
Università degli Studi di Pisa

Dipartimento di Informatica
Dottorato di Ricerca in Informatica

Ph.D. Thesis

Device Interoperability and Service
Discovery in Smart Environments

Michele Girolami

Supervisor

Prof. Stefano Chessa

Supervisor

Dr. Francesco Furfari

Contents

1 Introduction 5

1.1 Research Questions and Objectives 7

1.1.1 Device interoperability . 8

1.1.2 Service Discovery . 10

1.2 Approach to the Research Questions 11

1.3 The Overall Architecture . 11

1.4 Structure of the thesis . 12

2 Background and Related Works 15

2.1 Device Interoperability . 15

2.1.1 Background . 15

2.1.2 Related Works . 30

2.1.3 Discussion . 31

2.2 Service Discovery in MSN . 33

2.2.1 Background . 33

2.2.2 Related Works . 41

2.2.3 Discussion . 56

3 A Service-Oriented ZigBee Gateway 59

3.1 The Reference Scenario . 60

3.2 The ZB4O Gateway . 60

3.2.1 The Access Layer . 62

3.2.2 The Abstraction Layer . 65

3.2.3 The Integration Layer . 68

3.3 Evaluation of Use Cases . 69

3.3.1 The GiraffPlus exporter . 70

3.3.2 The universAAL exporter . 71

3.3.3 The UPnP exporter . 75

3.3.4 The REST exporter . 80

3.4 Summary . 83

iv CONTENTS

4 Service Discovery in Mobile Social Networks 89
4.1 The Reference Scenario . 90
4.2 Service Discovery Model for MSN . 91

4.2.1 Mobile Social Networks and Community Detection 91
4.2.2 Service Discovery . 93

4.3 SIDEMAN Algorithm . 95
4.3.1 Overview of the algorithm . 95
4.3.2 SIDEMAN . 97

4.4 CORDIAL Algorithm . 99
4.4.1 Routines in MSN . 100
4.4.2 Overview of the algorithm . 103
4.4.3 CORDIAL . 106

5 Evaluation of Service Discovery Algorithms 111
5.1 Human Mobility Traces . 111
5.2 Human Mobility with Experimental Datasets 112
5.3 Benchmark algorithms . 123
5.4 Service Discovery Evaluation Framework 125
5.5 Evaluation of SIDEMAN . 127

5.5.1 Results . 128
5.6 Evaluation of CORDIAL . 138

5.6.1 Results . 141
5.7 Summary . 150

6 Conclusions 153
6.1 Future Works . 154

Bibliography 157

List of Figures

2.1 The ZigBee Stack. 16
2.2 The ZigBee network topology. 16
2.3 The OSGi service model. 19
2.4 The OSGi architecture. 20
2.5 The OSGi bundle life cycle. 21
2.6 The GiraffPlus components. 24
2.7 The universAAL system overview. 25
2.8 The universAAL components. 26
2.9 The UPnP protocol stack. 28
2.10 The UPnP stack for discover and control phases. 29
2.11 The UPnP stack for event phase. 29
2.12 Snapshot of a distributed MSN. 36
2.13 Routing and data dissemination. 38
2.14 Classification of services in MSN. 39
2.15 Service selection strategies. 50

3.1 The ZigBee service model. 61
3.2 The Access Layer. 63
3.3 An example of addressing tree and device discovery. 65
3.4 The Abstraction Layer. 66
3.5 The refinement process of the Abstraction Layer. 67
3.6 The component diagram of the integrated architecture. 71
3.7 The sequence diagram of the announcing and publishing mechanisms

for a sample device (ZigBee Light) in the integrated scenario. 72
3.8 The robot and the sensors used: 1) The GiraffPlus robot, 2) The

ZigBee dongle connected to the robot, and 3) The environmental
sensors. 73

3.9 The Integrated scenario. 73
3.10 The LDDI building block. 74
3.11 Example of filters for the service bus. 74
3.12 Integration between UPnP and ZigBee. 75
3.13 ZigBee OnOff Light as UPnP BinaryLight. 76
3.14 Hardware used in UC1. 77
3.15 The UC1 execution flow with the UPnP exporter. 77

vi LIST OF FIGURES

3.16 The UC2 execution flow with the UPnP exporter. 79
3.17 Performance evaluation in UC2 with UPnP Exporter. 85
3.18 The REST exporter. 86
3.19 The UC1 execution flow with the REST exporter. 86
3.20 Performance evaluation in UC2 with REST exporter. 87

4.1 Social interactions during a day. 91
4.2 Contact times of nodes n2 and n3 with node ni. 92
4.3 Service discovery process. 93
4.4 Overview of SIDEMAN. 96
4.5 Example of routine in a day. 101
4.6 Similarity cross-communities. 102
4.7 Direct and indirect interaction schema. 102
4.8 Overview of CORDIAL. 104

5.1 Snapshots of encounter graph with Cambridge dataset. 113
5.2 Example of community and neighborhood. 116
5.3 Average dimension of communities and neighborhood. 117
5.4 Contacts per hour. 118
5.5 CCDF of contact duration. 119
5.6 CCDF of inter-contact time. 120
5.7 Number of encounters w.r.t unique encounters. 121
5.8 Geographical extension of the MDC Nokia dataset. 122
5.9 Evaluation metrics with HCMM dataset. 123
5.10 Accuracy and Proactivity metrics in HCMM scenario. 130
5.11 QRT and EC metrics in HCMM scenario. 132
5.12 Service Cache metric in HCMM scenario. 133
5.13 Network Overhead metric in HCMM scenario. 134
5.14 Accuracy and Proactivity metrics in Infocom06 scenario. 136
5.15 QRT and EC metrics for Infocom06 scenario. 138
5.16 Service Cache metric in Infocom06 scenario. 139
5.17 Network Overhead metric in Infocom06 scenario. 139
5.18 Distribution of interests in the datasets. 140
5.19 Accuracy metric in different simulation scenarios. 143
5.20 Proactivity metric in different simulation scenarios. 144
5.21 QRT metric in different simulation scenarios. 145
5.22 EC metric in different simulation scenarios. 146
5.23 SC metric in different simulation scenarios. 148
5.24 QA metric in different simulation scenarios. 149
5.25 NO metric in different simulation scenarios. 151

List of Tables

2.1 Comparative tables of ZigBee gateways. 32
2.2 Comparative table of advertisement and query strategies. 44
2.3 Comparative table of service selection strategies. 53
2.4 Comparative table of service access strategies. 56

3.1 Evaluation table of ZB4O. 70
3.2 Performance metrics for UC1 with the UPnP exporter. 78
3.3 Performance metrics for UC1 with the REST exporter. 82

5.1 Features of the mobility datasets. 124
5.2 Summary of the evaluations of SIDEMAN and CORDIAL 124
5.3 Benchmark algorithms. 125

viii LIST OF TABLES

0.0. LIST OF TABLES 1

List of Acronyms

CORDIAL COllaborative seRvice DIscovery ALgorithm

DLNA Digital Living Network Alliance

EC Energy Cost

EP End Point

GENA General Event Notification Architecture

HA Home Automation

HCMM Home-cell Community-based Mobility Model

KNX Konnex

LDDI Local Device Discovery Integration

MANET Mobile Ad-hoc NETwork

MSN Mobile Social Networks

NO Network Overhead

OSN Online Social Networks

QA Query Answered

QRT Query Response Time

REST Representational State Transfer

SAIL Sensor Abstraction and Integration Layer

SC Service Cache

SE Smart Environments

SIDEMAN ServIce DiscovEry in Mobile sociAl Networks

SOAP (Simple Object Access Protocol

SSDP Simple Service Discovery Protocol

UPnP Universal Plug and Play

ZB4O ZigBee APIs for the OSGi Framework

ZBD ZigBee Base Driver

2 LIST OF TABLES

ZCL ZigBee Cluster Library

ZDO ZigBee Device Object

Abstract

Smart Environments (SE), and in particular Smart Homes, have attracted the at-
tention of many researchers and industrial vendors. In such environments, according
to the Ambient Intelligence paradigm, devices operate collectively using any infor-
mation describing the environment (also known as the context-information) in order
to support users in accomplishing their tasks. SE devices are characterized by sev-
eral properties: they are designed to react autonomously to specific events, they
are aware of the context, they manage sensitive information concerning the users,
they adopt a service-oriented model in order to interact with other devices, and they
interact by means of various applications and communication protocols.

Cooperation with devices in SE is thus complex. This thesis deals with two
problems that still represent a barrier to the development of many SE applications.
The thesis examines how to interact with low-power devices, which is refereed to as
device interoperability, and how to discover the functionalities that mobile devices
offer, namely the service discovery problem. The first part of the thesis describes
the design of ZB4O an integration gateway for low-power devices based on the
ZigBee specification. The growing market for ZigBee-ready appliances makes the
ZigBee specification an important technology-enabler for SE. However, accessing
such devices entails an easy interaction model with IP-based networks that are
already present in most SE. Therefore, this work presents an open source platform
that seamlessly integrates ZigBee devices with applications running on SE. The
thesis describes the evaluation process of ZB4O with various trials organized over
the last year of two EU projects, as well as the integration of ZB4O with UPnP
and a RESTful approach. SE devices can also export their functionalities with
a service-oriented approach. In fact, every resource offered by a device can be
seen as a service available for other devices. The second problem studied in this
thesis is the service discovery and it deals with how to advertise and query services
in SE. The scenario considered for the service discovery problem is characterized
by mobile devices carried by people roaming in SE. Hence, mobility and sociality
are two key-factors that make the service discovery problem more complex and
challenging. The thesis presents two algorithms, termed SIDEMAN and CORDIAL,
for the service discovery in Mobile Social Networks (MSN) which are evaluated with
real and synthetic simulation scenarios.

4 LIST OF TABLES

Chapter 1

Introduction

Already in 1991 Mark Weiser observed that “The most profound technologies are
those that disappear.” [1]. In fact, increasingly miniaturized, powerful, cheap smart
phones smart watches, tablets and ultra-thin notebooks have become part of our
daily lives. We are surrounded by all these devices daily, at home, work and also in
public spaces.

The Ambient Intelligence (AmI, late 1990s) research field embraces the Weiserian
vision. AmI is the convergence of two older concepts, Ubiquitous Computing [1] and
Pervasive Computing [2] that focus the attention on human needs. In particular, de-
vices that surround us can also be used to assist our common needs, such as mobility,
entertainment, health and security. In order to achieve the needs of users, systems
with the AmI paradigm must provide features such as context-awareness, service
orientation, personalization, adaptation and anticipatory behavior. The Smart En-
vironments (SE) [3] are the incarnation of the such complex systems. Weiser in 1981,
defined a Smart Environment as [...]a physical world that is richly and invisibly in-
terwoven with sensors, actuators, displays, and computational elements, embedded
seamlessly in the everyday objects of our lives, and connected through a continuous
network. This definition highlights that an environment becomes smart when it
helps the users within the environment to accomplish his/her tasks.

A concrete example of a SE is the Smart Home [4] other examples include public
spaces such as hospitals, airport terminals, bus stations or (smart) cities. The EU
projects DOREMI, GiraffPlus, universAAL, ReAAL and PERSONA have focused
on the creation of concrete SE. A Smart Environment basically consists of three
entities: humans, the devices and the software modules. Humans (or the end-
users) play the key-role in a SE, since they are assisted by the services provided by
devices. Devices are hardware components that are optionally equipped with sensors
and actuators, and are controlled by the software modules. In the literature there
are many applications based on the concept of an SE, most of which are designed
to improve the quality of life of users at home, while moving, at work or during
entertainment activities.

The Smart Home is the most representative example of an SE. In a Smart Home,

6 CHAPTER 1. INTRODUCTION

different types of devices are deployed in the same environment; for example appli-
ances, sensors and actuators and general-purpose devices cooperate together offering
support to the inhabitants in their daily activities. Some examples include moni-
toring heating systems, detecting intrusions at home, or sharing digital contents
between the TV and PC.

Smart Homes are not the only representative case of SE in fact health-care
domain is an emerging market of applications aimed at monitoring the health status
of the elderly, patients and caregivers under three main areas: (i) monitoring specific
patient’s diseases; (ii) controlling the patient’s gestures in order to detect failures or
accidents, and (iii) reacting to anomalous health-conditions by alerting relatives or
caregivers.

The perimeter of a SE can be wider than an indoor location such as a home or
a hospital, indeed Smart Cities are further examples of SE that are offer advanced
services for citizens, such as controlling traffic jams, monitoring flood detection and
pollution agents, or advertising public transport in real-time [5].

Such application domains give rise to a set of properties and research challenges
that characterize the SE:

• Autonomous devices: the complexity and dynamics of many application do-
mains in a SE entails distributing intelligence in the system. The challenge is
to design (smart) devices that autonomously react to a wide range of different
situations in order to reduce human intervention.

• Scalability: the increasing number of connected devices gives rise to various
scalability issues: (i) assigning an address to devices installed or dynamically
added to a SE, some initiatives such as IPv6 and 6LowPan specifically focus
on how to uniquely address devices in a network; (ii) data communication and
networking: the goal is to manage the interconnection among a large number
of devices that are based on different protocols and communication paradigms.

• Energy-awareness: devices can be disconnected from the power line, therefore
they must be designed and programmed to minimize energy consumption and
to maximize the battery life-cycle. The results achieved by the Green Com-
puting paradigm [6] can be adopted. Green Computing takes into account the
energy consumed during the computation, so that expensive computations are
only performed when strictly necessary.

• Embedded security and privacy preservation: devices can manage sensitive
information, for example the health conditions of a patient or data gathered
from caregivers on the status of an elderly person. Clearly, such data must
be protected against unauthorized diffusion or from malicious attacks. A SE
has to consider how to protect data by adopting software and hardware coun-
termeasures, such as deploying tamper-proof devices that provide evidence of
malicious manipulations, or using public-private keys for encrypting messages
exchanged among devices.

1.1. RESEARCH QUESTIONS AND OBJECTIVES 7

• Context-awareness: the context describes the environment and any events that
occur. In a SE the devices must be aware of the context in order to react prop-
erly. For example a device providing a streaming service can adapt the quality
of the video according to context-information such as the network bandwidth,
the energy consumption of the device or according to specific constraints im-
posed by the device invoking the service.

• Interoperability: the range of devices that we have considered so far are ex-
tremely heterogeneous in terms of access mechanisms. In particular, devices
come from different vendors and are designed for different purposes. They dif-
fer with respect to the hardware and the software modules, the communication
protocols and the interaction paradigms that they obey. In order to design SE
applications that are able to access different devices simultaneously, SE are
often equipped with an inter-operable gateway that is able to integrate such
devices seamlessly. An inter-operable gateway should hide all the technical
complexity concerning the access of devices in the SE, by offering simplified
interfaces to devices or humans willing to access such devices;

• Service orientation: the functionalities offered by devices in an SE can be
considered as services offered both to humans and to other devices coexisting
in an SE. Each service exposes its interfaces through which other devices can
discover the service and access it by means of a service discovery and access
protocol. The services can also be combined in order to form more complex
and rich services. Moreover, devices in an SE can be deployed as stationary
or mobile devices. Stationary devices are installed permanently in specific
locations for example a smart plug, and some kinds of environmental sensors
or appliances. On the other hand, mobile devices can change their position
over time; for example a smart phone, a smart watch or a wristband are not
deployed in SE hot-spots, but are worn by people within the SE and their
mobility is tightly coupled with the mobility of the person carrying them. The
numbers of mobile devices are increasing in our daily lives and thus they are
even more present in the SE in which we spend most of the time. We consider
that the mobility of a device affects the way and the quality of the services
that are provided by devices. Indeed, a mobile device is often unplugged from
the power line, it is connected to a (unreliable) wireless network and can be
switched on or off without any prior notification. These affects make it more
complex to discover services provided by mobile devices, which is also known
as service discovery problem[7].

1.1 Research Questions and Objectives

The list of properties reported in the previous section, highlights that cooperation
among devices in an SE is a complex task. This thesis addresses two research

8 CHAPTER 1. INTRODUCTION

questions that derive from the cooperation among devices, namely the device in-
teroperability (Section 1.1.1) and the service discovery (Section 1.1.2). Device in-
teroperability results from devices in an SE having different hardware and software
features. Some devices have high hardware/software capabilities that allow them
to be easily integrated with each other. Conversely, other devices are designed for
very specific tasks and are poor in terms of hardware/software capabilities. In par-
ticular, low-power devices do not support complex communication protocols and
hence they are not able to fully interact with more powerful devices. Therefore, we
argue that low-power devices require an inter-operable gateway in order to facilitate
cooperation with other devices.

Service discovery algorithms are designed to advertise the existence of services
in an SE and to allow end-users (either devices or humans) to query the network for
services that match with requirements (for example the quality of the service, the
functionalities needed and the expected performance etc.). While for stationary de-
vices, the discovery algorithms proposed so far have reached a reliable and accepted
level (some notable examples are SSDP, Bonjour [8] and SLP [9]), such algorithms
for mobile devices are still in their youth. This thesis therefore studies the service
discovery problem for mobile devices commonly carried by humans in an SE. We
focus on understating how the social dimension of the people in an SE can be ex-
ploited in order to make the service discovery phase more efficient. We consider the
Mobile Social Networks (MSN [10, 11]) as a representative example of an SE where
the social dimension of humans is particularly evident. Service discovery in MSN is
introduced in more detail in Section 1.1.2.

It is worth to notice that this thesis was inspired by several EU projects on
device interoperability and service discovery problems. We exploited these projects
in order to test the results described in this thesis with real-world experimentations.
The following two sections describe into details the objectives of this thesis.

1.1.1 Device interoperability

Devices in an SE can be split into two categories: general-purpose devices and
low-power devices. The first category implements application protocols that enable
them to export their functionalities with a service-oriented approach. This class of
devices can thus interact with each other autonomously without any intermediary
agent, for example the UPnP protocol stack. In this case UPnP-ready devices (or
DLNA certified devices such as a TV, set-top-box, Media Server and Smart Phones)
are able to interact with each other and to invoke the services that they provide in
a seamless way.

On the other hand, improvements in electronics have led to the diffusion of
low-power devices everywhere: at home, and at work in cities. Such devices have
limited hardware and software capabilities, are programmed to accomplish specific
tasks, and often only have one communication protocol stack. The resources in-
stalled within such devices are often not enough to implement a service-oriented

1.1. RESEARCH QUESTIONS AND OBJECTIVES 9

communication protocol such as CoAP or UPnP. Low-power devices thus need to
be integrated by means of a gateway that is able to automatically connect hetero-
geneous devices together.

Product silos are prevalent in the market of devices for SE. Today most of the
companies offer closed-solutions often based on a proprietary gateway designed only
to integrate homogeneous devices. Such market fragmentation is one of the most im-
portant barriers to the seamless interoperability among devices produced by different
vendors. Thus open standards could play a major role in pushing the interoperability
towards a higher level.

The ZigBee [12, 13] industrial standard is an example of a protocol designed
for low-power devices based on the IEEE 802.15.4 standard. ZigBee is designed for
resource-constrained devices that cannot run more complex application protocols.
Such devices need to be integrated into an SE by means of a ZigBee-based gateway
that browses the ZigBee network and exports the functionalities provided by the
ZigBee devices to a target network (for example to an IP-based network). Some ex-
amples of ZigBee devices are for building automation, remote control, smart energy
and health care. The importance of ZigBee for SE is also highlighted by several
recent works [12, 14] and [15], especially in the field of home automation, personal
health-care devices, energy saving and intelligent appliances.

A suitable ZigBee gateway thus needs to guarantee the interoperability between
ZigBee and other communication protocols. The design of the ZigBee gateway
involves:

• seamless integration - ZigBee devices should be easily integrated without re-
quiring any vendor-specific drivers;

• interoperability - services provided by the ZigBee devices cooperate by adopt-
ing a service-oriented interaction model.

Although several ZigBee gateways have been proposed, there are still some major
limitations:

• most of the gateways rely on specific ZigBee hardware, without providing any
abstraction of the ZigBee hardware itself;

• most of the gateways convert the ZigBee messages (also called ZigBee frames)
to only one specific target technology and only a few of them aim at the
generalization of the target network;

• not all the ZigBee gateways fully recognize the ZigBee application profiles or
are able to integrate with customized ZigBee devices.

Objectives

This thesis contributes to resolving the problem of device interoperability through
the design and creation of an application-level gateway aimed at integrating low-

10 CHAPTER 1. INTRODUCTION

power devices with several target networks. We show the strength of our approach
for the ZigBee protocol.

Although designed for low-power devices, ZigBee has an intrinsic complexity due
to its service-oriented design and the richness of its application profiles. We first
design and implement an inter-operable gateway for ZigBee named ZB4O (ZigBee
API for OSGi Service Platform) based on the OSGi execution model, and then we
evaluate it both with qualitative and quantitative metrics. We also present various
EU projects that have adopted the ZB4O gateway as a standard mechanism for
interacting with ZigBee networks, and we discuss the benefits of the solution we
propose in real use-cases.

1.1.2 Service Discovery

The goal of the service discovery is to allow devices to advertise the services they
provide and clients to find the services they need. Many service discovery protocols
have already been proposed for different purposes, including three pioneering but
still widely adopted protocols: Jini, SSDP and SLP. These protocols focus mainly
on administrated and IP-based networks that rely on a stable network architecture.
In fact, they assume the existence of a network infrastructure ensuring permanent
connectivity with every device.

SE are capitalized by the pervasive presence of mobile devices (i.e. wearable
devices) which provide a lot of information but whose interaction is made more
complex by mobility and sociality. These two key aspects are intimately linked,
indeed the mobility of a device is affected by the sociality of the individual carrying
it. More precisely, people in SE do not move randomly - their mobility is affected
by at least to factors (i) the kinds of social-relationships they are involved in, and
(ii) their personal activities.

Concerning the first aspect, the tendency of individuals to associate and bond
with similar others introduces additional features in the way people (and hence de-
vices) in a MSN move and behave. As discussed in [16] contacts among similar
happen more frequently than that contacts among dissimilar people. For instance,
race and ethnicity, sex and gender, age, religion and education are notable aggre-
gation factors. The activities of a person, on the other hand, influence the places
that such a person visits over a time frame. For example, going to work, meeting
friends, attending a conference, staying at home are activities that underlie why a
person goes to the office, a pub, a conference room, or home.

Objectives

This thesis contributes to service discovery by studying algorithms that take into
account the mobility of devices in SE and the sociality of people carrying them. In
order to reproduce human mobility and social interactions, we consider the MSN as
a meaningful example of an SE. We first analyze various aspects concerning human

1.2. APPROACH TO THE RESEARCH QUESTIONS 11

mobility, in order to extrapolate the requirements for designing discovery algorithms.
Then we design and implement two service discovery algorithms - SIDEMAN (Ser-
vIce DiscovEry in Mobile sociAl Networks) and CORDIAL (COllaborative seRvice
DIscovery ALgorithm). Finally, we evaluate both of the algorithms using real-world
mobility traces, as well as synthetic traces obtained from a human mobility model.

1.2 Approach to the Research Questions

This thesis investigates two problems arising from different properties of SE, which
need to be tackled with different methodologies and tools.

The goal of the device interoperability problem is to design a gateway for ZigBee
devices, therefore approaching it from a software design point of view. We recall
the approach adopted with a previous study named SAIL [17], Sensor Abstraction
Integration Layer, and we refine SAIL with the ZB4O gateway. We use UML mod-
eling tools to identify the components and their interactions, as well as sequence
diagrams in order to define the execution flows between the ZigBee network and the
gateway. We assess ZB4O by experimenting with some use-cases.

The objective of evaluating ZB4O is twofold. First, we want to assess various
qualitative metrics concerning the usability of ZB4O in real-word deployments. We
thus exploit the trials organized over the last few years of the GiraffPlus and uni-
versAAL EU projects. Second, we want to verify the performance of ZB4O. We
therefore evaluate the integration between ZB4O and the UPnP protocol (a repre-
sentative protocol for SE) and measure some widely accepted metrics for software
profiling, such as CPU usage, memory occupancy, and the resources allocated.

The goal of the service discovery is to study how to advertise services in MSN.
In this case, we adopt an experimental approach by studying the service discovery
problem by means of visual analytics tools and simulators. More specifically, design-
ing a service discovery algorithm for an MSN entails, first, understanding how people
move and interact with each other. We therefore analyze various metrics capturing
temporal features concerning encounters among people (duration of contacts, inter-
contact time, distribution of contacts over time etc.) as well as the communities
formed by people in the MSN. Results concerning the temporal metrics were used
to design two discovery algorithms. We then perform some simulation campaigns to
execute the algorithms proposed with some mobility traces, using both real-world
and synthetic traces.

1.3 The Overall Architecture

Device interoperability and service discovery are fundamental building blocks for
realizing most of the application domains previously described. Even if such steps
are at the first look disjoint, they can be still considered as consecutive ones and

12 CHAPTER 1. INTRODUCTION

part of an overall architecture. In fact, most of the applications designed for SEs
require at least two basic functionalities: integrating heterogeneous devices in a
seamless way and discovering the services offered by them. In particular, the device
integration allows to discover the devices available in the SE and to interact with
them by means of inter-operable protocols such as HTTP or UPnP. On the other
hand, service discovery algorithms enable end-users to discover services that devices
in a SE provide.

In most of the application scenarios that inspired this thesis, it is possible to
identify the liaison between device interoperability and service discovery. A mean-
ingful example is represented by the SE deployed within an airport terminal. This
SE is composed by a heterogeneous network made of a static and a mobile part.
Static devices are connected through a reliable network connection like a wired Eth-
ernet connection. The mobile part of the SE is composed by pocket devices carried
by people within the terminal and hence their mobility follows the mobility of their
owners. The cooperation among pocket devices happens both with the resilient
WiFi network but also with ad-hoc networks such as Bluetooth and Wifi Direct
interfaces. Such highly dynamic SE requires firstly to make inter-operable the static
part of the network so that different kinds of devices can cooperate. To this purpose
an integration gateway could ease the interaction between sensors for monitoring the
temperature of the terminal and actuators for controlling the heating system of the
terminal. Secondly, both the static and the mobile part of the SE provides services
targeted to the end-users. The static part is supposed to offer permanent services
such as monitoring the physical conditions of the terminal, sharing the Internet
connection, accessing facilities like fax, printer. Differently, the mobile devices offer
services that are temporary, in particular they are available until the person carrying
the device moves away from the terminal. Some meaningful examples are services
provided by smart phones for sharing media contents like pictures or movie clips,
but also services for sharing the weather forecasts or the time table of departures
and arrivals. To this end, mobile devices have to adopt a service discovery algorithm
able to cope with the mobility of the nodes and also with the sociality of individuals
carrying them.

1.4 Structure of the thesis

The remainder of this thesis is structured as follows:

Chapter 2 reviews the background concepts and the state of the art concerning both
of the research questions addressed in this thesis, namely the device interoperability
and service discovery. The results of this chapter have been published in [18, 19, 20].

Chapter 3 presents the ZB4O gateway as well as the experimentation phase. We
present use-cases in which we evaluate both qualitative and quantitative evaluation
metrics. The results presented in this chapter have been published in [21, 22, 23,
24, 25, 26, 27].

1.4. STRUCTURE OF THE THESIS 13

Chapter 4 presents the design of SIDEMAN and CORDIAL, and explains how
these algorithms exploit the MSN described in Chapter 2.2.1.
Chapter 5 presents the performance evaluation of the discovery algorithms de-
scribed in Chapter 4. First we describe some features of the selected mobility
traces, and then the evaluation metrics adopted, as well as the discovery algorithms
used for a performance comparison. Finally, the chapter presents the results ob-
tained both for SIDEMAN and CORDIAL with real-world and synthetic mobility
traces.The results presented in Chapter 4 and of Chapter 5 have been published in
[28, 29, 30, 31, 32, 33].
Chapter 6 presents the conclusions for device interoperability and service discovery
in the MSN as well as a description of future research.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Background and Related Works

This chapter introduces the background concepts and related works both for the re-
search questions described in Chapter 1, namely device interoperability and service
discovery. Concerning the device interoperability, this chapter surveys the ZigBee
[13, 34] specification and the OSGi [35] model, two technologies that play a key role
for the device interoperability in Smart Environments. Then, two inter-operable
middleware for Smart Environments resulting from the GiraffPlus and universAAL
EU projects are described. As part of the consortium of both projects, we partici-
pated in the design and the implementation phases, and we exploited their trials to
validate the solution to the device interoperability described in this thesis. We de-
scribe the UPnP and the REST protocols as two notable examples of inter-operable
protocols for SE which we also use for further experimentations with our solution.
Finally we survey the most noticeable integration gateways designed for ZigBee and
we discuss their limitations and weaknesses. Concerning to service discovery, the
chapter first surveys Mobile Social Networks (MSN) as being representative of SE,
where mobility and sociality are two characterizing aspects. We describe the MSN
architectures and how to detect communities in MSN. We then present the kinds
of services that are potentially available in MSN and review popular service discov-
ery architectures. We introduce the service discovery problem as a 4-step process.
For each step we review the most important results achieved so far. The review of
the state of the art of the service discovery problem is discussed at the end of this
chapter and it has been published in [18].

2.1 Device Interoperability

2.1.1 Background

The ZigBee Specification

The ZigBee specification defines low-power wireless network [13, 34] based on the
IEEE 802.15.4 standard. An overview of the ZigBee protocol stack is shown in Figure

16 CHAPTER 2. BACKGROUND AND RELATED WORKS

2.1. The ZigBee specification defines the roles of devices in the network. A ZigBee

Figure 2.1: The ZigBee Stack.

end-device corresponds to an IEEE RFD (Reduced Functional Device) or FFD (Full
Functional Device) device. A ZigBee router is an FFD with routing capabilities.
The ZigBee coordinator is an FFD managing the whole network. Besides the star
topology (that naturally maps to the corresponding topology in IEEE 802.15.4), the
ZigBee network layer also supports more complex topologies like the tree and the
mesh. Figure 2.2 shows examples of these topologies. Among the functionalities
provided by the network layer there are: multi-hop routing, route discovery and
maintenance, security and joining/leaving a network.

Figure 2.2: The ZigBee network topology.

A ZigBee network is formed according to the join procedure. When a device
wishes to join to an existing network, the network layer is requested to start a

2.1. DEVICE INTEROPERABILITY 17

network discovery procedure. With the support of the scan procedure of the MAC
layer, a node learns about neighboring routers that announce their information to
the networks. After the upper layer has decided which network to join (several
ZigBee networks may overlap spatially, using different channels), the network layer
selects a parent node from his neighborhood, and asks to the MAC layer to start
an association procedure. Upon receiving an indication of the association request
from the MAC layer, the parent’s network layer assigns to the node that is joining
a 16-bit short address and lets the MAC layer successfully reply to the association
request. Node that is joining will use the short address for any further network
communication.

The routing algorithm adopted by the ZigBee nodes depends on the topology
used in the sensor network. In a tree topology the routing can only happen along
the parent-child links established as a result of join operations (this is called ”tree-
based routing”). Routers maintain only their address and the address information
associated with their children and parents. Given the way the network addresses
are assigned, a router that needs to forward a message can easily determine whether
the destination belongs to a tree rooted at one of its router children or at one of its
end-device children. If so, it routes the packet to the appropriate child; otherwise it
routes the packet to its parent.

Route discovery is a process required to establish routing table entries in the
nodes along the path between two nodes wishing to communicate. A Route Discov-
ery Table (RDT) is maintained by routers and the coordinator to implement route
discovery. Route discovery in ZigBee is based on the well-known Ad hoc On Demand
Distance Vector routing algorithm (AODV)[36]. When a node needs a route to a
certain destination, it broadcasts a route request (RREQ) message that propagates
through the network until it reaches the destination. As it travels in the network,
a RREQ message accumulates (in one of its fields) a forward cost value that is the
sum of the costs of all the links traversed. The cost of a link can be set to a constant
value or it can be dynamically calculated based on a link quality estimation provided
by the IEEE 802.15.4 interface. Each RREQ message carries a RREQ ID field which
the originator increments every time it sends a new RREQ message. In this way the
RREQ ID and the source address of a message can be used as a unique reference
for a route discovery process. The reception of a RREQ triggers a search within the
RDT for an entry matching with the RREQ message. If no match is found, a new
RDT entry is created for the discovery process and a route request timer is started
(upon timer expiration the RDT entry will be removed). Conversely, if an entry is
found in the RDT the node compares the path cost of the RREQ message and the
corresponding value in the RDT entry. If the former is higher, then it drops the
RREQ message, otherwise it updates the RDT entry. Finally, if the node is not the
route discovery destination, it allocates an RT entry for the destination, with status
Discovery, and rebroadcasts the RREQ after updating its path cost field. If the
node is the final destination, it replies to the originator with a route reply (RREP)
message that travels back along the path.

18 CHAPTER 2. BACKGROUND AND RELATED WORKS

The application layer of the ZigBee stack comprises the Application Support Sub-
layer (APS), the ZigBee Device Object (ZDO) and the Application Framework. The
APS provides the transport layer functionalities. The Application Framework con-
tains a number of user-defined Application Objects (APOs) (also called application-
level devices). The APOs implement the ZigBee applications. The ZDO provides
services that allow the APOs to organize themselves into a distributed application.
Each APO is uniquely identified by the network address of the hosting network-level
device (ZigBee node) and by an EndPoint number (EP). Hereafter the hardware de-
vices are referred as ZigBee nodes, and the APO as ZigBee devices. To enable
interoperability of nodes from different manufacturers, the ZigBee Alliance defines
the application profiles and the clusters. The application profile is a collection of
device descriptions that form a cooperative application. For instance, the Home
Automation Profile describes some kinds of ZigBee devices such as the Thermostat,
Pump, and Pump controller devices. A device is described as the set of clusters
(that are specification of messages) that it can manage. In turn, a cluster is defined
as a collection of commands and attributes (data entities which represent a physical
quantity or state). Clusters are defined in the ZigBee Cluster Library (ZCL) [37]
and each cluster can appear in different profiles. The ZDO provides to the ZigBee
device and service discovery functionalities. Device discovery allows an APO to ob-
tain the network address of other nodes. The service discovery exploits the cluster
descriptors and the cluster identifiers to determine the capabilities offered by the
APOs.

ZigBee also defines a binding mechanism used to connect the APOs. When an
APO sends a message with a specific cluster identifier, the message is automatically
routed to a set of APOs according to the binding table.

The OSGi model

The OSGi specification [38] defines a service oriented, component-based model for
Java developers. This specification defines the component (or OSGi bundles) life-
cycle. In particular a component can be installed, removed, started, and stopped
at run time. An OSGi bundle is a jar file that contains Java classes, resources and
metadata describing the dependencies with other bundles. The main features that
OSGi offers are:

• a service model where every component can be registered as service in a reg-
istry;

• an execution environment where multiple components can run on the same
virtual machine;

• a set of APIs for the control of the component life-cycle;

• a secure environment where multiple components coexist without affecting
each other;

2.1. DEVICE INTEROPERABILITY 19

• a cooperative and distributed environment where components can discover
other components.

The OSGi bundles, wishing to detect the presence of a particular OSGi service,
send a service subscription to the Service Registry. As soon as the service needed
is available, the OSGi Service Registry notifies the requester, Figure 2.3 shows the
service registration mechanism.

OSGi Service
Registry

Bundle
Producer

publish OSGi:service A

Bundle
Consumer

notify OSGi:service A

subscribe OSGi:service A

Figure 2.3: The OSGi service model.

Although OSGi was initially thought as a Java platform for realizing LAN/WAN
gateways, it became popular also in many other fields. OSGi is now considered the
dynamic module system for Java thanks to the introduction of the Java Specifica-
tion Request 291.2. In 2010, the OSGi Alliance has extended the OSGi specification
with the OSGi Remote Services Specification (O-RSS). O-RSS defines how to extend
the service registry mechanism to discover and access OSGi services deployed on a
remote host. The O-RSS is available with a reference implementation (the DOSGi
implementation1) that implements the discovery and the access mechanisms based
on SOAP over HTTP (or RESTful JAX- RS see section 2.1.1) and the WSDL con-
tracts. A further step forward has been done by some interesting projects [39] that
not only focus on the cooperation among distributed OSGi instances, but also on
the cooperation among devices and objects that implement the DPWS specification.

The OSGi architecture is composed by several layers running on top of a native
OS and a Java Virtual Machine, Figure 2.4 shows the layered architecture.

The OSGi specification is implemented with several OSGi Execution Environ-
ment, such as Felix, Karaf and Equinox. All of them adhere to the OSGi specification
[35], however some differences are still present among the distributions.

1http://cxf.apache.org/distributed-osgi.html

20 CHAPTER 2. BACKGROUND AND RELATED WORKS

Figure 2.4: The OSGi architecture.

Concerning the Module layer, OSGi defines every software module as an OSGi
bundle. A bundle is the atomic software packaging unit for the OSGi framework, the
bundles are distributed as Java ARchives (JAR) files and they contain the following
resources:

• one or more Java classes organized as Java packages, these classes may imple-
ment zero or more OSGi services;

• the Manifest file containing the meta-data describing the bundle properties;

• other resources such as: documentation, source code and extra files.

The bundle life cycle is described with a set of execution states, the transitions
among states are performed by the bundle itself, when some events occur, or by
other bundles that have the right permissions to change the status. The set of
possible states are:

• installed: the OSGi bundles may require some external resources such as soft-
ware dependencies and configuration files or media contents. The OSGi frame-
work installs an OSGi bundle if all the resources required are available;

• started/stopped: the bundle is activated and de-activated;

• updated: the bundle execution is stopped, and the bundle code, as well as the
resources, are replaced with a new version of the OSGi bundle;

• uninstalled: the bundle is stopped and the code and its resources are removed
from the system.

