
Playing with our CAT
and Communication-Centric Applications

Davide Basile1 2, Pierpaolo Degano2, Gian-Luigi Ferrari2, and Emilio Tuosto3

1
dbasile@isti.cnr.it {degano,giangi}@di.unipi.it emilio@le.ac.uk

I.S.T.I “A.Faedo” 2 Dept. of Computer Science 3 Dept. of Computer Science
CNR Pisa, Italy University of Pisa, Italy University of Leicester, UK

Abstract. We describe CAT, a toolkit supporting the analysis of communication-
centric applications, i.e., applications consisting of ensembles of interacting ser-
vices. The theoretical underpinning of CAT are contract automata, a recent model
of service composition, in which communication safety is attained through some
notions of agreement properties. Once services are modelled as contract au-
tomata, CAT enables (i) verifying the agreement properties, (ii) synthesising the
orchestrator that enforces communication safety, (iii) detecting misbehaving ser-
vices, and (iv) checking when the services form a choreography (i.e., when a
fully distributed composition can safely replace the orchestrator). A distinguished
characteristic of CAT is the use of mixed-integer linear programming to verify
properties of interest.
We use a simple (albeit non trivial) example to demonstrate CAT.

1 Introduction

Communication is increasingly recognised as a key aspect of modern applications. The
relevance of communication in distributed applications is undisputed. Remote proce-
dure/method invocations are loosing their prominence at the application level due to
their poor scalability, crucial in modern distributed applications. Communication-based
modelling is also appealing for non-distributed software. For instance, application-level
protocols can be devised to specify the behavioural constraints ensuring the correct
use of a library or of an off-the-shelf component. This trend is also witnessed by the
growth that paradigms such as service-oriented or cloud computing had in the soft-
ware industry. In this context, composition of software becomes paramount and re-
quires proper theoretical foundations as well as tool support. In fact, although scalable,
communication-centric applications may pose non trivial obstacle to validation.

We showcase CAT, a prototype toolkit supporting the validation of communication-
centric applications. This toolkit (available at https://github.com/davidebasile/
workspace) is based on contract automata [4,5,3], a recently proposed formal model of
service composition (surveyed in Appendix). Contract automata abstractly model (the
communication pattern of) services as automata whose transitions represent requests
and offers. An interaction between two services occurs when a match action is pos-
sible, that is when one service’s offer matches a partner’s request. Intuitively, contract
automata capture the behaviour of services by tracking the interactions they are keen to

https://github.com/davidebasile/workspace
https://github.com/davidebasile/workspace

qB10 qB11

qB12qB13

price

quote1

contrib

Buyer B1

qB20 qB21 qB22

qB23qB24

quote2 contrib

ok
nop

delivery

Buyer B2

qS0 qS1

qS2 qS3 qS4

qS5
price

quote1

quote2 ok

nop delivery

Seller S

~q0

~q1 ~q2

~q3 ~q4

~q5 ~q6

(price,�, price)

(quote1,�,quote1)

(�,quote2,quote2)

(contrib,contrib,�)

(�,ok,ok)
(�,nop,nop)

(�,delivery,delivery)

The most permissive strong controller of the product automaton B1⊗B2⊗S

Fig. 1. The contract automata for 2BP

execute with each other. Service composition is naturally described in terms of prod-
uct automata. The matching between offers and requests has to guarantee agreement
properties that amount to safe communications.

By means of an example we describe how the analysis of communication-centric
applications can be supported by CAT. To this purpose we borrow here the two-buyers
protocol (2BP) from [9] which we now briefly recall. Two buyers, say B1 and B2, col-
laborate in purchasing an item from a seller S. Buyer B1 starts the protocol by asking S

the price of the desired item (price); the seller S makes an offer by sending the message
quote1 to B1 and the message quote2 to B2. Once received its quote, buyer B1 sends to
B2 its contribution for purchasing the item (message contrib). Buyer B2 waits for the
quote from S and the contribution from B1. Then, it decides whether to terminate by
issuing the nop message to S, or to proceed by sending an acknowledgement to S. In the
latter case, S sends the item to B2 (delivery), while if it receives nop it terminates with
no further action. Figure 1 shows the contract automata of B1, B2, and S where each
interaction is split in offers (overlined labels) and requests (non overlined labels).

