Exploring Spatio-temporal Properties of Bike-sharing
Systems

Vincenzo Ciancia, Diego Latella, Mieke Massink, Rytis Paskauskas

Consiglio Nazionale delle Ricerche — Istituto di Scienza e Tecnologie della Informazione “A. Faedo”, Italy

Abstract—In this paper we explore the combination of novel
spatio-temporal model-checking techniques, and of a recently
developed model-based approach to the study of bike sharing
systems, in order to detect, visualise and investigate potential
problems with bike sharing system configurations. In particular
the formation and dynamics of clusters of full stations is explored.
Such clusters are likely to be related to the difficulties of users
to find suitable parking places for their hired bikes and show up
as surprisingly long cycling trips in the trip duration statistics of
real bike sharing systems of both small and large cities. Spatio-
temporal analysis of the pattern formation may help to explain the
phenomenon and possibly lead to alternative bike repositioning
strategies aiming at the reduction of the size of such clusters and
improving the quality of service.

I. INTRODUCTION

Smart bike sharing systems (BSS) have become recently a
popular public transport mode in hundreds of modern cities [1],
[2] operating from a few (e.g. Pisa) up to thousands of docking
stations (e.g. Hangzhou, Paris, or London'). The principle of a
BSS is quite simple. A number of stations with docks partially
filled with bicycles are placed throughout a city. Users of the
service may hire any bicycle at any station at any time for
private use, and must return it at some station of their choice.
The initial period of, typically, thirty minutes is free of charge,
after which an hourly fee is charged. The operator assumes the
responsibility to maintain a high level of usage of the system.

Operating a BSS raises multiple issues such as efficiency of
fuel-consuming repositioning services [3], or integration with
other public transport modes. Not the least, it is important to
make the service attractive to its users. An indication that user
satisfaction should be addressed seriously can be found in a
survey of user experience with the Bicing BSS in Barcelona,
conducted by Froelich et al. [4]. It reports that 75% of the users
who used it for commuting between their home and study
or work, stated that ‘finding an available bike and parking
slot” were the two most important problems, encountered in
76% and 66% cases of 212 respondents, respectively. Indeed,
stations have finite capacities, and finding a completely full
station close to a destination can be annoying. Since a bicycle
must be returned to one of the designated stations lest the
user should incur a fine, she must find another drop off station
that is not full. This feature distinguishes bike-sharing from,
e.g., the taxi service. The additional searching time, and the
associated risk of undesired and unpredictable delays, and fees,
are likely to affect her satisfaction with the system. However,

Pisa: http://www.pisamo.it,
Paris: http://www.velib.paris.fr,
santander-cycles

Hangzhou:
London:

http://www.publicbike.net;
https://tfl.gov.uk/modes/cycling/

user satisfaction due to such temporarily disabled stations is
difficult to evaluate quantitatively from the available data. This
is so because the cycling data alone is not sufficient to describe
neither the intentions of its users, nor the predictability of
the service. To investigate this issue from a different angle,
a model-based approach was presented by some of the au-
thors [5], in which the point of view of ‘rational agents’ who
participate in bike-sharing, is assumed. Our study suggests that
cycling times in different cities, and among pairs of stations
within cities, are similarly distributed?, suggesting a possibility
of a generic interpretation. The rational agent model, based on
minimal assumptions about travelling and decision making,
reproduces rather well the cycling time distributions in Lon-
don and Pisa [5]. This observation encourages extending the
application of the model and investigating the performance
of a system with respect to agents’ intentions. The analysis
suggests that some features of the cycling time distribution
can be related to the predictability of a travel process which,
as just discussed, can be related to the users’ satisfaction with
a system. In particular, it suggests extending the notion of
a problematic full station to a problematic area in which all
stations are full: a full-station cluster. A full station represents
an area that cannot efficiently serve its customers. Full station
clusters increase the size of unserviceable area and with it, the
distance and time that a user with her objective in this area
is likely to waste before finding a suitable station for parking.
Indeed, formation of such clusters and their evolution is evident
from the existing bike-sharing visualisations>.

