stochastic extension [11]. A constraint store allows to specify all common
constraints from feature models (and more) in declaratively, while a rich set of process-algebraic operators
allows to specify the configuration and behaviour of product lines in procedurally. The semantics unifies static
(pre-configuration) and dynamic (run-time) feature selection.
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QFLAN’s core notions are features, constraints, processes and fragments (i.e. constrained processes), cf.
its syntax in Fig. 3. More precisely, the syntactic categories F , S, and P correspond to fragments, constraint
stores (with constraints from K, using arithmetic expressions of feature attributes from E) and processes (with
actions from A), respectively. The universe of (primitive) features is denoted by F .

F ::= [S | P ]
S, T ::= K | S T | > | ⊥
P,Q ::= ∅ | X | (A, r).P | P +Q | P ;Q | P ‖ Q
A ::= a | install(f) | uninstall(f) | replace(f, g) | ask(K)

K ::= p | ¬K | K ∨ K | E ./ E

E ::= r | attribute(f) | E ± E

Figure 3: QFLAN syntax (with f ,g ∈ F , r ∈ R+, a ∈ A, p ∈ P , ./ ∈ {≤, <,=, 6=, >,≥}, and
± ∈ {+,−,÷,×})

The declarative part of QFLAN is represented by a store of constraints on features extracted from the
product line requirements plus some additional information (e.g. about the context wherein the product will
operate). Two important notions of a constraint store S are the consistency of S, denoted by consistent(S)
(which in our case amounts to logical satisfiability of all constraints constituting S) and the entailment S ` c
of constraint c in S (which in our case amounts to logical entailment).

A constraint store contains any term generated by S according to the syntax of QFLAN. The most basic
constraint stores are > (true, i.e. no constraint at all), ⊥ (false, i.e. an inconsistent constraint), and arbitrary
Boolean constraints over a universe P of propositions (generated by K), exploiting the fact that constraints on
features can be expressed using Boolean propositions (cf. [28]). Boolean propositions can also be used to rep-
resent additional information such as contextual facts, which however we do not use in this paper. Constraints
can be combined by juxtaposition (its semantics amounts to logical conjunction) of basic constraints.

The Boolean encoding of feature constraints allows us as to handle all common constraints, including two
common cross-tree constraints for which we sometimes use the following ad-hoc syntax: f . g expresses that
feature f requires the feature g, while f ⊗ g expresses that features f and g mutually exclude each other (i.e.
they are alternative). We in fact use such logical encodings to reduce consistency checking and entailment
to logical satisfiability (and hence exploit Z3’s SAT/SMT solving capabilities). We moreover assume that the
universe P of propositions contains a Boolean predicate has(f) that can be used to denote the presence of a
feature f in a product. In our case study, e.g., ¬has(g) models g 6∈ PF , i.e. a bike without an engine.

Finally, a novelty of QFLAN is that we also consider quantitative constraints based on arithmetic relations
among feature attributes. In our case study, e.g., it would be possible to define the constraint ¬has(g) →∑

f∈PF
weight(f) ≤ 10, which imposes a weight bound on non-electric bikes.

As mentioned, QFLAN admits a class of action constraints, reminiscent of featured transition systems
(FTS) [14]. In an FTS, transitions are labelled with actions and with Boolean constraints over the set of
features. We associate arbitrary constraints to actions rather than to transitions (and we moreover add a rate
to the actions, discussed below). In general, we assume that each action a may have a constraint do(a) → p,
where p ∈ P is a proposition. Such constraints act as a kind of guards to allow or forbid the execution of
actions (e.g. the constraints (C4) and (C5) of Section 2).