Figure 2.5 shows all the status previously described as well as the transitions.

2.1. DEVICE INTEROPERABILITY 21

Figure 2.5: The OSGi bundle life cycle.

Another important layer of the OSGi architecture is the Service registry (see
Figure 2.5). It implements a cooperation model for bundles. In particular, bundles
can cooperate via traditional class sharing but class sharing is not compatible with
dynamically installing and un-installing code. Suppose at time t the bundle B0 pro-
vides the Timer Java class. The Timer class provides methods for manage a simple
timer such as start, stop, set and get; at time t+ 1 the bundle B1 tries to reference
the Timer class, but B0 has been already un-installed from the framework, therefore
B1 catches an exception. A more flexible solution is offered by the OSGi Service
Platform that provides the bundle Service Registry to register service objects. A
service object is a Java class implementing a set of methods, OSGi defines a rich
collection of events to discover new or existing services. With this approach bundle
B1 checks if a Timer service is available in the framework, only if this operation
succeeds B1 invokes the Timer service, otherwise B1 stops its execution.

The Security layer is a crossing layer of the OSGi Service Platform. The Security
layer introduces a set of security policies to provide a trusted execution environment.
This set is made of Java 2 Code Security, Package Permission and Service Permission
providing mechanisms to developers to design and to implement trusted bundles and
ensuring a correct interaction between them. OSGi adopts Java 2 Code Security to
protect resources from specific actions, Java 2 Code Security introduces the Permis-
sion classes keeping trace of the resources and the available actions on each resource.
Every bundle has a set of grants, this set can be modified by adding or by removing
grants at run-time; when a bundle invokes the action for the resource x (eg. x is a
file) the Security Manager checks if the bundle has the required grant.

Finally, the Service layer defines a vast collection of services in terms of Java
interfaces, such services are fully described in [35].

22 CHAPTER 2. BACKGROUND AND RELATED WORKS

Integration Middleware for Smart Environments

This section surveys GiraffPlus and universAAL projects as notable examples of
middleware specifically designed for Smart Environments. Both of the projects take
into account the specific requirements coming for AAL (Ambient Assisted Living)
scenarios but with two different approaches. GiraffPlus deeply focuses on some spe-
cific use-cases based on the Giraff robotic agent for tele-presence. Conversely, uni-
versAAL adopts an holistic approach, it provides not only the reference architecture
and its implementation, but also tools and services for the design and implementa-
tion of AAL-based applications.

Both of the projects require to integrate resource-constrained devices in order
to achieve the use-cases needed. In particular, among the project requirements, we
cite:

• being able to integrate resource-constrained devices also based on the ZigBee
protocol;

• avoid the integration with one single ZigBee vendor, rather adopt an extensible
solution;

• the integration with the ZigBee protocol must be designed so that it is possible
to interact with ZigBee devices by means of standard communication protocols
(such as HTTP and MQTT) as well as platform-specific protocols (such as
jGroups).

ZB4O meets all the previous requirements and what thus used in both GiraffPlus
and universAAL projects. The next two subsections give an overview for both of
the architectures while section 3.3 describes how ZB4O extends them.

The GiraffPlus project
The GiraffPlus system [40] has been developed in the GiraffPlus FP7 project

and addresses some challenges. A first issue is the early detection of some possible
deteriorations of the health conditions of a patient, in order to detect in advance
anomalies in the early stage and to involve timely relatives or caregivers. A second
issue is to provide adaptive support which can offer services to assist in coping with
age-related impairments. Third, ways of supporting preventive medicine must be
found as it has been increasingly recognized that preventive medicine can contribute
to promote a healthy lifestyle and delay the onset of age-related illnesses. The Giraff-
Plus system consists of a network of home sensors that measure e.g. blood pressure
or temperature, or detect e.g. whether somebody occupies a chair, falls down or
moves inside a room. The data from these sensors are interpreted by an intelligent
system in terms of activities, health and wellbeing: e.g. the person is exercising or
the person is going to bed, or a fall has occurred. These activities can then trigger
alarms or reminders to the primary user or his/her caregivers, or be analyzed off
line and over time by a health professional. The main component of the system is

2.1. DEVICE INTEROPERABILITY 23

a telepresence robot, the Giraff robot, which can be moved around in the home by
somebody connected to it over Internet. The Giraff robot is an example of mobile
robotic telepresence technology [41] and it is effectively a mobile communication
platform, equipped with video camera, display, microphone and speakers, and a
touch screen. When a remote visitor uses the Giraff robot as a communication tool,
what has happened in the home in terms of activities and the physiological mea-
surements of the person can be seen and analyzed. Both the remote visitor and the
person in the home have access to the information and the system can be modified
to assess other aspects with the agreement of the primary user. The robot uses a
Skype-like interface to allow caregivers to virtually visit an elderly person in the
home. The Giraff robot is enhanced with semi-autonomy in order to increase safety
and ease-of-use. The GiraffPlus system also includes a network of sensors. Data
from these sensors are processed by an advanced context recognition system based
on constraint-based reasoning, which both detect events on-line and can perform
inference about long term behaviors and trends. Personalized interfaces for primary
and secondary users are developed to access and analyze the information from the
context recognition system for different purposes and over different time scales. An
important feature of the system is an infrastructure for adding and removing new
sensors seamlessly, and to automatically configure the system for different services
given the available sensors.

The GiraffPlus Architecture
We now present the specification of the GiraffPlus system in terms of compo-

nents, functionalities and interfaces among components. Also, we describe how
the components are integrated and interfaced with the rest of the system. Figure
2.6 shows an abstract component diagram of the GiraffPlus system. In particular,
the system is composed by three building blocks: (a) the Physical Environment
and Software Infrastructure, (b) the middleware Infrastructure and (c) the Service
Layer. The Physical Environment and Software Infrastructure coupled with the
middleware Infrastructure represent the basic modules of the GiraffPlus system. In-
deed, all the data services are grounded on them; the middleware infrastructure
is also responsible for the inter-operable communication service. In particular, the
middleware Infrastructure constitutes a gateway shared among all the system com-
ponents. Then, the Sensor Network, composed by both physiological and environ-
mental sensors, gathers the information generated at home as well as it provides
the data collected. Finally, the telepresence robot provides the GiraffPlus social in-
teraction functionalities enabling remote access in the environment through a pilot
software embedded in the visualization and interaction services. The Long-Term
Data Storage component is responsible for providing a general database service for
all the data generated. Specifically, the main role of this component is to manage
a database containing all the data collected through the middleware Infrastructure
and generated by the Sensors Network. The Context Recognition and Configuration
Planning are responsible for context/activity recognition and system configuration
planning, i.e., two high-level reasoning systems in charge of respectively implement-

24 CHAPTER 2. BACKGROUND AND RELATED WORKS

Physical Environment & Software Infrastructure

Service Layer

Sensor Network Sensor Network

Physiological

Sensors

Environmental

Sensors

Telepresence

Robot

Data Visualization,

Personalization and

Interaction Service

Long Term

Data

Storage

Context Recognition

& Configuration

Planning

Middleware Infrastructure

Figure 2.6: The GiraffPlus components.

ing the monitoring activities by means of context/activity recognition and providing
suitable configuration settings for the Sensors Network according to the requested
monitoring activities. Finally, the Data Visualization, Personalization and Interac-
tion Service is the part of the system responsible for creating user-oriented service.

The universAAL project

The EU-FP7 project universAAL[24] was set up in 2010. Its main goal is the
design and development of an open platform that provides a standardized approach
for an easy and economic development of AAL (Ambient Assisted Living) solutions.
The universAAL platform benefits:

• the end-users, i.e. older adults and people with disabilities, their caregivers,
and family members, by making new solutions affordable, simple to configure
and to deploy;

• the solution providers, by making it easier and cheaper to create innovative
AAL services or to adapt existing ones by using a compositional approach
based on existing components, services, and external systems;

• the authorities with responsibility for AAL by introducing a standardized ap-
proach for the development of AAL solutions.

universAAL adopts a holistic approach, the whole architecture is shown in Figure
2.7. The system provides support in three main areas: runtime support, develop-
ment support, and community support. The runtime support provides the reference

2.1. DEVICE INTEROPERABILITY 25

model, the reference architecture and a concrete architecture implementing the uni-
versAAL specifications. The developer support provides a set of resources for de-
velopers such as guidelines, development tools, training and other materials useful
to easy the integration with universAAL. The community support deals with tools
and facilities for the open source communities. Such tools aim at diffusing as much
as possible the universAAL approach and also to create a possible market of AAL
applications.

The universAAL project has a strong focus on standardization activities. As
for example, the universAAL Framework for user interaction has obtained the offi-
cial IEC PAS status for its specification. It is documented as a Publicly Available
Specification by the International Electrotechnical Commission (IEC) with the ref-
erence IEC/PAS 62883 Ed. 1.0 and titled The universAAL Framework for User
Interaction in Multimedia Ambient Assisted Living (AAL) Spaces Similarly, the
universAAL model and the universAAL architecture aims at follow the same path
as the User Interaction model.

Moreover, the universAAL project has attracted the attention of the EU com-
mission and it has been selected for a wide camping of experimentations with a
massive number of end-users. To this purpose, the ReAAL FP7 EU project 2 has
the goal of testing several market applications based on the universAAL platform
with more than 5000 users in 6 countries.

Figure 2.7: The universAAL system overview.

The universAAL architecture

The universAAL architecture has been designed, tested and implemented with
the Runtime Support (RS). The RS is one of the building block of the universAAL

2http://www.cip-reaal.eu/about/project-description/

26 CHAPTER 2. BACKGROUND AND RELATED WORKS

eco-system, it consists of a set of software components that can be installed on dif-
ferent types of hardware such as smart phones, laptops and tablet PCs. Moreover
universAAL supports the integration of three low-power technologies, namely Zig-
Bee, Bluetooth and FS20. The RS it is composed by different building blocks as
shown in Figure 2.8.

Middleware

UI Management Service
Management

Contex
Management

UI Extension SrvsExtension
Context

Extension

LDDI
Remote

Interoperability

Applications

Secu
rity

Applications

Managers

Middleware

Figure 2.8: The universAAL components.

The building blocks of the RS are:

• the middleware: it acts as a broker between the nodes (also known as AAL-
aware nodes). In particular, it handles the exchange of messages among nodes
and it hides the heterogeneity of the hardware devices. It is decomposed by dif-
ferent sub-blocks: the Container that provides an abstraction to the execution
environment used for running universAAL, the Discovery and Peering respon-
sible for discovering nodes and to build an overlay-network among nodes (the
AAL Space), Communication and Data Representation Model implementing
the communication primitives;

• the Local Device Discovery Integration (LDDI): it implements a sensor and
abstraction layer in order to integrate sensors and actuators with the univer-
sAAL platform. The universAAL RS supports the most important assistive
technologies such as Konnex, ZigBee, Continua devices via Bluetooth and a
prototype integration of FS20;

• Context Management: it deals with the management of the context informa-
tion. The context information is used by the AAL Services to adapt themselves
to the environment or the end-users status;

2.1. DEVICE INTEROPERABILITY 27

• service Management: it deals with the definition and implementation of the
universAAL service infrastructure, in particular it offers a service-oriented
model to the functionalities provided by the AAL applications.

• User Interaction (UI) Management: it offers a framework for the user in-
teraction that separates the content exchanged between the users and the
applications from its actual presentation;

• Remote Interoperability: it implements a mechanism for remotely adminis-
trate an AAL Space, for example to remotely configure or install an applica-
tion;

• Security provides for trust, privacy-awareness and access control. This build-
ing block addresses the protection of the privacy of personal data related to
people involved in the universAAL experimentation. As a notable example,
the security components aims to prevent unwanted disclosure of health details,
personal preferences, habits, and lifestyle leads to discrimination.

The RS implements a service-oriented cooperation model based on two core
communication bus: the context and the service bus. The context-bus is used by any
application running on top the universAAL in order to publish context events. The
events are published without specifying a receiver, rather any other AAL-aware node
can be notified asynchronously about the events generated. The nodes generating
context events are named context publisher, while nodes receiving events are context
subscribers. Examples of context events are the installation of new devices in the
Smart Environments, any kind of sensor readings, the anomalies of the devices or
more complex events such as the health status of an elderly and the posture/activity
of a person at home. The context bus is implemented by the Context Management
building block.

The service bus is used to register any functionality that an AAL-aware node
wants to share with any other node. As an example, an AAL-aware node can
register a health monitor service in order to control remotely a patient. Services are
registered by announcing the service profile on the service bus. The service profile
is also named service advertisement and it contains some information about: the
kind of service, the node providing the service and how to invoke the service. A
node willing to access a service, first discovers the service by querying the service
bus with a service query.

Service Interoperable Protocols

The UPnP protocol
UPnP (Universal Plug and Play) [42] is a widely-accepted protocol designed to

enable the integration of consumer electronics, intelligent appliances and mobile
devices from many different vendors. UPnP defines how to interact with UPnP

28 CHAPTER 2. BACKGROUND AND RELATED WORKS

Figure 2.9: The UPnP protocol stack.

devices and the Digital Living Network Alliance (DLNA) standard3 defines guide-
lines for the standardization of the profiles and of the content offered by devices
(including multimedia devices) of different manufacturers. Under this respect the
two standards are complementary: UPnP offers management services and DLNA
standardizes the profiles and contents. UPnP offers services for the management
of intelligent devices in the home environment, it is adopted by many (multimedia)
devices already on the market, such as televisions, hi-fi, video cameras, etc., and it is
the de-facto solution for infotainment. The UPnP technology is an architecture for
unmanaged peer-to-peer networks composed by intelligent devices (Routers, PCs,
Videocamera, TV, etc.) in local network environments. The goal of UPnP is to
create a vendor independent (but vendor extensible), user friendly and robust stan-
dard. In order to achieve the previous goal the UPnP Forum (the industry initiative
promoting UPnP) defined the UPnP protocol stack shown in Figure 2.9. It provides
some features such as device and service discovery, device description, device control,
eventing management, and presentation of the devices through user friendly inter-
faces (using HTML). The UPnP forum defines a set of standard profiles describing
different categories of devices. Up to now the forum identified, among others, the
categories of Basic, Audio/Video (aimed at standardization of multimedia devices),
Home Automation (for domotic applications), Remoting (for intelligent remote com-
mands) etc. From a network point of view UPnP can be seen as a layer constructed
over HTTP in a standard TCP/IP and UDP/IP network. UPnP exploit the SSDP
protocol (Simple Service Discovery Protocol) to support discovery, SOAP (Simple
Object Access Protocol) to support control of devices, and GENA (General Event
Notification Architecture) to enable listening and event management as showed in
Figure 2.10 and 2.11.

The REST Style

REST stands for REpresentational State Transfer and it implements a widely
accepted Web Service paradigm based on the HTTP protocol [43]. In the REST

3http://www.dlna.org/en/industry/home/

2.1. DEVICE INTEROPERABILITY 29

Figure 2.10: The UPnP stack for discover and control phases.

Figure 2.11: The UPnP stack for event phase.

architectural style, data and functionality are considered resources and are accessed
using Uniform Resource Identifiers (URIs), typically links on the Web. The re-
sources are acted upon by using a set of simple, well-defined operations. The REST
architectural style constraints an architecture to a client/server architecture and it
is designed to use a stateless communication protocol, typically HTTP. In the REST
architecture style, clients and servers exchange representations of resources by us-
ing a standardized interface and protocol. The following principles characterize the
RESTful services:

• Resource identification through URI: a RESTful web service exposes a set of
resources that identify the targets of the interaction with its clients. Resources
are identified by URIs, which provide a global addressing space for resource
and service discovery.

• Uniform interface: resources are manipulated by using four operations: create,
read, update and delete implemented with the four HTTP commands, namely
PUT, GET, POST, and DELETE. PUT creates a new resource, which can be
then deleted by using DELETE. GET retrieves the current state of a resource
in some representation. POST transfers a new state onto a resource.

• Self-descriptive messages: resources are decoupled from their representation
so that their contents can be accessed in a variety of formats, such as HTML,
XML, plain text, PDF, JPEG, JSON, and others. Metadata about the re-
source is available and used, for example, to control caching, detect trans-
mission errors, negotiate the appropriate representation format, and perform
authentication or access control.

30 CHAPTER 2. BACKGROUND AND RELATED WORKS

• Stateful interactions through hyper links: every interaction with a resource
is stateless; that is, request messages are self-contained. Stateful interactions
are based on the concept of explicit state transfer. Several techniques exist to
exchange state, such as URI rewriting, cookies, and hidden form fields. State
can be embedded in response messages to point to valid future states of the
interaction.

2.1.2 Related Works

The ZigBee gateways have been subject of intensive, independent studies in the
recent past [14, 15] and [44]. Some of these works are mainly addressed to the design
and the implementation of gateways for protocol translation. The first specification
of a ZigBee Gateway is proposed by the ZigBee Alliances in late 2011 [45]. The idea is
to expose a web service (typically based on SOAP/REST) for every ZigBee device.
Such web-service represents an end-point for the external applications in the IP
network that needs to interact with the ZigBee device, for example to query the state
of a device or to request a service. The queries to ZigBee devices are expressed in
terms of XML-based messages, and they are translated into the appropriate cluster
by the gateway. Consequently, the external applications have to comply with the
format of ZigBee messages as well as with the protocol mechanisms.

Lee et al. [14] describes a gateway between Konnex (KNX) and ZigBee that
translates KNX telegrams into ZigBee frames and vice-versa. The implementation
relies on a multi- component gateway able to define such a mapping, but it does not
provide any general solution for the node interaction or the hardware abstraction.
The solutions provided by Kawamoto et al. [46] and Kim et al. [47] are both focused
on the implementation of UPnP (DLNA) to ZigBee gateway. Kawamoto et al. [46]
take into account only the integration of ZigBee in the DLNA networks. One of
the components of the gateway is responsible for creating virtual UPnP devices as
soon as it acquires relevant information on the ZigBee network. In a similar way,
it creates virtual ZigBee application objects for every UPnP device found. This
approach has the limitation that the gateway must be configured as the ZigBee
network coordinator. Furthermore it does not implement an abstraction of the
ZigBee nodes.

A similar approach is described by Kim et al. in [47]. The authors implement
an inter-networking gateway between UPnP and ZigBee focusing on the discovery
mechanisms. In this solution the key components are the ZigBee Device Manager
(ZDM) and the Virtual UPnP Proxy Manager (VUPM). The ZDM controls the
ZigBee nodes, it reflects all the relevant changes to the VUPM. The VUPM is
responsible for creating or removing Virtual UPnP Proxy (VUP) as soon as some
events occur on the ZigBee network. The authors provide a mapping between the
meta-data of the ZigBee devices and the ones of VUP. With respect to the DLNA-
ZigBee Gateway [46], in this paper the authors discuss how the ZigBee devices are
abstracted by the VUPs, however both of the mentioned solutions strictly rely on

2.1. DEVICE INTEROPERABILITY 31

specific ZigBee hardware without introducing any hardware abstraction layer.
Guozhen Hu [48] proposes a gateway for protocol translation that maps the IEEE

802.15.4 layers to the corresponding Ethernet ones. However, this gateway does not
abstract the ZigBee protocols and it does not provide any hardware abstraction
mechanisms. Peng et al. [49] provide a web-sensor gateway to enable the access to
a ZigBee network by means of a web browser, and a web server that maps ZigBee
devices in dynamic web pages. This solution requires that the end-users addresses
the nodes of the WSN individually. De Silva et al. [50] present a vertical solution
based on SmartBee. SmartBee lets ZigBee nodes be accessible via multi-channel
solutions (by means of regular web interfaces, mobile applications etc.). On the
other hand this solution is bound to SmartBee, which is a significant requirement
for a general-purpose solution.

The approach proposed by Young-Guk Ha [15] models the ZigBee devices as
OSGi services. In this work, the gateway acts as the ZigBee coordinator, and it
assumes that nodes in the network periodically announce their ID and profile to the
gateway. In turn, the gateway downloads a software service for new ZigBee devices
(wrapped within an OSGi bundle) and registers this service in OSGi.

The solution presented in [44] describes a gateway for the integration between
ZigBee and the OSGi framework. This solution is composed by 3 main OSGi bun-
dles. The ZKernel manages the home appliances, the events and the warning mes-
sages moreover the Zkernel performs log routines. The ZPanel provides a graphical
interface of the system management and it provides the contact point between re-
mote clients and the ZKernel. Lastly the Updated Bundle is in charge of system
maintenance and of the update of ZKernal and ZPanel. This software module is
able to recognize ZigBee devices that implement some ZigBee standard clusters.
Moreover it is possible to extend the module with support for custom ones. The
authors provide support for Sensing and Measurement, Lighting, HVAC, Security
and Safety profiles. This work implements a Web-based GUI to access to the ZigBee
network via HTTP protocol. However, it seems not possible to extend the software
with other kinds of connectors. Moreover the ZigBee module interacts only with a
XBee-based device attached to the PC without any hardware abstraction layer.

2.1.3 Discussion

We identify the criteria to classify the ZigBee gateways. Table 2.1 summarizes the
ZigBee gateways according to the previous criteria, in particular:

• Gateway architecture: either service-oriented (where the ZigBee devices are
modeled as services), multi-component (where the ZigBee devices are accessed
by interacting with a component of the gateway), or mixed solutions;

• Integration mechanisms: how the ZigBee network can be accessed from outside
network and which technologies can be used for the interaction;

32 CHAPTER 2. BACKGROUND AND RELATED WORKS

[14] [46] [47] [48] [49] [50] [15] [44]

Gateway

architecture
Component Component Component Component Mixed Service Component Component

Integration

mechansim

ZigBee to

Knx

ZigBee to

UPnP

ZigBee to

UPnP

ZigBee to

Ethernet

ZigBee to

Web service

ZigBee to

Web service

ZigBee to

Web services

ZigBee to

OSGi

services

Hardware

abstraction
✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Device

abstraction
HA Profile HA Profile HA Profile

No ZigBee

profile

No ZigBee

profile
HA Profile

No ZigBee

profile

Support

custom

profile

Deployment

constraints
✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓

Extension

mechansism
✗ Future work ✗ ✗ ✗ ✗ ✗ ✓

S
y

st
em

 f
ea

tu
re

s

Table 2.1: Comparative tables of ZigBee gateways.

• ZigBee hardware abstraction: how the gateway abstracts from specific ZigBee
hardware;

• ZigBee device abstraction: how the gateway manages the ZigBee devices that
adhere to a standard or custom ZigBee profile;

• Extension mechanisms: how the gateway discovers and manages customized
ZigBee devices.

• Deployment constraints: the possibility of deploying the ZigBee gateway on
resourced-constrained nodes (e.g. Raspberry PI or BeagleBoard).

The solutions presented in Table 2.1 are representative examples of architec-
tures for the integration of the ZigBee protocol with other protocols. However,
such solutions present some limitations leading us to consider the design and the
implementation of the solution presented in Chapter 3.

Most of the papers presented in Table 2.1 adopt an integration mechanism that
allows to convert the ZigBee messages to only one specific target technology. As
for example, [14] converts ZigBee messages to Konnex frames while [46] and [47]
allows the integration between ZigBee and the UPnP protocol. Under this respect,
we consider that an integration gateway has to overcome such first limitation by
offering a dynamic mechanism to integrate ZigBee devices with various protocols.

Moreover, all the solutions previously discussed do not implement a hardware
abstraction mechanism in order to be independent from the hardware vendor. The
absence of hardware abstraction means that the gateway is intrinsically bound with

2.2. SERVICE DISCOVERY IN MSN 33

a hardware vendor and this reduces the portability of the solution to application
scenarios in which ZigBee devices come from different manufacturers.

The third limitation of the solutions presented so far concerns the compliance
of the gateway to the ZigBee profiles. Indeed, the ZigBee Alliance is following
a standardization initiative in order to cluster devices withing a set of profiles.
Each profile lists the features that all devices must provide. Gateways that do not
recognize the profiles will integrate only a subset of the features that such device
actually provide, hence reducing the potentiality of such devices.

Furthermore, from Table 2.1 emerges that the current literature does not consider
the possibility of integrating custom ZigBee devices, more precisely devices that do
not adhere to any profile. Such feature is desirable in application scenarios in which
vendors deploy prototype devices not yet adhering to any profile. Finally, some
of the papers presented have been designed in order to be deployed on resource-
constrained boards, as for example [14, 46] explicitly tested their solution on boards
acting as gateway. Concerning the gateways based on the OSGi environment it is
worth to notice that there exist several distributions of the OSGi suitable for low-
cost, low-power devices such as Raspberry PI or BeagleBoard hardware. This is the
case for the gateways described in [15, 44].

In summary, we started from the previous discussion in order to design and im-
plement an integration gateway addressing all the previous points, chapter 3 details
our solution.

2.2 Service Discovery in MSN

2.2.1 Background

Mobile Social Networks are build over concepts inherited from conventional Online
Social Networks (OSN, such as Facebook, Google+ or Twitter) and wireless networks
based on opportunistic communications such as ad hoc networks or delay tolerant
networks. Specifically, a MSN is a network of mobile devices (typically smart phones,
smart watches, tablets etc.) that communicate opportunistically and that are carried
by people. The mobility traits and the interactions between the mobile devices
can be investigated as a reflection of human social interactions, enabling social ties
detection by means of the analysis of interactions between devices, the user personal
data and the time and space dependent context data that each device can collect.

MSN are enabled by the tremendous diffusion of mobile devices in the planet. In
fact, the average number of devices per-person exceeded 0.5 in 2013, which means
that there are currently billions of mobile devices in the world [51]. These devices
generally embed several network interfaces, including short-range (e.g. WiFi, Blue-
tooth or ZigBee) and long-range (e.g. GPRS, 3G and LTE). Short-range interfaces
allow devices to communicate with each other without relying on any network in-
frastructure, while long-range interfaces guarantee broadband connectivity mostly

34 CHAPTER 2. BACKGROUND AND RELATED WORKS

everywhere. The devices are also equipped with advanced multi-core CPUs and
dedicated GPUs, flash memories and external storage, and they embed a plethora
of sensors such as accelerometer, gyroscope, GPS receiver etc. Such features make
these devices ideal for the exploitation of a new form of distributed computing, such
as the opportunistic computing [52].

As compared to OSN, MSN offer complementary opportunities to users, as they
exploit the mobility of humans carrying the devices of the MSN. The human mobility
can be characterized by three key-aspects: (i) common activities (e.g., we all go to
work, go back home, travel toward office), (ii) visiting a limited number of locations
(e.g., home, the office, a movie theater), and (iii) traveling more often along short
paths instead of long routes. On the other hand, homophily among people introduces
additional features in the way people (and hence devices) in MSN move and behave.
In particular, people tend to meet more frequently and/or for longer periods with
other people with whom they share similarities. As discussed in [16] contacts among
similar happen more frequently than that contacts among dissimilar people. For
instance, race and ethnicity, sex and gender, age, religion and education are some
notable aggregation factors that tend to cluster similar people together. A common
way to model all these aspects is to group devices into communities and to profile
them according to the interests of their users or according to other criteria such
as time spent together, places visited or common acquaintances. The detection
of communities can result helpful in order to study the effect of mobility on the
effectiveness of different strategies for resources and information diffusion in MSN.
In this section we give an overview of these aspects of MSN, before introducing the
service-oriented approaches.

Communities in Mobile Social Networks

Human mobility is driven by several factors, among which, social interactions are
predominant [53]. People that meet frequently for long periods have robust social
ties, and they form communities. There is not a unique definition for the term
community [54, 55], however it can be informally described as clustering of entities,
e.g. people, that are closely linked to each other and have non-volatile social ties.
Examples of communities are the employees of the same company that work in the
same office, students attending the same lectures or members of a family. Commu-
nities are a useful tool for analyzing and exploiting the potentialities of a MSN. In
fact, members of a community are connected by similar interests, habits or mobility
patterns. For example, classrooms attending to the same lecture may share interests
for the university campus events or nightlife in the city where they live. Similarly,
people commuting by train might be interested for the timetables, delays or the
weather forecast at the destination. Note that, belonging to the same community
does not necessary imply to be often in proximity, and communities composed by
people that share the same interests but that have different mobility patterns are
also admissible in MSN.

2.2. SERVICE DISCOVERY IN MSN 35

In general, algorithms and applications designed for MSN can exploit the exis-
tence of communities to optimize the diffusion of information, the routing and the
discovery and access of services available the MSN.

The community detection can be implemented with centralized [56, 57, 58] or
with distributed algorithms [59, 60, 61]. The centralized algorithms need full knowl-
edge of the whole network and of its ties, while in the distributed ones each device
has a local view of the network, and it needs to detect the communities to which
it belongs. The mobile and dynamic nature of the MSN leads us to consider the
distributed community detection algorithms as the natural choice. Indeed, with dis-
tributed algorithms, the devices need to know the quality of encounters with other
devices, in terms of:

• temporal metrics: measure of the temporal dimension of the device encounters.
Some notable examples are the contact duration, the average inter-contact
time, and the last time a device has been in contact;

• similarity metrics: measure of the similarity degree with the encountered de-
vices. For example, the similarity function can measure the interests, the
number of similar contacts or the similarity with the places visited.

Hui et al. [60] propose a family of community detection algorithms, namely
SIMPLE, k-CLIQUE and MODULARITY. As a general principle, each device is
maintaining a familiar set, in which encountered devices are imported when the
cumulative contact duration exceeds a certain threshold. The community of each
device contains all devices in the familiar set plus devices selected by the detection
algorithm. If two devices have quite similar familiar sets, then they add each other
into their communities. The two communities will merge in SIMPLE if they have
more common devices than a threshold, in k-CLIQUE if the other device’s familiar
set contains at least k − 1 devices of the root device’s community and in MODU-
LARITY if the familiar sets of the other device’s community members, not included
in the root device’s familiar set, belong to the root’s device community. One of the
drawbacks of the SIMPLE algorithm is that it does not remove old contacts from
the familiar set. In particular, once a device has been added to a community it will
be never removed. AD-SIMPLE algorithm [59] extends SIMPLE by adding a mech-
anism for aging contacts so that it is possible to remove devices from the community.
Another distributed community detection algorithm is presented by Li and Wu [62],
as part of the community-based epidemic forwarding scheme called LocalCom. The
detection algorithm is initiated by a self-selected device, called initiator. In order to
use a broader definition than cliques, the notion of the virtual link is introduced and
two devices are considered to be socially related if they share a strong connection
with a common neighbor. Moreover, by adopting normalized cuts, devices are able
to form communities in a distributed way. This is achieved by selecting the detected
community with the smallest normalized cut value.

36 CHAPTER 2. BACKGROUND AND RELATED WORKS

DRAFT [61] is a distributed spatio-temporal detection algorithm. It uses the
cumulative contact duration to add or remove a device from a community. More-
over, it implements a decay mechanism to prune devices that no longer belong to a
community. DRAFT takes three parameters: cumulative threshold, decay rate and
length of the time frame, the combination of these parameters affects the cardinality
of the communities detected by each device.

Distributed MSN Architecture

MSN are mobile and dynamic in nature, people establish contacts according to their
social activities, and, consequently, devices carried by people are able to interact
only for short and intermittent periods. The network architecture required by MSN
differentiates form the OSN. In fact OSN rely usually on a web-based centralized
architecture. In this case, a cluster of replicated servers provides the back-end of the
social network; the servers are supposed to always be on-line backed by ultra-fast
and reliable network infrastructures. The (mobile) clients of the OSNs connect to the
servers by means of Wi-Fi or by long-range network interfaces such as LTE. In MSN
such architecture is not feasible, hence we do not assume the existence of a stable
network infrastructure rather all the communications happen in an opportunistic
way. More precisely, we refer to MSN based on a distributed architecture as shown in
Figure 2.12. The figure shows the snapshot of a MSN along 24 hours. The snapshot

12 PM - 4 PM8 AM - 10 AM

bluetooth

5 PM - 8 AM

Figure 2.12: Snapshot of a distributed MSN.

2.2. SERVICE DISCOVERY IN MSN 37

shows the connections established by group of devices in different periods of the day.
Some of them are connected directly by means of short range network interfaces (for
example Bluetooth or WiFi Direct), other devices are (partially) disconnected.

The key feature of distributed MSN is the total absence of centralized servers.
Mobile devices are able to communicate and access the information only by con-
necting to other devices. Therefore, the network itself has to store and route data
until the correct destination is found. Distributed MSN can be further divided into
two different categories. In the first one, devices share contents directly or by us-
ing some deployed infrastructure (but not centralized anyway). In the second one
(which is the most challenging), intermediate devices might be required to provided
inter-communication between two devices (they are also named rely devices). Be-
cause no infrastructure is considered, the mobile devices themselves are designated
to route or carry the messages until the final destination is found.

Routing and Data Dissemination in MSN

Routing and data dissemination are two complementary key-problems in MSN. The
routing aims at delivering a message from the source to the destination, in this
case the sender and the device receiver are known. Data dissemination aims at
disseminating data produced from a provider to devices that might be interested in
using such data, in this case the sender is known but the receivers are not known.
In general, the goal of a routing protocol is to deliver a message quickly toward its
destination, while the goal of a dissemination protocol is to diffuse efficiently a data
among the interested devices. Figure 2.13 shows two simple strategies for routing
and data dissemination.

Figure 2.13a shows a simple routing strategy from device i to device d. Devices
receiving the message m forward it to another device according a local decision, for
example device j forwards m to u because u is often in contact with the destination
d. Such decision is taken on the basis of a local routing policy.

Figure 2.13b shows a controlled-flooding dissemination strategy. Device i gener-
ates and propagates the message m among devices that are interested in receiving
m; in particular i selects k at time t′, k in turn, selects both u and h at time t′′and,
finally, u selects d. In this latter case, there is not a final destination, rather the
message m is propagated until a certain rule applies (for example when it reaches
its maximum hop count).

In MSN there are generally no stable end-to-end delivery paths. Therefore,
delivering messages to a destination or diffusing a data towards interested devices
becomes more challenging. Most of the existing solutions for routing and data
forwarding adopt the store-carry-and-forward approach, which consists in storing
a message locally to a device and carrying it until the destination or a promising
device is encountered (i.e. a device that will hopefully meet the destination in the
future, according to some metric). It is thus important to adopt a smart relaying
selection and forwarding decision in order to reduce the latency of delivery. Based

38 CHAPTER 2. BACKGROUND AND RELATED WORKS

i

j

k

m
j um

h

u dm

t t’ t’’

(a) Routing message m from i to d.

i

j

k

k u

h

u dm

t t’ t’’

m

m

…

(b) Disseminating message m from i.

Figure 2.13: Routing and data dissemination.

on a chosen strategy, policies for routing and data forwarding varies from epidemic
replication of all the messages to every node like Epidemic routing [63], through
to multi-copy and single-copy forwarding. Flooding-based protocols with unlimited
replicas of messages cause high demand on network resources, such as storage and
bandwidth and they cause congestion. However, multi-copy protocols typically aim
to limit the number of replicas of the message in order to leverage a trade-off between
resource usage and probability of message delivery. On the other hand, single-copy
strategies require routing algorithms to implement a next-best-hop heuristic that
forwards the messages to those devices with a highest probability to deliver the
message to its destination.

Service-Oriented MSN

The social nature of MSN leads people to form and maintain communities of simi-
lar. Communities are structures offering a great opportunity for people’s devices to
interact and exchange useful information. Devices can gather environmental data,
download and share contents from the web, store multimedia contents and exploit

2.2. SERVICE DISCOVERY IN MSN 39

sensing capabilities available on the device. Such information is continuously re-
freshed and updated according to the input of the end-users. When data available
on a device are offered to the MSN, the computation paradigm may become service-
oriented. In fact, every data can be exposed as a service offered to devices located
in proximity or not directly connected but that are part of the same community.
However, the service oriented paradigm cannot be applied as-is, rather MSN intro-
duce several restrictions to such paradigm. The absence of a network infrastructure,
the opportunistic nature of MSN and the human behavior typical of these networks
draw a challenging but exciting scenario. In particular, the problem of finding and
accessing services (in one word, service discovery) has been widely studied in many
other contexts very close to MSN [7, 64].

With the term service, we refer to every hardware and software resource provided
by a device in the network. In this section we propose a spectrum of services
potentially available in the MSN Figure 2.14 shows a non-exhaustive classification
of application services in MSN. Services are classified in three categories:

Figure 2.14: Classification of services in MSN.

1. content-based;

2. networking;

3. sensor-based.

Content-based services are designed for sharing media contents with other devices;
notable examples in this category are services for sharing video and photo, streaming
of short videos, cooperative blogging platform [65], utility services for media contents
such editing or compression of images, recommender systems for recommending
places to visit (e.g. restaurants, pubs or others) [66].

40 CHAPTER 2. BACKGROUND AND RELATED WORKS

The category of networking services does not only include the traditional services
referred by [9, 8, 42] namely printer, fax, scanner and memory storage, but it also
wraps services designed for sharing networking functionalities with mobile devices.
Notable examples in this category are services for sharing the Internet connection
[67] and services for enabling text messages or phone calls. The category of sensor-
based services comprises all the services that exploit sensors installed on the device.
When the sensing capabilities of a device are combined with the mobility and social-
ity aspects, the range of application services increases. Some notable examples are
the opportunistic sensing and crowd-sensing [68, 32] platforms designed to gather
information from mobile devices by exploiting sensors on the device itself.

Moreover, the way in which the application services are provided is something
that distinguishes the MSN from other application scenarios. In particular, some
services are meaningful only if they are geographically and temporally tagged. For
example, during a social event like a concert, people can start exchanging comments
and thoughts about the events in a shared virtual dashboard. The dashboard service
is not provide by a server, rather all devices roaming around the event implement
a distributed service that will exist until someone will keep using it. We define the
way of creating and providing service on the fly here & now.