The main advantage of a modelling approach over data
analysis is a possibility to study hypothetical cases where
station configurations, traffic flows, or incentives are altered
to explore the efficiency of proposed solutions to the afore-
mentioned issues. In this paper, we present a first exploratory
study from the ongoing work, that also serves to gain a better
understanding of which properties of a system can be currently
expressed in a succinct matter, and which of these properties
could suggest fruitful insights into the flow management.
Traces generated by a simulation model are studied using a
novel spatio-temporal model checker based on closure spaces,
called topochecker?.

Spatio-temporal model-checking extends the classical ap-
proach to fully automated verification of software systems [7]
to accommodate also spatial information. In our case, we
extend the branching-time temporal logic CTL (Computation
Tree Logic) adding the spatial operators defined in [8], ob-

2gee also [6]
3See, e.g. http://bikes.oobrien.com/london

4See https://github.com/vincenzoml/topochecker.

129 Data
11 - Uniform model 10 SEei=
10 4 Flow model iﬁéf,,:
D «t-s, a= 3.1 —-—--
9 4 Uxtaa=33 —-—- 1 —5:/
— 8 - E? \
T
£ 74 N
= 0.1 ;
S N
= 5 NN
E 0.01 \H\
o 4 -
> i &
2 4 L "
1 100
U I = !
0 10 50 60
cycling time (min)
Fig. 1. Cycling duration histograms (Data) in London, using 831,754 trip

records in October 2012, and results of simulation of the uniform model (dark
lines) and the flow model (light lines). Maintenance trips are not considered.

taining the spatio-temporal logic of closure spaces (STLCS)
[9]. The model-checking algorithm assigns to each formula
of the logic a set of points in space-time, that is, a pair
of a state and a point in space. Formulas featuring arbitrary
nesting of spatial and temporal operators can be expressed and
automatically verified. In this paper, we build on the existing
simulator and spatio-temporal model checker. We show that the
combination of the two tools can be used to verify formulas
that study various spatial and temporal aspects of clusters (note
that clusters are, in turn, a spatial phenomenon). In particular,
STLCS is able to predicate about formation, persistence, and
propagation of clusters, among other related phenomena.

The outline of the paper is as follows. In Sect. I we briefly
recall the bike sharing model of [5] and in Sect. III we recall
the spatio-temporal logic STLCS and related model-checker.
In Sect. V we illustrate relevant spatio-temporal properties of
the bike-sharing model. In Sect. VI and Sect. VII we discuss
related work and preliminary conclusions, respectively.

II. FROM CYCLING TIMES TO USER SATISFACTION

The bike-sharing model presented in [5] describes the
dynamics of a population of rational agents, coupled to the
dynamics of bicycle stations in a two-dimensional rectangle
representing a city. The model parameters are calibrated so as
to reproduce cycling times of a particular real BSS. Once sat-
isfactory correspondence with a BSS of interest is established,
its other features are inferred from the model. Ideally, they
should provide additional insights about a system not available
directly, or readily, from the available data.

A representative probability density function (PDF) of
cycling times in London is shown in Fig. 1 (Data). One of
its salient features is that 7% of all cycling trips are longer
than thirty minutes, some extending up to two hours, which
is more than the time necessary to traverse the service area in
London (about fifteen kilometres). This range coincides with
the so-called ‘algebraic tail’ of the distribution, the range in
which the PDF(¢) is well approximated by o<t~ with some
exponent a > 0 (Fig. 1, inset). The rational agent model based

gogg b4 .QO% T 000 Cog@® 0‘0 O.‘O. .goog) COO 3
S 00.0068

[® o°
C.O. O.. .8“8‘: .OO...OaO
000 ©0° @ .O... .00. 09°° o
8.000 oo O%ooogoooo 00008‘0 %o'a
0O O o oY o0
8@0%000 O@% @.88 08000080000000000000 o 86;
P000°%0 @ 00000 OOO. 0 0050002000 o o
OOOO Oogogpo% Q..QO OOOOOOOOCQ8
c‘ oOFco@ @ OOOO (e]e) oOOO
00080) OG)%Q%OOOOOO.OOOO OOQO .(DOO 000 O

800 0000 890000080 o Oooq?o OOCO 0088

o %00 OO oo
o 0 @ OO%OO ég@ooo 00%8 oocﬂ oQ

o0 oaooo .OOOo.OOOO.. cooOo)
b@ Se @0 00000606300.0’@0 @ 0 0°® coo
80. o®°® Q)o ©® @ 059 000 0000..60.00