We will apply CAT to the above protocol and show how, when the agreement prop-
erty of interest is violated, we identify and fix defects.

2 CAT at work

We have implemented CAT in Java according to the simple architecture of Figure 2. The
main class of CAT extends JAMATA, a framework for manipulating automata yielding
methods for loading, storing, printing, and representing finite state automata. In other

AMPL models CAT API JAMATA
uses extends

Fig. 2. The architecture of CAT

words, CAT originally specializes JAMATA on contract automata, offering to the devel-
opers an API for creating and verifying contract automata. Also, CAT interfaces with a
separate module for solving linear optimization problems, called AMPL, described in
Section 3. This is an original facet of CAT; in fact, it maps the (check of) agreement
properties of interest on a linear optimization problem.

The user of CAT has access to its API, which are partially shown here, see the Ap-
pendix for the remaining methods. The API can be conceptually classified as follows:

Automata operations consist of the methods CA proj(int i), that returns the au-
tomaton specifying the ith service of the composition, CA product(CA[] aut)
and CA aproduct(CA[] aut) that compute respectively the product and the asso-
ciative product of contract automata. Those products essentially interleave the ac-
tions of the services and yield the transitions corresponding to matching actions and
they correspond to two different types of composition (transitions departing from
unreachable states are removed). The product operation preserves existing match
transitions, while the aproduct breaks such transitions and recombines them to
account for all possible interleaving and matches due to new services joining an
existing composition. Interestingly, product has to filter out the offers and request
transitions when the source state has a corresponding outgoing match transition.
Method aproduct is built on top of product by invoking product on the services
obtained as projections of the automaton in input.

Safety check consists of the instance methods safe, agreement, strongAgreement,
and strongSafe returning true if the corresponding agreement property holds
on the contract automaton. Intuitively, an automaton admits strong agreement if
it has at least one trace made only by match transitions; and it is strongly safe if
all the traces are in strong agreement. Basically, strong agreement guarantees that
the composition of services has a sound execution, while strong safety guarantees
that all executions of the composition are sound. Likewise for agreement but for the
fact that traces also admit (unmatched) offers to model interactions with an external
environment. Section 3 discusses the property of weak agreement.

Controllers consist of the methods CA mpc() and CA smpc() that return the most per-
missive controller (MPC), for respectively agreement and strong agreement. A con-
troller basically represents the largest (strongly) safe sub-automaton and is obtained
through a standard construction of Control Theory [6].

We describe how to interact with the API of CAT through a simple command line
interface (we plan to develop a GUI as well). The API is displayed and the user can
choose one of the options (this is not shown here). Each displayed option corresponds to
one of the methods described above. For instance, after choosing to compute a product,
the user is asked to set the contract automata on which to take the product:

Output 1
Do you want to create/load other contract automata? yes 1

Insert the name of the automaton to load or leave empty for create a new one: B1 2

3

Contract automaton: 4

Rank: 1, Number of states: [4], Initial state: [0], Final states: [[3]] 5

Transitions: ([0],[1],[1]), ([1],[-2],[2]), ([2],[3],[3]) 6

7

Do you want to create/load other contract automata? yes 8

The user inputs the automata in CAT by providing their file names (line 2 of Output 1)
and yes on line 8 until there are no more automata to load (in which case the user
enters no to obtain the result of the product). For each entered automaton, CAT prints a
textual description on the screen (lines 4-6 in Output 1) reporting the rank, initial and
final states, and the list of transitions. The transitions are triples (s,l,t) where s is the
source state, l is the label, and t is the target state. These elements are lists of lenght
r (the rank of the automaton), for instance, in Output 1 r = 1 (cf. on line 5). The i-th
element of each list corresponds to the i-th service. In particular, the i-th action in the
list of labels identifies the action perfomed by the i-th service; such action is strictly
positive (if the action is an offer), strictly negative (if it is a request), and 0 if the service
is idle in the transition. For B1, actions price, quote1, and contrib are represented with
the integers 1, −2, and 3, respectively.