Service Advertisements and Queries

Devices part of a service oriented architecture play different roles: service provider,
service client or service registry, moreover devices can play multiple roles simulta-
neously. The service providers announce of the existence of the services that they
provide. This phase is achieved by propagating a service advertisement message to
the devices that are met opportunistically in the MSN, this is commonly referred as
proactive service discovery. The service advertisement (or for brevity the advertise-
ment) is a compact data structure that summarizes the core features of the service,
such as:

• the identifier of the service provider;

• the service interests that classify the service according to the functionalities it
provides4;

• the Quality of Service (QoS) features that describe how the service is provided;
for example the estimation of the service competition time, the estimation of
the length of the pending requests and other metrics useful to describe the
performance of the service provider.

• input and output parameters that describe how to invoke the service and the
kind of expected results.

4There are well-known methods for service classifications, relying on syntactical or ontology-
based techniques [69, 70, 71]. These kinds of classifications is beyond the scope of this thesis.

2.2. SERVICE DISCOVERY IN MSN 41

The service clients are the devices that discover and access the services in the
MSN. The clients propagate a service query in the network, this phase is commonly
referred as reactive service discovery. The query is a message that describes the
kind of service needed by a client. The query wraps a set of parameters that must
be directly compared with an advertisement message, in particular a query may
contain:

• the service interests that specify the kind of functionalities needed by a client;

• the QoS features that require a specific level of performance of the service
provider;

Devices in MSN implement a distributed service registry. A service registry
is a (set of) device(s) storing the service advertisements diffused in the network
(Section 2.2.2 describes both the centralized and the distributed implementations).
In particular, a device carries the service advertisements of the services it provides,
as well as the service advertisements (provided by other devices) that the device
received proactively or reactively. Since every device in the MSN is part of the
registry, as soon as a device receives a query it checks if one of the advertisements
stored locally matches with the query. If a match is found, than the device carrying
the answer replies to the client with the service advertisement.

2.2.2 Related Works

Service discovery architectures can be classified in: directory-based, directory-less
or hybrid solutions [72]. The directory-based architectures assume the existence of
a directory whose role is twofold:

• management of advertisements: devices providing one or more services store
the advertisements in the directory;

• management of queries: devices looking for a service send the query to the
directory. If the query matches with one or more advertisements, the directory
replies to the service client with the matching advertisements.

The directory-based architectures can be implemented in a centralized or dis-
tributed way. In the centralized solutions (among them we cite some results [9, 73,
74]) there is only one device acting as directory that is known in advance by every
device in the network. This is the simplest solution, but these architectures are not
designed to scale well in large-scale systems. Indeed, the directory is a single point
of failure: if it is not available then the clients are not able to discover any service. In
distributed solutions (an old but meaningful example is the Jini architecture [73]),
a set of devices acts as a distributed directory. Such pool of devices can imple-
ment methodology for synchronizing the advertisements stored locally or to split
the advertisements inside the pool. A distributed directory can be implemented

42 CHAPTER 2. BACKGROUND AND RELATED WORKS

by statically configuring devices that implement the directory or by dynamically
electing the devices [75]. In this last case, elected devices are those that have the
best features for playing the role of directory [76, 77]. The distributed directories are
more robust than the centralized ones, as several devices participate to the directory
role.

The directory-less architectures, (some notable example are [78, 79]), are simpler
than the directory-based ones. With directory less architectures the role of the
registry is shared among all the devices in the MSN. As soon as a device receives
a query, it checks if any of the advertisements stored locally matches the query.
In this case, the device replies to the client, otherwise it propagates the query to
other devices selected with a strategy. In a similar way, the providers diffuse the
advertisements in the network with a proper strategy. Directory-less architectures
are more suitable for MSN, since they do not assume the existence of always-on
devices acting as directory. However, the strategy adopted by devices for querying
and advertising is a crucial part of the discovery process, and simple solutions based
on flooding or gossiping can revel too aggressive in terms of use of the network
bandwidth, overheard of the protocol and energy consumption of devices. The next
subsections describe the advertisement and query strategies available for service
discovery in MSN.

When directory-based and directory-less are combined together, the discovery
architecture is hybrid. In this case, the architecture supports the existence of a
directory both centralized and distributed. Clients first query the directory; if no
advertisements are found then clients query the whole network in a similar way to
the process described for the directory-less ones.

Advertisement and Query Strategies

This section discusses the approaches for the dissemination of advertisements and
queries in MSN. Some of the works here discussed are specifically designed for service
discovery problem, while others are generically designed for data dissemination, but
they can be applied to the dissemination of advertisements and queries. The diffu-
sion strategies presented in this section are organized within 3 categories: namely
interest-based, flooding-based and social-based strategies.

Table 2.2 summaries the works surveyed in this subsection according to the
following features:

• Forwarding rule: the strategy adopted for the message forward;

• Mobility: the application scenario considered by the authors to evaluate the
strategy. We distinguish between real-word scenarios (obtained with real-world
mobility traces) from synthetic scenarios (obtained with mobility models);

• Community Detection: the algorithm used for detecting communities (if adopted
in the strategy);

2.2. SERVICE DISCOVERY IN MSN 43

• Evaluation Metrics: some commonly used metrics used for evaluating the strat-
egy.

Interest-based strategies
In interest-based strategies each device is associated with a set of interests repre-

senting the user profile, and each query or advertisement message is also described
by a set of interests. The message diffusion strategy exploits only relay devices that
have interests similar to the ones of the discovery message. To this purpose, these
strategies adopt a similarity function whose goal is to measure the similarity be-
tween the interests of the message to be forwarded and the interests of the potential
relay devices. The higher the similarity, the more likely the person carrying the
device will use the information (query or advertisement) contained in the message.
Examples of similarity functions are the Jaccard-index, the cosine similarity or the
Hamming distance.

The authors of [80] propose a peer-to-peer service discovery protocol. They
use a pull-based, (on-demand) query generation and propagation mechanism, that
merges two distinct overlay networks: one made by the interests of devices, i.e.
information about the types of contents the devices are interested in, and one made
of contacts built with information about physical proximity between devices. Query
are represented with a type (music, video, etc) and they are sent to all interested
neighbors; these are discovered by previous messages received by the device and
cached locally, or by propagation of interests using a gossip protocol. The authors
study via simulation the hit-rate of the service discovery protocol and the influence
of mobility and density of the network. The queries are based on a static set of
interests without others metadata used in other works.

The SocialCast [81] algorithm implements a publish/subscribe paradigm as done
in [82]. SocialCast relies on the observation that people with similar interests tend to
meet more frequently with respect to people without overlapping interests. The data
forwarding strategy is implemented by observing the mobility patterns of people and
also the interests of devices running SocialCast. SocialCast adopts an interpolation
function based on the Kalman filter to predict the movement of people by tracking
their previous movements. The SocialCast algorithm is implemented in several steps:
(i) the dissemination of user interests, each device broadcasts the list of its interests
to the ego-network. Then (ii) every device computes the utility function for all its
interests and lastly (iii) every device checks the contents it carries with respect to
the subscriptions of the devices, and eventually the contents are forwarded to the
subscribers.

Mei et al. [83] focus on a forwarding strategy based on the sociality of users
in a MSN. This paper proposes the so-called interest-cast forwarding schema. The
aim of interest-cast is to efficiently diffuse information to the highest number of
interested devices (the authors use the cosine similarity function). The selection of
the device matching with the interests is based on the similarity function. Under
this respect, the interest-cast service can be seen as a directory-less service in which

44 CHAPTER 2. BACKGROUND AND RELATED WORKS

Paper Forwarding rule Real-World Syntehtic
Community

Detection

Delivery

Delay

Delivery

Ratio

Message

Sent

Power

Consumption
Fairness Other

[80]
Similarity among

interests
infocom 06 SWIM not addressed ✓ ✓

Coverage (%

of relevant

destinations

reached

[81]
Similarity among

Interests
PMTR HCMM

Louvain

algorithm
✓ ✓ ✓ Coverage

[83]

Similarity among

interests and energy

awareness

SIGCOM SLAW not addressed ✓ ✓ ✓ ✓ ✓
Effectiveness

Fairness

[85]

FM: encounter time

with the final

destination

IB: intetrest-based

infocom 06 SWIM not addressed ✓

[86] interest-based CMM
Girvan-

Newman
✓

Time To

leave

[87] interest-based CMM, RWP not addressed ✓ ✓

[88] Flooding-based ad hoc simulation not addressed ✓ ✓

[89] Location-based ad hoc simulation not addressed ✓

Number of

clients that

discover a

provider

[90] Flooding-based ad hoc simulation not addressed ✓ ✓

[92]
General-purpose

framework

infocom 06,

MIT Reality,

UCSD

not addressed not addressed ✓ ✓ ✓

[93]
Publish/Subscribe

within communities

MIT Reality,

UCDS, CAM,

WirelessRope

not addressed
K-Clique,

SIMPLE
✓ ✓

[96]
Centrality degree of

nodes

infocom 06,

MIT Reality,

Cambridge,

Hong-Kong

not addressed

K-Clique,

Newman

WNA

✓ ✓
Centrality

Betweeness

[97]

Duration of the

enconters among

nodes

NUS, infocom

06 MIT Reality
no

yes, assume

the existence

Number of

nodes that

can retrieve a

copy of a

data in a

given time

slot.

[82]

several utity

functions:

MFV,MLN,F,P,US

HCMM

Based on the

HCMM

model

✓ ✓ ✓

Mobility

S
o
ci

al
F

lo
o
d
in

g
In

te
re

st

Evaluation Metrics

Table 2.2: Comparative table of advertisement and query strategies.

2.2. SERVICE DISCOVERY IN MSN 45

the service selection is performed by the potential recipients of the content that
filter the input when it is received. The assessment of interest-cast addresses the
performance and overhead of the content diffusion, and especially focuses on the
coverage, i.e. the percentage of relevant destination that hold a copy of the content
within a time frame. The assessment is performed over real mobility traces and on
synthetic traces built with the SWIM mobility model [84].

In [85] the authors describe a comparison between two forwarding strategies used
to deliver a message from a source towards a destination in MSN. The paper presents
two simple but effective strategies, namely FirstMeeting (FM) and InterestBased
(IB). The first strategy is social-oblivious in the sense that it does not use any
information related to the interests of the devices in order to take the forwarding
decision. Conversely, the second strategy is based on the interest profiles of devices.
With FM the source device, for example the one generating an advertisement for
another device, always generates two copies of the message. One copy is stored
locally while the second one is forwarded to device R, only if R is met before the
final destination. Similarly to [83], the IB strategy relies on the assumption that
people with similar interests tend to visit more frequently. With the IB strategy a
device delivers a message to another device if the similarity between the interests is
greater than a fixed threshold. The authors present a comparison between FM and
IB by using two simulation scenarios based on real and synthetic mobility traces.
The traces reproduce two realistic scenarios where the mobility of devices is affected
by the interests of people carrying them.

The authors of [86] defines the BehaviourCast problem for the diffusion of infor-
mation in MSN. BehaviourCast is based on four key-features:

• the validity: forwarding a message to a subset of the interested device;

• the effectiveness: forwarding the message in order to achieve total coverage of
devices interested;

• the efficiency: involving the smaller number of relying devices;

• the query termination: interrupting the forwarding of a message after a given
time.

The authors also propose two interest-based strategies solving the BehaviourCast
problem, namely the basic InterestCast and the weighted InterestCast. With the
basic InterestCast, every device i executes an utility function that counts the total
number of devices encountered and sharing the same interests of i. The authors
note that such basic strategy has no memory of past encounters, for this reason the
authors propose an enhanced version, namely the weighted utility function. This
last strategy is based on the Shannon’s Entropy principle, it counts separately the
number of encounters the device i had in the past with device j. The weighted utility
function, hence, keeps track of the number of encounters with every single devices

46 CHAPTER 2. BACKGROUND AND RELATED WORKS

met. The authors simulate the two strategies proposed both with real and synthetic
mobility traces and they compare the results obtained with respect to ProfileCast
and SocialCast algorithms.

The authors of [87] present PIPER an interest-aware social-based forwarding
algorithm for MSN. PIPER extends the IPER algorithm by taking into account
also the energy consumption of devices involved in the forwarding process. The
IPER forwarding strategy combines together several factors in order to rank all
possible candidates for forwarding a message towards its destination. In particular,
given the device i the IPER function combines the similarity between the interests
of the device and the interests of the message to be forwarded, a dumping factor
to determine the amount of reliance on opportunistic forwarding, the social rank
of device i and the similarity between the interests of the advertisements and the
interests of all the friends of device i. PIPER extends IPER by adding another
parameter used for ranking a candidate forwarded, namely the battery level. The
authors state that during the forwarding process, devices with low battery level
should be excluded form the forwarding process in order to reduce as much as
possible unattended battery depletion. In particular a device is highly ranked if one
of the following conditions holds: its battery level is above a threshold, the person
carrying the device is linked with popular friends and also if the set of friends of the
person caring the device are also interested in the message. The paper also discusses
the performance of PIPER with respect to IPER and a benchmark algorithm based
on a Epidemic forwarding strategy with real an synthetic mobility traces.

Flooding-based strategies
Flooding-based strategies aim at maximizing the number of recipients of queries

and advertisements messages but they do not use any social-based metric to se-
lect the rely devices of messages. The main advantage of these solutions is the
effectiveness and the simplicity of the diffusion strategy, but they may incur in a
high overhead in terms of messages forwarded, network bandwidth and the devices
battery depletion.

The authors of [88] present a service discovery protocol for MANET with low
mobility of devices. The protocol is based on the reliable broadcast. Services are
not described by id’s nor by a service type, rather they are labeled with the in-
put/output parameters. The parameters of the services available in the network are
spread using a proactive exchange of the local tables stored locally by each device.
Such tables contain a mapping between the service and the I/O parameters needed.
Moreover, the protocol is supposed to be embedded with the neighbors discovery
protocol of the underlying MANET. In this way, the services are advertised together
with the discovery of devices found in proximity. Queries are diffused reactively by
flooding the neighborhood, hence this happens as soon as a device needs to access
to a specific service. The queries are described with a set of parameters, the au-
thors propose a simple but effective solution for the composition of multiple services
together. The use of parameters are described using a common taxonomy, that
includes the possibility of hierarchies among parameters. The authors classify the

2.2. SERVICE DISCOVERY IN MSN 47

queries within two categories, namely exact or generic. The protocol is evaluated
via simulations by means of the NS-2 network simulator, statistics about the delay
of service discovery and the amount of overhead of the protocol are studied. This
enables service composition protocols and generic query of service providers.

In [89] the authors address the problem of service discovery in delay tolerant
networks. The scheme adopts a proactive propagation of service advertisements,
where each service provider announces periodically its own services to the entire
network. The advertisement is composed by a list of keywords, and all the devices
in the network cache the received advertisements and associate them to their latest
time of reception. When a client looks for a service, it first checks into its local cache.
If there are no matches, then it starts a reactive service discovery by broadcasting a
service query packet. Each device receiving the query looks for a service matching
with the query in its internal cache, hence the query can receive an early response
even from intermediate devices. The client then selects the matching replies to its
query based on the latest time of reception. The solution proposed [89] is evaluated
by means of the NS-2 network simulator with an ad hoc mobility model to assess
the efficiency and the overhead of service discovery. Although this scheme does
not consider sociality aspects in the advertisement and query distribution, its basic
architecture of service discovery is also valid for MSN, and its mechanisms of diffusion
of advertisements and service queries can be easily combined with knowledge about
the communities and user interests to be adopted in MSN.

OLFServ (Opportunistic and Location-aware Forwarding protocol for Service de-
livery) [90] considers a scenario in which devices are geo-localized. The authors refer
explicitly to an application scenario sparse, hence the network may become discon-
nected for some periods. It assumes that any device can advertise a service, by using
a multicast-based scheme that limits the area of propagation of the advertisements.
Service advertisements have an expiration time and they contain information about
the position of the emitter (the service provider) and the geographic area where the
service can be accessed. Furthermore, the service advertisements also include a list
of potential recipients (service clients). The paper does not discuss how the list of
potential receivers is created and maintained. Beyond making public a new service,
the purpose of the advertisement is also to make more efficient the access to the ser-
vice by providing geographical information about the service provider. The authors
evaluate the efficiency of OLFServ in distributing the advertisements against their
rate of success (in terms of number of clients that find correctly a service provider).

Social-based strategies
Social-based strategies exploit information about users social relationships to

drive the dissemination of queries and advertisements. However, the human social
relationships are difficult to capture and to measure, since they are influenced by
many factors. According to Granovetter [91], ”the strength of a tie is a (probably
linear) combination of the amount of time, the emotional intensity, the intimacy
(mutual confiding) and the reciprocal services which characterize the tie”. Rela-
tionships among devices can be determined by using specific utility functions, such

48 CHAPTER 2. BACKGROUND AND RELATED WORKS

as contact duration among devices, inter-contact time or remaining inter-contact
time or by means of well-known centrality metrics such as the betweenness central-
ity or the closeness centrality. Generally speaking, the social-based strategies are
characterized by the capability of the strategy in discovering devices among which
there exist non-occasional social ties. In turn, such devices are used to optimize the
diffusion of information among social-linked devices.

The authors of [92] describe a general forwarding algorithm for the diffusion of
advertisement and query messages, namely Delegation Forwarding (DF). DF relies
on a basic idea: a message is forwarded from the sender to an intermediate device
only if the receiver is better than the sender with respect to a specific metric. The
authors of DF does not define any new metric for taking the forwarding decision,
rather they propose a general framework for deciding who should receive a message
copy. The authors discuss the effectiveness of DF when implemented with some
strategies:

• Epidemic [63]: a device forwards a message to all devices it is in contact with
only if they did not have already a copy of it stored locally;

• Frequency [93]: a device forwards the message to another device if it has more
total contacts with respect to the sender device;

• Last Contact: a device forwards a message to another device if it has contacted
any device more often than the sender device;

• Destination Frequency: a device forwards a message to another device if it has
contacted any device more frequently than the sender device;

• Destination Last Contact: a device forwards a message to another device if it
has contacted any device more recently than the sender device;

• Spray and Wait [94]: the message source s creates l replicas for the same
message. If, along the time, s carries k > 1 replicas than if s encounters
another device that has no replicas, then s forwards half of its replicas to the
encountered node. Otherwise the Destination Last Contact rule is applied.

• SimBet [95]: the message source forwards a message to another device only if
the SimBet metric of the encountered devices is higher than that the SimBet
metric of the source node. The SimBet metrics is basically a linear combina-
tions of the betweenness and similarity graph metrics.

The BUBBLE Rap algorithm [96] implements a social-based forwarding strategy
in delay tolerant networks. Users are given a global ranking and a local ranking,
computed according to their importance in the network. The information (either
service query or an advertisement) is first forwarded from the sender through users
with higher global ranking, until the message reaches a user in the same community

2.2. SERVICE DISCOVERY IN MSN 49

of the receiver. Then, the message is forwarded only among users in the same com-
munity according to the local ranking, until the information reaches its destination.

Socio-aware [97] is a publish subscribe strategy that relies on a overlay struc-
ture based on communities. Communities are detected by means of two algorithms
proposed by the same authors [60]. The overlay structure assumes that devices can
play different roles: the brokers, the subscribers and the publishers. The brokers
have high centrality degree inside the community. The brokers receive all the sub-
scriptions and un-subscriptions from other devices as well as the list of the centrality
values form the devices in contact with a time stamp. The broker device evaluates
the centrality values previously received in order to decide which device should take
the role of the broker. If a change is needed, then the broker transfers the sub-
scription list to the new broker with the highest centrality degree. Then, an update
message is sent to all the brokers in the overall network. During the gossiping stage,
subscriptions are propagated towards the community’s broker. When a subscription
reaches the broker, it is propagated to all other brokers, and then the broker checks
its own subscription list. In the case there are members in its community that must
receive the subscription, the broker floods the community with the information.

In ContentPlace [82] devices advertise the data objects they are interested in,
and data objects that they carry around the network. Data objects are contents of
different types, such as media content that are transferred with some communica-
tion channels. The protocol proactively exchanges information about the channels
provided and subscribed by devices encountered along the time. Moreover, the pro-
tocol must decide on the basis of a utility function which data objects to replicate.
The utility is a function of weights, the weights are function of groups, channels and
the availability of the object in the network. The authors analyze via simulation
ContentPlace with a number of different utility policies for computing such weights.

The paper [98] presents a forwarding schema by taking into account the time
needed to transfer a piece of information (especially multimedia content). The
authors observe that the time needed for such transfer could be not negligible, and
that the transfer success is related to the duration of the contact time between the
devices involved in the information transfer. In fact, typical forwarding schema for
MSN may fail to forward the content if the transfer time is longer than the contact
time between the sender and the chosen rely node.

Service Selection

Service Selection is another important step of every service discovery protocol. After
the advertisement and query steps, a device might receive a number of advertise-
ments whose services provide the same or similar functionalities. The device needs
to select the best candidate and, eventually, compose multiple services together [99].
In [7] service selection is presented as the phase that comes after all the replies from
a query are collected at the client and the right service provider must be selected
among the alternatives. As discussed in [7], most of the effort in the literature focus

50 CHAPTER 2. BACKGROUND AND RELATED WORKS

on service advertisement and query, while the selection phase has not been studied
in depth. In the following, we review how service selection has been studied so far
by focusing on how to describe a service and how to implement the proper selection.

First, service selection is based on the evaluation of the properties of the service.
In MSN different formalisms (languages) are used to describe service properties,
they range from a simple key-value pairs, to XML or even more complex descrip-
tion. Moreover other formalisms are needed to describe user preferences and other
context-information such as users-location or scope awareness. There is a constant
trend in raising the complexity of these formalisms, moving away from simple key-
words based service description and syntactic-matching of attributes, towards a
semantically richer matching [88]. This, in turn, enables the use of very descriptive
queries that perform most of the selection phase by carefully describing what are
the real interests of a client. Most of the works on service discovery lack this point
of view and study the query phase only as an information diffusion process; only
few works measure metrics like the precision and recall of a query [100].

Second, as reported in [7] service selection protocols differentiates between user’s
assisted or automatic selection. In MSN, with pocket devices and mobile users, user’s
assisted selection might result not appropriate because users are typically not aware
of the internal mechanism regulating the selection policy. Moreover, the MSN are
supposed to implement an autonomic cooperation model, where user’s intervention
should be avoided as much as possible. Conversely, the automatic selection policies
are more widely used and we expect that has noted previously, better description of
the user needs and of the context, will reduce the gap between the automatic and
manual choice, with respect to overall user’s satisfaction. For this reasons, we focus
on the automatic service selection protocols. We therefore present a first attempt
to classify the most interesting selection protocols along two categories: manual and
automatic selection as shown in Figure 2.15.

Figure 2.15: Service selection strategies.

A general-purpose service selection protocol is proposed in [101]. This selection
protocol does not depend on any specific discovery protocol, rather it can be po-

2.2. SERVICE DISCOVERY IN MSN 51

tentially applicable with any existing discovery protocol. The solution described in
[101] implements a service selection based on dynamic attributes such as the size of
the print queue or the computational load of the host that a service may be located
on. Each client has a specific set of weights that measure the relevance, for that
client, of the dynamic attributes. The weights are used to compute an overall score
used to rank different service providers. Given the attributes and the ranking for
a client, the service selection becomes mostly automated. In fact the selection is
obtained by selecting the first provider in the ranked list of every client.

The authors of [102] propose several policies for the service selection. The policy
proposed are: (i) Minimum Expected Value that minimizes the time required to
receive the first response of the service invocation, (ii) the Random policy that
selects randomly the provider, (iii) the Always First policy that selects the first
suitable provider that is in contact with the client, if no such provider exists, the
client waits to encounter it, (iv) the Atomic policy that selects the provider that
offers a single service satisfying the request of the client.

The authors of [103] propose a cross-layer service discovery and service selection
architecture. The solution proposed is based on the extension of two routing proto-
cols for MANET, namely the DSR and DSDV by adding the service discovery and
selection features. The SDL is defined as the Service Discovery Layer and the RLD
is defined as the Routing Layer Driver. The SDL stores information about known
servers in a service table. Table entries have five fields: service description, service
location (e.g IP of the provider), minimum hop count from the current host to a ser-
vice provider, optional routing protocol specific information provided by RLD (e.g.,
a list of available routes to the destination), and optional service-specific metrics
supplied by a service provider (e.g., current load, CPU usage). The service selection
is performed by ranking the client with respect to the information available in the
SDL. The authors do not specify any policy, rather they propose a general-purpose
framework for the service selection. Moreover, the authors propose a simple method
for re-evaluating the SDL metrics and to re-select the provider as soon as the SDL
metrics change significantly.

In [104, 100] presents a Location Aware Service Discovery Protocol (LADS),
and a corresponding Service Selection Protocol (LASS). Both protocols assume that
devices know their geographic location and their motion speed. The service discovery
phase is based on a geographic scoped broadcast, i.e. only devices sufficiently close
to the requester and not moving too fast, will receive the query and eventually send
a reply. A node running LASS stops a query if it already forwarded k replies for
the same query, the threshold k is chosen by the requester. Alternatively, a node
running LASS stops the current reply if it does not satisfy a quality criteria, i.e. the
distance/speed ratio of its service provider is worse than one already forwarded.

The authors of [105] propose two methods for the service selection. The methods
proposed assume that every node in the network (the authors refer to nodes in a
Wireless Sensor Network) know their position in advance. The first method is named
Closest service selection and it selects the provider whose euclidean distance is the

52 CHAPTER 2. BACKGROUND AND RELATED WORKS

smallest among all the providers available in the network. The second method is
named Nearby service selection and, given a threshold of the distance, it selects the
provider whose distance is the nearest to the threshold.

In [106] the authors present a middleware for service selection in MANET, with
a particular focus on emergency scenarios. The authors classify services in two
complementary classes, namely comfort and safety-related services. The authors
show that common service selection algorithms fail to distinguish the differences on
the two classes. The solution proposed in [106] is a context-aware M2M middleware
for service selection that incorporates client’s realistic expectations, which are pre-
defined in the middleware. The selection of comfort services is achieved by selecting
the most popular services. The popularity is computed by considering the feedbacks
reported by other clients, such feedbacks are in turn combined with the hop-count
metric. The selection of safety-related services is achieved by selecting the most
reliable providers, also in this case the authors of [106] adopt the hop-count metric.

In [28] we describe CoDA, a cost-based service discovery algorithm for Smart
Environments. CoDA is based on a directory-based discovery architecture with a
distributed implementation of the service registry. The network is configured with a
number of service registries, and both the clients and the providers directly interact
with the nearest registry in order to find a service or to announce a service. Despite
of the kind of architecture, CoDA addresses the problem of which provider selects
when multiple options are available. Our solution proposes minimizes the energy
consumption required by a client in order to invoke the services available. The
energy consumption is estimated by considering the distance between the client and
the provider in terms of number of hops, together with the energy cost of the path
traversed. The lower the energy cost of the path toward provider x, the higher the
probability that the client will select x as best option. CoDA considers different
costs for the paths traversed by a client, such costs are defined according to the
technology of the path. For example CoDA assigns different costs to wireless, wired
or hybrid links.

Finally, Table 2.4 compares the service selection strategies previously described
with respect to three criteria:

• selection policy: the policy used for selecting the provider, we distinguish
among QoS, Localization or Energy-based;

• Selection in Query: this criteria describes if the selection strategy implements
a pre-filtering mechanism in order to exclude in advance services that are
appropriate for the service query;

• Network Architecture: the kind of architecture (either ad hoc network, WSN,
DTN, etc.) considered by the authors;

2.2. SERVICE DISCOVERY IN MSN 53

Paper Selection Policy
Seletion

in Query
Network Architecture

[101]
Relevance of

service attribute
✗ Infrastructure-based

[102]

Minimize response

time, random

selection, first choice,

best-match policies
✗

Opportunistic network

[103]

Description of the

service, service

location, minimum

hop count ✗

MANET

[100,104]
Proximity of

the provider
✓

Minimum-distance

and speed ratio

[105]

Closest provider

and proximity

provider ✗ Wireless Sensor Networks

[106]

Most popular provider

and

minimum hop-count ✗ MANET

[28]

Minimize energy cost

for the

service access ✗ Infrastructure-based

Q
o

S
L

o
ca

li
za

ti
o

n
E

n
er

g
y

Table 2.3: Comparative table of service selection strategies.

54 CHAPTER 2. BACKGROUND AND RELATED WORKS

Service Access

In the service access, the client requests the service to the provider chosen in the
service selection phase and it receives the results. In a MSN both the client requests
and the responses from the providers may travel along the MSN using the available
mechanisms. As there may not be a path constantly available between the client
and the provider, the service access protocol should be tolerant to delays and dis-
connections. However, differently than the diffusion of advertisements and service
queries, the communications involved in the service access depend on the nature of
the service. In some cases the service is stateless, thus service access protocol is
limited to the exchange of a request and a response message. In other cases instead,
the request (or the response) may require the transmission of a large amount of data
(think for example to a video streaming service). As a result, the phase of service
access may be (even by far) the most expensive in terms of bandwidth and energy
required. Despite this fact, only few works address this phase.

In particular, service access is discussed in some recent works [89, 107, 90, 108],
although not specifically designed for MSN. Most of these works [89, 107] implicitly
assume services are stateless, that is, they can be delivered without memorization of
the state at the service provider, and thus they require a simple exchange of request
and response messages. Differently, the work of [108] instead considers a wider
scenario including services with state and stateless. The service access scheme of
[90] assumes a relatively simple service, which can be delivered by exchanging a single
request and response message. This work focuses exclusively on the routing of these
messages. In particular, it aims at optimizing the routing by using a different routing
scheme than that the one used for service discovery. The proposed routing scheme
exploits the information about geo-localization of the client and of the provider, and
their estimated speeds to deliver the messages in the right place and (possibly) at
the right time.

The Time-Aware Opportunistic middleware (TAO) [107] addresses hybrid net-
works, defined as infrastructure-based networks with opportunistic extensions. Also
its service access scheme (called TAO-INV, where INV stands for invocation) as-
sumes relatively simple services, and it exploits request and response messages that
are forwarded by using a store, carry and forward principle. Also in TAO the for-
warding scheme for service access differs from the forwarding scheme adopted for
service discovery, in the attempt to limit the cost of epidemic forwarding by re-
ducing the number of copies of these messages that are generated in the network.
Specifically, to increase the chance of fast delivery of a service request message, the
routing scheme classifies the potential rely devices as good or bad based on the last
date of contact with the service provider (the smaller is this date, the highest is the
goodness of a rely device). To improve the reliability of the scheme, TAO-INV also
forwards the message to some bad relay devices. Since the request message keeps
the path traversed from the client to the service provider, the provider uses a reverse
source routing scheme to send back the response.

2.2. SERVICE DISCOVERY IN MSN 55

Although [89] addresses resource/service discovery in delay tolerant networks, its
results may also apply to service access in MSN. Differently than the previous works,
the authors of [89] propose to merge the service query and request phases. In this
approach, when a service query reaches the service provider it implicitly requests
the service. In this case, the service response adopts an epidemic routing scheme,
but when a copy of the response message reaches the client, the client immediately
performs a network-wide broadcast to stop the further forwarding of other response
message copies in the network in order to limit the overhead of the protocol.

In [108] the authors focus on service access (which is called service invocation in
the paper) in disconnected ad hoc networks. The service access relies on a publish-
subscribe mechanism, in which the clients publish a service description, and the
providers subscribe for specific service descriptions. When there is a match, the
service provider(s) transfer back the response by using a publish subscribe scheme.
In particular, the subscriber publishes a message with the identifier of the client, so
that the client can subscribe for this message and receive the responses. Although
there are presumably limitations in the parameters that the client can use to request
a service, the scheme is stateful and thus the response is not limited to a single
message, but it can develop over several messages from the provider to the client.
For this reason, this mechanism is associated to timeouts in order to let the provider
clean its state of outdated subscriptions. Furthermore, the publish/subscribe scheme
enables multiple providers to offer the same service to a client at the same time. This
is partly a desired behavior of the protocol, as it enforces redundancy and reliability,
but it requires a mechanism to limit the number of providers that connect to the
client.

The entire mechanism proposed in [108] is also designed to be delay tolerant as
the underlying network may be (temporarily) disconnected, and thus messages can
be delayed. Furthermore, to manage situations in which the client and the provider
become permanently disconnected during a service access, the authors propose to
keep the state of the session at the client-side, so that the client can recover by
looking for an alternative provider.

Apart the work of [108], the other works focus only on the aspects of routing
related to the messages involved in the service access. Furthermore, as they are
not specifically designed for MSN, they do not introduce any optimization in data
forwarding related to the social aspects of devices mobility, which, as observed in [83],
brings significant advantages on the performance of the communication protocols.
On the other hand, they observe that the interaction between the client and the
provider requires different data diffusion mechanisms than those used to diffuse
advertisements and queries. In particular, they all adopt routing schemes that
tend to unicast-like communications by limiting the epidemic effect in the message
forwarding.

Based on the latter observation, all the existing literature on general data dif-
fusion schemes for social-based networks can be reconsidered for service access. As
the review of such results is beyond the scope of the this section, we limit here to

56 CHAPTER 2. BACKGROUND AND RELATED WORKS

Paper
Network

Architecture

Stateful

Service

Forwarding Schema

for Service Access

Use of

Sociality Metrics

Use of

Temporal

[108] Mobile ad hoc networks ✓ publish/subscribe ✗ ✗

[90] Mobile ad hoc networks ✗

unicast/geo-localization

of devices ✗ ✗

[107]

Infrastructured with

opportunistic extensions ✗

epidemic

✗ ✗

[89] Delay tolerant networks ✗ epidemic with limiting rules ✗ ✗

[98] Pocket switched networks ✗ unicast ✓ ✓

[109] Mobile social networks ✓ not addressed ✗ ✗

Table 2.4: Comparative table of service access strategies.

mention [98, 109]. Specifically, [98] considers the contact time among devices and
the time required to transfer the content in order to choose the best forwarding
device to the destination. This can be particularly relevant in the access to services
that have state and that require the transfer of large amount of data.

The optimization of the output bandwidth of a service provider in the context
of a MSN is the focus of [109]. It formalizes a global optimization problem that
aims at distributing the output bandwidth to several clients by taking into account
the freshness of the content transferred to the clients, in a model where the content
continuously flushes from the provider to the clients.

Table 2.4 compares the service access strategies previously described with respect
to the following criteria:

• network architecture: the kind of architecture (either ad hoc network, MSN,
DTN, etc.) considered by the authors;

• stateful service: whether the service access protocol requires a service provider
to keep a state. This is necessary when the service is complex and its access
requires several interactions between the client and the provider;

• forwarding schema: the message forwarding strategy adopted to access the
services;

• use of sociality metrics: if the proposed approach exploits the human sociality
to enhance the service access;

• use of temporal metrics: the use of temporal metric such as contact duration
or inter-contact time, to enhance the service access;

2.2.3 Discussion

From the description of the MSN described in Section 2.2.1 and from the works
previously surveyed we derive some important requirements for the design of an
efficient discovery algorithm, which are discussed in the rest of this chapter.

2.2. SERVICE DISCOVERY IN MSN 57

Routing and multiple forwarding strategies

Discovering services in networks of mobile devices requires several steps. Each of the
discovery steps has some specific goals that can be achieved by exploiting techniques
coming from routing and data forwarding in MSN. In details:

• service query: the goal of this strategy is to propagate a service query to devices
that can potentially answer to the query in short time. The query strategy
cannot rely on a registry that stores all or a subset of the advertisements;
rather, it has to explore the network to find devices that provide the service
themselves, or devices that already know an advertisement matching with the
query. For example, a device could have high probability to answer to a query
if the person carrying the device already accessed to similar services in the
past;

• service advertisement: the goal of this strategy is twofold. Primarily, it aims at
diffusing advertisements in the MSN only to devices that might be interested
in accessing the advertised service. The advertisement phase is successful if
people potentially interested in a service receive (at the right time) the adver-
tisement required. In this case data forwarding strategies can be used because
the set of recipients of the advertisement is not known in advance (Section
2.2.2 surveys some available results). The diffusion of an advertisement might
also be directed to a specific receiver (if the device that owns the advertisement
knows the device to which deliver it). In this last case, the goal is to deliver
quickly the advertisement to the destination. Here, the routing strategies are
helpful to route the message towards its final destination.

Secondly, the service advertisement strategy should avoid forwarding messages
towards devices that already received them in the past from previous encoun-
ters. Indeed, flooding-based solutions may result too aggressive in terms of use
of the network resources and energy costs, and the diffusion of advertisements
has to find a balance between effectiveness of the diffusion and management
of resources of the MSN.

Discovery mode

Devices must support both the reactive and proactive discovery modes (Section
2.2.1). With the reactive mode, a device propagates the query as soon as it needs
to access to a service; with the proactive mode a device is proactively notified with
some service advertisements during the occasional encounters with other devices.
In a MSN it is important to adopt both the discovery modes in order exploit the
occasional encounters with other devices to exchange service advertisements.

58 CHAPTER 2. BACKGROUND AND RELATED WORKS

Community-based service discovery

Service discovery in MSN can exploit the community structure (see Section 2.2.1)
in order to make more efficient the discovery phases previously described. In fact as
discussed in [83, 85, 110] people with similar interests tend to stay in touch for longer
period of times, with respect to people without overlapping interests. Such groups
of similar people can be detected by means of community detection algorithms,
that measure several metrics for identifying communities. Hence, service clients can
propagate a query first among members of the same community in order to find
people with matching interests.