The procedural part of QFLAN is represented by processes which can be combined in sequence, in parallel,
or with non-deterministic choices, and which can consist of the empty process or of a single (rated) action
followed by a process. We distinguish ordinary actions from a universe A and special actions install(f) (dy-
namic installation of a feature f ), uninstall(f) (dynamic uninstallation of a feature f ), replace(f, g) (dynamic
replacement of feature f by g) and ask(K) (to query the store for the validity of constraint K). As we will
see shortly, each action type is treated differently in the operational semantics. Each action moreover has an
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(INST)
consistent(S has(f))

[S ¬has(f) | (install(f), r).P ] r−−→ [S has(f) | P ]

(UNST)
consistent(S ¬has(f))

[S has(f) | (uninstall(f), r).P ] r−−→ [S ¬has(f) | P ]

(RPL)
consistent(S ¬has(f) has(g))

[S has(f) ¬has(g) | (replace(f, g), r).P ] r−−→ [S ¬has(f) has(g) | P ]

(ACT)
S = (do(a)→ K) S ` K

[S | (a, r).P ] r−−→ [S | P ]
(ASK)

S ` K
[S | (ask(K), r).P ]

r−−→ [S | P ]

(OR)
[S | P ] r−−→ [S′ | P ′]

[S | P +Q]
r−−→ [S′ | P ′]

(SEQ)
[S | P ] r−−→ [S′ | P ′]

[S | P ;Q]
r−−→ [S′ | P ′;Q]

(PAR)
[S | P ] r−−→ [S′ | P ′]

[S | P ‖ Q]
r−−→ [S′ | P ′ ‖ Q]

Figure 4: Reduction semantics of QFLAN

associated rate, which is used to determine the probability that this action is executed. As usual, the probability
to execute an action in a certain state depends on the rates of all other actions enabled in the same state. These
action rates, originating from PFLAN, allow one to specify probabilistic aspects of SPL models such as the
behaviour of the user of a product and the likelihood of installing a certain feature at a specific moment with
respect to that of other features. We will illustrate all this in our example in Section 4.

Finally, a fragment F is a term [S | P ], composed by a constraint store S and a process P . These two
components may influence each other according to the concurrent constraint programming paradigm [27]: a
process may update its store which, in turn, may condition the execution of the process’ actions. For the sake
of simplicity, we consider in this paper initial fragments where S uniquely characterises a product of a product
line (i.e. for each feature f , S contains either has(f) or ¬has(f)).

The operational semantics of fragments is formalised in terms of the state transition relation→⊆NF×R+×F

defined in Fig. 4, where F denotes the set of all terms generated by F in the grammar of Fig. 3. Note that we
use multisets of transitions to deal with the possibility of multiple instances of a transition F r−→ G. Technically,
such a reduction relation is defined in structural operational semantics (SOS), i.e. by induction on the structure
of the terms denoting a fragment, modulo a structural congruence relation ≡⊆ F × F that axiomatises the
structure of processes (e.g. parallel composition and non-deterministic choice are associative and commutative
and have the empty process ∅ as identity, etc.).

The reduction relation implicitly defines a labeled transition system (LTS), with rates as labels. It is straight-
forward to obtain a discrete-time Markov chain (DTMC) from such LTSs by normalising the rates into [0..1]
such that in each state, the sum of the rates of its outgoing transitions equals one. As usual, in the resulting
DTMC the label of a transition corresponds to the probability that such a transition is executed starting from its
source state. Recall that we advocate the use of statistical model checking because in general the DTMC is too
large to generate. As usual, the reduction rules in Fig. 4 are expressed in terms of a set of premises (above the
line) and a conclusion (below the line).

The rules INST, UNST, RPL, and ACT of the semantics are very similar, all allowing a process to execute
an action if certain constraints are satisfied. Rules INST, UNST, and RPL deal with installation, removal ,and
replacement of features, respectively, and are applicable as long as they do not introduce inconsistencies. Rule
ACT forbids inconsistencies with respect to action constraints. A typical action constraint is do(a)→ has(f),
i.e. action a is subject to the presence of feature f . Other examples are (C4) and (C5) of Section 2. Rule
ASK formalises the semantics of the ask(·) operation from concurrent constraint programming [27]. It allows
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a process to be blocked until a proposition can be derived from the store.
Rules PAR, SEQ, and OR, finally, are standard, formalising interleaving parallel composition, sequential

composition, and non-deterministic choice, respectively. Note that the non-determinism introduced by choices
and parallel composition is probabilistically resolved in the aforementioned DTMC semantics.

