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Abstract In this report, we test the consistency and coherence of an al-
gorithm obtained as an extension of a technique we proposed in the past.
This implements a recursive multi-scale reconstruction of the 3D chro-
matin structure from Chromosome Conformation Capture data. These
data derive from millions of cells, so we cannot expect that they lead to
a unique solution; for this reason, we adopt a statistic approach to sam-
ple the space of the solutions generated by a suitable objective function,
in order to achieve configurations compatible with the input data and
the known constraints. The consistency of the algorithm has been tested
by producing a large number of results and evaluating the dispersion
of the final values of the objective function. Using the same solutions,
synthetic contact matrices have been produced and compared with the
input matrix to test the coherence of our solutions with the initial data.
Furthermore, we investigated the presence of typical structures in the
solutions by hierarchical clustering.

1 Introduction

In our previous works [1, 2], we presented a method to reconstruct a set of
plausible chromatin configurations starting from contact data obtained through
Chromosome Conformation Capture techniques (HI-C, 3¢, 4¢, 5¢) [3]. In our
approach we do not look for a unique configuration because the experimental
data derive from millions of cells. As opposed to most popular methods [5, 8],
we do not translate contact frequencies into distances, since often not consistent
with the Euclidean geometry [2]. Recent studies showed that chromatin is di-
vided into segments called Topological Association Domains (TADs) [4], with few
reciprocal interactions and a lot of inner contacts. Taking into account this topo-
logical feature, we adopted a multi-scale approach. Our algorithm automatically
detects diagonal blocks in the input matrix, thus creating different, decreasing,
resolution levels. At each level, the chromatin fiber is modeled as a chain of par-
tially penetrable beads, whose features depend on the TAD structures computed



at the immediately preceding level. Once the lowest resolution is reached, the
full-resolution chain is reconstructed recursively from the intermediate results
stored during the computation. Our algorithm samples the solution space gener-
ated by a specially designed objective function through a Monte Carlo method.
The algorithm presented in [1] keeps the solutions in the feasible space by en-
forcing rigid geometrical constraints during the iteration. We are now trying to
include soft constraints in the objective function in order to make easier the
control of the solutions. The new objective function consists in two parts, the
first concerning the fitness to the data, represented by the achievement of signif-
icant contacts, and the second concerning constraints, represented by penalties
associated to interpenetrations between beads:
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C is the 3D configuration of the chromatin segment, n;; is the contact frequency
between beads ¢ and j, d;; is their Euclidean distance, £ is the set of significant
bead pairs chosen from the contact matrix (the set of pairs for which n;; exceeds
a threshold), r; and r; are the radii of beads ¢ and j, and X is the regularization
parameter, which represents the relative weight of the constraint component
with respect of the fitness component. The term in the second summation in
Equation (1) is referred to as the neighbor interaction function, 1;;. Parameter
A does not assume a fixed value, but is evaluated as the ratio between the values
of the two summations in Equation 1 averaged on a fixed number of random
chain configurations. Function 1;; is an equilateral hyperbola, modified to grow
as 1/d;; when d;; tends to zero, and decrease quickly when d;; goes well beyond
a threshold distance (r; + r;). ¢ is a scale factor, whose presence introduces a
moderate slope interval close to (r; + ), to allow partial interpenetration of
beads; the exponent b, odd integer, regulates the slope of the transition intervals
between the moderate slope region and the external intervals (see Figure 1).
At each step of the Monte Carlo algorithm, the subchains are perturbed by
using quaternions rather than Euler angles, in order to facilitate composition of
rotations and to avoid singularities. Once the subchains are reconstructed, each
segment can be treated as an element of a new chain, and the procedure can be
repeated recursively at different scales (see Figure 2).

Our algorithm, implementing the flow diagram in Figure 2, contains a Topo-
logical Association Domains extraction algorithm, which automatically detects
diagonal blocks of input contact matrix. The reconstruction method implements
a Simulated Annealing. In Table 1, the parameters appearing in our code are
listed and briefly described. These parameters can be set at the beginning of
the experiments to take into account physical and biochemical information. The
values appearing in the table are the ones we used to obtain the set of experi-
mental results presented in this report. We have equipped our highest-resolution
beads with geometric characteristics; the names in brackets refer to parameters
in Table 1:

1. We assume that chromatin fiber has a diameter of about 30 nm (DIA);
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Figurel. Neighborhood interaction function v;; with different values of ¢ and b.
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2. we suppose that in a fragment of chromatin with length 30 nm (approxima-
tion of a chromatin cube) we can find 3 kbp (N B);

3. the number of cubes in a resolution unit is RIS/NB = NC, where RIS is
the highest resolution of data into the contact matrix (in our experiments
RIS = 100kbp);

4. we vary the diameter of each bead of the highest-resolution level linearly
with the number of inner contacts (main diagonal of the contact matrix)
within the range [LMIN, LM AX]. We suppose that many inner contacts
imply a major compactness.