Chapter 3

A Service-Oriented ZigBee
Gateway

The pervasive presence of low-power devices in SE increases the smartness of the en-
vironments where they are deployed however, their presence gives rise to numerous
issues. We are interested in affordable and open-source solutions for the interoper-
ability of low-power devices in a SE. Our approach to the device interoperability is
to install an integration gateway within an SE. This gateway exports the functional-
ities provided by low-power devices, such as sensors and actuators to other devices,
and hides all the technical details concerning their access. This chapter presents the
design and the implementation of ZB4O (ZigBee API for OSGi Service Platform),
an integration gateway for ZigBee devices based on the OSGi model (see Section
2.1.1).

The key aspects of ZB4O [21] are:

• it provides a richer and flexible gateway for the ZigBee network;

• it extends the OSGi framework with a mechanism that represents the ZigBee
devices as standard OSGi services.

ZB4O was inspired by SAIL [17], our early proposal for a general-purpose archi-
tecture for the integration of devices. ZB4O refines the idea of SAIL and provides
an implementation for the ZigBee standard. The interoperability between ZigBee
devices and other applications installed in an SE (for example IP-based applications)
is not a standard process. Such interoperability is often implemented with vertical
solutions that are not sufficiently flexible to be extended or customized. On the
other hand, the OSGi Service Framework, defined by the OSGi Alliance, provides
a service-oriented architecture. Therefore the design of a gateway based on these
two key-technologies (ZigBee and OSGi) could represent a driver for integrating
low-power devices in an SE.

We first present some use-cases that define our reference scenario and then we
introduce the design of ZB4O as a layered-architecture. The second part of this chap-
ter we evaluate two use-cases. We describe the use of ZB4O with two EU projects

60 CHAPTER 3. A SERVICE-ORIENTED ZIGBEE GATEWAY

and with UPnP protocol and the RESTful web-services. The results presented in
this chapter have been published in [21, 22, 23, 24, 25, 26, 27].

3.1 The Reference Scenario

Our reference scenario is driven by two use cases, named UC1 and UC2, which all
focus on the possibility of accessing ZigBee devices in a Smart Environment.

UC1 - Seamless plug & play

A new ZigBee device is installed at home, for instance a standard smart plug for
monitoring home energy consumption. As soon as the user plugs in the ZigBee
device, the user is able to immediately discover it without installing any specific
driver. All the ZigBee devices are recognized and integrated autonomously.

UC2 - Multi-protocol bridge

The user plugs in a new ZigBee medical device. Similarly to UC1, the device is
integrated within the Smart Home. In this case the device has to be available not
only in the local network, but also remotely. A remote client, which supports a
standard protocol (such as IEEE 11073 or HL7 as outlined in the Continua Health
guidelines1), can interact with the ZigBee medical equipment installed at home.

ZB4O is designed by keeping in mind a typical scenario of the SE, namely the
Smart Home. The reason for such design choice is twofold. Firstly the Smart Home
is the natural environment in which the ZigBee devices might be deployed and
tested. Secondly, the ZigBee Alliance has standardized the set of devices specifically
designed for the home, the result of such standardization process is the Home Au-
tomation profile. Nevertheless we consider that UC1 and UC2 might be applicable
also outside the home domain. More specifically both of the use cases are meaning-
ful also in other environments such as hospitals, airport terminals or even in wider
places like cities. The experiments done in this thesis do not attempt to validate
our solution in such contexts, rather we focus on the more controllable scenario like
a home.

3.2 The ZB4O Gateway

The ZB4O gateway has been designed keeping in mind the following guidelines:

• Dynamic discovery of nodes: ZB4O exploits the discovery mechanisms of Zig-
Bee. As soon as a new node joins the network, ZB4O registers OSGi services
that represent the APOs implemented by the node;

1http://www.continuaalliance.org/

3.2. THE ZB4O GATEWAY 61

• abstraction of ZigBee devices: ZB4O recognizes ZigBee devices adhering to
the ZigBee profiles (e.g. On/Off Switch device, Remote Control device, Light
Sensor device) and it abstracts them. This allows external applications to
ignore how to create a ZigBee frame and to focus only on how to gather data
from the ZigBee nodes with more intuitive APIs. As already observed in
Section 2.1.2 the ZB4O approach is rather different from the solution adopted
from the ZigBee Alliance [45];

• extension mechanisms for ZigBee devices: the ZigBee Cluster Library [37] de-
fines an extended set of clusters to be used with the ZigBee devices. However,
it enables also the definition of customized clusters by third parties. ZB4O
uses this feature and it allows including customized clusters. Such clusters will
be used during the refinement process of a ZigBee device;

• modular integration mechanisms: ZB4O maps the ZigBee devices to several
OSGi services, which may expose the access to ZigBee applications with high-
level protocols.

ZB4O is based on a three layered architecture: namely the Access, Abstraction
and Integration layer according to the model proposed in [17]. Figure 3.1 shows an
overview of ZB4O model.

Figure 3.1: The ZigBee service model.

The Access Layer directly communicates with the ZigBee network by means of
a network adapter (called USB dongle, see Figure 3.1). According to the OSGi De-
vice Access Specification, the component implementing the Access Layer is called
Base Driver (in this thesis it is named ZigBee Base Driver), whereas the components

62 CHAPTER 3. A SERVICE-ORIENTED ZIGBEE GATEWAY

of the upper layers are called Refinement Drivers. The Access Layer registers for
every ZigBee device a proxy that does not implement any specific cluster rather it
provides some simple methods for messaging with the ZigBee device. The Abstrac-
tion Layer adds semantic to the proxy services registered by the Access Layer. The
Abstraction Layer detects the service proxies of the Access Layer and it registers
new OSGi services according to the ZigBee profile implemented by the ZigBee de-
vices (i.e. Light devices, Thermostat devices). Note that, although the Abstraction
Layer is designed as a generic layer, it should include a specific refinement driver
for each ZigBee profile that is implemented by nodes of the network. Currently
ZB4O implements the Home Automation (HA) profile, but it is planned to imple-
ment other refinement drivers starting from the healthcare profile. The Integration
Layer, finally, maps the the ZigBee services refined by the Abstraction Layer to an
application-level protocol (Figure 3.1 shows the UPnP exporter as described in Sec-
tion 3.3.3). The Integration Layer follows the standard OSGi event mechanism. As
soon as a new proxy is installed, the exporter acts as protocol translator by injecting
the ZigBee devices into the appropriate network. For example, ZigBee devices can
be wrapped as virtual UPnP devices or as REST end-points.

3.2.1 The Access Layer

The core component of this layer is the ZigBee Base Driver (ZBD) that:

• implements the ZigBeeDevice APIs;

• uses the Simple Driver APIs.

The ZBD uses the Simple Driver APIs to interact with one or more ZigBee devices
plugged to the PC. The Simple Driver APIs provide the hardware abstraction layer
of ZB4O. Figure 3.2 gives an overview of the Access Layer.

The ZigBeeDevice APIs provide a model for the ZigBee nodes and EndPoints
(EP). A ZigBee node is described in terms of network attributes such as IEEE
address, network address, node type and PAN (Personal Area Network) ID. An
EP is described in terms of attributes such as profile ID, input cluster ID, output
cluster ID, endpoint ID and device category. The ZBD instantiates an OSGi service
as soon as it discovers a new EP in the ZigBee network. For each EP, the ZBD
creates and registers an OSGi service called ZigBeeDevice. The ZigBeeDevice

acts as a proxy for the EPs. In particular, when an application interacts with a
ZigBeeDevice service, the ZBD forwards the messages to the corresponding EP on
the ZigBee network. Vice versa, the messages generated from the EPs are forwarded
by the ZBD to the applications waiting for them. The Simple Driver APIs define an
industry-independent hardware interface including most of the common mechanisms
needed to interact with a ZigBee network. The Simple Driver APIs are implemented
by the ZigBee network drivers that directly interact with the ZigBee network. The

3.2. THE ZB4O GATEWAY 63

Figure 3.2: The Access Layer.

Simple Driver APIs have been designed by taking into account a set of high-level
primitives for the interaction with the network:

• Create/join the network: this primitive includes some operations to configure
the dongle in the ZigBee network. The configuration can be performed by
specifying the channel to use, the security key and the network identifier (pan
ID). It is possible to interact with the dongle to create a new network or to
join an existing one as a coordinator, router or as a end device;

• inspect the ZigBee node: by means of this primitive, the ZBD inspects the
IEEE address of a given node. Moreover ZBD can fetch the list of EPs available
on the node together with the description of each EP;

• binding to an EP: this primitive allows the ZBD to bind to the ZigBee hardware
plugged to the PC (as an example the USB dongle) with one or more EPs in
the network. Moreover it is possible to bind two remote EPs with each other
without the enrollment of the USB dongle.

• send/receive messages to/from an EP: these primitives enable the ZBD to send
messages to the EPs or to receive messages from the EPs. The communication
with an EP can be synchronous or asynchronous. In the first case the operation
(either send or receive) is implemented by means of a conventional synchronous
Java method invocation, whereas in the latter case the communication is part
of a more complex communication flow implemented by means of the observer
pattern;

64 CHAPTER 3. A SERVICE-ORIENTED ZIGBEE GATEWAY

• Inspect the status of the driver: these primitives allow the ZBD to inspect the
properties of the driver such as the assigned IEEE network address or the chan-
nel in use. Such configurations exploit the management and the monitoring
interface of the ZigBee protocol stack.

Discovery of ZigBee nodes

The node discovery can be implemented in an reactive or proactive mode. The
proactive discovery mode allows to be notified directly from a ZigBee node as soon
as it becomes available in the network. Conversely, with a reactive discovery mode,
the ZBD queries the network to discover the nodes. Note that the proactive mode
is optional in the ZigBee specification.

The ZBD implements both of the discovery modes with periodical browsing and
event listening algorithms. First, the periodical browsing algorithm exploits only the
ZigBee clusters that are mandatory for the ZigBee compliant devices. This ensures
the compatibility of the ZB4O gateway with all the ZigBee networks. The periodical
browsing exploits the addressing tree defined by the ZigBee standard. The ZBD is a
logical tree (see the addressing link arrows in Figure 3.3) rooted on the coordinator of
the network. The intermediate nodes act as routers and the leaves act as end-devices
or routers. The addressing tree is browsed by means of the IEEE addr req and
IEEE addr rsp messages, which are mandatory in the IEEE standard (an alternative
is the MGMT lqi request and response). The IEEE addr req message is used to
request the IEEE address of a node together with the network address list of all
the nodes connected to it. The IEEE addr rsp message carries the answer. The
periodical browsing starts forming the network coordinator (whose address is always
0x0000). The result is an accurate view of the network. However the drawback of
this discovery mode is a non-negligible network overhead. A reasonable configuration
is to execute the periodical browsing with a low frequency (for example every hour)
or to run such discovery algorithm only on demand.

Second, the event listening algorithms uses some optional ZigBee clusters. Such
clusters provide an automatic notification mechanism of new nodes that join the net-
work. Hence, this discovery mode results more efficient than the periodic browsing.
Specifically, this mode relies on the Device annce message. A ZigBee node sends
via broadcast the Device annce message as soon as it joins the network. Unfortu-
nately, the dual message to notify when a ZigBee node leaves the network does not
exist in the ZigBee specification. For this reason the network status may become
inconsistent and less precise than the periodical browsing.

Discovery of EPs and ZigBee devices

Once the ZBD discovers the new ZigBee nodes, it can inspect the EPs available
in the ZigBee nodes. To this purpose the ZBD fetches from every node some rel-
evant information that are needed to detect the EPs. The ZBD exploits two pair

3.2. THE ZB4O GATEWAY 65

Figure 3.3: An example of addressing tree and device discovery.

of mandatory messages on the ZigBee protocol: Active EP req, Active EP rsp and
Simple Desc req, Simple Desc rsp. The first pair (Active EP req, Active EP rsp)
of messages is used to retrieve the list of ZigBee EPs available on the node. The
second pair of messages (Simple Desc req, Simple Desc rsp) retrieves the list of
the clusters available on a specific EP. Once the inspection of a ZigBee node is com-
pleted, the ZBD registers a ZigBeeDevice service for every EPs found. Figure 3.3
shows an example in which the ZBD browses a ZigBee network. Except for the co-
ordinator, these nodes implement On/Off Light and On/Off Switch. Note that the
solid lines in the figure define the network links among the nodes on the routing tree,
and the dotted lines represent the sequence in which the ZBD queries the nodes.

3.2.2 The Abstraction Layer

The Abstraction Layer is responsible for refining all the ZigBeeDevice services
registered by the Access Layer. The refinement process of ZB4O is one of the core-
aspects of our solution. Indeed, ZB4O is able to recognize ZigBee devices adhering
to a set of pre-installed profiles as well as devices implementing custom ones. The
final result of the refinement process is the registration of an OSGi service providing
all the features that the ZigBee device actually provides.

In order to emphasize the added-value of the Abstraction Layer, we provide an
example. Suppose a Pump Controller device implements four mandatory clusters,
namely Pump Configuration, On/Off, Scenes and Groups clusters. The Pump can
implement some optional clusters, for example the Pressure, Temperature and Flow
measurement clusters. The refinement process of the Abstraction Layer selects the
set of clusters that are actually implemented by the ZigBee device. This check allows
to manage both ZigBee devices adhering to a the standard ZigBee profiles but also

66 CHAPTER 3. A SERVICE-ORIENTED ZIGBEE GATEWAY

devices implementing a custom profile. In the previous example, the manufacturer
of the Pump Controller device might define some proprietary diagnostic clusters. In
this case, the ZB4O gateways only requires a component that registers the diagnostic
cluster in the cluster factory registry. In turn, the Abstraction Layer is able to refine
the Pump Controller with all the clusters that the device implements.

The architecture of the Abstraction Layer is composed by:

• a number of refinement drivers, specifically one for every ZigBee profile;

• the ZigBee Cluster Library;

• (optionally) a number of third-party components that can be used to register
non-standard clusters.

Figure 3.4 gives an overview of the Abstraction Layer with the Home Automation
profile driver (HA Driver).

Figure 3.4: The Abstraction Layer.

The HA profile driver defines some common devices of a Smart Home, such as
On/Off Switch, Remote Control or Door Lock. They are represented as a set of
hierarchical Java classes that model commons HA devices.

The refinement process of the HA profile is shown in Figure 3.5. The HA Driver
monitors the ZigBeeDevice services registered by the Access Layer. More precisely
it inspects the ProfileID and DeviceID of the ZigBeeDevice so that to select the
proper device factory to invoke. In turn, the factory can install a proxy instance of
the remote ZigBee EP (see Figure 3.5). To this end, the Abstraction Layer provides
a registry for the device factories. The registry is used to keep device factories for
both standard and non-standard profiles. The HA Driver registers all its device

3.2. THE ZB4O GATEWAY 67

Figure 3.5: The refinement process of the Abstraction Layer.

factories during the start-up phase. In turn, every device factory verifies that the
ZigBeeDevice implements all the mandatory clusters defined by the ZigBee profile.

In summary, the refinement process of the Abstraction Layer is achieved in two
steps:

1. the instantiation of the device factories specific of the ZigBee profiles;

2. the instantiation of the custom clusters implemented by a ZigBee device.

The ZigBee Alliance defines the ZigBee Cluster library. Such library is used to
ease the interoperability of devices and to re-use messages among devices. According
to this approach, the ZigBee devices adhering to the same profile that have to
reuse clusters already defined in the ZCL. ZB4O adopts a similar approach for
the Abstraction Layer. All the HA devices use the clusters defined by the ZCL
bundle, whose factories are registered at the bundle start up. The development of
new profiles is simplified because they can reuse the ZCL clusters. Moreover new
versions of the ZCL library can either be upgraded by using the OSGi life-cycle
mechanisms or extended by registering only the missing clusters with the proper
registry. The ZCL bundle offers several abstract classes and utilities to ease the
design of new clusters. In particular, the abstract class Attribute is used to define

68 CHAPTER 3. A SERVICE-ORIENTED ZIGBEE GATEWAY

new cluster attributes. It inherits the common commands (read, write and report).
The ClusterBase class refines a cluster with a collection of attributes and commands.
The Serializer and Deserializer classes, respectively, parse and un-parse payload of
the cluster commands and of the responses. Moreover, generic device and cluster
factories are available to easily implement the plug-in mechanism for both new
devices and clusters.

The Abstraction Layer hides the internal details of the ZigBee protocol in order
to simplify the interaction with the ZigBee network. To this purpose, the HA Profile
Driver bundle implements glue code that re-defines the clusters of the ZCL library
with simpler versions. An interesting example is a high-level application willing
to be notified of the status change of the On/Off Light Device. By adopting the
clusters defined in the ZCL (namely the OnOff cluster), the application needs to
know at least the following items:

• how to configure the Reporting command: this command is used to be notified
about the status change;

• how to send the Reporting command;

• how to bind the Light Device to the USB dongle;

• how to receive the notification messages.

Such complexity can be avoided by using a simplified version of the cluster provided
by ZB4O. Indeed, with our approach the caller has only to instantiate a Java listener
object. As soon as the value of the Light Device changes, the listener is called back
with. The current implementation of ZB4O offers simplified versions for a large
number of standard ZigBee clusters.

3.2.3 The Integration Layer

The role of the Integration Layer is to export the ZigBee devices to different target
networks. To this purpose ZB4O adopts a general-purpose solution. This feature
goes beyond the existing solutions described in Section 2.1.2. Indeed, most of the
existing works are designed to implement a protocol translation from ZigBee to one
specific target network.

The OSGi bundles that implement the Integration Layer are named exporters.
During this thesis we designed and implemented several exporters, with the goal of
testing ZB4O in real application scenarios. Currently, ZB4O provides four exporters
in particular:

• the GiraffPlus exporter [23] that integrates the GiraffPlus middleware with
ZigBee network;

• the universAAL exporter [24] that integrates the universAAL architecture with
the ZigBee network;

3.3. EVALUATION OF USE CASES 69

• the UPnP exporter that maps the ZigBee HA devices as UPnP devices;

• the REST exporter that maps the ZigBee HA devices as REST web-services.

Section 3.3 describes each of the exporters previously mentioned.

3.3 Evaluation of Use Cases

We evaluate the ZB4O gateway in use cases UC1 and UC2 from both a qualitative
and quantitative perspectives. The objective of the evaluations is twofold:

• UC1: verify the integration of new ZigBee devices plugged at runtime;

• UC2: verify the interaction with ZigBee devices previously integrated by using
different communication protocols.

The approach we follow differs according to the two perspective. In particular,
a qualitative evaluation studies how our solution is effective in real deployment sce-
narios, such as the installation of ZB4O in a Smart Home, the interoperability of
ZB4O with a robotic agent, and the integration with different protocols. We specif-
ically focus on an assessment of the design complexity and on the effort needed to
integrate ZB4O with existing platforms such as GiraffPlus and universAAL projects
(see Section 2.1.1), as well as with the UPnP and REST protocols (see Section 2.1.1).

Quantitative metrics study various software metrics and provide an indication of
the ZB4O performance in real deployments. In particular, we study typical software
profiling metrics such as the use of the CPU, the number of threads allocated, the
RAM occupancy and the number of classes loaded at runtime. This last analysis
aims to verify also the possibility of installing the ZB4O gateway in embedded
hardware devices, such as RaspberryPI or BeagleBone board2.

Finally, it is worth to notice that the analysis of the existing solutions for interop-
erable gateways (reported in Section 2.1.2) revealed us the impossibility of making
a direct comparison between ZB4O and a benchmark solution. This is due for two
main reasons:

• the gateways that we analyzed implement only a subset of the features pro-
vided by ZB4O. This means that such a comparison of software artifacts dif-
ferent in their nature may easily be un-fair. In particular, we observed that
not all the gateways provide a hardware abstraction layer for interacting with
ZigBee dongles, not all of them support the ZigBee profiles, and most of the
gateways are just designed to bridge ZigBee one single target network.

• The software of the most meaningful ZigBee gateways (those analyzed in table
2.1) is unavailable. Furthermore, these gateways require specific configurations

2raspberrypi: https://www.raspberrypi.org/, BeagleBone: http://beagleboard.org/bone

70 CHAPTER 3. A SERVICE-ORIENTED ZIGBEE GATEWAY

of the ZigBee network that are not always reported (or reported only at high
level) in the published papers.

Hence, we decided to not compare ZB4O with respect to one or more benchmark
gateways, rather we decided to extend as much as possible the experimentations so
that to provide to the community robust results concerning its performance.

In summary use cases UC1 and UC2 described in Section 3.1 are evaluated as
reported in Table 3.1.

Table 3.1: Evaluation table of ZB4O.

qualitative evaluation quantitative evaluation
UC1 X X
UC2 X

3.3.1 The GiraffPlus exporter

The GiraffPlus exporter is implemented within the ZB4O Integration Layer and it
interacts with the GiraffPlus middleware installed on the robot. Figure 3.6 shows
how the exporter exploits the functionalities provided by the middleware in order to
implement the integration of the GiraffPlus middleware with the ZigBee network.
The exporter uses a subset of methods from the APIs provided by the middleware to
announce the presence of a new ZigBee devices and to publish the status readings
of the sensors. The integration between ZB4O and GiraffPlus is made easier by
the OSGi framework shared by the two architectures. As soon as the ZB4O stack
notifies the exporter of a new device turned on, the exporter creates a descriptor
compliant to the GiraffPlus formalism. The exporter then invokes the announce
method specifying such descriptor as argument. In this way the information about
the existence of a new device is shared among all the clients listening on the service
bus. If a client subscribes (or has already subscribed) to the service bus, it will be
notified with the relative descriptor. After the announcement of the ZigBee devices,
it starts publishing messages regarding its readings and status changes. Each service
subscribed to the relative context bus topic will receive the message. Figure 3.7
shows the sequence diagram of the scenario previously described. Similarly to the
announcement, when a device is turned off the exporter calls the remove method
with the relative descriptor as argument. In this way all the subscribers will be
notified of the unavailability of that device. Our main goal is to test the whole
architecture in order to let GiraffPlus be able to: discover and interact with several
ZigBee networks installed in a Smart Environment. The hardware we adopted is
shown in Figure 3.8 and described below:

• the GiraffPlus robot equipped with the CC2531 USB ZigBee dongle. The USB
dongle is used as access point for the ZigBee networks;

3.3. EVALUATION OF USE CASES 71

Access Layer Cluster Neutral ZigBee Service

Abstraction Layer Profile-Based ZigBee Service

Integration Layer GiraffPlus Exporter

Module Layer

Connector Layer

Communication Module

Communication Connector

Z
B

4
O

G

ir
a

ff
P

lu
s

M
id

d
le

w
a

re

+announce(ServiceDescriptor)

+publish(Topic, Message)

+remove(ServiceDescriptor)

Figure 3.6: The component diagram of the integrated architecture.

• a collection of ZigBee devices implementing the Home Automation profile.
In particular: (i) Generic devices such as On/Off switch, Remote Control,
Door Lock, (ii) Lighting devices such as On/Off Light, Dimmable Light and
Occupancy Sensor, (iii) HVAC devices such as Temperature Sensor and (iv)
Intruder Alarm devices such as IAS Zone system.

A picture of the Smart Homes we tested in shown in Figure 3.9. The environment
is equipped with several ZigBee networks deployed in the bathroom, living room,
bedroom and in the kitchen. The figure also shows the path followed by the Giraff
robot during the test. As soon as GiraffPlus moves close to a ZigBee network, the
ZB4O framework performs the following actions:

• the Access Layer discovers the new devices from the ZigBee network, for every
newly discovered device it creates a ZigBeeDevice object that acts as a proxy
for the device;

• the Abstraction Layer checks if the ZigBeeDevice implements the Home Au-
tomation Profile. If it is the case, the Abstraction Layer refines the proxy;

• the GiraffPlus exporter announces the existence of a new service with the
service bus.

3.3.2 The universAAL exporter

The LDDI (Local Device Discovery Integration) building block (see Section 2.1.1) is
the universAAL component responsible of the integration of heterogeneous sensing

72 CHAPTER 3. A SERVICE-ORIENTED ZIGBEE GATEWAY

HA

Ref. Driver

OSGi

Framework

GiraffPlus

Exporter

Communication

Module

<announce>

ZigBeeLight

Descriptor

<register>

ZigBee Light

<notify>

 ZigBee Light

Service Bus

Communication

Connector

<publish>

Descriptor

<publish>

ZigBeeLight

Message

Context Bus

<publish>

Message

for each status change

Figure 3.7: The sequence diagram of the announcing and publishing mechanisms
for a sample device (ZigBee Light) in the integrated scenario.

technologies with the universAAL platform. LDDI is composed by several exporters,
every export implements a protocol bridge between the universAAL Runtime Sup-
port and a specific technology. A simplified schema of the LDDI building block is
shown in Figure 3.10.

We design a new exporter, namely the uAAL exporter, that integrates the ZB4O
gateway with the universAAL platform. Such exporter interacts both with the Ab-
straction layer of ZB4O and with the Runtime Support of the universAAL middle-
ware. More precisely, the uAAL exporter receives a notification from the Abstraction
layer of ZB4O (see Section 3.2.2), some examples of relevant events are the registra-
tion or the removal of a ZigBee device from/to the network. A soon as the uAAL
exporter receives an event concerning the registration of a new ZigBee device, then
it generates a service registration message that, in turn, is published to the service
bus. Similarly, for every event concerning a status change of a ZigBee device, the
uAAL exporter generates a context event that is published to the context-bus. Such
events (service registration and context events) are received by all the universAAL
nodes that are connected to the service and context bus. The uAAL exporter al-

3.3. EVALUATION OF USE CASES 73

Figure 3.8: The robot and the sensors used: 1) The GiraffPlus robot, 2) The ZigBee
dongle connected to the robot, and 3) The environmental sensors.

Figure 3.9: The Integrated scenario.

lows nodes running universAAL to interact with ZigBee devices by means of the
service and the context bus so that all the complexity concerning the interaction
with ZigBee specification is hidden. The implementation of the service and context
bus is made more efficient with the possibility of specifying filters that regulate the
notifications that a universAAL node will receive. Figure 3.11 shows how filters on
the service bus are applied.

First, the universAAL node registers to the service bus without specifying any

74 CHAPTER 3. A SERVICE-ORIENTED ZIGBEE GATEWAY

Service bus

Context bus

LDDI- ZB4O

access

abstraction

uAAL Exporter

<register> Light Service

<publish> change state

universAAL node

<discover>

Light source

<subscribe>

Light event

Figure 3.10: The LDDI building block.

universAAL node Service Bus uAAL Exporter

registration

<no filter>

Service registration

<type: light>Service notification

<type: light>

Set filter

<type: gas detector>

Service registration

<type: light, gas detector>

Service notification

<type: gas detector>

Figure 3.11: Example of filters for the service bus.

filter. As soon as the uAAL exporter generates a service registration message (ex.
a new ZigBee light is switched on), the service bus notifies the universAAL node.
Then, the universAAL node sets a filter in order to be notified only with service
registrations concerning the gas detector device. Later on the uAAL exporter gen-
erates two service registration events concerning a new light and a new gas detector.

3.3. EVALUATION OF USE CASES 75

At this point the Service Bus applies the filters set by the universAAL node and the
bus notifies the node only with the gas detector event.

3.3.3 The UPnP exporter

The UPnP protocol stack (see Section 2.1.1) is widely used in home automation and
it is commonly considered as an enabling technology for application scenarios typical
of SE. Figure 3.12 shows the integration of UPnP with the ZigBee technology.

Figure 3.12: Integration between UPnP and ZigBee.

Figure 3.12 shows two ZigBee devices installed in the networks, namely the
Binary Switch and the OnOff Light. Such devices are detected by ZB4O and they
are abstracted.

Figure 3.13 depicts the sequence diagram describing how to export an OnOff
Light as UPnP BinaryLight device. The starting point is the announce cluster
sent by the ZigBee OnOff Light. The Access Layer receives the announce cluster
and it reacts by registering a ZigBee Device in the OSGi framework. The Home
Automation refinement driver detects the registration of the ZigBee Device, and it
registers a ZigBee OnOff Light Device that refines the ZigBeeDevice. At the end,
the UPnP exporter wraps the ZigBee OnOff Light Device as a UPnPDevice.

76 CHAPTER 3. A SERVICE-ORIENTED ZIGBEE GATEWAY

Figure 3.13: ZigBee OnOff Light as UPnP BinaryLight.

The UPnPDevice implements a general-purpose UPnP device as a Java objects.
It provides all the features of the UPnP devices. In particular the UPnP exporter
implements the UPnPDevice, UPnPService, UPnPAction and UPnpStateVariable

java classes. The role of the UPnPDevice is to translate the behavior of an UPnP
device in the respective ZigBee Device. In particular the UPnPDevice translates
the UPnP state variables as ZigBee attributes. The final step is performed by the
UPnP Base Driver [111] (provided by Apache Felix), whose role is to detect all the
UPnPDevice and to announce them with the UPnP protocol. In this way, a UPnP
Control Points can discover new UPnP devices, and they can interact with them via
the UPnP protocol. The UPnP exporter will translate the UPnP commands in the
respective ZigBee ones.

We test the UPnP exporter by taking into account the use cases presented in
Section 3.1, in particular UC1 and UC2. Every use case is studied by using a
quantitative evaluation by first describing the goals, the actors involved and the
actions taken by actors. All the use cases have been configured with the ZB4O
gateway deployed on a Windows 7, Intel i7 at 3.4 Ghz with 16 GByte of memory
Ram. The version of OSGi was Apache Felix 4.2 and the Oracle JDK 1.6.

UC1: Seamless Plug & Play

The goal of UC1 is to test the performance of the ZB4O provisioned with the UPnP
exporter when a number of devices join the ZigBee network. The actors involved
are: the ZB4O gateway and 6 ZigBee devices of different types:

3.3. EVALUATION OF USE CASES 77

• 5 ZigBee devices operating at 2.4 GHz IEEE 802.15.4 compliant and imple-
menting the Home Automation Profile (On/Off switch, Smart Plug and Gas
Detector devices) ;

• 1 USB CC2531 dongle ZigBee device acting as ZigBee network entry point.

Figure 3.14 shows the hardware setup used for UC1.

Figure 3.14: Hardware used in UC1.

UC1 is implemented by reproducing the steps shown in Figure 3.15. The 5

Figure 3.15: The UC1 execution flow with the UPnP exporter.

ZigBee Devices announce themselves in the ZigBee network, and the ZB4O gateway

78 CHAPTER 3. A SERVICE-ORIENTED ZIGBEE GATEWAY

registers the Generic Device and the refinement driver, in particular the HA Device.
At the end, the ZB4O gateway exports the devices to a generic target network.
The following metrics have been taken into account to evaluate the performance of
ZB4O:

• average load of the CPU due to the ZB4O process;

• number of active threads in the ZB4O process;

• RAM memory occupation of the ZB4O process;

• number of loaded classes during the execution of ZB4O.

The results of UC1 are reported in Table 3.2.

Table 3.2: Performance metrics for UC1 with the UPnP exporter.

ZigBee Device/Metrics 1 2 3 4 5

CPU(%) 0.10 0.5 0.5 0.5 0.5
Thread (no.) 27 27 27 27 27
RAM (MByte) 6.7 6.9 6.9 6.8 6
Classes loaded (no.) 3364 3435 3437 3443 3443

The measurements show that the CPU average load is below 0.5%, with a peak of
1%. The number of threads is fixed to 27, but only 4 of them are created by ZB4O.
In particular, 1 thread is used by the RXTX library (it is employed for controlling
the serial port), and 3 threads are used by ZigBee Base Driver for the network
discovery (see Section 3.2.1). The memory RAM footprint is always below 7 Mbyte,
with a base footprint of 6.1 Mbyte used by the OSGi execution environment. The
increase of the number of ZigBee devices has a negligible impact on the memory
RAM and the CPU load. This highlights that ZB4O does not affect significantly
the performance of the hosting PC. Finally it is worth noticing that the number
of Java classes loaded by the ZB4O is around 3000. The number of classes loaded
increases only when new ZigBee profiles are detected (around 5 classes for the HA
profile). Hence ZB4O can control an increasing number of ZigBee device without
requiring extra load. Such profile-based classes are loaded once, and used multiple
times.

UC2: Multi-protocol bridge

The goal of UC2 is to test the interaction between a remote client and the ZigBee
devices recognized by ZB4O. The actors involved are:

• the ZB4O gateway equipped with the UPnP exporter;

3.3. EVALUATION OF USE CASES 79

• a remote client able to browse the UPnP devices and to invoke UPnP actions;

• 1 ZigBee Device implementing the Home-Automation profile;

• 1 USB CC2531 dongle acting as network entry point.

UC2 is implemented by reproducing the steps shown in Figure 3.16.

Figure 3.16: The UC2 execution flow with the UPnP exporter.

The UPnP client invokes the On (and Off) command, requesting the switching
of a light, at varying request rate. It has been monitored the overhead introduced
by ZB4O during the access of the device invoked by the UPnP client. The measures
ignore the network latency from the UPnP client to the UPnP exporter (in the
order of 300 ms) since such delay is not caused by the ZB4O gateway. The system
works as expected for requests rates less than 10 per second. Higher request rates
saturate the system, which discards the excess requests. Figure 3.17a and Figure
3.17b illustrate the system behavior.

Figure 3.17a reports the average number of requests served by increasing the
service rate. The average number of requests is 7.67req/sec. The whole system
(exporter, ZB4O and ZigBee network) scales up to the limit of 10 requests per

80 CHAPTER 3. A SERVICE-ORIENTED ZIGBEE GATEWAY

second after which the curve remains stable. This hard limit depends on the ZigBee
dongle that we used for our experimentations, as detailed in the next. The average
service time is 100 ms (see Figure 3.17b), and the components are illustrated in
Figure 3.16. In the figure, the UPnP exporter sends the requests to the ZB4O
BaseDriver and the BaseDriver invokes the appropriate function to interact with
the ZigBee driver. This driver spends 15 ms to send the packet through the serial
port. Once received the packet, the USB Dongle spends 30 ms to send the packet
through the ZigBee network and to acknowledge the BaseDriver about the result
of the operation. Similarly, the USB Dongle spends 25 ms to receive the response
back from the ZigBee network and to notify the ZigBee Driver about the incoming
message. Finally, 30 ms are needed to receive the message from the serial port and
notify the BaseDriver. The latency introduced by the serial port is proportional to
the serial bit rate, which is set at 38400 b/s because of instability due to the dongle
hardware. As a result, the delay introduced by the hardware is 55 ms whereas the
delay introduced by the serialization alone is 45 ms. The overhead introduced by
the ZB4O stack is negligible with respect the described delays. Preliminary results
obtained with a new version of the USB dongle here used, show that instability
problems are gone and serialization can be speed up to 115200 b/s with a threefold
reduction of the 45 ms serialization overhead. It is expected that the 55 ms hardware
delay is reduced too, as the USB Dongle provides an optimized 8051 MCU core and
a second generation IEEE 802.15.4 compliant system on chip. The above described
latencies can be reduced on the dongle side, both by increasing the communication
speed with the controlling PC and by increasing the processing times. The 12 ms
time illustrated in Figure 3.16 is relative to networking communication and device
processing, and cannot be reduced on the dongle side.

3.3.4 The REST exporter

In this last evaluation case our goal is to export the services offered by ZigBee de-
vices with a RESTful approach. The RESTful approach offers a mapping between
the CRUD operations and the HTTP methods, in this way we can use e.g HTTP
POST method to create a resource or the HTTP GET method to read the status
of a resource (note that with the REST approach every resource is uniquely identi-
fied with a URI). We implemented the REST exporter with two modules, namely
REST4ZB and WebZB, as shown in Figure 3.18.

The REST4ZB implements the back-end and the WebZB implements the front-
end. In particular a client interacts with the WebZB module to download a HTTP
page (named the presentation page) with the user interface and the references point-
ing to the REST4ZB module. The presentation page has been designed to render
a mobile-friendly GUI optimized for smart phones and tablets based on the jQuery
framework.

The REST4ZB component is based on the API JAX-RS and it implements the

3.3. EVALUATION OF USE CASES 81

REST services. REST4ZB offers three basic REST services 3:

• list of nodes: this service returns the list of nodes joining the ZigBee network;

• list of devices: this service returns the list of ZigBee devices refined by the
Abstraction Layer. As described in Section 3.2.2, ZB4O refines the ZigBee
nodes found in the network as profile-based devices according to one of the
ZigBee profile supported;

• list of ZigBee services: this service returns the list of APOs provided by every
ZigBee device, this list offers the services that a client can invoke.

For every node, device or service shown in the GUI, the REST client can invoke
several methods in order to: read the status of the device, perform some operations
of the device (according to the type of device) and subscribe to events generated by
the device. Each of these operations are REST services exported by the REST4ZB
component.

Similarly to the UPnP Exporter, the tests are organized in two use cases with
goals, the actors involved and the actions taken by actors.

All the UCs have been configured with:

• the ZB4O and REST4ZB gateway deployed on Felix 4.2 with Oracle JDK 1.6
running on Windows 7 920 Quadcore, Intel i7 at 2.6 Ghz with 8 GByte of
memory RAM;

• the REST UI deployed on a smart phone DualCore 1.5 GHz running Android
KitKat 4.4.3 with 600Mb or memory RAM.

UC1: Seamless Plug & Play

The goal of UC1 is to test the performance of the ZB4O provisioned with the
REST4ZB exporter when a number of devices join the ZigBee network. The ac-
tors involved are the same in UC1 with the UPnP exporter. In particular the ZB4O
gateway and 6 ZigBee devices of different types:

• 5 ZigBee devices implementing to the Home Automation Profile (On/Off
switch, Smart Plug and Gas Detector devices);

• 1 USB CC2531 dongle ZigBee device acting as ZigBee network entry point.