4 Bikes Product Line in QFLan

Fig. 5 sketches a QFLAN model of our bikes product line. Fragment FR is composed of store S and a pro-
cess F . The former consists of four sets of constraints:

FS Constraints from the feature diagram of Fig. 1, like d⊗h , requiring precisely one feature among Diamond
and StepThru to be installed;

AS Constraints on actions discussed in Sections 2 and 3, like (C4) or do(c)→ has(c), requiring Music to be
installed in order to play music;

QS Quantitative constraints affecting all actions, like (C2);

IS The initially installed feature set has(y) has(d), implying that AllYear and Diamond are pre-installed.

The process F specifies the behaviour of the bikes product line from Section 2. In particular, it has one process
for each node in Fig. 2. F corresponds to FACTORY, implemented as a choice, weighted by the rates, among
three main activities:

(1) With rate 7 the bike is sold and sent to the depot. This action can only be executed if (C4) is respected;

(2) Install optional features and iterate on F . The installations are performed only if FS and QS are pre-
served;

(3) Replace pre-installed mandatory exclusive features IS , i.e. Wheels or Frame. Again, FS and QS are
preserved.

Note that in (2) we assume that Music is the feature installed with higher probability, followed by MapsApp,
Dynamo, and Light. Recall that the semantics of QFLAN (Fig. 4) forbids the re-installation of installed features.
In (3), we favour the replacement of Winter or Summer wheels by AllYear ones. A frame may be changed as
well, but with lower probability.

D corresponds to DEPOT, and is similar to F . Clearly, D differs from F by the possibility to perform
an action deploy leading to P (i.e. PARKED). In addition, D may also uninstall features, so as to allow for
customisation. Optional features can be installed and uninstalled with the same rate by D , except for Engine,
Battery, and Dynamo, uninstalled with a lower rate to penalize their occurrences. This modeling choice is
justified by the fact that it is reasonable to assume that uninstalling such features might cost more than installing
them. In addition, we assume that the frame identifies the bike that was sold, and thus it cannot be modified in
D . The final action that D can perform is an interesting one: Battery can be replaced with the much cheaper
Dynamo. According to the semantics of QFLAN, this action is performed only if no subfeature of CompUnit or
the Engine are currently installed (cf. Fig. 1). This is useful to reduce costs and weight, in case some previously
installed feature requiring the battery has by now been uninstalled.

The remaining processes P , M , H , B , and T correspond to PARKED, MOVING, HALTED, BROKEN, and
TRASH, respectively. These processes are rather simple and are faithful to their description in Section 2. The
process T installs a fictitious feature trashed to express the fact that the bike has been disposed, and then evolve
in the idle process.

Note that F is a pure (pre-)configuration process, while D is not. In fact, parked bikes can be brought back
into the depot, and thus features can be (un)installed or replaced at run time. This is an example of a staged
configuration process, in which some optional features are bound at run time rather than at (pre-)configuration
time.

The QFLAN specification is completed with the definition of the attributes of the features as depicted in
Fig. 1, not shown here due to reasons of space. The interested reader can find the full specification of the case
study at https://code.google.com/p/multivesta/wiki/QFLan
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FR .
= [ S | F ]

S .
= FS AS QS IS

FS .
= . . . AS .

= . . . QS .
= . . . IS .

= . . .

