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ABSTRACT

A business subject who wishes to enter an established tech-
nological market is required to accurately analyse the fea-
tures of the products of the di↵erent competitors. Such fea-
tures are normally accessible through natural language (NL)
brochures, or NL Web pages, which describe the products
to potential customers. Building a feature model that hi-
erarchically summarises the di↵erent features available in
competing products can bring relevant benefits in market
analysis. A company can easily visualise existing features,
and reason about aspects that are not covered by the avail-
able solutions. However, designing a feature model starting
from publicly available documents of existing products is
a time consuming and error-prone task. In this paper, we
present two tools, namely Commonality Mining Tool (CMT)
and Feature Diagram Editor (FDE), which can jointly sup-
port the feature model definition process. CMT allows min-
ing common and variant features from NL descriptions of
existing products, by leveraging a natural language process-
ing (NLP) approach based on contrastive analysis, which al-
lows identifying domain-relevant terms from NL documents.
FDE takes the commonalities and variabilities extracted by
CMT, and renders them in a visual form. Moreover, FDE al-
lows the graphical design and refinement of the final feature
model, by means of an intuitive GUI.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements Specifica-
tion—analysis,methodologies,specification
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When a company enters an established technological mar-
ket, it shall evaluate the alternative solutions already avail-
able, to avoid the development of products that are not novel
enough to be appealing, and to reason on possible prod-
uct features that could bring a competitive advantage in
the market. In [12] a set of publicly available documents
(brochures) has been used to derive a global model, from
which specific product requirements for novel systems be-
longing to the same product line have been derived. The
goal of the model was to support the analysis of available
Communications-based Train Control Systems (CBTC) pro-
ducts, which are integrated platforms to control the move-
ment of trains within a station and across di↵erent stations.
The model was represented in the form of a feature dia-
gram [15], following the principles of the product line engi-
neering technology. The bottleneck found in the experience
was the large amount of human inspection required to iden-
tify the common components, as well as the architectural
di↵erences, between the solutions proposed by the di↵erent
vendors. The identification of these commonalities and vari-
abilities has enabled the definition of mandatory and variant
features in the global feature diagram. In order to reduce
the time required to extract commonalities and variabilities
from the brochures of the di↵erent vendors, in [11] we sug-
gested to adopt an automated Natural Language Process-
ing (NLP) approach named contrastive analysis to identify
domain-specific terms (single and multi-word) from textual
documents [5]. The proposed method takes the brochures
of the di↵erent vendors as input, and identifies the linguis-
tic expressions in the documents that can be considered as
terms. In this context, a term is defined as a conceptually
independent expression. The domain-specific terms that are
common among all the brochures are considered as common-
ality candidates. On the other hand, those domain-specific
terms that appear solely in a subset of the brochures are
considered as variability candidates.

Starting from the experiences in [12] and [11], we have
implemented two graphical tools that (1) support the ex-
traction of commonalities and variabilities from natural lan-
guage (NL) documents, and (2) allow to graphically de-
sign a feature model based on the extracted commonali-
ties and variabilities. The first goal is addressed by the
Commonality Mining Tool (CMT), while the second goal
is addressed by the Feature Diagram Editor (FDE). Though
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the definition of the two tools is based on an experience
focused on brochures, we advocate that the tools can be
used whenever the feature model has to be defined starting
from any type of NL documents, including NL requirements.
Both the tools are freely available at https://github.com/
isti-fmt-nlp/tool-NLPtoFP.

The paper is organised as follows. In Sect. 2, we list the main
characteristics of the two tools, and their architecture. In
Sect. 3, we describe the NLP approach based on contrastive
analysis to identify commonality and variability candidates.
In Sect. 4, we describe the details of the two tools. Then,
Sect. 5 presents the related work. Finally, Sect. 6 discusses
conclusions and future works.