UC1 is implemented by reproducing the steps shown in Figure 3.19.
The 5 ZigBee Devices announce themselves in the ZigBee network, and the ZB4O

gateway registers the Generic Device and the refinement driver, in particular the HA
Device. At the end, the ZB4O gateway exports the devices to the HTTP network by
registering three REST end-points (ad previously described). The following metrics
have been taken into account to evaluate the performance of REST4ZB:

3The data-format used for the service invocation is based on the JSON format.

82 CHAPTER 3. A SERVICE-ORIENTED ZIGBEE GATEWAY

• average load of the CPU due to the ZB4O process;

• number of active threads in the ZB4O process;

• RAM memory occupation of the ZB4O process;

• number of loaded classes during the execution of ZB4O.

The results of UC1 are reported in Table 3.3.

Table 3.3: Performance metrics for UC1 with the REST exporter.

ZigBee Device/Metrics 1 2 3 4 5

CPU(%) 0.11 0.4 0.4 0.5 0.5
Thread (no.) 31 31 31 31 31
RAM (MByte) 4.6 4.6 4.6 4.8 4.8
Classes loaded (no.) 2344 2245 2134 2984 2925

The measurements show that the CPU average load is below 0.5%. The number
of threads is fixed to 31, but only 8 of them are created by ZB4O. In particular, 5
threads are used by the Apache CXF library and by the Jetty Web Server library
used to create REST web-services. Similarly to the UPnP exporter, 3 threads are
used by ZigBee Base Driver for the network discovery (see Section 3.2.1). The
memory RAM footprint is always below 5 Mbyte, with a base footprint of 4.6 Mbyte
used by the OSGi execution environment. The increase of the number of ZigBee
devices has a negligible impact on the memory RAM and the CPU load. This
highlights that ZB4O does not affect significantly the performance of the hosting
PC.

UC2: Multi-protocol bridge

The goal of UC2 is to test the interaction between a mobile client (a smart phone
running REST UI) and the ZigBee devices recognized by ZB4O with the REST
exporter. The actors involved are:

• the ZB4O gateway provisioned with the REST exporter;

• a smart phone running the REST UI;

• 1 ZigBee Device implementing the Home-Automation profile;

• 1 USB CC2531 dongle ZigBee device acting as network entry point.

UC2 is implemented by reproducing the steps shown in Figure 3.20a.
The REST UI client invokes one of the web services provided by the REST4ZB

module. In particular the smart phones invokes the GET ATTRIBUTE service that

3.4. SUMMARY 83

retrieves one of the attributes offered by a ZigBee device. The invocation of this web-
service involves all the actors: the smart phone, the REST exporter, ZB4O and the
ZigBee network. The GET ATTRIBUTE is implemented with the HTTP method
GET and it requires two parameters: the IEEE address of the ZigBee device and the
ID of the attribute to read. Note that REST4ZB also provides REST services for
retrieving both the list of ZigBee devices as well as the list of clusters and attributes
of every device. The invocation of the GET ATTRIBUTE introduces a latency that
depends on the WiFi network used for the tests. We experienced latencies ranging in
the interval [100−500] milliseconds but such values are subject to high variance due
to e.g. network load and on the strength of the signal of the WiFi network. Once the
REST UI client invokes the web-service, REST4ZB processes the invocation and it
interacts with the BaseDriver as described for Figure 3.20a with the same latencies
described for UPnP exporter. We analyzed the average number of requests served by
increasing the service rate, the graph is shown in Figure 3.20b. Similarly to Figure
3.17a the average number of requests served scales up to the limit of 10 requests
(in this case the average is 7.72req/sec) after which the curve remains stable. Also
in this case, this hard limit depends on the ZigBee dongle that we used for our
experimentations.

3.4 Summary

Concerning device interoperability, this thesis describes the ZB4O (ZigBee API for
the OSGi Service Platform) gateway which provides a rich and flexible gateway for
the ZigBee network. ZB4O extends the OSGi framework with an open mechanism to
integrate the ZigBee standard with a service-oriented approach. The most important
achievements of ZB4O are:

• Access to the ZigBee network: ZB4O implements a hardware-independent
mechanism for accessing the ZigBee network. We define a general-purpose
API to access the ZigBee devices in a standard-way without introducing any
constraints for a specific ZigBee vendor.

• Abstraction of ZigBee devices: ZB4O recognizes ZigBee devices adhering to
the ZigBee profiles (e.g. On/Off Switch device, Remote Control device, Light
Sensor device) and abstracts them. This enables external applications to ig-
nore how to create a ZigBee frame, and to focus only on how to gather data
from the ZigBee devices using intuitive APIs.

• Extension mechanisms for ZigBee devices: the ZigBee Cluster Library (ZCL
[37]) defines an extended set of clusters to be used with ZigBee devices. This
library also facilitates the definition of custom clusters, which can be defined
for third-party vendors. ZB4O offers the possibility of integrating custom
clusters in the gateway with a mechanics named as the refinement process.

84 CHAPTER 3. A SERVICE-ORIENTED ZIGBEE GATEWAY

• Modular integration: ZB4O represents each ZigBee device as an OSGi service.
The OSGi service representing the physical device is wrapped with one or more
exporters thus implementing a software bridge between ZigBee and different
technologies. We design and develop several exporters so that it is possible
to access the ZigBee network from: UPnP, REST web services and using
GiraffPlus and universAAL platforms.

ZB4O has attracted the attention of several researchers and universities as well as
various important private companies. Finally, ZB4O4 is now an open-source project
with a growing community of developers and passionate supporters, it is hosted
under the AALOA5 association and is released under the Apache Software License.

4http://zb4osgi.aaloa.org/
5http://www.aaloa.org/

3.4. SUMMARY 85

2 4 6 8 10 12 14 16
2

3

4

5

6

7

8

9

10

11

Service rate (s)

A
ve

ra
ge

 n
um

be
r

of
 r

eq
ue

st
s

se
rv

ed

(a) Requests served with increasing service rate in UC2 with UPnP
exporter.

(b) Service Time in UC2 with UPnP exporter.

Figure 3.17: Performance evaluation in UC2 with UPnP Exporter.

86 CHAPTER 3. A SERVICE-ORIENTED ZIGBEE GATEWAY

Figure 3.18: The REST exporter.

Figure 3.19: The UC1 execution flow with the REST exporter.

3.4. SUMMARY 87

(a) The UC2 execution flow with the REST exporter.

2 4 6 8 10 12 14 16
2

3

4

5

6

7

8

9

10

11

Service rate

A
ve

ra
ge

 n
um

be
r

of
 r

eq
ue

st
s

se
rv

ed

(b) Requests served with increasing service rate in UC2 with REST
exporter..

Figure 3.20: Performance evaluation in UC2 with REST exporter.

88 CHAPTER 3. A SERVICE-ORIENTED ZIGBEE GATEWAY

Chapter 4

Service Discovery in Mobile Social
Networks

The progress of knowledge on MSN (Section 2.2.1) has raised several novel research
aspects. The richness of the resources (sensors, hosted and self-generated data,
connectivity etc.) of the devices that make up an MSN leads to the problem of
how to share and distribute such resources among users. A natural solution is to
organize the MSN according to a service-oriented model, in which resources are made
available in terms of services offered by the devices themselves. In fact, a recent work
[112] cites service discovery as a challenging open issue in MSN, and another work
on opportunistic networking [52] describes the management of resources and services
as an open research issue. On the other hand, the development of a service-oriented
MSN is still in its infancy and relatively few works have addressed this issue [113].

This chapter describes two new algorithms for service discovery in MSN. The
algorithms we propose, namely SIDEMAN (ServIce DiscovEry in Mobile sociAl
Networks) and CORDIAL (COllaborative seRvice DIscovery ALgorithm), imple-
ment a service advertisement and query strategy specifically designed for MSN. In
particular:

• service advertisement, is the advertisement of services available in the MSN.
This is achieved by discovering and recognizing social communities and by
the proactive diffusion of service advertisements among people with similar
interests;

• service query, is the process of requesting a missing service from a fellow user.
This is implemented by a controlled query propagation mechanism aimed at
avoiding the extensive use of indiscriminate flooding.

We first present our reference scenario by describing how mobility and sociality
affect service discovery algorithms in MSN, then we present a simple model for de-
scribing the service discovery problem more formally. We state the service discovery

90 CHAPTER 4. SERVICE DISCOVERY IN MOBILE SOCIAL NETWORKS

problem and first describe SIDEMAN and then CORDIAL algorithms. The perfor-
mance evaluation of SIDEMAN and CORDIAL algorithms is presented in Chapter
5. The results presented in this chapter have been published in [28, 29, 30, 31, 32, 33].

4.1 The Reference Scenario

Our reference scenario is made up of people who move in an environment and es-
tablish meaningful social relationships with other people. The environments we
consider have different geographical dimensions e.g. a university campus, an airport
terminal, a district or a city. People in our scenario carry smart objects in their
pockets such as smart phones, smart watches or sensorized wrist bands, all of them
forming an MSN. We will refer to the smart objects in the MSN both as nodes and
devices.

As discussed in Section 2.2.1, our scenario is characterized by two aspects: (i)
devices offer the functionalities they provide with a service-oriented approach (Sec-
tion 2.2.1), and (ii) movements of people affect the communication opportunities
among devices.

Devices offer different types of hardware and software resources. They have dif-
ferent types of network interfaces, such as short-range interfaces (WiFi, Bluetooth
or ZigBee) or long-range interfaces (UMTS, 3G and LTE). Devices are also equipped
with sensors such as accelerometers, 3-axis gyroscopes and GPS receivers. We are
interested in studying the possibility of sharing such resources (hardware and soft-
ware) in terms of services with other devices in the environment.

Human mobility is the second aspect that characterizes our reference scenario. In
our scenario, people (and the devices associated with them) move in the environment
over time. We consider that people move according to the objectives and activities
arising from their social relationships [16]. The mobility of people profoundly affects
the communication opportunities among the devices.

We do not assume a centralized MSN architecture with a reliable and stable net-
work infrastructure. Instead, we consider that two devices can interact only if they
lie in the transmission range of each other (which is typical of a distributed MSN).
As in the Opportunistic Networks [52], a device with information to transmit, car-
ries it within its cache, until a communication opportunity arises, i.e. a wireless link
with the device of another person can be established. At that point, the information
is transferred. This paradigm also applies for the service discovery problem. In this
case, nodes exchange service advertisements and service queries opportunistically,
as soon as they meet other nodes. If a device does not find an answer to a query, it
stores the query in a local buffer and waits until the next encounter.

Figure 4.5 shows our reference scenario both form the human and node per-
spective. The human perspective represents the real social interactions happening
among people, while the node perspective represents the communication opportu-
nities among devices carried by people. Both of the perspectives change along the

4.2. SERVICE DISCOVERY MODEL FOR MSN 91

time.

Figure 4.1: Social interactions during a day.

4.2 Service Discovery Model for MSN

4.2.1 Mobile Social Networks and Community Detection

A MSN is seen as a set of mobile nodes, each representing an individual mov-
ing within a bounded region. Nodes move driven by one or more objectives, e.g.,
traveling to the office, going back home or meet friends out. Occasionally, a node
establishes a contact with another node by using a wireless communication interface
(e.g., Bluetooth or WiFi). We model the connections among the nodes at time t as
a directed graph Gt = (V,Et), where V = {n1, n2, . . . , nv} is the set of the v nodes
of the MSN and Et = {eij = (ni, nj) : ni, nj ∈ V } is the set of links among the
nodes at time t. Links in Et can be directed, indicating one-way communications,
typical of opportunistic networks. The neighborhood N i

t of node ni at time t is the
set of nodes nj ∈ V such that eji ∈ Et. In other words, the neighborhood of node
ni is made up of all nodes that can communicate with ni at time t.

As a node ni moves and comes into contact with other nodes, it keeps a contact
history for every node it connects with. For each node nj the contact history is
given by the following parameters:

• the cumulative contact time tcum(ni, nj), i.e., the total time nodes nj was in
contact with node ni;

92 CHAPTER 4. SERVICE DISCOVERY IN MOBILE SOCIAL NETWORKS

• the average contact time ct(ni, nj), defined as the average duration of a contact
between nj and ni;

• the inter-contact time ict(ni, nj), which is the average time between successive
contacts between nj and ni (as defined in [114]);

• the last-time seen lt(ni, nj), which is the last time node ni entered in contact
with nj.

Figure 4.2 depicts the times when node ni hears from two other nodes, namely
node n2 and node n3.

Figure 4.2: Contact times of nodes n2 and n3 with node ni.

Based on these encounters, the contact history of node n2 as stored by node ni

at time 4t is: tcum(n1, n2) = 5
2
t, ct(n1, n2) = 5

6
t, ict(n1, n2) = 3

4
t and lt(n2, n3) = 4t.

For node n3 node ni would store 〈2t, t, 2t, 4t〉. The contact history of all nodes is
stored by node ni in a table T i that for each node nj 6= ni lists:
〈t(ni, nj), ct(ni, nj), ict(ni, nj), lt(ni, nj)〉.

The contact history is used to detect communities (refer to section 2.2.1). More
precisely, in order to determine the community C where it resides, node ni executes
at time t a community detection algorithm A by using the contact history T i

t and
the neighborhood N i

t of node ni at time t as input. The community C is a subset of
node ni current in the neighborhood N i

t . The selection of which neighbors are part
of the community of node ni depends on algorithm A. Our discovery algorithms are
independent of the specific algorithm used to detect communities, and can use any
of the detection algorithms proposed for MSN [60, 61].

Node ni keeps track of the communities it has been a part of in a table CT i =
{C1, . . . , Cw}. Such table contains all the communities visited in time. Every time
a community C is detected (by running algorithm A) it is inserted in CT i only if
there is no other community C ′ in CT i that is similar to C. To determine similarity
among communities C1, C2, we use the Jaccard index [115] as commonly done by
community detection algorithms [59];

γ =
|C1 ∩ C2|
|C1 ∪ C2|

, (4.1)

Observe that γ ∈ [0, 1]; if γ = 1 then the intersection among community members
coincides with the union of C and C ′, and hence C and C ′ are identical. If γ ≥ τ

4.2. SERVICE DISCOVERY MODEL FOR MSN 93

then C and C ′ are similar in the sense that they share a certain number of nodes.
In both cases (γ ≥ τ, γ = 1) node ni already visited C and it does not need to store
C in CT i again. Differently, if γ < τ then community C is new and ni has to store
C in CT i .

Every node ni ∈ V is characterized by a profile that expresses its interests
Ii ∈ I, and I = {t1, . . . , tn} is the set of all possible interests. The interests are
labels tagging a node in terms of a common classification. For example a node might
be interested in: news, forecast, national football team service.

4.2.2 Service Discovery

Service discovery is a process composed by four steps, namely advertisement, query,
selection and access as shown in Figure 4.3. Each phase requires a different type of
message as explained in the follow.

Figure 4.3: Service discovery process.

Advertisement

Nodes advertise the services they provide and the service advertisements they are
aware of. A service advertisement is a compact data structure describing the most
important features of the service, i.e. the functionalities it provides, the non-
functional characteristics of the service1, the identifier of the service provider. We
assume that the advertisement advj comprises at least the following fields:

1The actual formalism used to describe service advertisements is out of the scope of this thesis
and we will not discuss it.

94 CHAPTER 4. SERVICE DISCOVERY IN MOBILE SOCIAL NETWORKS

• Advertisement interests: Iadvj ⊆ I, which is the set of interests associated to
the advertisement advj. Similarly to the node’s interests, the interests Iadvj tag
the advertisement with respect to a common classification. For example the
interests associated to a service for sharing media contents might be: media,
entertainment, social etc.

• Service provider: spk, k 6= j identifies the node that provides the service de-
scribed with the advertisement advj. We consider that the service provider
spk can provide more than one service.

The node ni stores the advertisements received along the time in the node cache
Ai = {adv1 · · · advm}.

Query

The query q ∈ Q is craft by the node ni to discover the advertisements matching
with it. We model a query as a message containing a list of features that specify
the type of advertisement required by ni. Given the query q, ni checks if its cache
contains at least one advertisement matching with q, this operation is done with
the f : Q −→ Ai function. Such function returns the set of advertisements stored
in Ai whose interests match with the query interests. The similarity among query
interests and advertisement interests is determined with the γ similarity index, as
also done with the communities (see Section 4.2.1). We model the query q as a
message containing the following fields:

• Query interests Iq ⊆ I: the set of interests describing the kind of service
required by ni;

• Service requester nr: the identifier of the node that craft the query;

The set of nodes to which a client forwards the query q is named the forwarding
set (FS). After the submission of a query, the client can receive zero or more adver-
tisements matching with the query. Such advertisements are stored in the node’s
cache with the Update function. If the node ni does not receive any answer for a
query, then it marks the query as a pending query and it stores it in the pending
query set PQi.

Service selection and access

The last two steps of the service discovery process are the selection and the access
phases (refer to section 2.2.2 and 2.2.2). The goal of the selection phase is to select
the best-matching service advertisement according to an objective function. As
an example, the goal of the client might be selecting the advertisement whose node
provider minimizes the response time or selecting the provider that applies the lowest

4.3. SIDEMAN ALGORITHM 95

charge to the service access. Differently, the goal of the access phase is to discover
the best route in order to access the provider of the service previously selected.

SIDEMAN and CORDIAL focus on the first two steps of the service discovery,
namely advertisement and query since they represent a complex problem for the
reference scenario to which we refer to. Moreover, we consider that the selection
phase might be implemented with well-known method for optimizing an objective
function (e.g. best-fit or local greedy heuristics) and that the access phase can be
delegated to out-of-band protocols.

4.3 SIDEMAN Algorithm

4.3.1 Overview of the algorithm

SIDEMAN [30, 33] is an algorithm used by a node ni for discovering service ad-
vertisements available in a MSN. To this purpose SIDEMAN enables nodes (i) to
reactively disseminate queries for advertisements they do not currently have, and
(ii) to proactively exchange advertisements they might be interested in, so that a
node has that advertisement when it needs it and (iii) to manage the reception
of queries and advertisements (the discovery messages). The design of SIDEMAN
exploits a typical feature of MSN: people tend to form communities made of simi-
lar individuals (Section 2.2.1). In particular, SIDEMAN relies on the detection of
communities for optimizing operations (i) and (ii) as follows:

• the dissemination of queries is realized only among members of the same com-
munity, thus avoiding their indiscriminate flooding through the whole neigh-
borhood;

• the exchange of services is performed only inside a community. The rationale
of this choice is that since a community is often formed by similar individuals,
it is more likely to find services of interest inside the community.

An overview of the three phases of SIDEMAN is shown in Figure 4.4.
Whenever a node needs a service (reactive phase of SIDEMAN), it crafts the

query q and it checks if its cache stores an advertisement matching with q (Figure
4.4a). If the node finds an advertisement matching with q (f(q) 6= ∅) then it accesses
the service provider specified in the advertisement. Otherwise, ni runs an algorithm
for detecting the community to which it belongs. Once a community is detected, ni

checks for a similar community in its community table. If such a community exists,
i.e., if ni has already visited that community in the past, ni recognizes it. Otherwise,
ni stores the new community in its community table.

After the community detection phase, ni builds a forwarding set from members
of its current community whose interests match those in q. In other words, the
query q is forwarded only to the members of the community of ni sharing at least

96 CHAPTER 4. SERVICE DISCOVERY IN MOBILE SOCIAL NETWORKS

access adv

 recognize
community

select forwarding
set store q in PQi

Query forwarding

forward qf(q) ≠ ∅create
query q

YES

NO

(a) Reactive phase

 recognize
communityYES

select
advertisements

and queries
forward queries
advertisements

Advertisement forwarding

Ai 6= ;

(b) Proactive phase

check
m

receive
message m

f(q) ≠ ∅

m is query q

YES forward f(q) to
requester q

m is adv store adv Ai update PQi access adv

(c) Message Reception

Figure 4.4: Overview of SIDEMAN.

one interest with q. In this way, the node ni prevents from sending a query to a
node whose interests are completely different with respect to the query q. At this
point, node ni stores the query q in the set of its pending query, such set represents
the queries that are still waiting for an answer.

At regular intervals, node ni executes the proactive phase of SIDEMAN, for
exchanging services with members of its community (Figure 4.4b). If ni carries an
advertisement whose interests match those of at least one member of its community,
then ni exchanges such advertisement. During this phase, node ni also forwards the
queries left in PQi to the members of the community previously detected.

Figure 4.4c depicts the situation in which node ni receives a discovery message
(either query or an advertisement) from another node. If the message received is a
query q, node ni checks if it can provide an answer to q. If this is the case, node ni

replies to the requester node with the set of advertisements matching q. Otherwise,
if the message received is the advertisement advj, then ni stores advj in Ai and
removes all the pending queries now answered from the advertisement advj.

4.3. SIDEMAN ALGORITHM 97

4.3.2 SIDEMAN

Before describing the reactive and proactive phases of SIDEMAN (Figure 4.4a and
4.4b), the following algorithm describes how ni recognizes the community C.

Algorithm 1 RecognizeCommunity(T,N,CT, τ).

1: C = A(T,N)
2: if ∃ C ′ ∈ CT | γ(C,C ′) ≥ τ then
3: IC = interests of C ′ from CT
4: else
5: IC = getInterests(C)
6: CT = CT ∪ C
7: return < C, IC >

A community C is determined by running any community detection algorithmA [60]
(line 1). A community C is recognized if there is a community C ′ in CT i that is sim-
ilar to C according to a given similarity index. As mentioned, we used the Jaccard
index with threshold τ [115]. If a community C ′ is found that is Jaccard-similar
to C (i.e., γ(C,C ′) ≥ τ) then the set of interests IC of community C are those of
community C ′ (line 3). If no such a community exists, the interests of the mem-
bers of the community must be collected by asking to every community member its
interests. This set of communication is performed through executing the function
getInterests(·) (line 5). In particular the getInterests(·) function iterates over the
members of C and asks to every member the list of its interests. The recognized
community C is finally returned (line 7).

We stipulate that Algorithm 1 returns the pair < C, IC >, where C is the
community (the set members of the community) and IC is the list of interests
shared by the members of the community. We recall that the community table CT i

is used for storing the communities visited by ni and the interests of the community
members. Through this table we can remarkably reduce the number of times the
function getInterests(·) is invoked by ni. Our experiments show that communities
are recognized always over 50% of the times, and that, at steady state, the function
getInterests(·) is called in about half of the cases.

The reactive phase of SIDEMAN is implemented by Algorithm 2.
Node ni starts by checking whether it has an advertisement matching the query q

(line 1). The f function verifies if node ni stores in its cache a service advj matching
q. In the positive, ni accesses it. Otherwise, ni recognizes the local community to
which it belongs (Algorithm 1). Node ni then computes the set Vq ⊆ C of nodes that
can potentially answer to query q (line 6). Note that the set Vq is composed by nodes
in C that share at least one interest with q. Finally, the query is forwarded to nodes
in Vq (line 7). We observe that the operation of creating the set Vq (based on checking
that the interests in q also belong to the interests Ij of node nj) can be expensive
(in time, energy, etc.). In order to optimize it, we implemented the sets Ij as Bloom

98 CHAPTER 4. SERVICE DISCOVERY IN MOBILE SOCIAL NETWORKS

Algorithm 2 Reactive phase of SIDEMAN.

1: if f(q) 6= ∅ then
2: advj = f(q)
3: access advj
4: else
5: < C, IC >= RecognizeCommunity(T i, N i, CT i, τ)
6: Vq = {nj ∈ C | ∃ tk ∈ Iq s.t. tk ∈ Ij}
7: Forward q to Vq

Filters (BFs) [116]. A Bloom Filter is a data structure implementing the following
two operations: (i) checking whether or not an element belongs to the data structure
(membership), and (ii) adding an element to the data structure (addition). Both
operations are performed in constant time thanks to use of h distinct hash functions.
We used Bloom Filters for implementing the set Ic of interests assigned to node nj,
so that checking if the interest ti in I belongs or not to Ij is performed efficiently.

The proactive phase of SIDEMAN that takes care of advertisement exchange
and forward of pending queries is performed at node ni by executing the following
Algorithm 3.

Algorithm 3 Proactive phase of SIDEMAN.

1: < C, IC >= RecognizeCommunity(T i, N i, CT i, τ)
2: for all t ∈ IC do
3: Vt = {nj ∈ C | t ∈ Ij}
4: St = {advj ∈ Ai | t ∈ SIj}
5: if Vt = ∅ then
6: IC = IC \ {t}
7: Forward St to Vt
8: for all q ∈ PQi do
9: if t ∈ q then

10: Forward q to Vt

Node ni starts with recognizing its community. To this purpose it uses Algo-
rithm 1 described above that returns C as well as IC .

For every interest t ∈ IC node ni performs the following actions.

1. It computes the set Vt ⊆ C of nodes in C also interested in t and the set
St ⊆ Ai of advertisements matching t (lines 3 and 4). If Vt is empty, ni

removes t from IC (line 6). In this way, if the same community is recognized
at a later time, a node can avoid considering interests that are no longer shared
by the members of C.

4.4. CORDIAL ALGORITHM 99

2. It forwards the set St to nodes in its community sharing the same interests
(line 7).

3. It selects those pending queries from PQi that concern interest t, and forwards
them to members of its community sharing that interest (line 10).

As for Algorithm 2, the constructions of sets Vt and St in Algorithm 3 are im-
plemented through Bloom Filters. In this way, the complexity of computing Vt and
St is O(|C|) and O(|Ai|), respectively.

Whether reactively sending out service queries (Algorithm 2) or proactively ex-
changing advertisements and disseminating pending queries (Algorithm 3), some
of the nodes in the neighborhood of ni might transmit responses. The following
Algorithm 4 describes node ni reaction to receiving response m.

Algorithm 4 OnMessageReception(m).

1: if m is a query then
2: nr is the requester of q
3: D = f(m)
4: Forward D to r
5: else
6: Update(Ai, m)

Upon receiving response m, node ni checks whether it is a query or an advertise-
ment. If m is a query then the node determines all its advertisements that answer
that query, if any. These advertisements are then sent directly (i.e., through a unicast
transmission) to the node nr requesting the query m. If m is instead an advertise-
ment, node ni updates its service cache Ai. Specifically, the function Update(Ai,
m) checks whether m is already in Ai. If this is the case, the corresponding entry
is updated. Otherwise, m is added to the cache.

4.4 CORDIAL Algorithm

This section describes the CORDIAL algorithm. Compared to SIDEMAN, COR-
DIAL differs with respect to two points:

• an extended application scenario;

• the improvement of the forwarding policy of queries and advertisements.

Concerning the first point, CORDIAL is designed by keeping in mind scenarios
in which people move outdoor in large urban or rural areas (see Section 4.1). For
example we consider the mobility of a group of persons roaming in a city or a
group of students roaming in a university campus for long period time. Under this

100 CHAPTER 4. SERVICE DISCOVERY IN MOBILE SOCIAL NETWORKS

respect CORDIAL better exploits than SIDEMAN some mobility features in order
to optimize the diffusion of queries and advertisements.

For what concerns the second point, CORDIAL implements different policies
for forwarding queries and advertisements. The policy of SIDEMAN for forwarding
discovery messages is based on the similarity of the interests between a node and
the query and on the similarity between a node and the advertisement to forward.
CORDIAL splits these in two cases. The policy for forwarding queries is based on
the idea of selecting those nodes from the community that are similar in terms of
interests and that are encountered periodically. In fact, nodes that meet periodi-
cally have higher changes to exchange a query and, later in time, to exchange an
advertisement matching with that query. Concerning the policy for forwarding ad-
vertisements, CORDIAL aims at exchanging the advertisements to nodes that are
potentially interested in the advertisement and that previously in time submitted
a query matching with the advertisement. Section 4.4.1 describes these two obser-
vations. Finally, CORDIAL avoids to forward queries and advertisement to nodes
that already received them in the past, with the benefit of reducing energy consump-
tion of the devices, the overhead of the protocol and the computational resources of
devices.

4.4.1 Routines in MSN

The scenario described in Section 4.1 does not consider a typical behavior of the
human mobility, namely the routines. As previously discussed, the human mobility
follows three basic rules: common activities, restricted number of locations and short
paths. Moreover, people often adopt a routinary pattern along the day as discussed
in [117]. Intuitively humans tend to visit periodically the same places (e.g. home,
office, pub) and hence to join periodically the same communities.

Figure 4.5 shows a simple example. Alice (depicted as a full black circle) joins
three communities that are visited at different hours along day. Throughout the day,
Alice joins the Office community (from about 8AM to about 5PM), pub community
(after hours) and the home community (night hours). Within each community,
Alice meets colleagues and friends (indicated by hollow circles). This simple routine
repeats for the whole week (e.g Monday to Friday).

Routines can be exploited for the service discovery problem when it is needed
to forward either a query and an advertisement message. In particular, the query
forwarding strategy aims at disseminating a query to other nodes with the goal of
receiving in short time an advertisement matching with it. Such strategy can be
extended by considering a measure of how often two nodes enter in contact. Nodes
that meet periodically have higher changes to exchange a query and, later in time,
to exchange an advertisement matching with that query. Hence the strategy we seek
is to give more priority to those nodes visited more frequently and routinary along
the time.

4.4. CORDIAL ALGORITHM 101

Figure 4.5: Example of routine in a day.

Similarly, the advertisement forwarding strategy aims at exchanging the adver-
tisement advj to nodes that:

• are potentially interested in advj;

• that previously in time submitted a query matching with advj.

If node ni carries an advertisement adv matching with a query submitted by node
nk, then ni has two choices: (1) if nk is in contact with ni, then ni delivers adv to
nk, (2) if nk is not in contact with ni, then ni selects the node nw that will encounter
nk more rapidly than ni.

Figure 4.6 shows how routines can improve the forwarding of queries and ad-
vertisements. In the figure, the node ni joins the community Ci composed by one
single node, namely nj. Every node adopts the similarity function γ that, given two
set of interests, it measures the similarity degree. The node nj does not share any
interest with the query q craft by ni (γ(Iq, Ij) = 0), however nj joins the community
Cj composed by nodes nk, nh. The interest sets of nk, nh are γ-similar with q, in
particular γ(Iq, Ik) = 1 (perfect match) and γ(Iq, Ih) = 0.5 (partial match). Even
if γ(Iq, Ij) = 0, ni decides to still forward q to nj since the goal of ni is to reach the
Cj’s members.

CORDIAL exploits the strategy previously described in order to optimize the
forwarding of queries and advertisements. With such strategy, a node may receive
in time direct and indirect responses, as shown in Figure 4.7.

Figure 4.7a shows the direct response mechanism. In all the tree cases a, b and c,
the node receiving the query, namely nj is the same that returns the advertisement

102 CHAPTER 4. SERVICE DISCOVERY IN MOBILE SOCIAL NETWORKS

Figure 4.6: Similarity cross-communities.

i j i

q adv

i j

q

j k

q

j

adv

j i

adv

i j

q

k j

adv

j i

adv

a)

b)

c)

(a) Direct responses.

i j

q

h i

adv…
b)

i j

q

j k

adv

k i

adv

a)

(b) Indirect responses.

Figure 4.7: Direct and indirect interaction schema.

back to ni. The cases a,b and c show how nj discovers the advertisement adv
matching with q:

(a) ni forwards the query q to nj and nj answers immediately with an advertise-
ment matching with q. This is the optimal case, because nj already carries an

4.4. CORDIAL ALGORITHM 103

advertisement matching with q;

(b) ni forwards the query q to nj, later in time nj takes care of forwarding q on
behalf of ni to the node nk. The node nk carries an advertisement matching
with q that it sends to nj. At the end of the process, nj encounters ni again
and nj sends the advertisement back to ni;

(c) ni forwards the query q to nj, later in time nj receives proactively an adver-
tisement matching with q from nk. At the end of the process, nj encounters ni

again and nj sends the answer to ni.

Figure 4.7b shows the indirect response mechanism. In this case the node re-
ceiving the query, namely nj, is different with respect to the node that sends the
advertisement adv matching with q to the node ni. We define two cases:

(a) ni forwards the query q to nj, nj carries an advertisement matching with q and
it forwards the advertisement to nh because nh will encounter ni more rapidly
with respect to nj;

(b) ni forwards the query q to nj, later in time ni receives proactively an advertise-
ment adv from node nh. In this last case, nh did not receive q from nj, rather
nk advertises ni proactively.

4.4.2 Overview of the algorithm

CORDIAL is the algorithm used by a node ni for discovering and advertising ser-
vices available in MSN. To this purpose, CORDIAL enables nodes: (i) to reactively
disseminate queries for service advertisements they are looking for, and (ii) to proac-
tively exchange service advertisements with nodes that might be interested in such
advertisements and (iii) to manage the reception of queries and advertisements. The
reactive and proactive phases of CORDIAL are depicted in Figure 4.8.

Reactive phase

Whenever the node ni needs a service, it executes the reactive phase of CORDIAL,
see Figure 4.8a. The reactive phase first creates the query q needed by ni. Then,
it executes the f function in order to look up for any advertisement stored in the
service cache Ai of ni and matching with the query q. If at least one advertisement
is found, then ni accesses to the service provider specified in the advertisement,
otherwise it executes the query forwarding strategy (in Figure 4.8a it is denoted
with the red box). The query forwarding strategy first recognizes the community
of ni and then it applies the following three rules for selecting the nodes to which
forward the query q:

• selection of nodes in the community of ni whose interests match with the
query;

104 CHAPTER 4. SERVICE DISCOVERY IN MOBILE SOCIAL NETWORKS

access adv

recognize
community select

Forwarding Set
(FS)

store q in PQi

Query forwarding strategy

forward qf(q) ≠ ∅create
query q

YES

NO

compute
Social Centrality

(SC)

(a) Reactive phase.

detect
neighborhoodYES select

advertisements
forward

advertisements

Advertisement forwarding

YES query forwarding
strategy

NO

YES

Ai 6= ; PQi 6= ;

compute
similarity index

R 6= ;

relay
advertisements

YES

query forwarding

NO

(b) Proactive phase.

check
m

receive
message m

f(q) ≠ ∅

m is query q

m is adv
remove

answered
queries from PQi

select pending
queries D’

relay
advertisements

store q in PQi

YES

NO

relay
advertisement

adv

(c) Message reception.

Figure 4.8: Overview of CORDIAL.

• selection of nodes in the community of ni whose friends might answer to the
query (Social Centrality rule);

• avoidance unnecessary forward of queries.

After the selection of the candidate nodes, ni store q in the pending query set and
it forwards q to the nodes previously chosen.

4.4. CORDIAL ALGORITHM 105

Proactive phase

The proactive phase is executed at fixed intervals, it is shown in Figure 4.8b. Its
goal is to disseminate proactively queries and advertisements carried by ni to nodes
potentially interested in such discovery messages. The proactive phase distinguishes
how to forward advertisements from how to forward the pending queries (such steps
are shown in Figure 4.8b with two dotted boxes):

The node ni first checks if its service cache is empty (Ai 6= ∅). In the negative
case it executes the advertisement forwarding policy whose goal is to disseminate
proactively those advertisements carried by ni to nodes that might be interested
in using them. In order to maximize such goal, the proactive phase detects the
neighborhood of ni and it applies the following two rules:

• selection of nodes from the neighborhood of ni that did not receive the same
advertisements in the past;

• selection of nodes from the neighborhood of ni whose interests match with the
advertisement’s ones (by means of the similarity index γ).

After the selection of the candidate nodes, ni forwards the advertisement to the
nodes previously chosen. Moreover, ni acts as relay node for the advertisements
that must be forwarded to a specific node, we call this node the final destination of
the advertisement. These advertisements are stored in the forwarding cache Ri, a
data structure containing advertisements to be forwarded only the final destination.
If Ri is not empty then ni check if it is in contact with the final destination and (in
the positive case) it delivers the advertisement to the final destination, otherwise ni

identifies the nodes in the neighborhood that can deliver the advertisement quickly
to its final destination.

Finally, the proactive phase concludes with the forwarding of pending queries
stored in the set PQi. The goal of this step is to forward those queries stored in the
pending query set PQi that are not jet answered. Queries in PQi can be generated
either form ni or to any other node nj that forwarded q to ni during the reactive
phase (see Figure 4.8a). For every query q ∈ PQi, ni adopts the same strategy used
in the reactive phase, in particular ni first builds the forwarding set and then ni

forwards q to such set.

Message reception

Node ni can receive asynchronously a message from another node. If the message
received is a query q, then ni executes the function f(q) in order to check if it
carries an advertisement matching with q. If this is the case, ni acts as relay node
in order to forward the advertisements matching with q toward its final destination
(relay advertisements). Otherwise, ni stores the query in the pending query set PQi

waiting for a matching advertisement. If the messagem received is the advertisement
adv, ni first removes all the pending queries now answered from adv. Then, ni selects

106 CHAPTER 4. SERVICE DISCOVERY IN MOBILE SOCIAL NETWORKS

the queries received from other nodes that are now answered from adv, namely the
the set D′. After this step, ni checks if the requester of the queries in D′ is in contact
with ni, if this is the case ni delivers the advertisement to the final destination
otherwise ni selects one of the nodes to which it is currently in contact with and
that can quickly deliver the advertisement to the final destination.

4.4.3 CORDIAL

The reactive phase of CORDIAL is shown in Algorithm 5.

Algorithm 5 Reactive phase of CORDIAL.