We choose the maximum diameter of a bead as:
LMAX — NC-DIA (2)
™
that is, the diameter of a circumference with length NC - DI A.
We choose the minimum diameter of a bead as:

LMIN = V/NC -+/3-DIA (3)
We calculate the diameter of a bead at the maximum-resolution level with
the formula:

_ LMAX — (LMAX — LMIN) - ncount

L NMAX

DIA (4)

where ncount (coincident with n;; for the i-th bead) is the number of inner
contacts of the bead, and NMAX is the maximum number of contacts in
the contact matrix;

5. we call EXT the radius of a bead. In the highest-resolution level, EXT
is L/2. In the successive levels, each bead derives from the structure of a
higher-resolution subchain. We compute the standard deviation of the co-
ordinates of its beads along their first principal component, and assume a
fixed fraction (extrate) of this quantity as the radius of the corresponding
lower-resolution bead. Weonly take fraction of the standard deviation, be-
cause we want to model the lower-resolution levels as bead chains, so we
need to equip subchains of a spherical envelope, which should contain much
of the structure, not preventing reciprocal approaching, when necessary.

To test the consistency and the coherence of the algorithm we have selected HI-C
data from the long arm of human chromosome 1 made available by [7], and run
our code 100 times with the parameters reported in Table 1. The selected segment
consists of 29.200 Mbp (292 segments of 100 kbp). The algorithm of authomatic
detection of diagonal blocks identifies two resolution levels, the second made up
of 25 beads, which reflects very well the division in TADs of Dixon [4], as shown in
Figure 3. In Section 2, we discuss the repeatability of the results. In Section 3, we
analyze the coherence of the results with input data. In Section 4, we illustrate
some features of the solutions and in Section 5, we report our conclusions.



Figure3. Heat map of contact matrix of chromosome 1 (150.28 Mbp — 179.44 Mbp) [7]:
red, TADs from Dixon [4]; blue, blocks detected by our algorithm [1,2].



Tablel. Set of parameters used in the 100 experiments

Parameters Significance in the algorithm
ENERGY: FITNESS
diagneg = 1 neglected diagonals in contact matrix

datafact = 0.4

fraction of the pairs per block used to build the penalty
function (real)

ENERGY: CONSTRAINT
energy-scale = 3.98

energy_exp =5

tunes the extent of the moderate penalty range around
the threshold distance

tunes the slopes of the penalty in the transitions between
the moderate range and the external interval

TAD EXTRACTION
tol =2

ThrDiv = 20

minsize =7

row/column tolerance for approximate diagonal block ex-
traction

amplitude tolerance for approximate diagonal block ex-
traction (fraction of the off-diagonal maximum)
minimum required diagonal block size

ANNEALING A
regulenergy = 0.5
avgenergy = 1000

percenergy = 90

target relative weight fitness/constraint

fixed number of averaging cycles to evaluate the fit-
ness/constraint ratio

maximum accepted percentile in the energy sample sets
(integer < 100)

ANNEALING: WARM-UP
Tmax = 30

itwarm = 50000

incrtemp = 1.2
checkwarm = 500

muwarm = 0.9

Start temperature of warm-up phase

Max number of warm-up cycles (positive integer)

Fixed temperature increase coefficient at warm-up
Fixed milestone on warm-up cycles to check the accep-
tance rate

Minimum acceptance rate to end warm-up

ANNEALING: SAMPLING
itmax = 50000
itstop = 500

StopTolerance =1-107°
RANDPLA =2-0.05

RANDDIE =2-0.05

decrtemp = 0.998

Max number of annealing cycles (positive integer)
consecutive cycles with energy variations within StopTol-
erance to stop annealing

Stop tolerance

Max planar angle perturbation at each update (floating,
radians, doubled for convenience)

Max dihedral angle perturbation at each update (float-
ing, radians, doubled for convenience)