F .
= (sell , 7).D
//Installing optional features
+ (install(s), 6).F + (install(m), 10).F + (install(n), 6).F + (install(u), 3).F + (install(c), 20).F
+ (install(g), 4).F + (install(a), 5).F + (install(o), 10).F + (install(i), 10).F + (install(k), 8).F
//Replacing mandatory and exclusive features
+ (replace(y , r), 5).F + (replace(y ,w), 5).F(replace(r , y), 10).F + (replace(r ,w), 5).F
+ (replace(w , y), 10).F + (replace(w , r), 5).F(replace(d , h), 3).F + (replace(h, d), 3).F

D .
= (deploy , 10).P
//Installing optional features
+ . . . same as F
//Uninstalling optional features
+ . . . same features and rates as installing, except for
+ (uninstall(g), 1).D + (uninstall(a), 2).D + (uninstall(o), 3).D
//Replacing mandatory and exclusive features
+ . . . same as F, but replacubg just wheels
//Replacing battery by dynamo
+ (replace(a, o), 1).D

P .
= (book , 10).M + (maintain, 1).D

M .
= (stop, 5).H + (break , 1).B + (c, 20).M + (i , 20).M

H .
= (start , 5).M + (break , 1).B + (c, 20).H + (i , 10).H + (s,10).H + (u,10).H + (m,10).H + (n,10).H

B .
= (assistance, 10).D + (irreparable, 1).T

T .
= (install(trashed), 1).∅

Figure 5: QFLAN specification of bikes product line

5 Statistical Model Checking with MultiVeStA

In this section, we briefly explain the statistical model checking capabilities of MultiVeStA and set the param-
eters for the actual analyses described in the subsequent section.

MultiVeStA [30] is a distributed statistical model checker that was co-developed and is being maintained by
the fourth author. MultiVeStA can easily be integrated with any formalism that allows probabilistic simulations
and it has already be used to analyse a wide variety of systems, including transportation systems [21], volunteer
clouds [29], crowd-steering [26] and swarm robotic [9] scenarios.

Recently, we investigated the suitability of MultiVeStA for the quantitative analysis of SPL behaviour mod-
elled in PFLAN [6]. In this paper, we use the tool to obtain statistical estimations of quantitative properties
of QFLAN specifications. MultiVeStA provides such estimations by means of distributed analysis techniques
known from statistical model checking (SMC) [23, 22]. The integration of MultiVeStA and QFLAN is avail-
able at https://code.google.com/p/multivesta/wiki/QFLan together with all files necessary
to reproduce the experiments discussed in this paper.

MultiVeStA’s property specification language MultiQuaTEx (an extension of QuaTEx [1]) is very flexible,
based on the following ingredients: real-valued observations on the system states (e.g. the total cost of installed
features), arithmetic expressions and comparison operators, if-then-else statements, a one-step next operator
(which triggers the execution of one step of a simulation), and recursion. Intuitively, we can use MultiQuaTEx
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1 ObsAtFD(obs) = i f {s. r v a l("first-deploy") == 1.0}
2 then s. r v a l(obs)
3 e l s e #ObsAtFD(obs)
4 f i ;
5 e v a l E[ObsAtFD("price")]; e v a l E[ObsAtFD("weight")];
6 e v a l E[ObsAtFD("load")]; e v a l E[ObsAtFD("steps")];
7 e v a l E[ObsAtFD("y")]; e v a l E[ObsAtFD("r")]; . . .

Listing 1: P1 and P2 at first deployment

to associate a value from R to each simulation and subsequently use MultiVeStA to estimate the expected value
of such number (in case this number is 0 or 1 upon the occurrence of a certain event, we thus estimate the
probability of such an event to happen).

We obtain probabilistic simulations of a QFLAN model by executing it step-by-step applying the rules of
Fig. 4, each time selecting one of the computed one-step next-states according to the probability distribution
resulting from normalising the rates of the generated transitions (cf. Section 3).