2. OVERVIEW

Commonality Mining Tool (CMT) allows commonalities
and variabilities from NL brochures of existing products to
be extracted. The main functionalities of CMT are:

1. Terminology Extraction: given a set of documents
belonging to di↵erent vendors, the tool allows the auto-
matic extraction of the domain-specific terms, namely
the specific words related to the domain of the product,
from each document;

2. Commonality Candidates Extraction: the tool
automatically identifies of the commonality candidates
among the domain-specific terms. These are the do-
main-specific terms appearing in all the documents;

3. Variability Candidates Extraction: the tool au-
tomatically identifies the variability candidates among
the domain-specific terms. These are the domain-speci-
fic terms that appear only in a sub-set of the docu-
ments;

4. Documents Surfing: the user can verify the qual-
ity of the selected candidates, by searching the occur-
rences of candidates in the original documents through
the Graphical User Interface (GUI) of CMT;

5. Commonality/Variability Selection: among the
candidates, the user can select the commonalities and
variabilities for the construction of a feature model,
manually adding others if needed.

Feature Diagram Editor (FDE) is a tool to define a feature
model through the construction of its graphic representa-
tion, namely the feature diagram. The main functionalities
of FDE are:

1. Feature Diagram Generation: the tool automat-
ically defines an initial feature diagram with a set of
features selected by the user, based on the commonal-
ities and variabilities produced by CMT;

2. Feature Diagram Editing: the user can create, edit
and save a feature diagram through a graphical inter-
face based on Drag&Drop operations.

3. Feature Diagram to Documents Surfing: the user
is guided in surfing the input documents – the same
used by CMT – to search for occurrences of features;

4. SPLOT Import: the user can import the description
of a feature model from the XML format generated
by the online tool SPLOT1 [16] (*.sxfm format). The
feature model is automatically rendered in a feature
diagram;

5. SPLOT Export: the user can export the feature
model in the SPLOT format and in *.png image for-
mat.
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Figure 1: Architecture and interactions of CMT and
FDE

The architecture of the two tools and their interaction
is shown in Fig. 1. The user interacts with CMT through
an intuitive GUI (CMT GUI). From the GUI, the user
can load the natural language Brochures of di↵erent ven-
dors and can perform terminology extraction, commonal-
ity/variability candidates extraction, document surfing and
commonality/variability selection.

The internal engine of CMT (Commonality/Variability
Analyser) interacts with an external tool named T2K [9].
The tool is in charge of performing the terminology extrac-
tion, and other NL analysis of the text included in the
brochures. CMT allows to store the analysis in a CMT
Project, which can be saved and loaded by the user.

From CMT, the user can launch FDE. In this case, FDE
takes as input the commonalities and variabilities extracted
by CMT and stored in the CMT Project. Moreover, a tex-
tual version of the original documents is also passed to FDE.
The user can interact with the GUI of the tool (FDE GUI)
to edit the diagram, surf the documents from the features
represented in the diagram, or import/export the feature
model in the SPLOT format (SXFM XML). Moreover,
the user can save and load a feature diagram in a FDE
Project, which includes an XML version of the diagram.
FDE can also be executed by the user as a standalone appli-
cation. In this case, an empty FDE Project is created and
the user can start editing the diagram from scratch.

3. THE NLP APPROACH

The method employed by CMT, and supported by T2K [9],
is based on a novel natural language processing approach,
1http://www.splot-research.org



named contrastive analysis [5], for the extraction of domain-
specific terms from natural language documents. In this con-
text, a term is a conceptually independent linguistic unit,
which can be composed by a single word or by multiple
words. For example,“Automatic Train Protection”is a term,
while “Protection” is not a term, since in the textual docu-
ments considered in the study reported in [11] it often ap-
pears coupled with the same words (i.e., “train”, “mission”),
and therefore it cannot be considered as conceptually inde-
pendent.

The contrastive analysis technology aims at detecting those
terms in a document that are specific for the domain of the
document under consideration [5, 8]. Roughly, contrastive
analysis considers the terms extracted from domain-generic
documents (e.g., newspapers), and the terms extracted from
the domain-specific document to be analysed. If a term
in the domain-specific document highly occurs also in the
domain-generic documents, such a term is considered as
domain-generic. On the other hand, if the term is not fre-
quent in the domain-generic documents, the term is consid-
ered as domain-specific.