Fixed cooling coefficient at each annealing cicle

GEOMETRIC PARAMETERS

DIA = 30

RIS =100
NB=3

NC = RIS/NB

LMAX = (NC - DIA)/m
LMIN = YNC -V/3-DIA

extrate = 0.3

Chromatin fiber diameter (nm)

Contact matrix (full) genomic resolution (kbp)
kilobase-pairs in a chromatin fragment with length DI A
fragments per genomic resolution unit

hypothesized maximum size of a bead in the full-
resolution model (nm)

hypothesized minimum bead size in the full-resolution
model (nm)

Size tuning for beads at levels > 0




2 Repeatability of solutions

In this Section, we check our objective function against its capability of produc-
ing results compatible with both the data and the constraints. To do this, we
verify the repeatability of solutions in terms of final energy, the final value of the
objective function (1). As mentioned in Section 1, the solutions we are serching
for cannot be unique. Thus, we ask that the solutions deriving from the same
inputs, and obtained through the same parameters, are close in terms of final
energy. We analyze the energies of the final configurations of the whole chain
and all the subchains for our set of experiments. The randomness of these dis-
tributions is checked by Gaussianity tests, and their dispersion is evaluated by
comparing the standard deviation of each group of results with the correspond-
ing average. We test the normality of distributions of final energies of every
subchain with a Shapiro-Francia test, using the function sf.test of R. In the
Shapiro-Francia test the null hypothesis is: the data follow a normal distribu-
tion, if p-value > 0.05 we accept the null hypothesis, if p-value < 0.05 we remove
the outlier with greatest deviation with the function outlier of R. We perform
again the test for the distribution without the outlier. We report in Table 2 the
number of outliers to be removed to obtain normality in every distribution, and
the standard deviation expressed as percentage of the average, for every energy
distribution.

We can observe that the standard deviation without outliers is always < 5% of
the average, for every block. Considering the outliers, it is a little larger but still
very small. This is a good result because it means that the final energies are
not so scattered, and the final configurations fall in regions with similar energy
values. In general, the higher the number of beads, the higher the standard devi-
ation. This is reasonable, because a high number of beads leads to many degrees
of freedom and a large variability in final configurations. For the whole chain,
the standard deviation is 11% of the mean value.

As we can see by looking at the outliers, the distributions need at most the
removal of a few outliers to be considered Gaussian. We notice that almost all
outliers with greatest deviation correspond to low final energy values. This could
mean that outlier configurations are often more compact than others (see Figure
4 and Figure 5). This apparently weird behavior is probably due to the great
difficulty in achieving conformations with many simultaneous relevant contacts.
When these conformations are reached without deep interpenetrations, the en-
ergy reaches low values. We have built the objective function so that the achieve-
ment of many contacts simultaneously, avoiding interpenetration of beads, is a
good result.

3 Coherence of results with input data

To test the coherence of our results with the input data, we tried to reconstruct
contact matrices of solutions, to be compared with the input contact matrix.
Our experiments do not produce contact matrices, but, from each result, we are



Table2. Normality of distributions of final energies.

nr of beads|nr of outliers|% st dev®|% st dev®
Block 0 13 1 4.11 3.93
Block 1 18 14 4.51 3.64
Block 2 13 0 3.95 3.95
Block 3 16 4 4.30 3.35
Block 4 9 1 4.00 3.59
Block 5 8 0 3.35 3.35
Block 6 17 1 3.76 3.36
Block 7 9 5 5.17 4.25
Block 8 8 1 3.69 3.39
Block 9 14 0 4.30 4.30
Block 10 9 5 3.81 2.76
Block 11 10 1 4.62 4.32
Block 12 12 0 3.98 3.98
Block 13 21 0 4.59 4.59
Block 14 8 0 4.11 4.11
Block 15 8 0 4.74 4.74
Block 16 11 2 4.16 3.42
Block 17 15 3 4.76 4.26
Block 18 8 5 4.10 3.21
Block 19 11 0 4.40 4.40
Block 20 10 1 5.02 4.65
Block 21 10 0 4.37 4.37
Block 22 12 0 4.44 4.44
Block 23 11 3 4.76 4.36
Block 24 11 4 4.55 3.79
Chain 292 0 11.63 11.63