Classical SMC allows one to perform analyses like “is the probability that a property holds greater than a
given threshold?” or “what is the probability that a property is satisfied?”. In addition, MultiVeStA also allows
one to estimate the expected values of properties that can take on any value from R, like “what is the average
cost/weight/load of products configured according to an SPL specification?”. Estimations are computed as the
mean of n samples obtained from n independent simulations, with n large enough to grant that the size of
the (1− α)× 100% confidence interval (CI) is bounded by δ. In other words, if a MultiQuaTEx expression is
estimated as x ∈ R, then with probability (1−α) its actual expected value belongs to the interval [x−δ/2, x+δ/2].
A CI is thus specified in terms of two parameters: α and δ. In all the experiments discussed in the next section,
we fixed α = 0.1. Also, we set δ = 20.0 for costs, δ = 1.0 for weights, δ = 5.0 for loads, δ = 1.0 for steps,
and δ = 0.1 for probabilities. Experiments were performed on a laptop equipped with a 2.4 GHz Intel Core i5
processor and 4 GB of RAM, distributing the simulations among its 4 cores.

6 Analysis of Bikes Product Line

In this section, we show how MultiVeStA can be used to analyse our bikes product line case study, focusing in
particular on properties P1–P4 from Section 2. We start with P1 and P2, which we study both at a precise point
in time (at the first deployment of a bike) and as time progresses.

Listing 1 depicts a MultiQuaTEx expression to evaluate P1 and P2 at a bike’s first deployment. Lines 1-
4 define a parametric recursive temporal operator ObsAtFD which is evaluated against a simulation. The
operator takes in input a string obs representing a state observation of interest. Then, if the bike has completed
its first deployment (Line 1), the value in the current simulation state of the provided observation is returned
(Line 2). Otherwise, the operator is recursively evaluated in the next simulation state (Line 3). Intuitively, #
is the one-step temporal operator, while real-valued observations on the current state are evaluated resorting to
the keyword s.rval. A number of predefined observations is currently supported, e.g., we can query whether
a given feature is currently installed, obtaining 1 if the feature is installed and 0 otherwise. An example is in
Line 1 for first-deploy, a fictitious feature installed when terminating the first phase of deployment (to
ease presentation, we did not show this in Section 4). In addition, we can query for price, weight, and load of
the current product, obtained by summing the corresponding values for all installed features, or the number of
simulation steps done to obtain the current state. Finally, Lines 5-7 specify the properties to be studied: the
expected price, weight, and load of bikes (Lines 5-6), as well as the probabilities of installing each of the
15 primitive features (Line 7), all measured at first deployment. In addition, we also query the expected number
of simulation steps to perform the first deployment (Line 6).

Notably, Listing 1 shows how MultiQuaTEx allows one to express more properties at once (in this case
19) which are estimated by MultiVeStA reusing the same simulations. We remark that a procedure taking
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Attributes (P1) Features (P2)

C1 C2 steps to deploy price weight load y r w i o a g m n u c s k d h
600 15 17.86 391.91 7.80 33.50 0.57 0.24 0.18 0.59 0.84 0.92 0.0 0.50 0.20 0.24 0.47 0.17 0.60 0.61 0.39
800 20 18.28 509.83 11.98 34.45 0.54 0.23 0.19 0.57 0.88 0.92 0.40 0.52 0.21 0.25 0.47 0.20 0.63 0.60 0.40

Table 1: Properties P1 and P2 evaluated at a bike’s first deployment.

into account that each property might require a different number of simulations is adopted to satisfy the given
confidence interval CI.

We evaluated the MultiQuaTEx expression of Listing 1 against the model discussed in Section 4. The
analysis required 1, 340 simulations, performed in about 20 minutes. In particular, steps is the property that
required more simulations, viz. 1, 340, while price required only 120 simulations. The results are shown
in the first row of Table 1. Notably, the probability of installing an engine (g) is very low, estimated at 0 (i.e.
with probability 0.9 it belongs to [0, 0.05], according to the specified confidence interval). We guess that this
is due to the constraints (C1) and (C2), imposing bikes to cost less than 600 euros, and weighing less than
15 kilos. In fact, the estimated average price and weight of bikes at first deployment is 391.91 euros and 7.8
kilos, respectively, while engine costs 300 euros and weighs 10 kilos. In order to confirm this hypothesis, we
analysed the same property in a new model where (C1) and (C2) allow bikes to cost at most 800 euros and
weigh at most 20 kilos. The results, shown in the second row of Table 1, confirm our hypothesis. This analysis
thus revealed that the constraints were in disagreement with the quantitative attributes of the features. The latter
analysis required 1, 360 simulations, performed in about 20 minutes. In this case the estimation of the average
price required 1, 200 simulations rather than 120 as in the first case. This is because the looser constraints of
the latter analysis induce a higher variability of bike prices. In fact, the installation of an engine, the most
expensive among the considered features, results in a steep increase of bike prices.