© ooo‘o"oa 000000%)000

%6

Q,

o 8.:.0000

[25%" 009000¢ 0° o9 %oo.
[OXe) O@O OOOO 00O OOO OO [e]e2iele) (8
3 8 &%

858 .. g%og% 008 OOO % OOO
ek 553 e

[e] @0 O oOO
%o‘ooé&soo 80 O® 8% 3..3 088

8% 28 et %o qc o%
6% Q).. QOQOQQ: ® o O %8

@° OQOO 09 0@ °0 000 o. oo‘) ‘)0
gﬁooooooooo &38 oo oOOD 00 6224
OO @ @ OO%O OcoO.oOooOO
0]0/e) ‘)OOO .OOO

Q0 © Q@ O% o O q
s ledia s
X 06259 g%gooo 98% %06 e

0 OO0 o d)O o O@o 06 Q
Q)OOOO%%OO%)OO 20 o 06%838308 0004
000000 ©00 oomo@@ O P C

Fig. 2. Snapshots of the flow (top), and the uniform (bottom) models.
The sizes of circles are proportional to station capacities, and the shades
are proportional to the normalised available bicycles (NAB). The number of
stations and bicycles are equal in both models, and the number of trips per
hour and station capacities are similar.

on a Markov Renewal Process (MRP [5]) suggests that the
algebraically tapered PDF is a generic consequence when the
agents are willing to assume the risk of limiting the radius of
the searched area. Such risk is rational, because it reduces the
median trip duration [5]. Agents risk, of course, that a suitable
station within the area is not found. These ‘bad’ events affect
only a small fraction of all trips if the distribution of agents’
origins and destinations is spatially homogeneous, as in Fig. 1,
the ‘uniform model” (Pr{trip > 30min | uniform} = 0.01) but
become more relevant if there are larger destination concentra-
tion (Pr{trip > 30min | flow} = 0.07). The latter is called the
‘flow model’ and according to Fig. 1 it describes rather well
the actual distribution in London. Presence of areas that attract
more users than other areas is a reasonable assumption about
real cities. An obvious consequence is that also the areas of
full stations will be, as a rule, larger. However, identification
and analysis of problematic areas is not so obvious. In Fig. 2,
example snapshots of both types of models are shown.

In setting up the model we followed the principle that the
total service area, the number and capacities of stations, the
number of bicycles, and the average number of hourly trips
should be close to those in London. However, we were not
pursuing photographic accuracy of the underlying topography
of the city, as our objective is only to illustrate the general
idea of cluster identification. Thus for example, the nearest
neighbours of stations are defined only topologically. The
result is a 7x 13 km? area with a 1938 array of stations with
randomly perturbed locations, random capacities between 15
and 40 docks, and 500 agents that make, on average, 900 trips
per hour. The agent behaviour is sampled randomly, however,
to introduce flows, a superposition of Gaussian distributions
for the origin and destination locations is used for the flow
model, and some counter-current flows are added to improve
the balance of the flow. Numerical simulation of this model

generates traces, each trace consisting of snapshots, each
snapshot representing a system’s state at a particular instance
of time. The agent distributions are not visible in Fig. 2 but
they have an effect on the station occupations (see [5] for more
details). Clearly, the distribution of stations and their temporal
dependence is a complicated task for analysis. In the following
sections, we will discuss the application of a spatio-temporal
model checker to identify problematic stations. Among the
station’s properties that are commonly used to describe bike-
sharing systems, we will use the number of bikes parked at a
station (n), the number of vacancies (v; the capacity of a station
is ¢ =n+v), the normalised available bicycles (‘NAB’= %,
[4]), and the station bike and slot congestion averages pi (1)
(see [5, Eq. 8]). The latter are equal to the fraction of the time
up to ¢ that a particular station is either full or empty.

III. SPATIO-TEMPORAL MODEL CHECKING

In this section we briefly recall the spatio-temporal logic
for closure spaces’ (STLCS) and the model checking algo-
rithm that was introduced in [9]. STLCS extends the spatial
logic SLCS [8], [10] with temporal operators from the com-
putation tree logic CTL (see e.g. [7]). The algorithm permits
evaluation of spatio-temporal properties of points of space,
using valuations that depend on the temporal state of execution.