In our work, the documents from which we want to ex-
tract domain-specific terms are the brochures of di↵erent
vendors. A brochure is promotional document that describes
the product to possible customers. Here, the reasonable as-
sumption is that both commonalities and variabilities can
be found among the domain-specific terms of the brochures.
The proposed method is summarized in Fig.2. First, con-
ceptually independent expressions (i.e., terms) are identified
(Identification of Terms). Then, Contrastive Analysis
is applied to select the terms that are domain-specific. From
these terms, commonality and variability candidates are ex-
tracted (Commonality/Variability Candidates Iden-
tification). In the tools presented in this paper, the for-
mer task is supported by T2K, while the second task is in
supported by the Commonality/Variability Analyser com-
ponent of CMT.
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Figure 2: Overview of the approach

3.1 Identification of Terms

Each vendor might have more than one brochure. We
collect the brochures of the same vendor i in a single doc-
ument Di. Therefore, given n vendors, we have D1 . . . Dn

documents. From each one of these documents we identify a
ranked list of terms. To this end, we perform the following
steps.

POS Tagging: first, Part of Speech (POS) Tagging is
performed with an english version of the tool described in [8].
With POS Tagging, each word is associated with its gram-
matical category (noun, verb, adjective, etc.).

Linguistic Filters: after POS tagging, we select all those
words or groups of words (referred in the following as multi-

words) that follow a set of specific POS patterns (i.e., se-
quences of POS), that we consider relevant in our context.
For example, we will not be interested in those multi-words
that end with a preposition, while we are interested in multi-
words with a format like <adjective, noun, noun> (such as
“Automatic Train Protection”).

C-NC Value: terms are finally identified and ranked by
computing a“termhood”metric, called C-NC value [5]. This
metric establishes how much a word or a multi-word is likely
to be conceptually independent from the context in which it
appears. The computation of the metric is rather complex,
and the explanation of such computation is beyond the scope
of this paper. The interested reader can refer to [5] for fur-
ther details. Here we give an idea of the spirit of the metric.
Roughly, a word/multi-word is conceptually dependent if it
often occurs with the same words (i.e., it is nested). Instead
a word/multi-word is conceptually independent if it occurs
in di↵erent context (i.e., it is normally accompanied with
di↵erent words). Hence, a higher C-NC rank is assigned to
those words/multi-word that are conceptually independent,
while lower values are assigned to words/multi-words that
require additional words to be meaningful in the context in
which they are uttered.

After this analysis, for each Di, we have a ranked list of
words/multi-words that can be considered terms, together
with their ranking according to the C-NC metric, and their
frequency (i.e., number of occurrences) in Di. The more
a word/multi-word is likely to be a term, the higher the
ranking. From the list we select the k terms that received the
higher ranking. The value of k shall be empirically selected.
A higher value guarantees that more domain-specific terms
are included in the list. On the other hand, higher values for
k might also introduce noisy items, since also words/multi-
words with low rank might be included.

3.2 Contrastive Analysis

The previous step leads to a ranked list of k terms where
all the terms might be domain-generic or domain-specific.
With the contrastive analysis step, terms are re-ranked ac-
cording to their domain-specificity. To this end, the pro-
posed approach takes as input: 1) the ranked list of terms
extracted from the documentDi; 2) a second list of terms ex-
tracted with the same method described in Sect. 3.1 from a
set of documents that we will name the contrastive corpora.
The contrastive corpora is a set of documents containing
domain-generic terminology. In particular, we have consid-
ered the Penn Treebank corpus, which collects articles from
the Wall Street Journal. The reasonable assumption here is
that a term that frequently occurs in the Wall Street Jour-
nal is not likely to be a domain-specific term of the metro
domain. The new rank Ri(t) for a term t extracted from a
document Di is computed according to the function:

Ri(t) = arctan(log(fi(t)) · (
fi(t) ·Nc

Fc(t)
)

where fi(t) is the frequency of the term t extracted from Di,
Fc(t) is the sum of the frequencies of t in the contrastive cor-
pora, and Nc is the sum of the frequencies of all the terms
extracted from Di in the contrastive corpora. Roughly, if a
term is less frequent in the contrastive corpora, it is consid-
ered as a domain-specific term, and it is ranked higher. If
two terms are equally frequent in the contrastive corpora,
but one of them is more frequent in Di, it is considered as



a term that characterizes the domain more than the other,
and, again, it is ranked higher.

After this analysis, for each Di, we have a list of terms, to-
gether with their ranking according the function R, and their
frequency in Di. The more a term is likely to be domain-
specific, the higher the ranking. From each list, we select
the l terms that received the higher ranking. The choice
of l shall be performed empirically: higer values of l tend
to include terms that are not domain-specific, while lower
values tend to exclude terms that might be relevant in the
subsequent phases.