After computing the product automaton, CAT displays the result (B1xB2xS in our
example and stores it in a file named B1xB2xS.data). From the main menu, the user
can now choose to compute the MPC of the product automaton (shown in Figure 1); the
result is displayed in Output 2 below. Once the product automaton is loaded, CAT will
compute the MPC:

Output 2
The most permissive controller for strong agreement is: 1

Rank: 3 2

Number of states: [4, 5, 6], Initial state: [0, 0, 0], Final states: [[3][4][5]] 3

Transitions: 4

([0, 0, 0],[1, 0, -1],[1, 0, 1]) ([1, 0, 1],[-2, 0, 2],[2, 0, 2]) 5

([2, 1, 3],[3, -3, 0],[3, 2, 3]) ([2, 0, 2],[0, -7, 7],[2, 1, 3]) 6

([3, 2, 3],[0, 4, -4],[3, 3, 4]) ([3, 2, 3],[0, 5, -5],[3, 4, 5]) 7

([3, 3, 4],[0, -6, 6],[3, 4, 5]) 8

Do you want to save this automaton? (write yes or no) yes KS_B1xB2xS 9

The resulting automaton is of rank 3 and corresponds to the MPC of Figure 1. The final
states are represented as a list where the i-th element is the list of the final states of the
i-th service. This representation allows to check if a state of the MPC is final or not
without needing to explicitly enumerate all the final states of the MPC.

The transitions on lines 5-8 in Output 2 represent the transitions of the MPC; note
that in each transition there is always an idle services. For instance, the transition
([0, 0, 0],[1, 0, -1],[1, 0, 1]) corresponds to the transition (~q0,(price,�, price), ~q1) of
the MPC in Fig. 1 (the second component of the label is 0 because B2 is idle). The
MPC can now be saved in a file as per line 9 in Output 2.

The underlying coordination mechanism of contract automata is orchestration. More
precisely, services are oblivious of their partners and exchange messages through a “hid-
den” orchestrator (formalised by the MPC, if any). Whenever possible, one would like
to have services interacting without the “supervision” of an orchestrator, using FIFO
buffers. Mild conditions [3] ensure that the interactions are sound, in other words the
services form a sound choreography. We briefly discuss this issue below.

For synchronous interactions (where buffers have size 1 and a single buffer may
be non empty), services have to enjoy the branching condition that is necessary and
sufficient for services to form a sound choreography. Basically, the branching condi-
tion holds if the actions of a service are not affected by the states of the other ser-
vices in the composition. As said, a branching condition guarantees “unsupervised”

communications soundness when the communication are synchronous [3,5]. However,
such branching condition does not suffice for asynchronous interactions (namely when
buffers are unbounded and more than one buffer is possibly non empty). In this case it
is necessary to check also for the absence of mixed choice states (i.e., states where more
than one service can perform an offer). The methods of CAT for checking the branching
condition and mixed choice states are discussed in the Appendix. Consider now Fig. 1,
where in Output 3 the state ~q2 corresponds to [2,0,2], the state ~q3 to [2,1,3], and
the transition (contrib,contrib,�) to the label [3,-3,0]. The MPC does not enjoy the
branching condition, as CAT reports:

Output 3
State [2,0,2] violates the branching condition because it has no transition labelled 1