First, we show the formal syntax of formulas, described
by the following grammar, where p ranges over a finite or
countable set of atomic propositions.

® = TT [TRUE]
[p] [ATOMIC PREDICATE]
1D [NOT]
D|Pd [ORr]
P& P [AND]
No [NEAR]
PSP [SURROUNDED]
Ao [ALL FUTURES]
Eg [SOME FUTURE]
¢ = Xo [NEXT]
Fo [EVENTUALLY]
GoP [GLOBALLY]
| @®UP [UNTIL]

Besides classical Boolean connectives, STLCS features:

Temporal operators: the CTL path quantifiers A (“for all
paths”), and E (“there exists a path”). As in CTL, such quanti-
fiers must necessarily be followed by a path-specific operator.
Our algorithm uses a minimal set of path operators®, namely
X (“next”), F (“eventually”), G (“globally”), U (“until”);

Spatial operators: the SLCS spatial operator N (“near”), ex-
pressing that a point in space is near another point in the spatial
neighbourhood relation satisfying a certain formula, and the
binary operator S (“surrounded”), denoting the fact that a point
has “no way out” from a region of points satisfying a property,
unless passing by points satisfying another property.

3A closure space is a pair (X, %) where X is a set, and the closure operator
% :2X — 2% assigns to each subset of X its closure, obeying to the following
laws, forall A,BCX: 1) € (0)=0;2) AC % (A); 3) €(AUB) =% (A)UF(B).
We refer to [8] for an introduction.

6 All standard CTL operators can be derived from this set (see e.g. [7]).

A model .# of STLCS is composed of a Kripke structure
(S,%), where S is a non-empty set of states, and % is a
non-empty accessibility relation on states, and a closure space
(X,¥), where X is a set of points and ¥ the closure operator.
For the purposes of this paper it is sufficient to consider
the sub-class of closure spaces generated by graphs; a graph
(V,E), with V the set of vertices and E C V x V uniquely
characterises the closure space (V, %) where, for any A CV,
¢ (A) =AU{v € V|Ja € A.aEv}. Such closure spaces belong
to the class of quasi-discrete closure spaces (see [8]). Every
state s has an associated valuation ¥;, making ((X,%),¥;) a
closure model according to Definition 6 of [8]. Equivalently,
valuations have type S x X — 2F, where P is the set of
atomic propositions, thus, the valuation of atomic propositions
depends both on states and points of the space.

The truth value of a formula is defined at a point in space
x and temporal state s. The mutual nesting of spatial and tem-
poral operators permits one to express rather complex spatio-
temporal properties. Let us proceed with a few examples.
Consider the STLCS formula

EG[green|S[blue]

Point x satisfies such formula in state s if there exists (E) a
temporal path rooted at s, such that in all states (G), i.e. at any
point in time, x satisfies atomic property [green], and it is not
possible to start from x, following edges of the spatial graph,
and leave the region of points satisfying [green] in which x
is located, unless passing by a point satisfying [blue].

A further example exhibiting nesting of spatio-temporal
operators is the STLCS formula

EF[green|S (AX[blue])

This formula is satisfied by a point x in state s if point x
possibly (E) satisfies [green] in some future (F) state s', and in
that state, it is not possible to leave the area of points satisfying
[green] unless passing by a point that will necessarily (A)
satisfy [blue] in the next (X) time step.

For space reasons, we omit the formal semantics of the
logic, which can be found in [9].

IV. THE SPATIO-TEMPORAL MODEL CHECKER

To verify our formulas, we used a newly developed spatio-
temporal model checker named topochecker. The tool’
is a global model checker using a dynamic programming
algorithm to verify STLCS formulas on finite models. Models
are composed of a temporal part, which is a Kripke structure,
and a spatial part, which is a finite, quasi-discrete closure space
(see [8]). The Kripke structure and the spatial structure are
given in the dot graph description language®, and valuations
of atomic propositions are provided by a comma-separated-
values file associating to each point in space-time a list of
propositions. The tool enriches basic STLCS by allowing users
to specify that some atomic properties have an associated

"The tool is available at https:/github.com/vincenzoml/topochecker under
an open source license, and is meant to be an optimized and user-oriented
implementation of the algorithm that was studied in [11], therefore superseding
previously developed prototypes.