3.3 Commonality Candidates Identification

The commonality candidates are the domain-specific terms
that are common to all the documents. Indeed, if a term is
domain-specific and appears in all the documents of the dif-
ferent vendors, it is likely to be a common feature of all the
products. More formally, if C1 . . . Cn are the sets of domain-
specific terms for D1 . . . Dn respectively, then the set of com-
monality candidates is defined as: C = {C1 \ C2.... \ Cn}.
Ranking is provided also for the set of commonality can-
didates. The ranking value is provided by computing the
average rank of each term.

3.4 Variability Candidates Identification

The variability candidates are identified as those terms
which are domain-specific, and therefore appear in some of
the Ci sets, but are not part of the commonalities. We
assume that, if a domain-specific term appears in some of
the documents of the di↵erent vendors, but not in all of
them, it is likely to be a variant feature, characterizing only
a sub-set of the products. More formally, we define the
variability candidates as V = {C1 [ C2 . . . [ Cn} \ C. Also
in this case, the ranking value is provided by computing the
average rank of each term.

The sets C and V are domain-specific terms of the docu-
ments. In order to assess that they actually include com-
monalities or variabilities, a human operator shall assess the
actual relevance of each candidate.

4. CMT AND FDE

In this section we describe the functionalities of the Com-
monality Mining Tool (CMT) and of the Feature Diagram
Editor (FDE). The former employs the approach explained
in the previous section to extract commonality and vari-
ability candidates, with the support of the tool T2K for
domain-specific term extraction (also referred as “terminol-
ogy extraction” in the following). The latter is used to build
a feature diagram.

4.1 Commonality Mining Tool

The Commonality Mining Tool (CMT) provides the ex-
traction of feature candidates starting from the information
contained in NL documents that describe similar products.
Moreover, among the feature candidates, the tool extracts
common and variant feature candidates, to be later evalu-
ated by a human operator (referred in the following as the
user).

The idea is to start from a set of NL documents, in pdf/txt
format, and extract the set of domain specific terms from
these documents. To this end, CMT relies on T2K (Text-
To-Knowledge) tool [9], which is specifically targeted to
identify domain-specific terms.

Once fed with NL documents as input, T2K will provide
a set of files containing:

• the NL documents, in txt format;

• the separation into sentences;

• the terminology extraction (i.e., the list of domain-
specific terms ranked by relevance);

• the annotation of the text according to the grammar
analysis (POS Tagging).

These files will be used to extract the commonality can-
didates (i.e. domain-specific terms that appear in each doc-
ument) and variability candidates (all other domain-specific
terms). Moreover, the separation into sentences, and the
documents in *.txt format will be used to support the iden-
tification of relations among the di↵erent domain-specific
terms extracted.

4.1.1 How CMT Works
A screen-shot of the visual interface provided by CMT is

shown in Fig. 3. The internal process followed by CMT can
be summarised in the following phases.

Project Set-up.
In this phase, the user creates a CMT Project and loads

the NL brochures in *.txt/*.pdf format. The tool assumes
that for each vendor, a single document is loaded. Therefore,
the user is in charge of merging the di↵erent NL documents
(through copy/paste or supported by external tools) into
a single document. The tool will create a folder for each
vendor, which will be used to store the di↵erent analysis
performed later on.

Terminology Extraction.
In this phase all the NL documents are given as input

to CMT, each of them associated to a di↵erent folder. For
each folder the tool reads the domain-specific terms as they
have been processed by T2K. Then, it identifies and stores
the position of these terms in the source document(s), and
stores the separation into sentences, to be used in the Color
by Cluster phase of the process described in the following
paragraphs.

Extraction of Candidates.
This phase provides the extraction of commonality and

variability candidates as follows. Let D1 . . . Dn is the set of
NL documents and Ti the set of relevant terms extracted
from the document Di.