[3,-3,0] which is instead enabled in state [2,1,3] 2

It is important to observe that the message in Output 3 also flags states and transitions
for which the condition is violated. We discuss the problem by considering the automata
in Fig. 1. The local state of buyer B1 in ~q2 and ~q3 is qB12, while the locale state of B2
in ~q2 is qB20, and in ~q3 is qB21. Therefore, in the case that B2 is in local state qB20
where it is waiting for quote2, without an orchestrator the offer contrib from B1 could
fill up the 1-buffer of B2, leading to a deadlock. A simple fix consists in swapping the
order in which the quotes are sent by the seller; CAT reports that the amended protocol
(not shown here) enjoys the branching condition. The contract automaton has no mixed
choice states, as detected by CAT. A mixed choice state could be introduced in 2BP if,
e.g., B2 could send the acknowledgement to S or receive contrib from B1 in any order.
For this variant of 2BP CAT finds the mixed choice state.

3 Linear programming and contract automata

We briefly review a component for solving optimization problems related to contract
automata, that complements the functionalities offered by CAT. This component re-
duces the analysis of the context-sensitive properties of weak agreement [4] to a linear
programming problem and relies on an ad hoc solver as explained below.

The properties of weak agreement were introduced for solving circularity issues,
in which all services are stuck waiting the fulfilment of their requests before providing
the corresponding offers [4]. For example, consider the services (rendered as regular
expressions) A = a.b and B = b.a; their product does not admit agreement. Circular-
ity is solved by allowing matches between requests and offers even though they are
not simultaneous; intuitively, offers may be fired “on credit” provided that the corre-
sponding requests are honoured later on. A trace of an automaton is a weak agreement
if for each request there is a corresponding offer, no matter in which order they occur
in the trace. The notions of admitting weak agreement and of weakly safety are then
similar to the ones of (strong) agreement reviewed earlier. For example, A⊗B admits
weak agreement. The underling theory and the decision procedures for the properties
of weak agreement are developed in [4], and are formalised as mixed linear integer pro-
gramming. The decision procedures are implemented in A Mathematical Programming
Language (AMPL) [7], a widely used language for describing and solving optimization
problems. In this way, the automatic verification of contract automata under properties

of weak agreement exploits efficient techniques and algorithms developed in the area
of operational research. We now briefly describe the implementation of the techniques
for verifying weak agreement (the AMPL code is provided in the Appendix). The script
flow.run, to be launched with the command ampl, is described below:

flow.run
#reset; 1

option solver cplex; // use the simplex algorithm in C 2

model weakagreement.mod; // select model for weak agreement 3

data flow.dat; // load 4

solve; // apply the simplex algorithm 5

display gamma; // display the result: if gamma >= 0 then property holds 6

The script firstly loads the automaton from the file flow.dat (line 4). The description of
the automata consists of the number of nodes, the cardinality of the alphabet of actions,
and a matrix of transitions for each action a, where there is value 0 at position (s, t) if
there is no transition from state s to state t labelled by a, and respectively 1 or −1 if
there is an offer or request transition on a. In this case, the contract automata described
in flow.dat is representative.

The AMPL linear program to load is given as input parameter to the script (line 3).
The two optimization problems available are: weakagreement.mod, the file contains
the formalization of the optimization problem for deciding whether a contract automata
admits weak agreement, and weaksafety.mod that contains the formalization of the
optimization problem for deciding whether a contract automata is weakly safe.

Both formal descriptions are then solved using the solver cplex, that is the simplex
method implemented in C. However it is possible to select other available solvers in the
script flow.run (line 2). The execution of the script will prompt to the user the value of
variables. As proved in [4], if the variable gamma is non negative then the contract au-
tomata satisfies the given property. Bi-level optimization problems can not be defined
directly in AMPL. Therefore, we cannot plainly apply formalisation of [4] for repre-
senting weakly liable transitions (see Appendix) as an optimization problem. However,
different techniques of relaxation of the bi-level problem for over approximating the set
of weakly liable transitions can be used, as for example lagrangian relaxation. As future
work, we are planning to develop a toolchain for fully integrating the above techniques
in CAT, in order to reuse them for the functionalities described in Section 2. In particu-
lar, CAT will automatically generate a contract automata description flow.dat, execute
the script flow.run and collect the results.