8Further information on the dot notation can, for example, be found at
http://www.graphviz.org/Documentation.php.

floating-point value; therefore, atomic propositions can be
basic comparisons between the name of an atomic property
and a floating point value. The tool permits parametric macro
abbreviations, that we use in Section V.

The model checker is written in the programming language
OCaml®, and carefully optimised. In particular, we use native
arrays and memory management (through the OCaml library
bigarray); the algorithm uses a table of k X s X f memory
words, where k is the number of temporal states, s is the num-
ber of spatial locations, and f is the number of subformulas of
a formula. One pass is executed over this table, filling it with
a truth value for every cell, running in O(k X s X f) steps.

Execution times are interesting for our experiments: even if
we tested a quite large number of complex formulas (not all of
which have been discussed here in detail), all our experiments
are completed in negligible amounts of time, of the order of
one second, on a standard laptop; this is because our graph
is rather small (722 stations) and the number of instants of
time we consider is in the order of 100-1000 states. Despite
such small numbers, our preliminary experiments show that
spatio-temporal model-checking can give useful insights on
interesting behavioural features of bike sharing systems, even
for large ones, like the one of London.

V. PROPERTIES AND RESULTS

In this section the main examples will be presented in the
form of logical formulas, expressing several properties of a
bike-sharing model. These formulas are interpreted as signals
of possible interest to the operator, such as the presence, or
persistence of problematic clusters of stations. It is intended as
a demonstration of how a spatio-temporal model-checker may
be used to encapsulate such signals in a completely formal way,
without attempting to explore the rich repertoire of possibilities
(see [12] for more examples of spatio-temporal formulas). We
are concerned with the full-station clusters as more salient to
the discussion, although the extension of the same kind of
formulas to empty station clusters is a straightforward matter.

The spatial structure is added to the simulation model in
the form of an undirected graph, whose vertices are stations,
and edges are the nearest station connections. The parameters
are detailed in section II. A single trace of the simulation
model is used as input to the model-checker. It represents the
evolution of a model at specific time intervals, truncated after
a given number of steps. For all the experiments except the last
one (related to user satisfaction), the duration of an interval is
10 minutes, and the number of time steps is 101. In the last
experiment, we considered a time interval of 1 minute and 301
time steps'®. Spatio-temporal model-checking is performed on
a single simulation trace. Starting with simple expressions of a
system’s state, we proceed to develop more complex formulas
that nest spatial and temporal operators.

Full stations and clusters: first, we characterise stations that
are full, that is, with no vacant places, and clusters of full
stations, that is, stations that are full, and are connected only
to other stations that are full in turn. These two (purely spatial)
properties are formalised below.

9See http://www.ocaml.org.
10The results can be reproduced using the data and scripts, provided with
the source code of the tool.

Fig. 3. Stations of time step 80 of our simulation that are on the boundary of
the region of points that will eventually become a cluster (green), and stations
that, whenever they are full, stay full and become part of a cluster (red).

full
cluster

= [vacant==0]
=I(full)

Connectivity is expressed by the derived inferior operator
I®=!(N(!®)). Informally speaking, in an undirected graph,
points satisfying I® are only connected to points satisfying
®. The smallest possible cluster is therefore composed of a
full station such that its direct neighbours in the north, south,
east and west directions are also full. Note that the definition of
cluster only identifies (on purpose) these “inner” full stations
and not their direct full neighbours. The macro abbreviation
full uses a boolean predicate (equality), applied to the
quantitative value of the atomic property [vacant].

Formation of clusters: a point evolves into a cluster when it
becomes full, and stays full until it becomes part of a cluster.
This may be detected by the following formulas:

=('1)le;
= (EF full) &
(AG implies(full,
A fullUcluster))

implies(f,g)
nextCluster

Here, implies is standard logical implication. The defini-
tion of nextCluster characterises points that will eventually
become full and, for every future state, whenever full, they will
stay full until becoming part of a cluster. This is a very strong
property, that few points possess. Such points are central in
cluster formation, as they represent stations that always form
a cluster when they become full. In Fig. 3, these points are
shown in red, in a state'! of the simulation where there are
many of them. For comparison, the boundary of the points that
will become a cluster are shown in green, that is, those points
satisfying (!EF cluster)& (N EFcluster).