Commonality candidates are computed as:

Commonality Candidates =
n\

i=1

T i

Variability candidates are computed as:

V ariability Candidates =
n[

i=1

T i�
n\

i=1

T i

Color by Cluster.
In this phase, colors are assigned to the feature candidates

(commonalities and variabilities) to ease the job of the user



Figure 3: Commonality Mining Tool - The user can surf the original documents to check occurrences of the
features in the text. The checked candidates (right panel) are the features that will be passed to FDE.

in understanding the relations among the di↵erent features,
when such features will be visually shown in FDE. The idea
is to assign the same color to variabilities that have a textual
relation in the original documents. Features associated to
domain-specific terms that occur in neighbouring sentences
are considered to have a textual relation. Instead, all com-
monalities will be associated to the same color (black, in the
default configuration).

To assign colors that highlight relations among variabili-
ties, the position of all the domain specific terms are identi-
fied in all the input documents. Such occurrences are used
to group the terms in a fixed number of clusters. A clus-
ter identifies a set of terms that have a relation. Here, we
use the generic term “relation”, without specifying the type
of relation, since the relations that we highlight are based
solely on the distance of terms within the text. The user will
be then in charge of establishing the actual type of relation
that occurs among the colored terms: such relation can be a
hierarchical one (parent/child feature), a AND/OR relation,
or a constraint such as exclude or require. Moreover, such
relation can also not exist, since the color highlights rela-
tions based on distance in the text, which could not match
with semantics relations in the final feature model.

The clustering algorithm adopted to assign colors to clus-
ters is loosely based on K-Nearest Neighbours [20]. A color
identifier is assigned to each cluster, which will be associ-
ated to all of its terms. The colors will be used by FDE to
visualise features that belong to the same cluster. Without
going into the details of the algorithm, the reader should
imagine that, if two terms are frequently occurring in sen-
tences that are close one to the other, then the terms will

be associated to the same color.
The colors associated to each term can be visualised by the

user through CMT, but the user will be able to modify the
di↵erent colors assigned by the algorithm only through FDE.
The coloring feature shall be regarded as a recommendation
of the tool-suite to the user, who will be free to change
colors and add new colored features in FDE. Within this
work-flow, we do not enforce strict consistency between the
colors of the final feature model, and the colors originally
generated. Indeed, the goal here is just to suggest relations
among features in the text, and not to constrain the activity
of the user in designing the feature model.

Feature Selection.
During this phase, the user visualises the commonality

and variability candidates, checks their occurrences in the
input documents, and selects those that seem to be appro-
priate for the construction of the feature diagram. The user
can also manually add other features that s/he thinks neces-
sary. In this phase the user can surf the original documents,
by searching the occurrence of a candidate within the text.
For example, in Fig. 3, the user is looking at one occurrence
of the commonality candidate named “ATS” in one of the
original documents. The checked candidates in the right
panel of the figure are those that the user has selected as ac-
tual commonalities that will be sent to FDE. When the user
presses the “Select Commonalities” button at the bottom-
right of Fig. 3, the checked candidates becomes visible in the
“Selected Commonalities” tab (activated by clicking on the
top-right button of Fig. 3). Similar panels and approaches



Figure 4: Feature diagram notations

are provided for variability candidates.
CMT allows searching only one term at a time, and one

occurrence of term at a time, to enable accurate inspection of
the documents. The search of term occurrences is designed
to “remember” the last searched term. In this way, the user
can return to such term if, after other searches, there is
the need to consider again that term. This functionality
is important for the usability of the tool, in order to help
discarding the unnecessary terms, and to enable reasoning
on the extracted terms by looking at their textual context.

Diagram Generation.
Now the user can run FDE to begin the construction of the

feature diagram. If launched by CMT, the commonalities
and variabilities selected by the user will be passed to FDE,
together with their colors – as assigned by CMT – and their
positions and occurrences in the input documents. The tool
FDE builds an initial diagram with a root with the same
name of the project created with CMT. The selected features
are shown as children of such root.

4.2 Feature Diagram Editor

The Feature Diagram Editor aims to define a feature model
through the construction of its graphic representation, namely
the feature diagram. A feature model is as a hierarchical set
of features, and relationships among features. A formal se-
mantics is defined for these models, and each feature model
can be characterized by a propositional logic formula [4, 19].

Relationships between a parent feature and its child fea-
tures (or subfeatures) are categorized as: AND - all subfea-
tures must be selected; alternative - only one subfeature can
be selected; OR - one or more can be selected; mandatory
- features that are required; optional - features that are op-
tional; a require b, if the presence of a requires the presence
of b ; a exclude b, if the presence of a excludes the presence
of b and vice-versa.