1: if f(q) 6= ∅ then
2: access advj
3: else
4: C = RecognizeCommunity(T i, N i, CT i, τ)
5: FS = {SCj,∀nj ∈ C|q /∈ PQj}
6: forward q to top k nodes in FS

Node ni starts by checking whether it has an advertisement matching the query q
(line 1). The f function verifies if node ni stores in its cache a service advj matching
q. In the positive, ni accesses advj. Otherwise, the node ni executes the community
detection algorithm RecognizeCommunity as described in Algorithm 1. Given the
community Ci (line 4 Algorithm 5), the node ni builds the forwarding set FS. In
order to build FS, ni first assigns to every node nj ∈ Ci its Social Centrality SC
score, the SC metric is given by:

SCj =
γ(Iq, Ij)

1 + ict(i, j)
+

∑
w∈Cj−Ci

ict(i,w)>ict(j,w)

γ(Iq, Iw)

1 + ict(j, w)
(4.2)

The SC metric in 4.2 measures the capability of nj of answering to the query q
even with a direct or with an indirect response (see Figure 4.7). In particular the
first part of 4.2 measures the direct responses, it assigns to nj ∈ C a score that is the
ratio between the similarity of the interests between the query q and the interests
of nj with respect to the inter-contact time between ni and nj. The first part of
4.2 is high when the similarity index γ is high (nj has many interests matching
with q) and when the inter-contact time between ni and nj is low (ni encounters
nj frequently). The second part of 4.2 is computed as follows. We consider the
set difference between the communities Cj and Ci and we apply the constraint that
the inter-contact time between w ∈ {Cj − Ci} and ni is higher than that the inter-
contact time between w ∈ {Cj−Ci} and nj. In this way we consider the nodes that
belong to Cj only, and such that nj visits them more frequently with respect to ni.
With the previous constraint we prevent from delivering to nj a query directed to

4.4. CORDIAL ALGORITHM 107

a node that ni will encounter more rapidly with respect to nj. The second part of
4.2 is the ratio between the similarity of the interests of query q and the interests
of every node w ∈ {Cj − Ci} with respect to the inter-contact time between nj

and w. This last part measures the capability of node nj to enter in contact with
nodes that might answer the query q. The node ni assigns the SC score to every
node nj ∈ Ci such that it did not receive the same query in the past (q /∈ PQj, see
line 5 algorithm 5). This technique implements the avoidance of query duplication.
Then ni selects the top k nodes with the highest SC and ni forwards q to them.
CORDIAL

The proactive phase of CORDIAL is described with Algorithm 6.

Algorithm 6 Proactive phase of CORDIAL.

1: for all adv ∈ Ai do
2: Vt = {nj ∈ N i

t | γ(Ij, Iadv) > τ ∧ adv /∈ Aj}
3: Forward adv to Vt
4: for all adv ∈ Ri do
5: if final destination of adv is in contact then
6: Forward adv to final destination
7: else
8: nk = TemporalForwarder(adv)
9: Forward adv to nk

10: for all q ∈ PQi do
11: C = RecognizeCommunity(T i, N i, CT i, τ)
12: FS = {SCj,∀nj ∈ C |q /∈ PQj}
13: forward q to top k nodes in FS

The proactive phase implements the forwarding strategy for queries and adver-
tisements. The first part of Algorithm 6 exchanges the advertisements stored in the
cache Ai (lines 1 − 3). For every adv stored in Ai, ni builds the set Vt composed
by the nodes whose interests match with those of adv and such that they did not
receive adv previously. Note that Vt is computed by considering the neighborhood
and not the community. Similar to SIDEMAN, we used the Bloom Filters in order
to optimize the creation of set Vt. In particular checking if adv ∈ Aj is executed in
constant time, thus the complexity of determining Vt is O(|N i

t |).
Once Vt has been computed, ni forwards adv to the set of recipients in Vt. After

this first round of exchanges, the node ni checks if some of the advertisements stored
in the forwarding cache Ri can be delivered to the final destination (lines 4− 9). If
adv ∈ Ri is directed to nj and ni is currently in contact with nj, then ni delivers the
advertisement to nj (direct answer). Otherwise ni selects the relay node nw ∈ N i

t

with the lowest remaining inter-contact time to the final destination of adv, this is
the node nk. As discussed in [114], at time t the remaining inter-contact time r− ict
is (expected) the remaining time before nodes nw and nk meet again. We propose a

108 CHAPTER 4. SERVICE DISCOVERY IN MOBILE SOCIAL NETWORKS

simple rule for computing the r − ict between nw, nk:

r − ict(nw, nk) = |[t− lt(nw, nk)]− ict(nw, nk)| (4.3)

Where t is the current time, lt it the last time nw saw nk and ict is the inter-
contact time between nw and nk. The smaller the r − ict, the more likely nw will
meet nk again, hence nw will deliver adv to the final destination. The function
TemporalForwarder detects the node the lowest r− ict value with respect the final
destination of the advertisement adv. If such node exists, then ni forwards adv
to nw. The last part of Algorithm 6 exchanges the pending queries carried by ni

(line 10-13). For every q ∈ PQi, node ni applies the same mechanism described in
Algorithm 5 lines 5-7.

After the forwarding of queries and advertisements, ni might receive responses
from other nodes. The following Algorithm 7 describes node ni reaction to receiving
a response m. Algorithm 7 distinguishes the reception of queries from the reception
of advertisements. If m is a query (lines 1-10) then ni executes f(q) function to
look up for any advertisement matching with q. If this is the case, then ni checks
if the node originating the query, namely the node originator nr, is currently in
contact. The node nr is the node waiting for an answer for the query q. If nr is in
contact with ni then ni forwards the set of matching advertisements to nr, otherwise
ni selects the nodes nk with the lowest remaining inter-contact time (see Equation
4.3). If ni does not carry any advertisement matching with q, the ni stores q ∈ PQi.
This last case implements the collaborative strategy adopted by CORDIAL: nodes
take care not only of their queries, but also of queries submitted by other nodes.

If m is the advertisement adv (lines 11-30) then ni checks all the pending queries
q ∈ PQi that are now answered from adv, such set is named D (lines 12). The
set D is composed by the queries craft by ni matching with the advertisement adv
just received. D is removed from PQi, because D contains queries now answered.
Moreover, ni checks all pending queries carried on behalf of other nodes (queries
whose requester is not ni) that are answered by adv just received, such set is named
D′ (lines 14). For every query q in D′, if the requester nr of q ∈ D′ is in contact
with ni, then ni forwards adv to nr. If nr is not in contact with ni, then ni selects
the node nk with the lowest remaining inter-contact time and it forwards adv to nk.
Note that nk has been selected as relay node for the advertisement adv. After this
round of checks, the node ni verifies who is the final destination of adv. If the final
destination is not ni, then ni received an advertisement addressed to another node.
In this case, the node ni has been selected as relay node. Node ni forwards adv to
the final destination of adv (if it is in contact), otherwise ni forwards adv to the
node with the lowest remaining inter-contact time. The last operation in Algorithm
6 stores the advertisement adv in the cache Ai only if the interests of adv match
with the interests of ni.

4.4. CORDIAL ALGORITHM 109

Algorithm 7 OnMessageReception(m).

1: if m is the query q then
2: nr is the requester of q
3: if f(q) 6= ∅ then
4: if nr is in contact then
5: Forward f(q) to r
6: else
7: nk = TemporalForwarder(r)
8: Forward f(q) to nk

9: else
10: store q in PQi

11: if m is the advertisement adv then
12: dst is the final destination of adv
13: D = {q ∈ PQi | requester(q) = ni ∧ γ(Iq, Iadv) ≥ τ}
14: Remove D from PQi

15: D′ = {q ∈ PQi | requester(q) 6= ni ∧ γ(Iq, Iadv) ≥ τ}
16: for all q ∈ D′ do
17: nr requester of q
18: if nr is in contact then
19: Forward adv to r
20: else
21: nk = TemporalForwarder(r)
22: Forward adv to nk

23: if dst 6= ni then
24: if dst is in contact then
25: Forward adv to dst
26: else
27: nk = TemporalForwarder(dst)
28: Forward adv to nk

29: if γ(Iadv, Ii) ≥ τ then
30: Update(Ai, adv)

110 CHAPTER 4. SERVICE DISCOVERY IN MOBILE SOCIAL NETWORKS

Chapter 5

Evaluation of Service Discovery
Algorithms

The goal of SIDEMAN and CORDIAL algorithms is to advertise services and prop-
agate queries in MSN. We evaluate the performance of these algorithms via simula-
tions, in order to reproduce Smart Environments that are closer to the reality. In
order to achieve this, we first analyze properties concerning the mobility of humans
in indoor and outdoor environments by real-world and synthetic mobility traces.
This preliminary study enabled us to take design decisions concerning the advertise-
ment and query-forwarding strategies implemented by SIDEMAN and CORDIAL.
This chapter is organized as follows. We first present the co-location traces in Sec-
tion 5.1. In Section 5.2 we describe various real-word mobility datasets available
in the literature, as well as the HCMM mobility model, and we present an initial
analysis of these datasets using a simple evaluation framework. In Section 5.4 we
present the evaluation metrics for our service discovery. Finally Sections 5.5 and 5.6
report the results we obtained for both algorithms.

5.1 Human Mobility Traces

Understanding the human mobility first requires the reproduction of the mobility of
people in real-world environments. There are basically two approaches for studying
the human mobility: real-world datasets and/or synthetic datasets. Both of them
are useful tools when the goal of the experiment is to reproduce a scenario where
people move according to some criteria. The first choice we made is to adopt both
real-world and synthetic datasets. We give particular emphasis to real world datasets
for two main reasons: (i) real-world datasets represent the ground truth of human
mobility, in fact they can be used to emulate the real mobility of a set of people for
a time period and (ii) real-world datasets are commonly used in the research field of
Mobile Social Computing and, more generally, in Opportunistic Computing hence
we can compare our results against existing ones with the same scenario. During this

112 CHAPTER 5. EVALUATION OF SERVICE DISCOVERY ALGORITHMS

thesis, we also evaluate our discovery algorithms with a synthetic dataset obtained
from a human mobility model, namely the HCMM model.

Real-world and synthetic mobility datasets are commonly available in the form of
co-location traces. Co-location traces do not track the global or the relative position
of the devices (for example by means of GPS coordinates), rather they track the
start and end time of a contact between a device pair with a given time resolution.
Typically, the datasets are obtained by using a simple application running on a
smart phone that periodically scans the Bluetooth or WiFi network looking for
other devices in proximity. If a device is found, then the application runs a simple
protocol for double-checking the connectivity with such device and to confirm their
co-location. The scan period of the application is a crucial parameter, indeed it
regulates how often the application scans the network. Intuitively, the shorter the
scan period the higher the resolution, but also the higher the battery depletion of
the smart phone or the device running the application. Common scan periods range
from 120s, 150s to 300s.

We present below a snapshot of the co-location trace of the Cambridge dataset,
the syntax of every row is [time, tag, nodei, nodej, event], in particular the time
stamp of the log, a tag, the node pair and the type of event (up the node pair is
connected, down the node pair is disconnected):

51679.00 CONN 34 23 up
51679.00 CONN 34 23 down
52218.00 CONN 14 9 up
52218.00 CONN 14 9 down
53517.00 CONN 28 2 up
53517.00 CONN 28 2 down

For example, at time 51679.00 device 34 can communicate with device 23, note
that often the co-location traces are not symmetric hence we cannot assume that
device 23 can communicate also with device 34. The co-location traces provide a
compact representation of a dynamic encounter graph. It is a graph composed by
devices in the dataset connecting and disconnecting along the time, the accuracy
of the graph is given by the scan period used for collecting the co-location traces.
Figure 5.1 shows a sequence of 4 snapshots of the encounter graph for the Cambridge
dataset, in particular Figure 5.1d is the snapshot of the graph corresponding to the
co-location trace previously shown.

5.2 Human Mobility with Experimental Datasets

During this thesis we use 4 real-world datasets, namely Infocom06 [118], Cambridge
[118], MIT Reality [119] and the MDC Nokia dataset [120] as well as a synthetic
dataset obtained from the HCMM mobility model [121]. In the following the provide
a description of each dataset.

5.2. HUMAN MOBILITY WITH EXPERIMENTAL DATASETS 113

(a) Snapshot 1. (b) Snapshot 2.

(c) Snapshot 3. (d) Snapshot 4 at time 51679.00.

Figure 5.1: Snapshots of encounter graph with Cambridge dataset.

Infocom06

The Infocom061 dataset reproduces an indoor simulation scenario, where 78 confer-
ence attendants participate to the IEEE Infocom conference from April 24 to April

1Haggle project, http://www.haggleproject.org/

114 CHAPTER 5. EVALUATION OF SERVICE DISCOVERY ALGORITHMS

27 2006. The participants were given Intel iMote devices equipped with a Blue-
tooth transceiver with a transmission range of about 30m. Traces were collected
each day from 7.00AM to 9.00PM. Each participant filled a survey about her/his
interests, nationality, language spoken, etc (we use this survey to assign interests to
the devices). The sampling scan period of the application running on the iMote is
of 120s.

Cambridge

The Cambridge dataset reproduces the mobility of 36 students moving in the Cam-
bridge University Campus for 12 days. The participants were given Intel iMote
devices equipped with a Bluetooth transceiver with a transmission range of about
30m. The devices assigned to the students have been configured with a sampling
scan period of 120s. Some extra devices have been statically placed in specific points
of interest, we exclude them from our analysis since not relevant for studying the
mobility of people involved in the experimentation.

MIT Reality

The MIT Reality dataset reproduces the mobility of 94 students moving in the MIT
University Campus in Boston from 2004 to 2005. The participants were given an
application running on the phone tracking several parameters such as Bluetooth
contacts, SMS sent/received and phone calls. For the purpose of this thesis, we
consider the co-location traces obtained from the Bluetooth contacts. The sampling
scan period of the application running on the phone is of 300s.

MDC Nokia

The Mobile Data Challenge Nokia dataset has been collected from 2009 to March
2011 with 185 participants in the Lake Geneva region (Switzerland). Participants
were mostly in the age of 22 to 35 years old. They were given an application designed
for Nokia N95 phone, that periodically collected several information such as GPS
position, Bluetooth sightings, places visited, SMS and phone calls as well as various
sensor readings. All the previous information were reported with a scan period of
600s. This dataset does not provide the co-location trace, hence we extracted them
by means of the the Bluetooth sightings, in particular we assumed that if a device
is in contact with another device for at least 600s then they are co-located and they
can communicate. For the purpose of this thesis we extracted a trace of the duration
of 20 days in order to have comparable results.

Analysis of experimental datasets

We compare the experimental datasets with respect to several metrics commonly
used when analyzing the human mobility in MSN. The metrics we select are indica-

5.2. HUMAN MOBILITY WITH EXPERIMENTAL DATASETS 115

tive both for the mobility of people and for the performance of algorithms designed
for MSN such as service discovery algorithms. The goal of this section is not rank-
ing the datasets according to some metrics, this because the datasets have been
collected in different epoch, with different sensing technologies and for different pur-
poses. Rather, our aim is to identify the most important features of each of the
datasets and to summarize which social scenario the datasets best capture. We
study the following metrics:

• Cardinality of neighborhood and communities. This metric measures the aver-
age number of devices found in proximity and the cardinality of communities
locally detected by each device. The communities are detected by means of
the DRAFT algorithm [61]. DRAFT is a distributed spatio-temporal detec-
tion algorithm. It requires to configure three parameters: the cumulative
contact duration τ is used to decide to add or remove a device form the com-
munity of a device. The cumulative contact duration is measured at fixed
intervals, the length of the interval is governed by the length t. Moreover, it
implements a decay mechanism δ to prune devices that no longer belong to a
community. The choice of these parameters affects the cardinality of the com-
munities detected by each device, for our experiments we configured DRAFT
with τ = 120, t = 3600, δ = 0.9 (as discussed in [61]).

• Number of contacts. This metric represents the distribution of the encounters
of the users per hour. It gives an indication of the social activity of a user,
providing information about when people meet and with how many people.
Moreover, as discussed in [96] the number of contacts among pairs of indi-
viduals is a first indicator of the mobility pattern characterizing such pair.
For example, students in contact daily from 9 to 11 AM are more likely stu-
dents attending the same lecture, and they have a daily routinary mobility.
Concerning the service discovery problem, the number of contacts measures
the number of communication opportunities arising among devices carried by
users and, in turn, the capability of diffusing queries as well as advertisements.

• Contact Duration. This metric measures the average duration of the encoun-
ters among people. The contact duration can be considered as a rough esti-
mator of the familiarity among people. Generally, the more people spend time
together, the more they are involved in a non-occasional social relationship.
However, the nature of such relationships cannot be determined by only mea-
suring the contact duration. In fact, people that meet for long periods could
be relatives, friends or colleagues. Service discovery algorithms designed for
MSN can take into account the distribution of the contact duration to take
decisions about the diffusion of the discovery messages.

• Inter-contact Time (ict). This metric measures the time elapsed between two
consecutive encounters among a pairs of users. It is a good indicator of the

116 CHAPTER 5. EVALUATION OF SERVICE DISCOVERY ALGORITHMS

frequency of the encounters and hence of the mobility of people. In datasets
with short ict, users tend to often meet the same group of users. Service
discovery algorithms designed for MSN that require delivering a message to
specific target device, can exploit ict to take local decisions. For example, a
routing strategy may deliver to device j a message to device i if the ict between
j and i is short.

• The total number of encounters and the unique number of encounters. These
metrics measure, for each user, the number of other users met in a period
and the number of other users met only once in the same period, respectively.
These metrics are indicative of the social attitude of a person in entering in
contact with many other people, or conversely to interact only with a few
people.

We first measure the average cardinality of the neighborhood (N) and the av-
erage cardinality of the dimension of the communities (C) detected. As explained

Ci

j

h

i

k

w

x

Figure 5.2: Example of community and neighborhood.

in Section 4.2.1, neighborhood and community do not always overlap. The neigh-
borhood is composed by devices in contact i.e. such that there is a link between ni

and nh, while the community of ni is composed by devices that have a kind of social
tie with ni (temporal, social, spatial or a combination of them). Figure 5.2 shows
the devices in the neighborhood of ni (marked with a black arrow) and the devices
in the community of ni (marked with dotted lines), note that device nw is in the
neighborhood of ni but not in its community.

Results concerning the cardinality of the neighborhood N and of the communities
C are shown in Figure 5.3. The metrics N and C vary along the simulation time for
all the datasets. In particular in the Infocom06 scenario, N and C change according
to the time schedule of the Inform06 conference. During the plenary session of the
conference, people are more likely co-located in the same room, hence N and C
increase (with DRAFT algorithm the more people spend time the more likely they

5.2. HUMAN MOBILITY WITH EXPERIMENTAL DATASETS 117

0 1 2 3 4
0

10

20

30

40

50

60

Days

N
u
m

b
e
r

o
f
d
e
v
ic

e
s

infocom06

Comm.:35.4511

Neigh.:1.0799

0 5 10 15
0

5

10

15

20

Days
N

u
m

b
e
r

o
f
d
e
v
ic

e
s

Cambridge

Comm.:8.5264

Neigh.:0.35969

0 50 100 150 200
0

2

4

6

8

10

Days

N
u
m

b
e
r

o
f
d
e
v
ic

e
s

MIT Reality

Comm.:2.7015

Neigh.:0.16038

0 200 400 600
0

2

4

6

8

10

Days

N
u
m

b
e
r

o
f
d
e
v
ic

e
s

MDCNokia

Comm.:1.1821

Neigh.:0.12272

Figure 5.3: Average dimension of communities and neighborhood.

are in the same community). Differently, during specific conference sessions N and C
decrease because only few people attend to the session. Moreover, N and C decrease
as time passes, since people start leaving the conference. The Cambridge, MIT
Reality and MDC Nokia datasets have a different nature with respect to Infocom06
dataset. Such datasets have been collected for a longer time period. The metrics
N and C also change along the time but their values are determined by routinary
patterns of people, i.e. going to office, coming back home, office meetings, free
time etc. For example, the fluctuations of N and C in the Cambridge dataset are
tightly coupled with the working day, at the end of every day N and C quickly
decrease. The two local minimum in Cambridge scenario (marked with the black
arrow) happen in correspondence of the the week-ends. Similar considerations apply

118 CHAPTER 5. EVALUATION OF SERVICE DISCOVERY ALGORITHMS

to the MIT Reality dataset and MDC Nokia, at the end of every day N and C
decrease. Moreover, the minimum value in the MIT Reality (marked with the black
arrows) happen in correspondence to the summer time.

0 20 40 60 80
0

2000

4000

6000

8000

hours

N
u
m

b
e
r

o
f
c
o
n
ta

c
ts

infocom06
mean1645.47 std:2097.40

0 100 200
0

100

200

300

400

500

hours

N
u
m

b
e
r

o
f
c
o
n
ta

c
ts

Cambridge
 mean37.66 std:76.86

0 100 200
0

20

40

60

80

100

120

hours

N
u
m

b
e
r

o
f
c
o
n
ta

c
ts

MIT Reality
mean14.82 std:22.8

0 100 200
0

20

40

60

80

100

hours

N
u
m

b
e
r

o
f
c
o
n
ta

c
ts

MDC Nokia
 mean 16.82 std:18.69

burst of contacts in 12 hours
pattern of encounters

Figure 5.4: Contacts per hour.

Results concerning the number of hourly contacts in period of 7 days are shown
in Figure 5.4. The histograms show that all the datasets have a similar trend in the
distribution of the contacts along the day. In particular, people tend to meet other
people in bursts during the daily hours. Moreover, the number of encounters repeats
over the days, giving rise to an intuitive pattern of encounters. In the Cambridge
and the MIT Reality the busts are denser in the first part of the daily hours. This
probably happens because the environments in these datasets are bounded (uni-
versity campus) and people are somehow forced to interact during specific working

5.2. HUMAN MOBILITY WITH EXPERIMENTAL DATASETS 119

hours. In the MDC Nokia datasets, instead, the bursts of contacts cover all the
daily hours. In fact, such datasets better capture the social interactions also after
the working hours.

We measure the complementary cumulative distribution function (CCDF) of the
duration of contacts for all the datasets in a logarithmic scale, as shown in Figure
5.5. The curves show that as the duration t increases, the probability of having

10
0

10
2

10
4

10
−2

10
−1

10
0

P
[X

>
t]

Time t

Infocom06:5.5522

Cambridge:100.8293

Reality:176.2857

MDCNokiaBT:296.5542

Figure 5.5: CCDF of contact duration.

contacts greater than t decreases. Such decrease is slow in interval [0− 100]s, after
which it follows an exponential decay rule. The dataset with the shortest contact
duration is Infocom06 (with an average of 5.52 seconds per contact), while MDC
Nokia is the dataset with the highest duration of contacts (with an average of 296.5
seconds). The other datasets, namely Cambridge, MIT Reality are bound between
them.

We also measure the inter-contact time (ict) among devices. Figure 5.6 shows
the CCDF of the ict for all the datasets in a logarithmic scale. All the datasets have
a similar CCDF trend. In particular, the CCDF follow a power-low up to roughly
12 hours, after which it decays exponentially. In all the cases, the inter-contact time

120 CHAPTER 5. EVALUATION OF SERVICE DISCOVERY ALGORITHMS

2m 10m 1h 12h1D 2D
10

−4

10
−3

10
−2

10
−1

10
0

P
[X

>
t]

Time t

Infocom06

Cambridge

Reality

MDCNokiaBT

Figure 5.6: CCDF of inter-contact time.

is greater than 120s with high probability, but the curves assume different behaviors
after 120s. In particular, users in Infocom06 tend to meet the same people more
frequently, while users of MIT Reality meet the same less often. Cambridge and
MDC Nokia, are sandwiched between Infocom06 and MIT Reality.

Results concerning the heterogeneity of encounters shown in Figure 5.7. Figure
5.7 represents the heterogeneity of encounters, by plotting a point for each user
at coordinates given by the total number of encounters (x axis) and the number of
unique encounters (y axis). From the figure, it is seen that in Infocom06, Cambridge
and MIT Reality, which are collected in limited geographical areas, users meet many
other users more often. This is confirmed by the distribution of the points. In fact,
lots of points are placed in the upper part of the diagram that characterizes people
with many unique encounters. In the case of MIT Reality, a number of points
are also placed in the upper right corner; hence, in this case, people have also
many total encounters. The percentage of the population visited by every person in
Infocom06, Cambridge and MIT Reality datasets is of respectively 91.02%, 83.48%
and 67.60%. MDC Nokia dataset has a distribution of the points shifted in the

5.2. HUMAN MOBILITY WITH EXPERIMENTAL DATASETS 121

10
2

10
3

10
4

10
1.6

10
1.7

10
1.8

10
1.9

U
ni

qu
e

en
co

un
te

rs
 (

U
)

Total encounters (T)

 Infocom06 − 91.92%

10
0

10
2

10
4

10
1.3

10
1.4

10
1.5

U
ni

qu
e

en
co

un
te

rs
 (

U
)

Total encounters (T)

Cambridge − 83.4877%

10
0

10
2

10
410

0

10
1

10
2

U
ni

qu
e

en
co

un
te

rs
 (

U
)

Total encounters (T)

MIT Reality − 67.6025%

10
0

10
510

0

10
1

10
2

10
3

U
ni

qu
e

en
co

un
te

rs
 (

U
)

Total encounters (T)

MDCNokia − 28.2765%

Figure 5.7: Number of encounters w.r.t unique encounters.

lower left corner. This area characterizes people that have few total encounters and
few unique encounters. MDC Nokia well reproduce the fact that people, in wide
geographical areas, have encounters with a limited number of individuals (an average
of 28.27%).

The HCMM Mobility Model

During this thesis we perform some experiments with synthetic co-location traces ob-
tained according to the Home-cell Community-based Mobility Model (HCMM) [121],
defined to mimic human mobility. We consider three different deployment areas,
small, medium and large, with side of 800m, 1400m and 2000m, respectively. Each
area is configured as a grid made up of 5 HCMM groups. Every device is associ-
ated to a home cell. Devices in the same home cell share social ties. Some devices
also have social ties with other devices from different cells. These devices are called
traveler devices. The strength of the social ties of the travelers is determined by
the so-called rewiring probability. The rewiring probability models the relationship

122 CHAPTER 5. EVALUATION OF SERVICE DISCOVERY ALGORITHMS

150 km

Figure 5.8: Geographical extension of the MDC Nokia dataset.

between devices of different cells and it drives the mobility of devices; it is set to
0.75 for the simulation scenario. The mobility speed is typical of pedestrian walking,
i.e., from 1 to 1.86m/s. We call this scenario the HCMM scenario whose metrics
are summarized in Figure 5.9. Results concerning the evaluation metrics with the
HCMM dataset follow the considerations given for the real-world dataset previously
discussed.

Summary

Table 5.1 summarizes the most important features of the datasets selected. We
evaluate SIDEMAN and CORDIAL not with all the datasets, rather we evaluate
the two algorithms in different scenarios. In particular, we evaluate SIDEMAN
with Infocom06 and the HCMM scenarios to show the benefits of the forwarding
policy of SIDEMAN, which is based on the similarity between message and node. In
particular, we are interested to verify that even if a node has many other contacts
per hour, the SIDEMAN policy selects only a reduced set of candidates to which
forward a query or an advertisement. Given this, the average number of contacts in
Infocom06 and HCMM is respectively of 1645.47 and 1754, the highest among the
5 dataset, moreover the percentage of nodes visited is respectively of 91.92% and
98.71%.

Differently, we evaluate CORDIAL in wider scenarios characterized by a lower
number of contacts but more stable. Under this respect we select Cambridge, MIT
Reality and MDC Nokia in which a node encounters an average of receptively 37.66,
14.82 and 16.82 nodes, such contacts are more stable with respect to Infocom06 and
HCMM indeed the average duration (in seconds) is respectively of 100.82 176.28 and

5.3. BENCHMARK ALGORITHMS 123

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

Days

N
u

m
b

e
r

o
f

d
e

v
ic

e
s

Comm.:38.68

Neig.:0.3363

(a) Communities and Neighbourhood

0 20 40 60 80 100
1600

1700

1800

1900

2000

2100

2200

hours

N
u

m
b

e
r

o
f

c
o

n
ta

c
ts

(b) Contact per hour.

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

P
[X

>
t]

Time t

HCMM:0.34078

(c) CCDF contact duration.

2m 10m 1h 12h1D 1W

10
−3

10
−2

10
−1

10
0

P
[X

>
t]

Time t

(d) CCDF inter-contact time.

Figure 5.9: Evaluation metrics with HCMM dataset.

296.55. We consider that with thee 3 datasets selected nodes establish more intimate
relationships, hence the forwarding policy of CORDIAL can be better analyzed.

We summarize in with Table 5.2 the evaluation process done with SIDEMAN
and CORDIAL showing the datasets used and the benchmark algorithms that we
compared.

5.3 Benchmark algorithms

To demonstrate its effectiveness in discovering and advertising services, we compared
the performance of SIDEMAN and CORDIAL against that of two algorithms for
service discovery in wireless networks, which we modified to work in MSN. The two

124 CHAPTER 5. EVALUATION OF SERVICE DISCOVERY ALGORITHMS

Table 5.1: Features of the mobility datasets.

Infocom06 HCMM Cambridge MIT Reality MDC Nokia
Device type iMote device iMote smart phone smart phone
Location Conference NA Campus Campus City
Duration (days) 3 3 11 246 270
Radio Bluetooth NA Bluetooth Bluetooth Inferred
Number devices 78 78 36 97 185
Granularity(s) 120 120 600 300 600
Avg. community 25.4 38.68 8.5 2.7 1.18
Contacts per hour 1645.47 1754 37.66 14.82 16.82
Duration contacts (s) 5.52 0.34 100.82 176.28 296.55
% of total encounters 91.92 98.71 83.48 67.60 28.27

Table 5.2: Summary of the evaluations of SIDEMAN and CORDIAL

Infocom06 HCMM Cambridge MIT Reality MDC Nokia
SIDEMAN X X
CORDIAL X X X

algorithms, termed s-Flooding and s-Gossip, are the ”social” version of traditional
flooding [122] and gossiping [123] algorithms. By using traditional flooding a node
would spread queries and services among all its neighbors. Through gossiping a
node would instead send those queries and services only to a random subset of its
neighbors. The social component is introduced in s-Flooding and s-Gossip by having
nodes exchanging services and queries within communities, rather than within their
neighbors.

The behavior of s-Flooding and s-Gossip is similar to the one given for SIDE-
MAN and CORDIAL (see Figure 4.4 and 4.8), in particular the two algorithms
are composed by a reactive phase or discovering the service matching with a given
query, a proactive phase for disseminating queries ad services stored at a node, and a
message management phase for managing the reception of queries and services. The
main differences of s-Flooding and s-Gossip with respect to SIDEMAN and COR-
DIAL are the implementations of the select forwarding set of the Reactive phase
(Figure 4.4a and 4.8a) and select services and queries phase of the Proactive phase
(Figure 4.4b and 4.8b). Table 5.3 shows the main differences among the compared
algorithms.

We choose s-Flooding and s-Gossip for three reasons: (i) they represent use-
ful performance benchmark for service dissemination in MSN, (ii) they implement
a simple but effective strategy for the propagation of information, being both de-
signed to maximize the number of queries and services exchanged among nodes, and
(iii), similarly to SIDEMAN and CORDIAL, they are implemented for propagating

5.4. SERVICE DISCOVERY EVALUATION FRAMEWORK 125

Table 5.3: Benchmark algorithms.

Select
forwarding set

Select
advertisements and queries

SIDEMAN

Members of the
current community
with interests
matching the query.

Advertisements and queries whose
interests match those
of the community members.

CORDIAL

Members of the
current community
with highest
social centrality metric

Advertisements and queries
with highest similarity index

s-Flooding
All members of its
current community.

All advertisements and queries
to all community members.

s-Gossip
Random number of
members of its
current community.

Advertisements and queries
to a random number of
members of the
current community.

messages (either queries and services) only inside a community, without flooding the
whole network.

5.4 Service Discovery Evaluation Framework

We compare the discovery algorithms proposed in this thesis, namely SIDEMAN
and CORDIAL with respect to several evaluation metrics. In particular, we are
interested in measuring the relevance of the service advertisements exchanged with
respect to the device interests (the accuracy metric) and how many times a device
carries a service advertisement that it will access later in time (the proactivity
metric). Then, we measure some standard metrics commonly used in the service
discovery problem, in particular the average number of advertisements stored in the
service cache, the delay between the submission of a query and the reception of an
advertisement and the energy cost due to the overhead introduced by the discovery
algorithm.

Moreover, the design of the CORDIAL algorithm requires to better analyze the
benefits of the query and advertisement forwarding strategies described in Section
4.4.2, hence we define several metrics whose goal is to evaluate the capability of
the algorithm to diffuse efficiently queries and advertisements among devices. The
metrics used for the evaluation of the discovery algorithms are described below.

• Accuracy, this metric measures the accuracy of the service discovery algorithm
in propagating advertisements of interest for the recipient devices. It is defined

126 CHAPTER 5. EVALUATION OF SERVICE DISCOVERY ALGORITHMS

as the ratio between the number of service advertisements stored in the cache
of device ni that are of interest for ni and the total number of advertisements
stored in its cache. Clearly, the value of the accuracy is in [0, 1]. A value of 0
means that none of the service advertisements in which device ni is interested
are in its service cache (worst case). A value of 1 indicates the best case:
device ni stores only service advertisements in which it is interested.

• Proactivity, this metric is defined as the ratio between the number of times a
device finds the advertisement advj already in its service cache and the number
of times a device has to query for it. This metric indicates how well a service
discovery algorithm propagates to a device the advertisements that might be
of interest for it. The value of the Proactivity is in [0, 1]. A value of 0 means
that every time a device needs a service advertisement it has to query for it
(worst case). A value of 1 indicates the best case: every time a device needs
a service advertisement, that advertisement is in its cache.

• Service Cache, SC, this metric estimates the average number of advertisements
stored locally in the device cache.

• Energy Cost per device, EC, this metric provides an estimation of the average
energy consumption (express in Joule) incurred by each device during network
operations (such as forwarding advertisements and queries). The energy cost
is estimated by computing the dimension in byte of every type of message,
i.e. queries and advertisements. Then, we compute the average number of
messages exchanged for every type of message, and we derive an estimation of
the energy consumption of every device by considering the energy consumption
per byte of the WiFi/ Bluetooth chip Broadcom R©BCM4330 of the Samsung
Galaxy S III smart phone (this radio was chosen because of the availability of
specifications of energy consumption). Since SIDEMAN and CORDIAL are
independent from any specific community detection algorithm, we decide not
to consider the energy cost of such phase. This choice allows us to focus the
attention only on the overhead due to the service discovery algorithms;

• Query Response Time, QRT (in seconds), this metric is defined as the average
time elapsed between when a query is sent and the reception of the first service
advertisement matching that query. This metric informs us about how effective
a discovery algorithm is letting a device receive the service it needs swiftly.

• Query Answered, QA, this metric measures the average number of queries
that have been answered during all the simulation time even with direct and
indirect responses.

• Network Overhead , NO, this metric measures the average number of packets
that a node exchanges by running each of the discovery algorithms. This met-

5.5. EVALUATION OF SIDEMAN 127

rics provides an indication of the overhead introduced by each of the discovery
algorithms in terms of network operations.

5.5 Evaluation of SIDEMAN

We evaluate SIDEMAN and two other strategies for service discovery with a cus-
tom Java-based simulator (resulting from this thesis). The simulation scenarios we
consider are Infocom06 scenario, obtained by using the dataset described in Section
5.2, and the HCMM scenario. The simulator we develop implements two impor-
tant components of service discovery in MSN: (i) community detection and (ii) the
service discovery algorithms. First community detection is run every p = 300s and
it implements a well known solution, called AD-SIMPLE [59]. AD-SIMPLE is an
enhanced version of SIMPLE, an algorithm for community detection that has been
shown to outperform previous solutions such as k-CLIQUE, MODULARITY and
SIMPLE [60]. The reasons for this choice are multifold: first of all, AD-SIMPLE
is a distributed algorithm, thus being suitable to run locally to every device by
using only local information gathered by the device (refer to the temporal metrics
described in Section 4.2.1). Secondly, despite being distributed, the communities
it detects are very similar to those detected by SIMPLE [60]. In fact, the similar-
ity index between the communities detected by AD-SIMPLE and SIMPLE is far
higher than that of the communities detected by k-CLIQUE and MODULARITY
and their distributed counterparts. Finally, AD-SIMPLE implements an effective
mechanism for removing devices from a community that they have not joined for a
while. In our simulations we stipulate that two communities are recognized as the
same community if the Jaccard similarity index γ is higher than τ = 0.8.

Second, our simulator implements SIDEMAN (Section 4.2.1) and the benchmark
algorithms described in Section 5.3. Device behavior is determined by considering
query generation rate, service advertisement generation rate and the distribution of
interests to devices. The query generation rate determines how many queries are
generated by the devices. We model this rate as a Poisson process of intensity λ
queries per second. In our simulations we set λ = 3. In particular, every second
a number q of query is generated and assigned to q devices selected randomly and
uniformly among all devices. The service advertisement generation rate concerns
the service advertisements the devices store in their service cache without using the
service discovery algorithm. Initially, a device cache is empty. In time, devices start
storing new service advertisements in their cache in order to be able to exchange
them among the devices during the opportunistic encounters. The service generation
rate models how many new advertisements are stored in the device cache. It is also
a Poisson process of intensity µ service advertisements per second. The value of
µ is set to 3. Every second a number h of service advertisements is generated and
assigned to h devices selected randomly and uniformly among all devices. Each time
the h service advertisements are drawn randomly and uniformly from a set S of m

128 CHAPTER 5. EVALUATION OF SERVICE DISCOVERY ALGORITHMS

service advertisements.
The distribution of interests among the devices depends on the scenario. For

both of the scenarios used in SIDEMAN, we assume that the interests assigned to
devices do not change along the simulation time. We consider such assumption
realistic, since people (and hence devices carried by them) do not change interests
so frequently along the time, ad discussed in [124]. In the Infocom06 scenario we
use the association between interests and devices that comes with the dataset. In
particular, every participant to the conference filled out a questionnaire regarding its
working interests. The questionnaire asks a set of a multiple choice answers that we
parse and use as interests for the devices. Some examples of interests are: Mobile
Ad Hoc Networks, Network Architectures, Optical Networks, Quality of Service,
Routing Protocols etc.