Persistence of clusters: we can identify stations belonging to
clusters that persist for some amount of time, that is, they last
for a specific number of time steps. This situation, for e.g.,
two and three time steps, is described by the formulas

= cluster & (AXcluster)
= cluster & (AXcluster2steps)

cluster2steps
cluster3steps

By combining the formulas described above with the
eventually operator, the tool is able to detect the stations that,
in any state, will eventually be part of a cluster, with specified
persistence. Let us look at Figure 4, where we show the output

"'The tool is a global model checker, therefore it is able to produce a
graph for each state of the model, related to the truth value of formulas in
that particular state, even if we only show results related to one specific state.

etel
SCh:g

5

Fig. 4. Points of the initial state of the simulation that will eventually become
part of a cluster (green), or of a cluster that persists for two (resp. three) time
steps, coloured in blue (resp. red).

of a model checking session. The tool colours in red nodes
that satisfy the formula EF cluster3steps (and thus also
formulas describing shorter persistence times), in blue those
that satisfy EFcluster2steps, and in green those where
formula EF cluster is true. If we compare the results with the
snapshot of the flow model shown in Fig. 2, we can see that
the areas where persistent clusters arise over time are indeed
corresponding to the areas where the stations are relatively
full. The single snapshots such as those in Fig. 2 do not say
anything about the evolution of possible clusters though. So
this is additional, useful information that is very easy to obtain
via spatio-temporal model checking.

Propagation of clusters: another phenomenon that can be
investigated using topochecker is the spatial propagation
of cluster. Among many possible related STLCS formulas, we
show how to detect points that obey to at least one of the
following: 1) they are not full, but are close to a cluster, and
will necessarily become part of a cluster in the near future; or
2) they are part of a cluster, but will necessarily become not
full in a short amount of time, even if still being physically
close to a cluster. This is achieved by the following definitions,
where the macro bdry (£) describes the topological boundary
of the set of points satisfying f (see [8]):

bdry(f) =(1£)&(Nf)

growingCluster = (!cluster)&
(N(bdry(cluster)) & (AXfull)

shrinkingCluster = cluster& (AX(!full))

The model checker can be used to verify these formulas.
For instance, in time step 77 of our simulation, there are both
stations that will join a cluster and stations that will leave a
cluster in the next time step. We show the result in Figure 5,
where we used the tool to colour in green states satisfying
cluster (for comparison), and then to colour in red states
satisfying growingCluster and in blue states satisfying
shrinkingCluster. The results of these formulas provide
insight in the dynamics of the clusters at particular time steps,
in particular the directions in which the clusters are evolving.
This may be important information for the development of
repositioning strategies in particular when such dynamics are
repeated over time in the same areas.

User experience: STLCS can also be used to identify specific
problems related to user experience in BSSs. For example,
when an user is willing to leave a bike at a specific station,
and such station is full, she may try to find a nearby station
with available parking slots, or she may wait for some time in

G
DG
B

Fig. 5. Points of time step 77 of the simulation that are part of a cluster (in
green), or are not full, but will become part of a cluster in one step (in red),
or that are part of a cluster but will become not full in one step (in blue).

850,

868

Fig. 6. Stations that are full in time step 0, where it is possible that an
user applying the obvious strategy of waiting for some time, and then moving
nearby, might still not find a free parking slot.

the same station. This behaviour may be typically sufficient to
solve the problem, at the expenses of a longer trip duration.
One may want to check whether this procedure is effective in
a few time steps. In the following formula, we check whether
it is possible that, in three time steps, the user still was unable
to leave the bike in a station, which is full in the current state.

=full& (N(AX(full&
(N(AX (full &N (AX full)))))))

tripEnd

The output from the model checker, colouring in red points
of time step 0 where the formula is true, is given in Fig. 6.