A feature diagram is a graphical representation of a fea-
ture model [15]. It is a tree where primitive features are
leaves and compound features are internal nodes. Common
graphical notations are depicted in Fig. 4. These notations
are also used by FDE.

A user can start interacting with FDE according to three
workflow starting points:

• from CMT: in this case the selected features will be
given in input, together with their colors and the in-
formation about their position in the original texts;

• as a standalone application: in this case, the user
can edit the diagram from scratch without relying on
previously extracted features;

• importing an SXFM files: an SXFM file is an .xml
file generated with the tool SPLOT [16]. In this case,
FDE will automatically generate the Feature Diagram
corresponding to the feature model defined in such file.

Basic Operations.
FDE is used mainly by means of Drag&Drop operations.

Fig. 5 shows the interface of the tool2 (ignore at this stage
the “Search Feature” label in the figure). FDE has a palette
on the left with the graphical symbols already reported in
Fig. 4 (AND decomposition can be performed by combining
the mandatory/optional connectors). The user can select
one of the symbols from the palette and drag it to the central
dashboard, to build or update the feature diagram. With
this user-friendly approach, new features can be introduced,
as well as connections among features.

Some functionalities of FDE are activated by means of
a pop-up menu that can be opened by right clicking on a
feature. Among them, the change of the name of the feature,
or the opening of a window to search occurrences of the
feature in the original documents.

Finally, saving, loading, import and export operations can
be accessed through the menu bar of the tool (under the
“Files” menu). Here, it is worth noting that, when saved,
the visual diagram is mapped to a formal model expressed
in XML. When exported in the *.sxfm format, such model
can also be read by the SPLOT tool [16], which allows per-
forming additional analysis on the product family associated
to the model.

Surfing the Documents.
The workflow of FDE highly depends on the user pref-

erences and needs. However, here it is useful to describe
how the user can surf the original documents of the di↵er-
ent vendors starting from the visual representation of the
feature diagram.

As shown in Fig. 5, the user can select a group of features,
and right click to search them in the original texts. In Fig. 5,
the user has selected a group of two features, named“CBTC
System” and “ATS” (a component of the CBTC system).
When the user presses “Search Feature”, FDE opens the
window shown in Fig. 4.2. From such window the user can
see the occurrences of the selected features in the original
documents.

It is worth noting that the colors displayed in this window
have a di↵erent meaning with respect to those generated by
CMT, and shown in the feature diagram. Here, the colors
serve to understand whether the feature was extracted from
the text as a commonality, a variability or was an additional
feature not previously extracted from the text, as shown in
the legend at the top-left of Fig. 4.2.

4.3 Tool Download

CMT and FDE have been developed in Java, to ensure
their portability. The source code can be freely downloaded
from https://github.com/isti-fmt-nlp/tool-NLPtoFP, toge-
ther with some illustrative examples.

After downloading the tools, which are embedded in a
single project, the user can import them as a Maven project3

within the Eclipse4 platform. Both tools are under LGPL
license. FDE can be executed as-is. Instead, terminology
extraction through CMT is performed remotely. Interested

2The colors of the feature diagram in the figure have been
adjusted by the user. Indeed, right after importing the fea-
tures from CMT, all the commonalities are normally colored
in black.
3https://maven.apache.org
4http://www.eclipse.org



Figure 5: Feature Diagram Editor - The tool allows building a feature diagram through Drag & Drop
operations, by using the palette on the left and dragging the graphical elements to the central dashboard.

Figure 6: Feature Diagram Editor - The tool allows to inspect the original documents, according to the
features selected in the feature diagram.



users shall contact the authors of the current paper to get
an account that will allow them to perform the terminology
extraction task.

5. RELATED WORK

Mining commonalities and variabilities from natural lan-
guage documents is an open issue in product line engineer-
ing, with several solutions proposed in the literature [1]. In
general, the approaches are based on two steps: feature min-
ing and feature model synthesis. The first step aims at iden-
tifying features from documents, while the second step is
oriented to automatically building the feature model. Since
in this paper we focus on feature mining, we compare the
works according to the methodology applied to identify fea-
tures.