* Considering outliers
® Without outliers
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able to compute the matrix of the distances between all the possible bead pairs.
To derive a contact matrix from our 100 distance matrices, we need a criterion
to decide when two beads are in contact. We base our criterion on the sum of the
radii of the two beads, multiplied by a fixed factor k& and taken as a threshold
distance to assume that the two beads are touching each other:

dthresh - (Ti + Tj) -k (5)

If the distance between the centroids of beads ¢ and j is less than dypesp, they are
considered in contact; we can create different contact matrices by varying k and,
for each subchain considered, by summing up all the binary contact matrices
produced by all the distance matrices. We can thus compare the heat map of
input contact matrix with the heat maps of our contact matrices. The main
diagonal and the first diagonal are removed because their values are much larger
than those in the rest of the matrices and their presence makes it difficut to
appreciate the variability of the original and reconstructed contact frequencies.
In Table 3, we report the values of k for the heat maps represented in Figure 6,
7,8, 9 and 10.

Table3. Legend of values of k for heat maps of contact matrices.

input |k=15|k=14|k=13

k=12|k=11|k=1.05|k=1.04

k=1.03k =102k =101 k=1

Here, we report the heat maps for blocks 13, 1, 16 and 5. We chose these blocks
because they are representative of different sizes: block 13 is the biggest (21
beads), block 1 has 18 beads, block 16 has 11 beads and block 5 is one of the
smallest, with 8 beads.

Looking at Figures 6, 7, 8, 9 we can appreciate some similarities between heat
map of input and heat maps of contact matrices, expecially with k& > 1. Red
dots in last heat maps of all figures represent deep interpenetrations (k < 0.3).
Their presence means that sometimes the constraint component of the objec-
tive function is overcome by the fitness component, expecially when the contact






Figure7. Heat maps of contact matrices for block 1 with different values of diresn (see
Table 3).



Figure8. Heat maps of contact matrices for block 16 with different values of diresn
(see Table 3).

Figure9. Heat maps of contact matrices for block 5 with different values of diresn (see
Table 3).



frequency n;; is high. The number of final conformations with deep interpene-
trations is very low (< 5%) in every subchain and in the whole chain.

In Figure 10, we report the corresponding results for the whole chain. We can
observe that the similarities between the input heat map and the heat maps
of our contact matrices are greater when we choose kK = 1.1 and k = 1.2. The
reason could lay in the shape of the neighbor interaction function: note that the
blue plot in Figure 1 corresponds to our choice for parameters ¢ and b (see Table
1). The moderate slope interval ranges from 0.8 to 1.2. If the distance between
centroids of beads ¢ and j is within this range, they are close and produce a
small penalty; this implies that the most reasonable threshold to collect all the
contacts of the final conformations is just the one with k = 1.2.

From Figure 10, we notice that deeper interpenetrations, highlighted in last five
heat maps (kK = 0.5 to 0.1), are located just ouside blocks. This means that
the most serious constraint violations affect the first and the last beads of every
block. This is a consequence of the way we shape the higher-level chains: our
choice for the physical bead sizes (see point 5 in Section 1) is such that most of
the beads of any subchain are contained in the assumed size of the corresponding
lower-resolution bead. However, some beads left out, and their presence does not
increase the energy during the successive annealing phase, even though they in-
terpenetrate. Looking at the boxplots of EXT's for the 25 low-resolution beads in
Figure 11 and the plots in Figure 26, we see that the envelopes of the subchains
at level 1 are very different: their magnitude is positively correlated with the ge-
nomic block sizes (reported in Table 2). Moreover, blocks with big sizes assume
various final conformations and their £ XT's can vary greatly from experiment to
experiment. This subdivision in blocks with similar sizes would probably avoid
variety in envelope sizes, but would disagree with the TAD’s theory [4].

In summary, the final conformations derived from the same input assume similar
energy values, with little variance with respect of the average, for every subchain
and for the whole chain. The algorithm of automatic block detection works well,
finding diagonal blocks similar to TADs. Moreover, the results of the simulations
are satisfactorily consistent with the initial data: the contact matrices created
through Equation 5 to verify the consistency of the algorithm assume patterns
sufficiently similar to those of input contact matrix.