VI. RELATED WORK ON SPATIAL LOGICS

Different forms of spatial logic have been proposed in
computer science to refer to logics expressing properties of
structured objects such as processes or data structures, in
particular in the context of 7w-calculus (e.g. [13]) and mo-
bile ambients with the related ambient logic (e.g. [14]). For
example a binary logic operator has been introduced, ®|¥,
that holds for a process P when this process is a parallel
composition of two processes Q, satisfying ®, and R, satisfying
Y. Our work is not directly connected to these logics, but rather
to logics that are spatial in the topological sense (see [15] for
a comprehensive reference).

In [16] a linear spatial superposition logic is defined for
the specification of emergent behaviour. The logic is applied
to pattern recognition in the context of medical image analysis.
Furthermore, in a stochastic setting, the Mobile Stochastic
Logic (MoSL) [17] has been proposed to predicate on mobile
processes in models specified in StoKLAIM, a stochastic
extension of KLAIM based on the tuple-space model of com-
putations. Other variants of spatial logics concern the symbolic

representation of the contents of images, and, combined with
temporal logics, for sequences of images [18]. The approach
is based on a discretisation of the space of the images in rect-
angular regions and the orthogonal projection of objects and
regions onto Cartesian coordinate axes such that their possible
intersections can be analysed from different perspectives.

The spatio-temporal logic STLCS used in the current paper
addresses properties of discrete, graph-based models that, in
our case study, reflect the geographical position of docking
stations in a city. The spatial fragment of STLCS, and related
model-checking algorithms, were introduced in [8] and have
also inspired the work on Spatial Signal Temporal Logics
in [19], where a linear time logic is introduced to reason about
properties of signals, considering both their truth values and
their robustness in the presence of local perturbations of the
signals. The spatial fragment has also been used to analyse
aspects of public bus transportation systems [11].

VII. CONCLUSIONS AND OUTLOOK

Spatio-temporal model-checking allows for the verification
of complex properties that concern the sophisticated interplay
of temporal and spatial modalities. In this paper we have
explored a range of properties of large bike sharing systems to
obtain a more detailed insight in specific emerging patterns
that have an effect on the quality of service that a bike
sharing system can provide from a user’s point of view such
as the possibility not to find a suitable parking slot within a
reasonable distance from the planned destination.

In this explorative study we used only a fraction of the
potential of the spatio-temporal model checker. In particular,
we used it only on traces from a simulator in this case,
whereas the logic for which it is designed is a branching
time spatial logic. In fact, in future work we plan to extend
its use to analyse branching structures. These arise naturally,
for example, in the verification or comparison of the effect of
different repositioning strategies for bikes. Different strategies
may be available at specific times, yielding a non-deterministic
choice between different options to alleviate the problem of the
formation of clusters of full stations. One could also use spatio-
temporal model-checking in a real-time monitoring scenario, in
order to detect the emergence of particular patterns in a bike-
sharing system in real-time, and to provide quick feedback on
the possible effects of particular maintenance or repositioning
interventions. We note that the size of bike sharing systems
permits verification of rather complex properties in very short
amounts of time. Therefore, the combination of simulation and
model-checking that we propose may be used as a support
system for real-time decision making in bike sharing systems.
For this purpose, we plan to extend our spatio-temporal model
checker to deal with quantitative measures such as distances
or probabilities, and the introduction of bounded variants of
the various logical operators. Using our tools in combination
with statistical model checking is also worth exploring.

Acknowledgements: This work is supported by the EU project
QUANTICOL: A Quantitative Approach to Management and
Design of Collective and Adaptive Behaviours, 600708, and
the IT MIUR project CINA. We thank Mirco Tribastone and
Daniél Reijsbergen for London bike-sharing data.

(1]

(2]

(3]

(4]

(51

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

REFERENCES

P. De Maio, “Bike-sharing: Its history, impacts, models of provision,
and future.” Journal of Public Transportation, vol. 12, no. 4, pp. 41-56,
2009.

P. Midgley, “Bicycle-sharing schemes: Enhancing sustainable mobility
in urban areas,” in /9th session of the Commission on Sustainable
Development, ser. CSD19/2011/BP8. United Nations, 2011.