Most of the works focus on the extraction of features
from natural language requirements and legacy documen-
tation [13, 6, 3, 17, 18, 21]. The DARE tool [13] is the ear-
liest contribution in this sense. A semi-automated approach
is employed to identify features according to lexical analysis
based on term frequency (i.e., frequently used terms are con-
sidered more relevant for the domain). Chen et al. [6] sug-
gests the usage of the clustering technology to identify fea-
tures: requirements are grouped together according to their
similarity, and each group of requirements represents a fea-
ture. Clustering is also employed in the subsequent works [3,
17, 18, 21], but while in [6] the computation of the similar-
ity among requirements is manual, in the other works auto-
mated approaches are employed. In particular, [3] uses IR-
based methods, namely the Vector Similarity Metric (VSM)
and Latent Semantic Analysis (LSA). With VSM, require-
ments are represented as vectors of terms, and compared
by computing the cosine among the vectors. With LSA,
requirements are similar if they contain semantically simi-
lar terms. Two terms are considered semantically similar if
they normally occur together in the requirements document.
LSA is also employed by Weston et al. [21], aided with syn-
tactic and semantic analysis, to extract the so-called Early
Aspects. These are cross-cutting concerns that are useful
to derive features. Niu et al. [17, 18] use Lexical A�nities
(LA) – roughly, term co-occurrences – as the basis to find
representative expressions (named Functional Requirements
Profiles) in functional requirements.

All the previously cited works use requirements as the
main source for feature mining. Other works [14, 10, 2,
7] present approaches where public product descriptions are
employed, like in our case. While in [14] the feature ex-
traction process is manual, the other papers suggest auto-
mated approaches. The feature mining methodology pre-
sented in [10] is based on clustering, and the authors pro-
vide also automated approaches for recommending useful
features for new products. Instead, the approach presented
in [2] is based on searching for variability patterns within
tables where the description of the products are stored in
a semi-structured manner. Finally, the approach in [7] uses
text similarity measures to support the clustering of di↵erent
terms into features. Both [2] and [7] include also a relevant
part of feature model synthesis.

For a recent literature review of the related work in feature
mining from NL documents, the interested reader can refer
to Bakar et al. [1].

Regardless of the technology, the main di↵erence between
[10], [2] and our work is that the former two rely on feature

descriptions that are rather structured. Indeed, in [10] the
features of a product are expressed with short sentences in
a bullet-list form, while in [2] features are stored in a tab-
ular format. Instead, in our case we deal with brochures
with less structured text, where the features have to be dis-
covered within the sentences. The feature mining approach
employed in [7] mainly di↵ers from ours in the natural lan-
guage processing technologies adopted. In such paper, infor-
mation retrieval and clustering techniques are used to mine
features, while here we propose the usage of the novel con-
trastive analysis technology for the extraction of domain-
specific terms. Moreover, in our paper we also provide intu-
itive, user-friendly GUIs, which are not provided by any of
the previous works.

The novelties of the current work w.r.t. the other pa-
pers are: 1) the usage of free-text informative brochures as
the input documents for the commonality/variability mining
process; 2) the usage of contrastive analysis for the extrac-
tion of domain-specific terms; 3) the introduction of a user-
friendly tool for commonality/variability mining (CMT); 4)
the introduction of a user-friendly tool for editing feature
diagrams (FDE).

6. CONCLUSION

In this paper, we have presented two tools, namely CMT
and FDE, which can ease domain analysis when a company
wishes to enter a new market. The two tools are both in
a prototypical academic version, and several improvements
are still needed to make them industrially applicable. Be-
sides the look-and-feel improvements that are required, we
plan to extend FDE with the introduction of minimum and
maximum cardinalities in features and group of features.
Moreover, we also plan to experiment the usage of the tools
in real-world scenarios, to monitor how a user builds a fea-
ture model starting from NL documents. In our view, this
user-based observation is fundamental to understand how
to introduce feature-model synthesis approaches (as, e.g., in
Davril et al. [7]) in a CMT/FDE-based tool-chain.

We also advocate the usage of the proposed tools – in
particular CMT – for mining common and variant features
form NL requirements, and not only from informal product
descriptions. In principle, requirements documents of sim-
ilar products can be regarded as the brochures of di↵erent
vendors, and processed according to the approach defined
in this paper. In this case, the final output would be a fea-
ture diagram – and a corresponding feature model – that
represents the product line associated to the requirements.
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