In the HCMM scenario interests are not provided with the co-location trace,
therefore we given them to devices proportionally to the time spent by each device
in a specific device region (HCMM cell). In particular:

• every cell x is assigned kx interests according to a Zipf’s distribution (with
parameter skew = 1). The parameter kx is the ratio between the total number
n of interests in the simulation (set to 35 in our simulations) and the number
of cells in the HCMM grid. In our experiments kx = 35

5
= 7. The interests

assigned to cell x are denoted with the set Īx.

• Device ni is assigned |Ii| interests from Īx proportionally to the time it spends
in cell x. In this way, devices visiting the same cell for a long time share similar
interests.

The values of λ and µ have been selected consistently with those of similar scenarios
in previous works [82, 125, 126].

Our simulation results for the HCMM scenario are obtained by averaging the
outcomes of 1000 runs, each running for 300000s (around three days and a half),
each time on a different HCMM trace. This number of experiments achieves a
statistical confidence of 95% within a 5% precision. The confidence interval are not
shown in the graphs since they are too small to be appreciated.

5.5.1 Results

Results concerning Accuracy and Proactivity metrics in HCMM scenario are shown
in Figure 5.10. The figures refer to 78 devices roaming in a 800×800m2 area. Results
for devices traveling in bigger areas show similar trends.

Accuracy

Results concerning Accuracy are shown in Figure 5.10a. SIDEMAN always obtains
an Accuracy equal to 1, meaning that devices store in their caches all and only

5.5. EVALUATION OF SIDEMAN 129

service advertisements to which they are interested in. This is a consequence of
the very nature of SIDEMAN strategy according to which an advertisement is sent
to a device only if that device is interested in it. The Accuracy of s-Flooding and
s-Gossip instead decreases in time, reaching a value as low as 0.5 by the end of
the observation period. In other words, half of the service advertisement stored in
the service cache of devices running s-Flooding and s-Gossip will never be used by
those devices. This is because s-Flooding and s-Gossip advertisement exchange is
not interest-based. We notice that s-Gossip slightly outperforms s-Flooding. This
is because a device running s-Gossip sends service advertisements to a number of
devices that is lower than the number of devices involved in advertisement exchange
in s-Flooding.

Proactivity

Results for the Proactivity achieved by the three algorithms are shown in Fig-
ure 5.10b. The trend is similar for SIDEMAN, s-Flooding and s-Gossip. In par-
ticular, with passing time the Proactivity increases and tends to its maximum 1.
Moreover, by the end of the observation period it is 0.96 for each of the three algo-
rithms. As expected, the Proactivity increases rapidly during the initial time interval
[0, 0.5 · 105]s because devices start with no service advertisements in their cache and
then they begin moving and exchanging advertisements as they meet and form com-
munities. By the end of the observation time they have exchanged enough service
advertisements to find the ones they need in their cache. Results about this metric
show clearly how effective the discovery strategy followed by SIDEMAN is for the
distribution of the service advertisements. The Proactivity of SIDEMAN is never
noticeably lower than that of s-Flooding and s-Gossip, two algorithms that repre-
sent our benchmark and that are designed to maximize (in our case) the diffusion
of the service advertisements. In fact, we notice that the Proactivity of SIDEMAN
is always (slightly) better than that of s-Gossip throughout the network operation
time. This is because, despite the number of service advertisements distributed by
s-Gossip is far higher that that of those distributed by SIDEMAN, most of these
service advertisements are not of interest to the querying device.

Query Response Time

Results for the query response time of the three algorithms are shown in Figure 5.11a.
We notice that the time needed to respond to a query grows in time. This is because
as time progresses, devices tend to visit roughly the same communities all over again,
and if a device does not find a service advertisement in its cache right away, and
has to query for it, it is unlikely that it will receive this advertisement from the
devices that it has already met and keeps meeting. In time, it might enter a new
community whose members might have the required service, but that happen with
low probability. The performance of SIDEMAN is bound between that of s-Flooding

130 CHAPTER 5. EVALUATION OF SERVICE DISCOVERY ALGORITHMS

and s-Gossip.

00.1 0.5 1 1.5 2 2.5 3

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

A
c
c
u

ra
c
y

SIDEMAN

s−Gossip

s−Flooding

(a) Accuracy.

00.1 0.5 1 1.5 2 2.5 3

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

P
R

O
A

C
T

IV
IT

Y

SIDEMAN

s−Gossip

s−Flooding

(b) Proactivity.

Figure 5.10: Accuracy and Proactivity metrics in HCMM scenario.

Since s-Flooding distributes the largest number of service advertisements inside

5.5. EVALUATION OF SIDEMAN 131

a community, devices carry more advertisements around, increasing the probability
of being able to respond to a query. That is why its query response time is the
lowest. The nature of s-Gossip is to distribute advertisements to a subset of the
devices in a community selected randomly. The effect is that devices exchange a
lot of advertisements in which they are not interested, and therefore the probability
of a device to respond to a query decreases, increasing the response time. We
observe that by the end of network operation, SIDEMAN has exchanged 84.32%
(82.84%) less service advertisements than s-Flooding (s-Gossip). However, since
devices running SIDEMAN exchange only those advertisements in which they are
interested, the probability of a device to find a service in its cache is fairly high,
as confirmed by checking the number of queries sent by devices throughout the
observation time. As a consequence the query response time for SIDEMAN soon
becomes lower than that of s-Gossip.

Energy Cost

In terms of energy cost SIDEMAN remarkably outperforms s-Flooding and s-Gossip
(Figure 5.11b). The energy consumption of SIDEMAN is at least 7 times lower than
that of s-Flooding, and 6 times lower than that of s-Gossip. The energy cost of s-
Gossip is slightly lower than that of s-Flooding because, as mentioned already, for its
very nature s-Gossip exchanges less service advertisements that s-Flooding. To show
the impact on device lifetime of running the three algorithms, we consider devices
powered by a standard battery pack with an average consumption of 7.9Watt/hour
(i.e., a battery pack with a capacity of 2100mAh and voltage of 3.8V). By the
end of the observation time devices running s-Flooding have consumed and average
of 87.7% of their initial battery charge, devices running s-Gossip have consumed
80, 2% of it, while devices running SIDEMAN have consumed only 12.5% of the
initial battery charge.

Service Cache

Results concerning the SC metric are shown in Figure 5.12. The Service Cache
metric is consistent with the Accuracy metric, in particular SIDEMAN controls the
dimension of the service cache during the simulation time. More precisely, the di-
mension of the cache for the devices running SIDEMAN increases during a limited
time interval (e.g. [0− 0.5]× 104sec. for the HCMM configurations 800× 800), after
which the dimension of the cache is stable until the end of the simulation. In a
different way, the Service Cache metric for s-Flooding and s-Gossip increases lin-
early with the time in all the HCMM configurations, hence the more the simulation
last, the bigger is the service cache of the devices running such algorithms. The
Service Cache graph shows that devices running SIDEMAN exchange fewer service
advertisements than s-Flooding and s-Gossip algorithms, this result has no any con-
sequence on the performance metrics discussed so far, in particular the Accuracy

132 CHAPTER 5. EVALUATION OF SERVICE DISCOVERY ALGORITHMS

and the Proactivity metrics.

00.1 0.5 1 1.5 2 2.5 3

x 10
5

0

2000

4000

6000

8000

10000

12000

time

Q
u

e
ry

 R
e

s
p

o
n

s
e

 T
im

e

SIDEMAN

s−Gossip

s−Flooding

(a) Query response time.

00.1 0.5 1 1.5 2 2.5 3

x 10
5

0

1000

2000

3000

4000

5000

6000

7000

time

E
n

e
rg

y
 C

o
s
t

SIDEMAN

s−Gossip

s−Flooding

(b) Energy cost.

Figure 5.11: QRT and EC metrics in HCMM scenario.

5.5. EVALUATION OF SIDEMAN 133

0 0.1 0.5 1 1.5 2 2.5 3
x 105

0

10

20

30

40

50

60

70

80

t

SC

SIDEMAN
s Gossip
s Flooding

Figure 5.12: Service Cache metric in HCMM scenario.

Network Overhead

Results concerning the network overhead are shown in Figure 5.13. We observe that
the average number of packets needed for a single run of SIDEMAN (comprising
the reactive and proactive phases and the management of incoming messages) is
lower than that of s-Flooding and s-Gossip. During the first part of the simula-
tion [0, 0.51̇05] the network overhead of the three algorithms is comparable, because
nodes start with empty caches. As time progresses, nodes begin exchanging queries
and service advertisements and the algorithm performances differ. In particular, we
observe that s-Flooding is the algorithm with the highest network overhead because
its flooding strategy (Table 5.3) requires to forward each query and each service to
every member of the node community. Differently, s-Gossip incurs lower complexity
than s-Flooding because queries and services are forwarded to a number of com-
munity members less than or equal to the size of the node community. SIDEMAN
achieves the lowest network overhead along with perfect Recall and comparable
Gain, which makes it suitable for application scenarios with nodes that are resource
constrained.

Performance in larger deployment areas

We have also evaluate the performance of the three algorithms in larger deployment
areas, namely, 1400m ×1400m and 2000m ×2000m. We observe that by increasing
the dimension of the scenario without increasing the number of devices they tend
to travel shorter routes and restrict their mobility to few locations. Such a more
limited mobility implies that a device enters in contact with a small sub-set of the
other devices. In particular, we observe that devices tend to form smaller commu-

134 CHAPTER 5. EVALUATION OF SERVICE DISCOVERY ALGORITHMS

00.1 0.5 1 1.5 2 2.5 3

x 10
5

0

2

4

6

8

10

12
x 10

4

time

N
et

w
or

k
O

ve
rh

ea
d

SIDEMAN
s−Gossip
s−Flooding

Figure 5.13: Network Overhead metric in HCMM scenario.

nities with respect to scenarios in smaller areas Performance results are affected as
follows: the Accuracy of SIDEMAN is equal to 1, irrespective of the size of the sce-
nario. s-Flooding and s-Gossip show a Accuracy that decreases slower than that in
the original scenario (Figure 5.10a). This is because nodes encounter fewer devices
and therefore exchange fewer advertisements. As a result the probability of storing
advertisements not of interests to the devices decreases. The Proactivity of the three
algorithms is slightly lower than that shown in Figure 5.10b (less than 2%). This
is due, again, to the lower mobility of the devices, which decreases the probability
of exchanging advertisements with other devices, and therefore of the probability of
a device of finding an advertisement in its cache. As expected, the energy cost for
larger scenario decreases, because of the lower number of advertisements exchanged:
the fewer the device exchange advertisements and queries, the lower the energy con-
sumption. The query response time increases with the size of the scenario, since
decreased mobility leads to a slower propagation of the advertisements. Therefore,
as soon as a device queries for a service it has to wait a longer time before receiving
the matching service. Lastly, the average size of the service cache also decreases with
increasing the size of the scenario, since low mobility reduces the probability of ex-
changing advertisement and therefore also the probability of storing advertisements
in the cache.

The rest of this subsection shows the Accuracy and Proactivity metrics of SIDE-
MAN, s-Flooding and s-Gossip in the Infocom06 scenario.

5.5. EVALUATION OF SIDEMAN 135

Accuracy

Results concerning Accuracy are shown in Figure 5.14a. The Accuracy of SIDEMAN
is 1, as expected. The Accuracy of s-Flooding and s-Gossip rapidly decreases to 0.2.
This depends on the nature of the Infocom06 traces, where devices in the same
community share a low percentage of interests (this percentage in time is as low
as 0.8%). For instance, there are times when all participants are at a common
event, such as a meal break, or a plenary session. In this case, the community
is very large. The interests shared by the community members are instead very
few. This is in contrast with the results from the HCMM scenario, where devices
in the same community would share instead up to 80% of their interests. This
explains why, eventually, in the HCMM scenario s-Flooding and s-Gossip show value
of Accuracy higher than those in the Infocom06 scenario (i.e., around 0.5 vs. 0.2).
In the Infocom06 scenario, devices running s-Flooding and s-Gossip are more likely
to exchange service advertisements in which they are not interested. As a result,
the Accuracy decreases more rapidly than that in the HCMM scenario.

Proactivity

Results for the Proactivity of the three algorithms are shown in Figure 5.14b. The
trend is the same for all algorithms and by the end of the observation time the
Proactivity reaches the value 0.94. Similarly to Figure 5.10b, the Proactivity in-
creases rapidly in the interval [0 − 1 · 105]s because devices start with no service
advertisements in their cache and then they begin moving and exchanging service
advertisements as they meet and form communities. By the end of the observation
time, devices have exchanged enough advertisements to find the one they need in
their cache. Although showing the same trend observed for the HCMM scenario,
the values of the Proactivity in the Infocom06 scenario are lower than that for the
HCMM one. This is because the communities at Infocom06 share fewer interests
than those shared by the HCMM communities. As a consequence, when a device
queries for an advertisement, the probability of receiving a response to its query is
low, and consequently the Proactivity grows more slowly.

Figure 5.15 shows the QRT and EC metrics for the Infocom06 scenario.

Query Response Time

Results for QRT of the three algorithms are shown in Figure 5.15a. The time needed
to respond to a query grows in time. As in the HCMM scenario, devices tend to
keep visiting the same communities. As such, if a device has to query for a service
advertisement, it is unlikely that it will receive this advertisement from the devices
that it has already met and keeps meeting.

We consider that the query response time of SIDEMAN shown in Figures 5.11a
and 5.15a is acceptable for two main reasons. First, the two simulation scenarios
taken into account are composed by mobile devices with a limited battery autonomy,

136 CHAPTER 5. EVALUATION OF SERVICE DISCOVERY ALGORITHMS

0 0.5 1 1.5 2 2.5 3

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

R
e

c
a

ll

SIDEMAN

s−Gossip

Flooding

(a) Accuracy.

0 0.5 1 1.5 2 2.5 3

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

G
a

in

SIDEMAN

s−Gossip

s−Flooding

(b) Proactivity.

Figure 5.14: Accuracy and Proactivity metrics in Infocom06 scenario.

hence it is important to design a discovery algorithm that finds a trade-off between
the energy consumption and the service discovery performance. Indeed as shown in

5.5. EVALUATION OF SIDEMAN 137

Figures 5.11b and 5.15b, the use of flooding-based algorithms (e.g. s-Flooding and
s-Gossip) leads rapidly to an uncontrolled battery depletion even before the end of
the observation period (see Figure 5.15b). In a different way, SIDEMAN consumes
at most 12.5% of the battery charge after 3 days of simulation. Second, the query
response time graphs show that it is important to reduce the number of queries sent,
by maximizing the probability that devices will find advertisements in their cache
(in other words it is important to maximize the Proactivity). SIDEMAN, as shown
in Figures 5.10b and 5.14b, obtains a Proactivity that is always comparable with
respect to s-Flooding and s-Gossip, moreover the number of queries sent by devices
implementing SIDEMAN is lower than that of the devices implementing s-Flooding
and s-Gossip.

Energy Cost

Figure 5.15b shows the energy cost incurred by running the three algorithms. As in
the HCMM scenario, SIDEMAN outperforms s-Flooding and s-Gossip. In particu-
lar, the energy cost of SIDEMAN is far lower than that of the other two algorithms.
If we consider a standard battery pack as described for the HCMM scenario, we
observe that devices running s-Flooding and s-Gossip deplete their battery approx-
imately after 1.5 · 105s (half of the observation time), while at the end of the obser-
vation time devices running SIDEMAN have consumed only 12% of their energy.

Service Cache

Results concerning the Service Cache metric is shown in Figure 5.16. The Service
Cache metric is consistent with the Accuracy metric, in particular SIDEMAN con-
trols the dimension of the service cache during the simulation time. More precisely,
the dimension of the cache for the devices running SIDEMAN slowly increases dur-
ing the time, the end of the simulation time devices store 100 service advertisements
in their cache. In a different way, the Service Cache metric for s-Flooding and s-
Gossip increases more significantly with the time, hence the more the simulation
last, the bigger is the service cache of the device running such algorithms.

Network Overhead

The network overhead of the three algorithms in shown in Figure 5.17. The number
of packets exchanged grows similarly to what observed in the HCMM scenario.
In particular, s-Flooding and s-Gossip incur the highest network overhead, while
SIDEMAN obtains the lowest network overhead. Since in the Infocom 06 scenario
nodes tend to encounter more nodes that in the HCMM scenario, the number of
services and queries exchanged is higher, which explains the higher network overhead
in this case. By the end of the simulation time nodes running SIDEMAN incur a
network overhead 77.88% lower than that of s-Flooding and 75.71% lower than that
of s-Gossip.

138 CHAPTER 5. EVALUATION OF SERVICE DISCOVERY ALGORITHMS

0 0.5 1 1.5 2 2.5 3

x 10
5

0

0.5

1

1.5

2

2.5

3
x 10

4

time

Q
u

e
ry

 R
e

s
p

o
n

s
e

 T
im

e

SIDEMAN

s−Gossip

s−Flooding

(a) Query response time.

0 0.5 1 1.5 2 2.5 3

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

time

E
n

e
rg

y
 C

o
s
t

(J
)

SIDEMAN

s−Gossip

s−Flooding

(b) Energy cost.

Figure 5.15: QRT and EC metrics for Infocom06 scenario.

5.6 Evaluation of CORDIAL

In order to better identify the weaknesses of SIDEMAN we require to study more
closely several mobility datasets: Infocom05 and Infocom06, MIT Reality, MDC

5.6. EVALUATION OF CORDIAL 139

0 0.5 1 1.5 2 2.5 3
x 105

0

100

200

300

400

500

600

700

t

SC

SIDEMAN
s Gossip
s Flooding

Figure 5.16: Service Cache metric in Infocom06 scenario.

0 0.5 1 1.5 2 2.5 3

x 10
5

0

1

2

3

4

5

6
x 10

5

time

N
et

w
or

k
O

ve
rh

ea
d

SIDEMAN
s−Gossip
s−Flooding

Figure 5.17: Network Overhead metric in Infocom06 scenario.

Nokia and Cambridge as well as synthetic datasets generated through mobility sim-
ulators like HCMM (see Table 5.1). To this purpose we use The ONE Opportunistic
Network Simulator [127] that offers a stable tool-chain for reading co-location traces.
The ONE is designed with a plug&play mechanism to that it is easy to add to the
simulation the components needed for reproducing the scenario required. For exam-

140 CHAPTER 5. EVALUATION OF SERVICE DISCOVERY ALGORITHMS

ple, The ONE provides the implementation of several routing protocols for DTN as
well as a number of mobility models and syntax parsers for using real-world datasets.

We configure The ONE with (i) a community detection algorithm and (ii) three
service discovery algorithms.

First, the variety of the simulation scenarios that we chose for the evaluation of
CORDIAL requires to adopt an easy-to-configure community detection algorithm.
To this purpose, we use the DRAFT algorithm [61]. As a general rule, by increasing
the δ value, DRAFT detects communities of devices that meet for longer periods
of time, conversely with lower values of δ, DRAFT captures devices that meet for
short time. Our goal is to detect long-lasting communities hence, according to [61],
we configure DRAFT with the following tuple < τ = 3600s, δ = 0.9, t = 3600s >.

Second, we compare CORDIAL with respect to the SIDEMAN algorithm as
well as with the s-Flooding strategy described in Section 5.3. The device behavior is
determined by considering the same parameters taken into account for the evaluation
of SIDEMAN, namely query generation rate and service advertisement generation
rate. These parameters have been configured as discussed in Section 5.5. Differently
from the evaluation of SIDEMAN, all the datasets taken into account do not provide
information about the interests of people carrying the devices. For this reason,
we use a Zipf distribution for the assignment of interests to devices. The Zipf
distribution reproduces an intuitively but common behavior of humans: many people
are interested in a small set of interests, while only few people have specific interests.
We use a Zipf distribution with the skew parameter set to 1 (as done in [82]) and
with a total number of interest set to I = 100. Figure 5.18 shows the distribution of
interests given for the 3 datasets, interests with the highest occurrences are within
the range 0, 10.

10
0

10
1

10
210

0

10
1

10
2

10
3

interest rank

oc
cu

re
nc

es

MDC Nokia

Cambridge

MIT Reality

Figure 5.18: Distribution of interests in the datasets.

5.6. EVALUATION OF CORDIAL 141

5.6.1 Results

We report in this section the results of the CORDIAL algorithm compared with
respect to SIDEMAN and s-Flooding in Cambridge, MIT Reality and MDC Nokia
scenarios.

Accuracy

Results concerning the Accuracy metric are shown in Figure 5.19. In all the scenar-
ios, CORDIAL and SIDEMAN obtain a perfect value of Accuracy. In fact, devices
running such algorithms carry in their service caches only advertisements whose
interests match with the devices’s ones. As expected, the Accuracy metric of s-
Flooding decreases in time. Hence devices running the s-Flooding algorithm carry
advertisements considered off-topic for the device and never accessed during all the
simulation time. By the end of the observation time, in the Cambridge scenario the
Accuracy of s-Flooding decreases down to 0.3, in the Reality scenario to 0.39 and
in the MDC Nokia scenario to 0.33.

Proactivity

Results concerning the Proactivity metric are shown in Figure 5.20. In all the
simulation scenarios, the Proactivity value increases with the simulation time. In
particular, at the beginning of every simulation, devices start without any advertise-
ment stored locally and, as time passes, they exchange advertisements with other
devices. The results of the Proactivity metric are affected by the strategies used by
three algorithms as well as by the mobility traces used (refer to Table 5.1 for the
most important features of mobility traces adopted).

Figure 5.20a shows the results of the Proactivity metric in the Cambridge sce-
nario. In this case the Proactivity value tends to its optimal value 1. As discussed
in Section 5.2, devices in the Cambridge scenario roam in a restricted geographi-
cal area (university campus), they meet frequently (low ict, see Figures 5.6) and
with the same set of devices (high percentage of unique encounters, see Figure 5.7)
hence the cardinality of the resulting communities is high. As a consequence, the
probability of exchanging advertisements among devices is higher than that scenar-
ios with a lower number contacts and with smaller communities. The Proactivity
quickly increases during the first 2 days of simulation, after which the curve con-
tinues growing but with a slower slope. CORDIAL obtains a value of Proactivity
always comparable with respect to the s-Flooding algorithms (our benchmark) and
always higher than that the SIDEMAN algorithm. By the end of the observation
time, the Proactivity of the three algorithms is 0.95 meaning that a device willing to
access an service finds, with high probability, in its cache the service advertisement
needed. In MIT Reality and MDC Nokia the Proactivity metric increases slower
than that the Cambridge scenario, as shown in Figures 5.20b and 5.20c. With the
MIT Reality scenario devices are also bounded in a restricted geographical area,

142 CHAPTER 5. EVALUATION OF SERVICE DISCOVERY ALGORITHMS

but the number of contacts per hour (see Figure 5.4) and the percentage of devices
encountered (see Figure 5.7) is lower than that the Cambridge scenario, giving rise
to communities also smaller. For these reasons, the Proactivity values of the three
algorithms do not reach its optimal vale of 1. With the MIT Reality scenario COR-
DIAL outperforms both s-Flooding and SIDEMAN, meaning that our algorithm,
even in scenario with medium-size communities, implements an effective forwarding
strategy. The MDC Nokia dataset reproduces a more challenging and interesting
scenario. In this case, the mobility of devices is not limited to a specific region,
rather devices are free to roam in large area (refer to Figure 5.8). However devices
meet only a small portion of the whole population (see Figure 5.7) and the number
of contacts per hour is even smaller that Cambridge and MIT Reality scenarios.
These aspects affect the Proactivity value, giving rise to a very slow increase during
the simulation time. Also in this case, by the end of the simulation time, CORDIAL
outperforms both s-Flooding and SIDEMAN. Hence, the strategy of CORDIAL for
the diffusion of advertisements is effective both in scenarios highly connected (e.g.
Cambridge) and in scenarios highly disconnected (e.g. MDC Nokia)

5.6. EVALUATION OF CORDIAL 143

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (days)

A
cc

ur
ac

y

SIDEMAN
CORDIAL
Flooding

(a) Accuracy in Cambridge.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (days)

A
cc

ur
ac

y

SIDEMAN
CORDIAL
Flooding

(b) Accuracy in MIT Reality.

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (days)

A
cc

ur
ac

y

SIDEMAN
CORDIAL
Flooding

(c) Accuracy in MDC Nokia.

Figure 5.19: Accuracy metric in different simulation scenarios.

144 CHAPTER 5. EVALUATION OF SERVICE DISCOVERY ALGORITHMS

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (days)

P
ro

ac
tiv

ity

SIDEMAN
CORDIAL
Flooding

(a) Proactivity Cambridge.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (days)
P

ro
ac

tiv
ity

SIDEMAN
CORDIAL
Flooding

(b) Proactivity MIT Reality.

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (days)

P
ro

ac
tiv

ity

SIDEMAN
CORDIAL
Flooding

(c) Proactivity MDC Nokia.

Figure 5.20: Proactivity metric in different simulation scenarios.

Query Response Time

Results concerning the Query Response Time are shown in Figure 5.21. The trend
for the three algorithms is the same: the QRT increases quickly during the warm-up
period of the simulation after which the QRT value remains stable until the end of
the simulation. Figure 5.21a shows the QRT value in the Cambridge scenario. As
previously discussed (see consideration given for Figure 5.15a), the s-Flooding algo-
rithm exchanges the highest number of advertisements among devices, hence devices
have also the highest probability of answering to a query. However, the drawback of
such strategy is an un-controlled diffusion of advertisements, giving rise to a value
of Accuracy very low in every scenario, as discussed for Figure 5.19. CORDIAL

5.6. EVALUATION OF CORDIAL 145

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8
x 10

4

Time (days)

Q
R

T

SIDEMAN
CORDIAL
Flooding

(a) QRT in Cambridge.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3
x 10

5

Time (days)

Q
R

T

SIDEMAN
CORDIAL
Flooding

(b) QRT in MIT Reality.

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5
x 10

5

Time (days)

Q
R

T

SIDEMAN
CORDIAL
Flooding

(c) QRT in MDC Nokia.

Figure 5.21: QRT metric in different simulation scenarios.

obtains a value of QRT never noticeable worst than that of the s-Flooding strategy
(our benchmark), but with optimal values for both the Accuracy and of Proactivity
metrics. The results of the QRT metric demonstrate the effectiveness of CORDIAL
in controlling the diffusion of advertisement, without affecting negatively the re-
sponsiveness of the service discovery. When compared with SIDEMAN, CORDIAL
has a QRT always far lower, this provides a further indication of the improvement of
CORDIAL with respect to SIDEMAN. Such improvement is given by Algorithms 6
and 7 described in Section 4.4.2. Such algorithms exploit the remaining inter-contact
time to forward an advertisement to devices that will quickly encounter the final des-
tination, in turn such strategy affect positively the QRT value. Figures 5.21b and

146 CHAPTER 5. EVALUATION OF SERVICE DISCOVERY ALGORITHMS

5.21c show the results of respectively the QRT with the MIT Reality and MDC
Nokia scenarios. In both of the cases CORDIAL always outperforms SIDEMAN
and, in the MIT Reality scenario, it outperforms SIDEMAN and also s-Flooding.
In the MDC Nokia scenario the QRT value of CORDIAL is always comparable with
respect to s-Flooding strategy and lower at the end of the simulation time.

Energy Cost

Results concerning the Energy Cost metric are shown in Figure 5.22. In order to

0 2 4 6 8 10 12
0

200

400

600

800

1000

1200

1400

1600

Time (days)

E
ne

rg
y

C
os

t

SIDEMAN
CORDIAL
Flooding

(a) EC in Cambridge.

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

1000

Time (days)

E
ne

rg
y

C
os

t

SIDEMAN
CORDIAL
Flooding

(b) EC in MIT Reality.

0 2 4 6 8 10 12 14 16 18
0

500

1000

1500

2000

2500

3000

Time (days)

E
ne

rg
y

C
os

t

SIDEMAN
CORDIAL
Flooding

(c) EC in MDC Nokia.

Figure 5.22: EC metric in different simulation scenarios.

estimate the energy consumption of the devices, we consider a standard battery pack

5.6. EVALUATION OF CORDIAL 147

with an average consumption of 7.9Watt/hour (i.e., a battery pack with a capacity
of 2100mAh and voltage of 3.8V, as done for the evaluation of SIDEMAN). The
trend of the EC metric is similar for all the algorithms, EC increases as the time
passes. In particular, by the end of the observation time both in Cambridge and in
MIT Reality, the EC of CORDIAL is always sandwiched between s-Flooding (the
upper bound) and the SIDEMAN curves. Flooding consumes 8.18%, CORDIAL
consumes 2, 64% and SIDEMAN consumes 1.10% of the full battery charge. We
note that the energy costs of SIDEMAN and CORDIAL do not affect significantly
the battery charge. Similar considerations apply for the EC metric in the MIT
Reality scenario, as shown in Figure 5.22b. With the MIT Reality scenario the EC
s-Flooding consumes 11.79%, CORDIAL consumes 4, 76% and SIDEMAN consumes
1.26% of the battery pack.

The MDC Nokia scenario is an interesting case where it is possible to observe the
benefits of the CORDIAL strategy on the EC metric. This scenario is characterized
by few encounters among devices and very often with the same devices. Since the
s-Flooding strategy does not implement any smart forwarding strategy for the diffu-
sion advertisements, devices keep forwarding the same discovery messages (queries
and advertisements) over and over again resulting with high battery depletion. By
the end of the simulation time, s-Flooding spends 15.68% of the full battery charge.
The forwarding strategy implemented with the SIDEMAN algorithm forwards dis-
covery messages only to devices whose interests match with such messages. This
strategy gives a good result in terms of battery depletion, in fact by the end of the
observation time SIDEMAN consumes 4%. CORDIAL performs even better for two
reasons: (1) the use of the social centrality metrics described with Equation 4.2 and
(2) the avoidance of duplicate advertisements, which limits the number of discovery
messages exchanged and hence reduces the energy cost. By the end of the simulation
CORDIAL consumes 1.78% of the full battery charge.

Service Cache

Results concerning the Service Cache are shown in Figure 5.23.
Figure 5.24a shows the SC in the Cambridge scenario. As expected, devices

running the s-Flooding algorithm store the highest number of advertisements. After
approximately 2 days of simulation, devices running the s-Flooding carry every
advertisement available in the simulation. However, most of such advertisements
are off topic for the device, as shown by the Accuracy metric in Figure 5.19a. We
note that a s-Flooding requires an excessive storage capacity for a device, and this
represents a non-negligible constraint for the application scenario to which we refer
to. Differently, devices running SIDEMAN and CORDIAL control the number of
advertisements stored their cache. More precisely, devices running SIDEMAN store
an average of 30 advertisements while devices running CORDIAL store an average
of 37 advertisements. CORDIAL requires a bit more storage capacity with respect
to SIDEMAN because of the advertisement forwarding strategy (see Section 4.4.2).

148 CHAPTER 5. EVALUATION OF SERVICE DISCOVERY ALGORITHMS

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

Time (days)

S
C

SIDEMAN
CORDIAL
Flooding

(a) SC in Cambridge.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

Time (days)
S

C

SIDEMAN
CORDIAL
Flooding

(b) SC in MIT Reality.

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

40

45

50

Time (days)

S
C

SIDEMAN
CORDIAL
Flooding

(c) SC in MDC Nokia.

Figure 5.23: SC metric in different simulation scenarios.

In particular, devices running CORDIAL use the forwarding cache R for carrying
advertisements directed to a specific device (the final destination). Such strategy
differs from SIDEMAN and it requires more storage capacity, in particular 23.3%
more than that of SIDEMAN. However, the benefits deriving from the forwarding
cache R are an increase of Proactivity, as shown in Figure 5.20b, and a notable
reduction of the Query Response Time as shown in Figure 5.21.

Results concerning the Service Cache metric in the MIT Reality and MDC Nokia
scenario are shown in Figure 5.24b and 5.24c. The trend of the algorithms is similar
to the ones presented for the Cambridge scenario, but with a lower value of the
number of advertisements stored. In particular, by the end of the observation time,

5.6. EVALUATION OF CORDIAL 149

devices running s-Flooding store an average of 60 advertisements, SIDEMAN 15
and CORDIAL 20 (33% more SIDEMAN). With the MDC Nokia scenario, the low
number of encounters and the low dimension of communities affect the total number
of advertisements exchanged. By the end of the simulation time, devices running
s-Flooding carry an average of 49 advertisements, SIDEMAN 12 and CORDIAL 9.

Query Answered

Results concerning the average number of queries answered are shown in Figure 5.24.

0 2 4 6 8 10 12
0

5

10

15

20

25

Time (days)

Q
ue

ry
 A

ns
w

er
ed

SIDEMAN
CORDIAL
Flooding

(a) QA in Cambridge.

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

Time (days)

Q
ue

ry
 A

ns
w

er
ed

SIDEMAN
CORDIAL
Flooding

(b) QA in MIT Reality.

0 5 10 15
0

1

2

3

4

5

6

Time (days)

Q
ue

ry
 A

ns
w

er
ed

SIDEMAN
CORDIAL
Flooding

(c) QA in MDC Nokia.

Figure 5.24: QA metric in different simulation scenarios.

The QA metrics grows along with the simulation time. In particular, in the
Cambridge scenario CORDIAL obtains the highest value of the QA metric, meaning

150 CHAPTER 5. EVALUATION OF SERVICE DISCOVERY ALGORITHMS

that a device answers to a number of queries higher than that of devices running
s-Flooding and SIDEMAN. With the MIT Reality and MDC Nokia scenarios,
CORDIAL outperforms SIDEMAN and it obtains values of QA always comparable
with the s-Flooding (our benchmark). Also in this case, the forwarding strategies
implemented with CORDIAL for the diffusion of queries and advertisements are
effective in terms of discovery performance.

Network Overhead

The last metric we analyze is the network overhead of the three algorithms, the
results are shown in Figure 5.25.

The trend of the NO metric is similar for all the algorithms and the consider-
ations given for the EC metric apply also in this case. In particular, the network
overhead increases as the time passes. By the end of the observation time both in
Cambridge and in MIT Reality scenario, the NO of CORDIAL is always sandwiched
between s-Flooding (the upper bound) and the SIDEMAN curves (the lower bound).
In these two scenarios, the s-Flooding strategy is the most expensive one in terms of
messages exchanged, while CORDIAL incurs in a network overhead slightly higher
than that our first discovery algorithm.

The MDC Nokia scenario is an interesting case in which the benefits of COR-
DIAL are evident. This scenario is characterized by few encounters among devices
and very often with the same devices. Since the s-Flooding strategy does not imple-
ment any smart forwarding strategy for the diffusion advertisements, devices keep
forwarding the same discovery messages (queries and advertisements) over and over
again resulting with high network overhead. The forwarding strategy implemented
with the SIDEMAN algorithm forwards discovery messages only to devices whose
interests match with such messages. This strategy gives a good result in terms of
network overhead, however CORDIAL performs even better because:

• the use of the social centrality metrics allows to reduce the number of nodes
to which forward a query without affecting the Proactivity metric (see Figure
5.20);

• the mechanism for avoiding duplicate of messages (e.g. advertisements) re-
duces the overall network overhead of the discovery protocol.

5.7 Summary

This thesis studies the service discovery problem in MSN in terms of how to discover
services offered by mobile devices in SE. We study the service discovery in a specific
kind of SE, namely Mobile Social Networks and we propose two algorithms named
SIDEMAN and CORDIAL. The most important achievements of these algorithms
presented are:

5.7. SUMMARY 151

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

16

18
x 10

5

Time (days)

N
et

w
or

k
O

ve
rh

ea
d

SIDEMAN
CORDIAL
Flooding

(a) NO in Cambridge.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Time (days)

N
et

w
or

k
O

ve
rh

ea
d

SIDEMAN
CORDIAL
Flooding

(b) NOin MIT Reality.

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3
x 10

6

Time (days)

N
et

w
or

k
O

ve
rh

ea
d

SIDEMAN
CORDIAL
Flooding

(c) NO in MDC Nokia.

Figure 5.25: NO metric in different simulation scenarios.

• the use of both reactive and proactive discovery modes. The reactive mode
enables a device to actively propagate a query in the network by avoiding
flooding-based strategies, but by exploiting the sociality of people carrying
the devices. The proactive mode enables a device to be notified passively of
service advertisements from the devices that are encountered over time. The
proactive mode aims to provide a device with the service advertisements that
it is likely to need.

• The use of a community-based diffusion strategy for the propagation of ad-
vertisements and queries. Human nature tends to make people form groups
of similar individuals, and such groups of people are commonly named com-

152 CHAPTER 5. EVALUATION OF SERVICE DISCOVERY ALGORITHMS

munities. SIDEMAN and CORDIAL detect the community to which a device
belongs, so that the diffusion of advertisements and queries is achieved by in-
teracting with similar individuals. SIDEMAN and CORDIAL also keep track
of communities detected in the past in order to avoid detecting communities
that have already been visited.

• CORDIAL extends the design of SIDEMAN by introducing a metric able to
measure the capability of a device to answer a query either directly or in-
directly. The direct answer is the simple case in which the advertisement
matching with the query is already available in the device. The indirect an-
swer is a more complex case in which the device receiving a query forwards it
to other devices that can potentially answer the query. CORDIAL measures
both cases with the social centrality metric, by assigning a score to each de-
vice encountered. This score is then used to select which device is the best
candidate to forward a query to.

This thesis presents a preliminary study concerning human mobility. We study
some important metrics such as the distribution of the inter-contact time, the num-
ber of hourly contacts and the distribution of the contact duration, in order to learn
more about the foundation of the algorithms proposed. The algorithms proposed
were tested both with real-world mobility traces and with traces obtained from a
mobility model.