4 Features of the solutions

To analyze the geometric features of our solutions, we tried to cluster the 100
results obtained for each subchain and for the whole, full-resolution chain. We
based the clustering on two different kinds of data frame: the distance matrices
computed as in Section 3, and, for each chain, the mean-squared Euclidean dis-
tance between any pair of beads as a function of their genomic distance [1,9]. The
latter is an index of compactness. We used the Hierarchical Clustering on Princi-
pal Components algorithm (function HCPC in R), a hybrid technique combining
principal component methods, hierarchical clustering and partitional cluster-
ing [10]). As expected, we found that mean square distances are more efficient
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Figurell. Boxplots of EXT's of beads of level 1. Circles represent outliers, red rect-
angles make the interquartile range, and the central line is the median. The whiskers
extend for at most 1.5 times the interquartile distance.

than distance matrices to our purposes, since they highlight topological differ-
ences in chromatin wrapping. For this reason, here we only report the results
of clustering based on mean-square distances. HCPC automatically detects the
number of clusters, minimizing the intra-cluster variance and maximizing the
inter-cluster variance. In Figures 13, 16, 19, 22, 25, we report, for every cluster,
the most representative element (the closest to centroid of the cluster) and the
most dissimilar from other clusters (the farthest from centroids of other clus-
ters). We have performed the boxplots of mean square Euclidean distances as
a function of genomic distances and the Hierarchical Clustering on Principal
Components for the whole chain and for every subchain.

4.1 Geometric features of subchains

In this Subsection, we list the results described above for blocks 13, 1, 16 and 5,
chosen for the same reason as in Section 3. For each block, we report the pairs
in set L, the boxplots of mean square Euclidean distances, a representation of
the clusters detected on the boxplot means, and some significant configurations
for each cluster. Along with the final configurations, we also report the energy
plots during the annealing, as already done in Figures 4 and 5.

Block 13: 21 beads
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Figurel2. Boxplots of mean square Euclidean distances as a function of genomic
distances of bead pairs in Block 13.

Block 1: 18 beads

Relevant pairs: (0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3), (2, 7), (3, 4), (3, 5), (3,
6), (3, 7), (3, 9), (4, 5), (4, 6), (4, 10), (5, 6), (5. 7). (5. 9). (5, 10), (5, 16), (6,
7). (6, 9). (6, 10), (6, 11, (7. 8), (7, 9), (7, 10), (7. 12). (8, 9). (8, 10), (8, 12).
(9, 10), (9, 11), (9, 12), (9, 13), (9, 16), (10, 11), (10, 12), (10, 13), (10, 14), (10,
15), (10, 16), (10, 17), (11, 12), (11, 13), (11, 14), (11, 15), (11, 16), (11, 17),
(12, 13), (12, 14), (12, 15), (12, 16), (12, 17), (13, 14), (13, 15), (13, 16), (13
17), (14, 15), (14, 16), (14, 17), (15, 16), (15, 17), (16, 17).
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Figurel3. HCPC by mean square FEuclidean distances as function of genomic distances of
final configurations of block 13. In the upper right the weight of principal components.

Figurel4. Clustering by mean square Euclidean distances as function of genomic
distances for block 13. a) The most representative element of cluster 1. al) The most
dissimilar element of cluster 1 from clusters 2 and 3. b) The most representative element
of cluster 2. bl) The most dissimilar element of cluster 2 from clusters 1 and 3. ¢) The
most representative element of cluster 3. c1) The most dissimilar element of cluster 3
from clusters 1 and 2.
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Figurel5. Boxplots of mean square Euclidean distances as a function of genomic
distances of bead pairs in Block 1.

Block 16: 11 beads

Relevant pairs: (0, 1), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (2, 5), (3, 4), (

5), (4, 6), (4, 7), (5, 6), (5, 7), (5,9), (5, 10), (6, 7), (6, 8), (7, 8), (7, 9), (7, 10),
(8,9), (8, 10), (9, 10).

Block 5: 8 beads
Relevant pairs: (0, 1), (0, 2), (1, 2), (2, 3), (3, 4), (3, 5), (3, 6), (4, 5), (4, 6), (5,
6), (5, 7), (6, 7).