We now discuss the variants of P1 and P2 measured as time progresses, demonstrating how MultiVeStA
can be used to analyse properties upon varying a parameter, in this case the number of performed simulation
steps. Listing 2 shows how the expression of Listing 1 can be made parametric with respect to a given set of
simulation steps. First, the temporal operator was modified so that it is evaluated with respect to a specific step
given as parameter (Lines 1-4). Second, it was necessary to specify a range of values for the parameter. Lines 5-
8 specify that we are interested in measuring the properties for steps going from 0 to 500, with an increment
of 2. Recall from Section 4 that dumping a bike is modelled by the installation of a fictitious feature trash .
Hence, we can use the expression of Listing 2 to measure also P3 (the probability of a bike being dumped) by
simply adding E[ObsAtStep("trashed",st)] (Line 8).

We evaluated the parametric property of Listing 2 against our case study. We report the results obtained for
the model in which (C1) and (C2) bound the price and weight of the bike to 800 and 20, respectively. All such
analyses (19×251 different properties) were evaluated using the same simulations. Overall, 1, 200 simulations
were necessary, performed in about 75 minutes. The results are presented in four plots in Fig. 6: one for prices
(a), one for weights and loads (b), one for the probabilities of installing features (c), and one for the probability
of dumping the bike (d).

Fig. 6(a) shows that the average price (on the y-axis) of the intermediate bikes generated from the product
line starts at 200 euros, in line with the initial configuration (IS , with AllYear and Diamond installed). Then the

1 ObsAtStep(obs,st) = i f {s. r v a l("steps") == st}
2 then s. r v a l(obs)
3 e l s e #ObsAtStep(obs,st)
4 f i ;
5 e v a l parametr ic(E[ObsAtStep("price",st)],
6 E[ObsAtStep("weight",st)], E[ObsAtStep("load",st)],
7 E[ObsAtStep("y",st)], E[ObsAtStep("r",st)],. . .,
8 E[ObsAtStep("trashed",st)],st,0,2,500);

Listing 2: P1–P3 for varying simulation steps
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Figure 6: Results of measuring P1–P3 with MultiVeStA

price grows with respect to the number of performed simulation steps. In particular, it is possible to see an initial
fast growth until reaching an average price of about 510 euros, after which the growth slows down, reaching
about 537 euros at step 100 and 542 at step 500. This is consistent with our QFLAN specification, which
has a pre-configuration phase (FACTORY) during which a number of features can be installed, followed by a
customisation phase (DEPOT), where features can be (un)installed and replaced. We recall that FACTORY does
not perform any uninstalling, while we note that the uninstalling actions of DEPOT do not introduce decrements
of the price, on average. A manual inspection of the data revealed that the phase of fast growth terminates
after about 19 steps. This is consistent with the analysis described in the second row of Table 1, where the
average number of steps to complete the first DEPOT phase is estimated as being close to 19. In addition, the
average price at the end of such a phase is estimated to be around 510 euros, as in Table 1. Note, finally, that the
probability of a bike to return to the DEPOT after its first deployment is quite low. In fact, as specified in Fig. 5,
PARKED has a transition with rate 10 towards MOVING and one with rate 1 towards DEPOSIT. Thus, in average,
the price of bikes is only slightly affected by (un)installations and replacements performed by successive DEPOT

phases.
Fig. 6(b) shows that the weight and load of a bike evolve similarly to the price: there is a first phase of

growth during the first 19 steps, followed by a slower growth.
As confirmed by Fig. 6(c), the probabilities (on the y-axis) for each of the features that can be installed

evolve similarly to the average price, weight, and load of the generated products, although, clearly, with differ-
ent scales. It is interesting to note that the pre-installed features AllYear (y) and Diamond (d) have probability
1 of being installed at step 0, after which the probability decreases during the first 19 steps.
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Figure 7: P4 (uninstalling factory-installed features)