Finally, we also considered the possibility of studying a formal proof of the
discovery algorithms proposed. However, the nature of the underlying network (de-
lay tolerant, opportunistic and typically disconnected) prevents any direct proof of
correctness. As a matter of a fact, such proofs in this research field require a prob-
abilistic approach. In the specific case of CORDIAL, such probabilistic approach
would have to take into account a large number of parameters (including human
mobility, behavior of users and their interests), which becomes easily unmanageable
unless reverting to very abstract probabilistic models. We believe this to be a very
interesting topic of research that deserves studies, but it is beyond the scope of the
thesis. In fact, the thesis focused on the characterization of the protocol in realistic
conditions (using real mobility traces for example), an approach that is largely used
by the research community in this area.

Chapter 6

Conclusions

The diffusion of pocket and wearable devices, the advances in device manufacturing
and the use of open platforms are important steps towards Mark Weiser’s vision of
providing intelligence to the surrounding environment. However, the complexity in
the implementation of this vision raises many issues. This thesis focuses on two of
these issues, device interoperability and service discovery in MSN.

Device interoperability arises from the observation that devices deployed in SE
can have very different hardware and software features. Some devices have powerful
hardware/software capabilities that enable them to be easily integrated with each
other. Conversely, other devices are designed for very specific tasks and are poor
in terms of hardware/software resources. We focus on this second class of low-
power devices, in particular on devices based on the ZigBee specification. Our first
objective is the design and development of an inter-operable gateway that allows
access to low-power ZigBee devices with simple interfaces. The gateway hides all
the complexity concerning the ZigBee protocol and implements a plug-and-play
mechanism so that the functionalities of the devices can be accessed by different
technologies (e.g. UPnP, Bluetooth and REST web-services etc.).

The second problem concerns the heterogeneity of deployment and in particular
how the service discovery problem is influenced by the mobility of devices roaming
in SE. Mobile computing devices (such as smart phones, smart watches, wristbands)
are being diffused even more rapidly than traditional PCs and workstations. Such
devices offer an increasing number of untapped resources that can be considered as
services to offer to other devices or to people in SE. Our aim is to study one main
building block of this challenging scenario, i.e. how to advertise and query for ser-
vices in SE, which is commonly known as the service discovery problem. Our second
objective is therefore the design of a service discovery algorithm specifically designed
for mobile devices that are carried or worn by people. We take into consideration
some basic principles concerning human mobility in SE and how the sociality of
people affects the mobility of devices. In turn, such considerations are exploited for
the design of our service discovery algorithm.

154 CHAPTER 6. CONCLUSIONS

6.1 Future Works

Our results do not solve all the problems concerning the heterogeneity of access and
deployment in SE. Some barriers still need to be removed both in terms of device
interoperability and service discovery.

Concerning device interoperability, our results highlight the need to study the
problem as a whole, in order to merge the problem of how to access devices with
how to discover and advertise the services offered by them. In the future, it may
be possible to consider every pocket device in a Smart Environment (such as a
smart phone or a smart watch), as a tiny gateway for accessing low-power sensors
installed in the device itself, thus giving rise to a mobile gateway. The purpose of
this gateway would be to access the sensors behind the gateway and to advertise
the functionalities provided by the devices as services to other devices occasionally
encountered. Thus the algorithms we have proposed, could be integrated with the
ZB4O integration gateway in order to facilitate the convergence between sensing
and opportunistic communications. ZB4O could also be enhanced by supporting
not only low-power devices (such as ZigBee devices) but also other kinds of access
protocols, such as Bluetooth or EnOcean. The challenge, in this case, is to define
one single access model for all sensors and to apply it to heterogeneous sensing
technologies.

Concerning the service discovery, we have identified some areas of investigation
for the dissemination of discovery messages, namely multiple forwarding strategies,
understanding human mobility, end-user selfishness and the construction of a for-
mal proof of the discovery algorithms proposed in this thesis. Advertisements and
queries are messages that require different diffusion strategies. In fact, as discussed
in Section 2.2.3, queries should be distributed to devices that have the highest
probability of finding an answer in a short time. Thus the diffusion of advertise-
ment messages could exploit relay devices that might be interested in accessing the
service or that easily meet other devices that are particularly interested in these
messages. The selection of relay devices with such properties could become more
accurate by using community detection algorithms that combine temporal, spatial
and social attributes. To the best of our knowledge, the distributed community
detection algorithms suitable for MSN only address one of these attributes, giving
rise to communities that only partially reflect the complexity of human behaviors.
In fact, algorithms that exploit only temporal or spatial metrics tend to bring to-
gether people into communities that meet frequently or who often visit the same
places. However, disregarding weak temporal or spatial correlations among people,
these algorithms may fail to connect devices carried by strangers (i.e. users that
have social ties that are too weak to enter a community) which instead may act as
bridges among communities [86]. By means of more accurate community detection
algorithms, a device that is ready to distribute a service query or an advertisement
can better assess the potential of other devices as relays for its messages.

A second important aspect is how to exploit human mobility in the diffusion of

6.1. FUTURE WORKS 155

queries and advertisements. Here the key is how to predict human mobility based
on past encounters with other people, and how to exploit this prediction in the
dissemination of discovery and advertisement messages. If a device k finds that h
might answer a query with a high probability, then k may analyze its past encounters
with h in order to predict when it will meet h again, and thus decide whether to
wait for a meeting with h or to choose another relay device. Some recent works
address the problem of understating human mobility patterns [128, 129], however
these results are not integrated in the service discovery loop.

Third, the selfishness of individuals taking part in the discovery process is a
natural but limiting feature of an MSN. Most of the works surveyed in this thesis
assume that all devices in an MSN collaborate with the service discovery process.
However, in real scenarios, this assumption is a concrete barrier. People are skeptical
with respect to unknown mobile applications that may cause an uncontrolled battery
depletion, and that take autonomous decisions. People may also not agree to reveal
personal interests and personal habits in order to detect communities or to propagate
a query to a similar person. Thus, the service discovery process needs to meet
additional requirements such as energy awareness and privacy/security concerns.
The strategy to select the target device to which to forward a discovery message can
be enhanced with the awareness of the energy consumption of the discovery process
and by introducing a reward mechanism. In addition, devices with a low battery
level or devices with scarce computational resources could be temporarily excluded
from the service discovery.

Lastly, we plan to extend the work done so far with a formal proof of the discovery
algorithms proposed in this thesis. In particular we plan to draw an analytic study of
the diffusion strategies of queries and advertisements of SIDEMAN and CORDIAL
as well as a probabilistic model of some of the evaluation metric proposed in Section
5.4. We consider that having a probabilistic model for some of the metrics proposed
is helpful to evaluate the benefits of the algorithms proposed without running any
new simulations.

156 CHAPTER 6. CONCLUSIONS

Bibliography

[1] M. Weiser, “Human-computer interaction,” ch. The computer for the 21st century,
pp. 933–940, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1995.

[2] M. Satyanarayanan, “Pervasive computing: vision and challenges,” Personal Com-
munications, IEEE, vol. 8, pp. 10 –17, aug 2001.

[3] D. J. Cook and S. K. Das, “How smart are our environments? an updated look at
the state of the art,” Pervasive Mob. Comput., vol. 3, pp. 53–73, Mar. 2007.

[4] S. Helal and C. Chen, “The gator tech smart house: enabling technologies and
lessons learned,” in Proceedings of the 3rd International Convention on Rehabili-
tation Engineering & Assistive Technology, i-CREATe ’09, (New York, NY, USA),
pp. 13:1–13:4, ACM, 2009.

[5] M. Naphade, G. Banavar, C. Harrison, J. Paraszczak, and R. Morris, “Smarter cities
and their innovation challenges,” Computer, vol. 44, pp. 32 –39, june 2011.

[6] R. Murphy, T. Sterling, and C. Dekate, “Advanced architectures and execution
models to support green computing,” Computing in Science Engineering, vol. 12,
pp. 38–47, november 2010.

[7] C. Ververidis and G. Polyzos, “Service discovery for mobile ad hoc networks: a sur-
vey of issues and techniques,” IEEE Communications Surveys & Tutorials, vol. 10,
no. 3, pp. 30–45, 2008.

[8] Apple, Inc., “Bonjour technology white paper,” 2007.

[9] E. Guttman, “Service location protocol version 2,” 1999. IETF RFC 2608.

[10] P. Bellavista, R. Montanari, and S. K. Das, “Mobile social networking middleware:
A survey,” Pervasive and Mobile Computing, vol. 9, no. 4, pp. 437–453, 2013.

[11] N. Vastardis and K. Yang, “Mobile social networks: Architectures, social properties,
and key research challenges,” Communications Surveys Tutorials, IEEE, vol. 15,
pp. 1355–1371, March 2013.

[12] K. Gill, S.-H. Yang, F. Yao, and X. Lu, “A zigbee-based home automation system,”
Consumer Electronics, IEEE Transactions on, vol. 55, pp. 422 –430, May 2009.

[13] Z. Alliance, “The zigbee specification, ver. 1.0,” 2005.

158 CHAPTER 6. BIBLIOGRAPHY

[14] W. S. Lee and S. H. Hong, “Implementation of a knx-zigbee gateway for home
automation,” in Consumer Electronics, 2009. ISCE ’09. IEEE 13th International
Symposium on, pp. 545 –549, May 2009.

[15] Y.-G. Ha, “Dynamic integration of zigbee home networks into home gateways using
osgi service registry,” Consumer Electronics, IEEE Transactions on, vol. 55, pp. 470
–476, May 2009.

[16] M. McPherson, L. S. Lovin, and J. M. Cook, “Birds of a Feather: Homophily in
Social Networks,” Annual Review of Sociology, vol. 27, no. 1, pp. 415–444, 2001.

[17] M. Girolami, S. Lenzi, F. Furfari, and S. Chessa, “Sail: A sensor abstraction and
integration layer for context awareness,” in Software Engineering and Advanced Ap-
plications, 2008. SEAA ’08. 34th Euromicro Conference, pp. 374–381, September
2008.

[18] M. Girolami, S. Chessa, and A. Caruso, “On service discovery in mobile social
networks: Survey and perspectives,” Computer Networks, vol. 88, pp. 51 – 71, 2015.

[19] P. Cassara’, F. Potorti’, P. Barsocchi, and M. Girolami, “Choosing an RSS Device-
Free localization algorithm for ambient assisted living,” in IPIN 2015 Sixth Interna-
tional Conference on Indoor Positioning and Indoor Navigation (IPIN 2015), (Banff,
Canada), Oct. 2015.

[20] P. Cassara’, F. Potorti’, P. Barsocchi, M. Girolami, and P. Nepa, “Lessons learned
on device free localization with single and multi channel mode,” in IPIN 2015 Sixth
International Conference on Indoor Positioning and Indoor Navigation (IPIN 2015),
(Banff, Canada), Oct. 2015.

[21] F. Furfari, M. Girolami, S. Lenzi, and S. Chessa, “A service-oriented zigbee gateway
for smart environments,” Journal of Ambient Intelligence and Smart Environments,
vol. 6, no. 6, pp. 691–705, 2014.

[22] M. Girolami, F. Furfari, and S. Chessa, “An integration gateway for sensing devices
in smart environments,” ERCIM News, vol. 2015, no. 101, 2015.

[23] M. Girolami, F. Palumbo, F. Furfari, and S. Chessa, “The integration of zigbee with
the giraffplus robotic framework,” Communications in Computer and Information
Science, vol. 413 CCIS, pp. 86–101, 2013.

[24] E. Ferro, M. Girolami, D. Salvi, C. Mayer, J. Gorman, A. Grguric, R. Ram, R. Sadat,
K. M. Giannoutakis, and C. Stocklöw, “The universaal platform for aal (ambient
assisted living),” Journal of Intelligent Systems, 2015.

[25] C. Stocklw, A. M. Medrano Gil, A. Fides Valero, M. Girolami, and S. Lenzi,
“Multi-tenancy aware ambient assisted living platforms in the cloud,” in Ambient
Intelligence (E. Aarts, B. de Ruyter, P. Markopoulos, E. van Loenen, R. Wichert,
B. Schouten, J. Terken, R. Van Kranenburg, E. Den Ouden, and G. O’Hare, eds.),
vol. 8850 of Lecture Notes in Computer Science, pp. 80–95, Springer International
Publishing, 2014.

6.1. BIBLIOGRAPHY 159

[26] L. M. Broberg and M. Girolami, “A common platform for aal services and a common
future the universaal project,” pp. 135 – 155, February 2013.

[27] R. Ram, F. Furfari, M. Girolami, G. Ibaez-Snchez, J.-P. Lzaro-Ramos, C. Mayer,
B. Prazak-Aram, and T. Zentek, “universaal: Provisioning platform for aal ser-
vices,” in Ambient Intelligence - Software and Applications, vol. 219 of Advances in
Intelligent Systems and Computing, pp. 105–112, Springer International Publishing,
2013.

[28] M. Girolami, F. Furfari, and S. Chessa, “A cost-based model for service discov-
ery in smart environments,” in Ambient Intelligence (F. Patern, B. de Ruyter,
P. Markopoulos, C. Santoro, E. van Loenen, and K. Luyten, eds.), vol. 7683 of
Lecture Notes in Computer Science, pp. 397–402, Springer Berlin Heidelberg, 2012.

[29] M. Girolami, P. Barsocchi, S. Chessa, and F. Furfari, “A social-based service dis-
covery protocol for mobile ad hoc networks,” in Proceedings of IEEE Med-Hoc-Net
2013, pp. 53–60, June 24–26 2013.

[30] M. Girolami, S. Chessa, S. Basagni, and F. Furfari, “Service discovery in mobile
social networks,” in Personal, Indoor, and Mobile Radio Communication (PIMRC),
2014 IEEE 25th Annual International Symposium on, pp. 1464–1468, Sept 2014.

[31] M. Girolami, S. Chessa, and E. Ferro, “Discovery of services in smart cities of mobile
social users,” in Fifth International Workshop on Management of Cloud and Smart
City Systems 2015 (MoCS 2015), (Larnaca, Cyprus), July 2015.

[32] M. Girolami, S. Chessa, L. Foschini, R. Ianniello, and A. Corradi, “Social amplifi-
cation factor for mobile crowd sensing: The ParticipAct experience,” in 20th IEEE
Symposium on Computers and Communications (ISCC2015), (Larnaca, Cyprus),
July 2015.

[33] M. Girolami, S. Basagni, F. Furfari, and S. Chessa, “Sideman: Service discovery in
mobile social networks,” Ad Hoc and Sensor Wireless Network, 2015, to-appear.

[34] P. Baronti, P. Pillai, V. W. C. Chook, S. Chessa, A. Gotta, and Y. F. Hu, “Wireless
sensor networks: A survey on the state of the art and the 802.15.4 and zigbee
standards,” Comput. Commun., vol. 30, pp. 1655–1695, May 2007.

[35] O. Alliance, “About the osgi service platform,” tech. rep., OSGi Alliance, June 2007.

[36] C. Perkins and E. Royer, “Ad-hoc on-demand distance vector routing,” in Mo-
bile Computing Systems and Applications, 1999. Proceedings. WMCSA ’99. Second
IEEE Workshop on, pp. 90–100, February 1999.

[37] Z. Alliance, “Zigbee cluster library specification,” tech. rep., ZigBee Alliance, May
2008.

[38] O. Alliance, “Osgi service platform release 4, version 4.1,” tech. rep., OSGi Alliance,
May 2007.

160 CHAPTER 6. BIBLIOGRAPHY

[39] O. Dohndorf, J. Kruger, H. Krumm, C. Fiehe, A. Litvina, I. Luck, and F.-J. Stew-
ing, “Towards the web of things: Using dpws to bridge isolated osgi platforms,”
in Pervasive Computing and Communications Workshops (PERCOM Workshops),
2010 8th IEEE International Conference on, pp. 720–725, March 2010.

[40] S. Coradeschi, A. Cesta, G. Cortellessa, L. Coraci, J. Gonzalez, L. Karlsson, F. Fur-
fari, A. Loutfi, A. Orlandini, F. Palumbo, F. Pecora, S. von Rump, A. Stimec,
J. Ullberg, and B. Otslund, “Giraffplus: Combining social interaction and long term
monitoring for promoting independent living,” in Human System Interaction (HSI),
2013 The 6th International Conference on, pp. 578–585, June 2013.

[41] A. Kristoffersson, S. Coradeschi, and A. Loutfi, “A review of mobile robotic telep-
resence,” Advances in Human-Computer Interaction, vol. 2013, 2013.

[42] M. Corporation, “Universal plug and play: Background,” 1999.
http://www.upnp.org/resources/UPnPbkgnd.htm.

[43] M. Athanasopoulos and K. Kontogiannis, “Extracting rest resource models from
procedure-oriented service interfaces,” Journal of Systems and Software, vol. 100,
pp. 149–166, 2015.

[44] M. Chen and C. Wu, “A zigbee-based home control system using osgi management
platform,” International Journal of Smart Home, vol. 6, no. 4, pp. 15–28, 2012.

[45] Z. Alliance, “Understanding zigbee gateway,” 2011.

[46] R. Kawamoto, T. Emori, S. Sakata, K. Furuhata, K. Yuasa, and S. Hara, “Dlna-
zigbee gateway architecture and energy efficient sensor control for home networks,”
in Mobile and Wireless Communications Summit, 2007. 16th IST, pp. 1 –5, July
2007.

[47] S. H. Kim, J. S. Kang, H. S. Park, D. Kim, and Y. joo Kim, “Upnp-zigbee inter-
networking architecture mirroring a multi-hop zigbee network topology,” Consumer
Electronics, IEEE Transactions on, vol. 55, pp. 1286–1294, August 2009.

[48] G. Hu, “Design and implementation of industrial wireless gateway based on zigbee
communication,” in Electronic Measurement Instruments, 2009. ICEMI ’09. 9th
International Conference on, pp. 1–684 –1–688, August 2009.

[49] P. Qiu, U. Heo, and J. Choi, “The web-sensor gateway architecture for zigbee,”
in Consumer Electronics, 2009. ISCE ’09. IEEE 13th International Symposium on,
pp. 661 –664, May 2009.

[50] G. De Silva, L. De Silva, P. Ishara, M. Kumara, and T. Ginige, “Smartbee; multi-
channel access zigbee gateway with plug and play device interface for smart home/of-
fice automation,” in Information and Automation for Sustainability, 2008. ICIAFS
2008. 4th International Conference on, pp. 251 –256, December 2008.

6.1. BIBLIOGRAPHY 161

[51] G. Bigwood, D. Rehunathan, M. Bateman, T. Henderson, and S. Bhatti, “Exploiting
self-reported social networks for routing in ubiquitous computing environments,” in
Networking and Communications, 2008. WIMOB ’08. IEEE International Confer-
ence on Wireless and Mobile Computing,, pp. 484–489, October 2008.

[52] M. Conti and M. Kumar, “Opportunities in opportunistic computing,” Computer,
vol. 43, pp. 42–50, January 2010.

[53] D. Wang, D. Pedreschi, C. Song, F. Giannotti, and A.-L. Barabasi, “Human mo-
bility, social ties, and link prediction,” in Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’11, (New
York, NY, USA), pp. 1100–1108, ACM, 2011.

[54] M. Girvan and M. E. Newman, “Community structure in social and biological net-
works,” Proceedings of the National Academy of Sciences, vol. 99, no. 12, pp. 7821–
7826, 2002.

[55] P. Dhakan and R. Menezes, “The role of social structures in mobile ad-hoc networks,”
in Proceedings of the 43rd Annual Southeast Regional Conference - Volume 2, ACM-
SE 43, (New York, NY, USA), pp. 59–64, ACM, 2005.

[56] M. Newman, “Detecting community structure in networks,” The European Physical
Journal B - Condensed Matter and Complex Systems, vol. 38, no. 2, pp. 321–330,
2004.

[57] M. E. J. Newman, “Analysis of weighted networks,” Phys. Rev. E, vol. 70, p. 056131,
Nov. 2004.

[58] A. Clauset, “Finding local community structure in networks,” Phys. Rev. E, vol. 72,
p. 026132, Aug 2005.

[59] E. Borgia, M. Conti, and A. Passarella, “Autonomic detection of dynamic social
communities in opportunistic networks,” in Proceedings of IEEE Med-Hoc-Net 2011,
(Favignana, Italy), pp. 142–149, June 12–15 2011.

[60] P. Hui, E. Yoneki, S. Y. Chan, and J. Crowcroft, “Distributed community detection
in delay tolerant networks,” in Proceedings of 2Nd ACM/IEEE International Work-
shop on Mobility in the Evolving Internet Architecture, MobiArch ’07, (New York,
NY, USA), pp. 7–14, ACM, 2007.

[61] M. Orlinski and N. Filer, “The rise and fall of spatio-temporal clusters in mobile ad
hoc networks,” Ad Hoc Networks, vol. 11, pp. 1641–1654, July 2013.

[62] F. Li and J. Wu, “LocalCom: A community-based epidemic forwarding scheme in
disruption-tolerant networks,” in 2009 6th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks, SECON
2009, 2009.

[63] A. Vahdat and D. Becker, “Epidemic routing for partially connected ad hoc net-
works,” tech. rep., 2000.

162 CHAPTER 6. BIBLIOGRAPHY

[64] C. Campo, M. Munoz, J. C. Perea, A. Marin, and C. Garcia-Rubio, “PDP and
GSDL: A new service discovery middleware to support spontaneous interactions in
pervasive systems,” in Proceedings of the IEEE Percom Workshops 2005, pp. 178–
182, 2005.

[65] S. M. Allen, G. Colombo, and R. M. Whitaker, “Uttering: Social micro-blogging
without the internet,” in Proceedings of the Second International Workshop on Mo-
bile Opportunistic Networking, MobiOpp ’10, (New York, NY, USA), pp. 58–64,
ACM, 2010.

[66] I. Konstas, V. Stathopoulos, and J. M. Jose, “On social networks and collaborative
recommendation,” in Proceedings of the 32Nd International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’09, (New York, NY,
USA), pp. 195–202, ACM, 2009.

[67] J. Lee, C. Shao, H. Roh, and W. Lee, “Price-based tethering for cooperative net-
working,” in Information Networking (ICOIN), 2013 International Conference on,
pp. 379–384, January 2013.

[68] G. Cardone, L. Foschini, P. Bellavista, A. Corradi, C. Borcea, M. Talasila, and
R. Curtmola, “Fostering participaction in smart cities: a geo-social crowdsensing
platform,” Communications Magazine, IEEE, vol. 51, pp. 112–119, June 2013.

[69] D. Oberle, A. Barros, U. Kylau, and S. Heinzl, “A unified description language for
human-to-automated services,” Information Systems, vol. 38, pp. 155–181, March
2013.

[70] M. Pantazoglou and A. Tsalgatidou, “A generic query model for the unified discov-
ery of heterogeneous services,” Services Computing, IEEE Transactions on, vol. 6,
pp. 201–213, April 2013.

[71] A. Nedos, K. Singh, R. Cunningham, and S. Clarke, “Probabilistic discovery of
semantically diverse content in manets,” Mobile Computing, IEEE Transactions on,
vol. 8, pp. 544–557, April 2009.

[72] C. Cho and D. Lee, “Survey of service discovery architectures for mobile ad hoc
networks. term paper,” Department of Computer and Information Science and En-
gineering (CICE), University of Florida, Fall, vol. 5531, 2005.

[73] A. B. O. Sullivan, R. W. Sheifler, J. Waldo, and A. Wollrath, “The jini specification.”
Sun Microsystems, Inc.

[74] F. Zhu, M. Mutka, and L. Ni, “Splendor: A secure, private, and location-aware
service discovery protocol supporting mobile services,” in Pervasive Computing and
Communications, 2003. (PerCom 2003). Proceedings of the First IEEE Interna-
tional Conference on, pp. 235–242, March 2003.

[75] M. Klein and B. Knig-Ries, “Multi-layer clusters in ad-hoc networks an approach
to service discovery,” in Web Engineering and Peer-to-Peer Computing (E. Gregori,

6.1. BIBLIOGRAPHY 163

L. Cherkasova, G. Cugola, F. Panzieri, and G. Picco, eds.), vol. 2376 of Lecture
Notes in Computer Science, pp. 187–201, Springer Berlin Heidelberg, 2002.

[76] K. Seada and A. Helmy, “Rendezvous regions: a scalable architecture for service
location and data-centric storage in large-scale wireless networks,” in Parallel and
Distributed Processing Symposium, 2004. Proceedings. 18th International, p. 218,
April 2004.

[77] U. Mohan, K. Almeroth, and E. Belding-Royer, “Scalable service discovery in mobile
ad hoc networks,” in Networking 2004 (N. Mitrou, K. Kontovasilis, G. Rouskas,
I. Iliadis, and L. Merakos, eds.), vol. 3042 of Lecture Notes in Computer Science,
pp. 137–149, Springer Berlin Heidelberg, 2004.

[78] O. Ratsimor, D. Chakraborty, A. Joshi, and T. Finin, “Allia: Alliance-based ser-
vice discovery for ad-hoc environments,” in Proceedings of the 2Nd International
Workshop on Mobile Commerce, WMC ’02, (New York, NY, USA), pp. 1–9, ACM,
2002.

[79] S. Helal, N. Desai, V. Verma, and C. Lee, “Konark - a service discovery and delivery
protocol for ad-hoc networks,” in Wireless Communications and Networking, 2003.
WCNC 2003. 2003 IEEE, vol. 3, pp. 2107–2113 vol.3, March 2003.

[80] T. D. Nguyen and S. Rouvrais, “A socially inspired peer-to-peer resource discovery
service for delay tolerant networks,” in Proceedings of the 2007 OTM Confederated
International Conference on On the Move to Meaningful Internet Systems - Volume
Part II, OTM’07, (Berlin, Heidelberg), pp. 960–969, Springer-Verlag, 2007.

[81] P. Costa, C. Mascolo, M. Musolesi, and G. Picco, “Socially-aware routing for publish-
subscribe in delay-tolerant mobile ad hoc networks,” Selected Areas in Communica-
tions, IEEE Journal on, vol. 26, pp. 748–760, June 2008.

[82] C. Boldrini, M. Conti, and A. Passarella, “Contentplace: Social-aware data dissem-
ination in opportunistic networks,” in Proceedings of ACM MSWiM 2008, pp. 203–
210, Octoberober 27–31 2008.

[83] A. Mei, G. Morabito, P. Santi, and J. Stefa, “Social-aware stateless forwarding in
pocket switched networks,” in Infocom, 2011 Proceedings Ieee, pp. 251–255, IEEE,
2011.

[84] S. Kosta, A. Mei, and J. Stefa, “Large-Scale Synthetic Social Mobile Networks with
SWIM,” IEEE Transactions on Mobile Computing, vol. 13, no. 1, pp. 116–129, 2014.

[85] J. Dı́az, A. Marchetti-Spaccamela, D. Mitsche, P. Santi, and J. Stefa, “Socially-
aware forwarding improves routing performance in pocket switched networks,” in
Proceedings of ESA 2011, pp. 723–735, 2011.

[86] E. Pagani, L. Valerio, and G. P. Rossi, “Weak social ties improve content delivery
in behavior-aware opportunistic networks,” Ad Hoc Networks, vol. 25, Part B, no. 0,

164 CHAPTER 6. BIBLIOGRAPHY

pp. 314 – 329, 2015. New Research Challenges in Mobile, Opportunistic and Delay-
Tolerant Networks Energy-Aware Data Centers: Architecture, Infrastructure, and
Communication.

[87] S. A. Al Ayyat, S. Aly, and K. A. Harras, “PIPeR: Impact of power-awareness on
social-based opportunistic advertising,” in Proceedings of IEEE WCNC 2014, Apr.
2014.

[88] U. Aguilera and D. Lpez-de Ipia, “A parameter-based service discovery protocol
for mobile ad-hoc networks,” in Ad-hoc, Mobile, and Wireless Networks (X.-Y. Li,
S. Papavassiliou, and S. Ruehrup, eds.), vol. 7363 of Lecture Notes in Computer
Science, pp. 274–287, Springer Berlin Heidelberg, 2012.

[89] Z. Wang, E. Bulut, and K. Boleslaw, “Service discovery for delay tolerant networks,”
in GLOBECOM Workshops (GC Wkshps), 2010 IEEE, pp. 136–141, IEEE, 2010.

[90] N. Le Sommer and Y. Mahéo, “OLFServ: an Opportunistic and Location-Aware
Forwarding Protocol for Service Delivery in Disconnected MANETs,” in Fifth Inter-
national Conference on Mobile Ubiquitous Computing, Systems, Services and Tech-
nologies (Ubicomm 2011) (X. P. Services, ed.), (Lisbon, Portugal), pp. 115–122,
Nov. 2011.

[91] M. Granovetter, “The Strength of Weak Ties,” The American Journal of Sociology,
vol. 78, no. 6, pp. 1360–1380, 1973.

[92] V. Erramilli, M. Crovella, A. Chaintreau, and C. Diot, “Delegation forwarding,” in
Proceedings of ACM MobiHoc 2008, pp. 251–260, 2008.

[93] V. Erramilli and M. Crovella, “Diversity of forwarding paths in pocket switched
networks,” in in Proc. ACM IMC 07, pp. 161–174, 2007.

[94] T. Spyropoulos, K. Psounis, and C. Raghavendra, “Efficient routing in intermit-
tently connected mobile networks: The single-copy case,” Networking, IEEE/ACM
Transactions on, vol. 16, pp. 63–76, February 2008.

[95] E. M. Daly and M. Haahr, “Social network analysis for routing in disconnected
delay-tolerant manets,” in Proceedings of the 8th ACM International Symposium on
Mobile Ad Hoc Networking and Computing, MobiHoc ’07, (New York, NY, USA),
pp. 32–40, ACM, 2007.

[96] P. Hui, J. Crowcroft, and E. Yoneki, “BUBBLE Rap: Social-based forwarding
in delay-tolerant networks,” IEEE Transactions on Mobile Computing, vol. 10,
pp. 1576–1589, November 2011.

[97] E. Yoneki, P. Hui, S. Chan, and J. Crowcroft, “A socio-aware overlay for publish/-
subscribe communication in delay tolerant networks,” in Proceedings of the 10th
ACM Symposium on Modeling, Analysis, and Simulation of Wireless and Mobile
Systems, MSWiM ’07, (New York, NY, USA), pp. 225–234, ACM, 2007.

6.1. BIBLIOGRAPHY 165

[98] K. C.-J. Lin, W.-T. Lin, and C.-F. Chou, “Social-based content diffusion in pocket
switched networks,” IEEE Transactions on Vehicular Technology, vol. 60, no. 9,
pp. 4539–4548, 2011.

[99] C. Groba and S. Clarke, “Opportunistic service composition in dynamic ad hoc
environments,” IEEE T. Services Computing, vol. 7, no. 4, pp. 642–653, 2014.

[100] J. Kniess, O. Loques, and C. V. Albuquerque, “Location aware discovery service and
selection protocol in cooperative mobile wireless ad hoc networks,” in INFOCOM
Workshops 2009, IEEE, pp. 1–2, IEEE, 2009.

[101] S. Cuddy, M. Katchabaw, and H. Lutfiyya, “Context-aware service selection based
on dynamic and static service attributes,” in Wireless And Mobile Computing, Net-
working And Communications, 2005.(WiMob’2005), IEEE International Conference
on, vol. 4, pp. 13–20, IEEE, 2005.

[102] M. Conti, E. Marzini, D. Mascitti, A. Passarella, and L. Ricci, “Service selection and
composition in opportunistic networks,” in Wireless Communications and Mobile
Computing Conference (IWCMC), 2013 9th International, pp. 1565–1572, July 2013.

[103] A. Varshavsky, B. Reid, and E. de Lara, “A cross-layer approach to service discovery
and selection in manets,” in Mobile Adhoc and Sensor Systems Conference, 2005.
IEEE International Conference on, pp. 8 pp.–466, Nov 2005.

[104] J. Kniess, O. Loques, and C. V. Albuquerque, “Service discovery with time con-
straints in mobile ad hoc networks,” Earth Science Informatics, pp. 1–14, 2014.

[105] N. Santoro and I. Stojmenovic, “Localized Distance-Sensitive Service Discovery in
Wireless Sensor and Actor Networks,” IEEE Transactions on Computers, vol. 58,
pp. 1275–1288, Sept. 2009.

[106] N. Surobhi and A. Jamalipour, “A context-aware m2m-based middleware for ser-
vice selection in mobile ad-hoc networks,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 25, pp. 3056–3065, Dec 2014.

[107] A. Makke, Y. Mahéo, N. Le Sommer, et al., “Towards opportunistic service provi-
sioning in intermittently connected hybrid networks,” in Proceedings of the 4th In-
ternational Conference on Networking and Distributed Computing (ICNDC 2013),
2013.

[108] Y. Mahéo and R. Said, “Service invocation over content-based communication in
disconnected mobile ad hoc networks,” in Advanced Information Networking and
Applications (AINA), 2010 24th IEEE International Conference on, pp. 503–510,
IEEE, 2010.

[109] S. Ioannidis, A. Chaintreau, and L. Massoulié, “Optimal and scalable distribution of
content updates over a mobile social network,” in INFOCOM 2009, IEEE, pp. 1422–
1430, IEEE, 2009.

166 CHAPTER 6. BIBLIOGRAPHY

[110] W. jen Hsu, D. Dutta, and A. Helmy, “Csi: A paradigm for behavior-oriented profile-
cast services in mobile networks,” Ad Hoc Networks, vol. 10, no. 8, pp. 1586 – 1602,
2012. Special Issue on Social-Based Routing in Mobile and Delay-Tolerant Networks.

[111] F. Furfari and S. Lenzi, “The felix upnp documentation, technical report tr-02,”
tech. rep., ISTI-CNR, 2008.

[112] Y. Wang, A. Vasilakos, Q. Jin, and J. Ma, “Survey on mobile social networking
in proximity (msnp): approaches, challenges and architecture,” Wireless Networks,
vol. 20, no. 6, pp. 1295–1311, 2014.

[113] N. Jabeur, Z. S, and S. B, “Mobile Social Networking Applications.,” Communica-
tions of the ACM, vol. 56, pp. 71–79, 2013.

[114] P. Hui, People are the Network: Experimental Design and Evaluation of Social-based
Forwarding Algorithms. PhD thesis, University of Cambridge, 2007. Published as
UCAM Computer Laboratory technical report no. 713.

[115] N. H. Sulaiman and M. Daud, “A Jaccard-based similarity measure for soft sets,”
in Proceedings of IEEE SHUSER 2012, pp. 659–663, 2012.

[116] S. Tarkoma, C. Esteve Rothenberg, and E. Lagerspetz, “Theory and practice of
Bloom filters for distributed systems,” IEEE Communications Surveys & Tutorials,
pp. 131–155, 2012.

[117] T. Henderson, D. Kotz, and I. Abyzov, “The changing usage of a mature campus-
wide wireless network,” Computer Networks, vol. 52, no. 14, pp. 2690 – 2712, 2008.

[118] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau,
“CRAWDAD data set cambridge/haggle (v. 2006-01-31).” Downloaded from
http://crawdad.org/cambridge/haggle/, 2006.

[119] N. Eagle and A. (Sandy) Pentland, “Reality mining: Sensing complex social sys-
tems,” Personal Ubiquitous Comput., vol. 10, pp. 255–268, Mar. 2006.

[120] J. K. Laurila, J. Blom, O. Dousse, D. Gatica-perez, O. Bornet, J. Eberle, I. Aad, and
M. Miettinen, “The mobile data challenge: Big data for mobile computing research,”
in Proceedings of Mobile Data Challenge Workshop (MDC), 2012.

[121] C. Boldrini and A. Passarella, “HCMM: Modelling spatial and temporal properties
of human mobility driven by users social relationships,” Computer Communications,
vol. 33, no. 9, pp. 1056–1074, 2010.

[122] H. Lim and C. Kim, “Flooding in wireless ad hoc networks,” Computer Communi-
cations, vol. 24, no. 3–4, pp. 353 – 363, 2001.

[123] H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi, and M. Dahlin,
“BAR gossip,” in Proceedings of USENIX OSDI 2006, pp. 14–14, 2006.

6.1. BIBLIOGRAPHY 167

[124] P. Sermpezis and T. Spyropoulos, “Not all content is created equal: Effect of popu-
larity and availability for content-centric opportunistic networking,” in Proceedings
of the 15th ACM International Symposium on Mobile Ad Hoc Networking and Com-
puting, MobiHoc ’14, (New York, NY, USA), pp. 103–112, ACM, 2014.

[125] C. Boldrini, M. Conti, and A. Passarella, “Context and resource awareness in op-
portunistic network data dissemination,” in Proceedings of IEEE WoWMoM 2008,
(Newport Beach, CA), pp. 1–6, June 23–26 2008.

[126] C. Liu and J. Wu, “Routing in a cyclic mobispace,” in Proceedings of ACM MobiHoc
2008, pp. 351–360, 2008.

[127] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE Simulator for DTN Protocol
Evaluation,” in SIMUTools ’09: Proceedings of the 2nd International Conference on
Simulation Tools and Techniques, (New York, NY, USA), ICST, 2009.

[128] M. D. Domenico, A. Lima, and M. Musolesi, “Interdependence and predictability of
human mobility and social interactions,” Pervasive and Mobile Computing, vol. 9,
no. 6, pp. 798 – 807, 2013. Mobile Data Challenge.

[129] T. M. T. Do, O. Dousse, M. Miettinen, and D. Gatica-Perez, “A probabilistic kernel
method for human mobility prediction with smartphones,” Pervasive and Mobile
Computing, vol. 20, pp. 13 – 28, 2015.

168 CHAPTER 6. BIBLIOGRAPHY