E. Fishman, S. Washington, and N. L. Haworth, “Bike share’s impact on
car use: evidence from the United States, Great Britain, and Australia,”
in Proceedings of the 93rd Annual Meeting of the Transportation
Research Board, 2014.

J. Froehlich, J. Neumann, and N. Oliver, “Sensing and predicting the
pulse of the city through shared bicycling,” in IJCAI, 2009, pp. 1420-
1426.

M. Massink and R. Paskauskas, “Model-based assessment of aspects of
user-satisfaction in bicycle sharing systems,” in Proceedings of the 18th
IEEE International Conference on Intelligent Transportation Systems
2015. 1EEE, 2015, to appear.

P. Borgnat, P. Abry, P. Flandrin, C. Robardet, J.-B. Rouquier, and
E. Fleury, “Shared bicycles in a city: A signal processing and data
analysis perspective,” Adv. Complex Syst., vol. 14, no. 3, pp. 415-438,
2011.

C. Baier and J.-P. Katoen, Principles of model checking. MIT Press,
2008.

V. Ciancia, D. Latella, M. Loreti, and M. Massink, “Specifying and
verifying properties of space,” in 8th IFIP-TCS Conference, Track
B, ser. LNCS, vol. 8705. Springer, 2014, pp. 222-235. [Online].
Available: http://dx.doi.org/10.1007/978-3-662-44602-7_18

V. Ciancia, G. Grilletti, D. Latella, M. Loreti, and M. Massink,
“An experimental spatio-temporal model checker,” in Proceed-
ing of VERY*SCART (workshop affiliated to SEFM 2015), ser.
LNCS. Springer, 2015, to appear. Extended version of QC-TR-
10-2014, http://milner.inf.ed.ac.uk/wiki/pages/J8N4c8/QUANTICOL _
Technical_Reports.html.

V. Ciancia, D. Latella, M. Loreti, and M. Massink, “Specifying and
Verifying Properties of Space - Extended version,” QUANTICOL,
Technical Report TR-QC-06-2014, 2014.

V. Ciancia, S. Gilmore, D. Latella, M. Loreti, and M. Massink, ‘“Data
verification for collective adaptive systems: spatial model-checking of
vehicle location data,” in 2nd FoCAS Workshop on Fundamentals of
Collective Systems, ser. IEEE Eight International Conference on Self-
Adaptive and Self-Organizing Systems. IEEE Computer Society, 2014.

V. Ciancia, S. Gilmore, G. Grilletti, D. Latella, M. Loreti, and
M. Massink, “Spatio-temporal model-checking of vehicular movement
in transport systems,” submitted., available from the authors.

L. Caires, “Behavioral and spatial observations in a logic for the
n-calculus,” in Proceedings of the 7th International Conference on
Foundations of Software Science and Computation Structures (FOS-
SACS’04), ser. LNCS, 1. Walukiewicz, Ed., vol. 2987. Springer, 2004,
pp. 72-87.

L. Cardelli and A. D. Gordon, “Anytime, anywhere: Modal logics
for mobile ambients,” in Proceedings of the 30th SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’00), 2000,
pp. 365-377.

J. van Benthem and G. Bezhanishvili, “Modal logics of space,” in
Handbook of Spatial Logics, 2007, pp. 217-298.

R. Grosu, S. A. Smolka, F. Corradini, A. Wasilewska, E. Entcheva, and
E. Bartocci, “Learning and detecting emergent behavior in networks of
cardiac myocytes,” Commun. ACM, vol. 52, no. 3, pp. 97-105, 2009.

R. De Nicola, J.-P. Katoen, D. Latella, M. Loreti, and M. Massink,
“Model checking mobile stochastic logic,” Theor. Comput. Sci., vol.
382, no. 1, pp. 42-70, 2007.

A. D. Bimbo, E. Vicario, and D. Zingoni, “Symbolic description and
visual querying of image sequences using spatio-temporal logic,” IEEE
Trans. Knowl. Data Eng., vol. 7, no. 4, pp. 609-622, 1995.

L. Nenzi, L. Bortolussi, V. Ciancia, M. Loreti, and M. Massink,
“Qualitative and quantitative monitoring of spatio-temporal properties,”
in 15th International Conference on Runtime Verification, ser. Lecture
Notes in Computer Science. Springer, 2015, to appear.