Fig. 6(d) shows that bikes are dumped with very low probability. The reason is twofold. First, the transition
from BROKEN to TRASH has a much lower rate than the one to DEPOT, and similarly for those from MOVING and
HALTED to BROKEN (cf. Fig. 5). Second, the average price of bikes quickly rises above 400 euros (Fig. 6(a)),
and constraint (C5) prohibits dumping bikes costing more than 400 euros.

We conclude this section by considering P4. This property was analysed against a slight variant of our
scenario, viz. without the FACTORY phase but with the following set of features pre-installed: AllYear (y),
Diamond (d), Battery (a), and Basket (k). In particular, we studied how the probability of having each of these
4 features not installed in a certain simulation step changes upon varying the considered simulation step. The
corresponding MultiQuaTEx expression can easily be obtained from Listing 2 by changing Line 2 in “then
1 - s.rval(obs)”, and writing in Lines 5-8 only the “E” corresponding to the 4 features. We again focus
on the case in which (C1) and (C2) bound the cost and weight of bikes to 800 and 20, respectively.

The analysis required 380 simulations performed in about 15 minutes. The results are presented in Fig. 7,
where we can again appreciate the two distinct phases with faster and slower growth, respectively. A manual
inspection of the data revealed that the two phases change again around step 19. Diamond (d) has 0 probability
of being uninstalled. This is coherent with the considered model, as the frame can be replaced only during
the FACTORY phase, removed for this experiment. As regards the 3 remaining features, Fig. 7 highlights the
effect of constraints to the behaviour of QFLAN specifications. In fact, we can clearly see that the features
can be partitioned in two, based on the probability of being uninstalled: a has almost no probability of being
uninstalled, while y and k are uninstalled with higher probability. The lower uninstall probability manifested
by a is justified by the fact that the Engine and all CompUnit subfeatures require it, thus the presence of one of
these features in the store prevents the uninstallation of a. Finally, the other two features, y and k, uninstalled
with higher probability, have a similar graph. This is consistent with process D for DEPOT given in Fig. 5, as
AllYear is replaced with rate 10 (due to the two replace actions), while Bike is uninstalled with rate 8.

7 Conclusions and Future Work

In a recent workshop, we have presented the probabilistic feature-oriented language PFLAN [6]. In this pa-
per, we have introduced QFLAN, which extends PFLAN with dynamic uninstallation and replacement of fea-
tures and with advanced quantitative constraint modelling options, thus allowing for more involved quantitative
analyses (now requiring SMT solving). We have achieved this by integrating an efficiently executable Maude
implementation of QFLAN with Z3 and with the distributed statistical model checker MultiVeStA. We have
applied the resulting modelling and analysis framework to a bikes product line case study taken from compa-
nies with whom we cooperate in the context of the European project Quanticol. Our analysis has revealed some
interesting properties of the model, like the existence of a disagreement among constraints imposed on the price
and weight of bikes, and prices and weights of bike components, as well as the high probability of replacing

QUANTICOL 13 June 16, 2015



SMC of SPLs with Quantitative Constraints (Revision: 0.1; June 16, 2015) June 16, 2015

some features that tend to appear in initial configurations, which suggest to prioritise their installation in the
early stages of the configuration. All in all, our detailed analysis has served to validate our methodology and its
tool support. We believe that our work will hence provide a further contribution towards the adoption of formal
specification and analysis techniques in SPLE.

In future work we plan to further develop the integration of Z3 with MultiVeStA, e.g. to equip our toolset
with optimisation capabilities, so that users can not only validate configuration choices but also automatically
obtain configuration options optimising their objective functions (possibly combining behavioural and non-
functional aspects).
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