4.2 Geometric features of the whole chain

In Figure 24, we show the boxplots of the mean square Euclidean distance be-
tween pairs of beads as a function of their genomic distance for the whole chain
of 292 beads. HCPC finds 3 clusters (Figure 25). In Figure 26 and 27, we have
plotted, for every cluster, the most representative configuration and the most
dissimilar from the other clusters. In Figure 25 we have represented the final
configurations with the low resolution representation (25 beads), in Figure 27
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Figurel7. Clustering by mean square Euclidean distances as function of genomic
distances for block 1. a) The most representative element of cluster 1. al) The most
dissimilar element of cluster 1 from clusters 2 and 3. b) The most representative element
of cluster 2. bl) The most dissimilar element of cluster 2 from clusters 1 and 3. ¢) The
most representative element of cluster 3. c1) The most dissimilar element of cluster 3
from clusters 1 and 2.
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Figurel8. Boxplots of mean square Euclidean distances as a function of genomic
distances of bead pairs in Block 16.
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Figurel9. HCPC by mean square Euclidean distances as function of genomic distances of
final configurations of block 16. In the upper right the weight of principal components.
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Figure20. Clustering by mean square Euclidean distances as function of genomic
distances for block 16. a) The most representative element of cluster 1. al) The most
dissimilar element of cluster 1 from clusters 2 and 3. b) The most representative element
of cluster 2. bl) The most dissimilar element of cluster 2 from clusters 1 and 3. ¢) The
most representative element of cluster 3. c¢1) The most dissimilar element of cluster 3
from clusters 1 and 2.
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Figure21. Box plots of mean square Euclidean distances as a function of genomic
distances of bead pairs in Block 5.
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Figure22. HCPC by mean square Euclidean distances as function of genomic distances
of final configurations of block 5. In the upper right the weight of principal components.
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Figure23. Clustering by mean square Euclidean distances as function of genomic
distances for block 5. a) The most representative element of cluster 1. al) The most
dissimilar element of cluster 1 from clusters 2 and 3. b) The most representative element
of cluster 2. bl) The most dissimilar element of cluster 2 from clusters 1 and 3. ¢) The
most representative element of cluster 3. c1) The most dissimilar element of cluster 3

from clusters 1 and 2.



2

Mean Square Distance [um”]

the same configurations are represented reconstructing the subchains at higher
resolution (292 beads).
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Figure24. Boxplots of mean square Euclidean distances as a function of genomic
distances of bead pairs in the whole chain.

5 Conclusions

The 3D configurations obtained through energy function (1) and the current
parameters appear biologically compatible with what we know on chromosome
configuration: presence of supercoils, helices, TADs, and envelopes compatible
with the radius of the nucleus [4,7,8]. We have created contact matrices whose
heatmaps present empty regions. This can depend on both the relatively small
number of solutions and our objective function, which neglects the low contact
frequencies. Moreover, an analysis of the structures corresponding to intermedi-
ate penalty values has not been done. Some of these structures could contribute
consistently to the final contact matrix. A problem is that sometimes consecutive
beads interpenetrate; this behavior probably depends on the objective function,
since the data fit part has a trivial minimum where all the centroids in £ co-
incide. To overcome this drawback, choosing the contact of surfaces as contact
condition could be sufficient. Another critical point of the present version of the
algorithm is the evaluation of A. The procedure ANNEALINGA (see Table
1 in Section 1) only applies on unconstrained configurations, which have very
scattered values of energy. In the 1000 steps dedicated to calculation of A, the
chain starts from the completely stretched configuration and arrives at a very
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Figure25. HCPC by mean square Euclidean distances as function of genomic distances
of final configurations of the whole chain. In the upper right the weight of principal
components.

a)

o~ Aol
A"

b)

s00g ~
300100940 A sl ¥
[l et

Figure26. Clustering by mean square Euclidean distances as function of genomic dis-
tances for the whole chain at lower-resolution level (25 beads). a) The most represen-
tative element of cluster 1. al) The most dissimilar element of cluster 1 from clusters 2
and 3. b) The most representative element of cluster 2. bl) The most dissimilar element
of cluster 2 from clusters 1 and 3. ¢) The most representative element of cluster 3. cl)
The most dissimilar element of cluster 3 from clusters 1 and 2.



Figure27. Clustering by mean square Euclidean distances as function of genomic dis-
tances for the whole chain at higher-resolution level (292 beads). a) The most represen-
tative element of cluster 1. al) The most dissimilar element of cluster 1 from clusters 2
and 3. b) The most representative element of cluster 2. bl) The most dissimilar element
of cluster 2 from clusters 1 and 3. ¢) The most representative element of cluster 3. c1)
The most dissimilar element of cluster 3 from clusters 1 and 2.

knotted one, with a lot of interpenetrations. In the experiments presented here,
A was calculated on the energy values within the 80-th percentile, and the result
seems to be very inaccurate. We should choose a lower percentile and start the
warm-up phase after resetting the chain configuration.
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