4 Concluding Remarks

We described CAT, a tool supporting the analysis of communication-centric applica-
tions attained with novel techniques based on combinatorial optimization. A non trivial
example was used to show main features of CAT.

An interesting application domain for CAT are service-oriented applications. In this
context, model-driven approaches have been advocated for the analysis of service com-
position. In particular, automata have been used as target models to translate BPEL pro-
cesses [10] in [12,8]; for instance, constraint automata semantics of REO [1,2] is used

in [11] to analyse web-services. Relations of contract automata with service composi-
tion are studied in [4,5,3]. The properties verified by CAT have not been considered by
other approaches. For example, the identification - even in presence of circular depen-
dencies of services (see Section 3) - of liable transitions that may spoil a composition
complement the verification done in [11] (see Appendix for details about liable tran-
sitions). We conjecture that it would be possible to define model transformations from
contract automata to BPEL which preserve the analysis discussed here.

A model-driven approach would also ease the integration of CAT with e.g., the tools
discussed above. This would provide developers with a wide variety of tools for guar-
anteeing the quality of the composition of services according to different criteria.

The tool is still a prototype; we plan to improve its efficiency, extend it with new
functionalities (e.g., relaxation), and improve its usability (e.g., adding a user-friendly
GUI and pretty-printing automata). We note that CAT provides a valid support to the
analysis of applications. In fact, CAT is able to detect possible violations of the proper-
ties of interest (for example branching condition, mixed choice). A drawback of CAT is
that it does not support modelling and design of applications. An interesting evolution
of CAT would be to add functionalities for amending applications violating properties
of interest. For instance, once liable transitions are identified, CAT could suggest how
to modify services to guarantee the property. This may also be coupled with the model-
driven approach by featuring functionalities traceing transitions in the actual source-
code of services.

References
1. F. Arbab. Reo: a channel-based coordination model for component composition. Mathemat-

ical Structures in Computer Science, 14(3):329–366, 2004.
2. C. Baier, M. Sirjani, F. Arbab, and J. J. M. M. Rutten. Modeling component connectors in

reo by constraint automata. Sci. Comput. Program., 61(2):75–113, 2006.
3. D. Basile, P. Degano, G. Ferrari, and E. Tuosto. Relating two automata-based models of

orchestration and choreography. JLAMP, 2015.
4. D. Basile, P. Degano, and G. L. Ferrari. Automata for analysing service contracts. In M. Maf-

fei and E. Tuosto, editors, TGC 2014, volume 8902 of LNCS, pages 34–50. Springer, 2014.
5. D. Basile, P. Degano, G. L. Ferrari, and E. Tuosto. From orchestration to choreography

through contract automata. In ICE 2014, pages 67–85, 2014.
6. C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 2006.
7. R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A mathematical programming language.

AT&T Bell Laboratories Murray Hill, NJ 07974, 1987.
8. X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In WWW ’04, pages

621–630. ACM, 2004.
9. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In G. C.

Necula and P. Wadler, editors, POPL, pages 273–284. ACM, 2008.
10. M. B. Juric. Business Process Execution Language for Web Services BPEL and BPEL4WS

2Nd Edition. Packt Publishing, 2006.
11. S. Tasharofi, M. Vakilian, R. Z. Moghaddam, and M. Sirjani. Modeling Web Service Inter-

actions Using the Coordination Language Reo. In WS-FM, volume 4937 of LNCS. Springer.
12. A. Wombacher, P. Fankhauser, and E. Neuhold. Transforming BPEL into annotated deter-

ministic finite state automata for service discovery. In Web Services, 2004, 2004.

A Contract Automata

A contract automata (cf., Def. 2 below) represents the behaviour of a set of principals
capable of performing some actions; more precisely, as formalised in Def. 1, the actions
of contract automata allow them to “advertise” offers, “make” requests, or “handshake”
on match actions, that is simultaneous offer/request actions. Consequently, transitions
of contract automata will be labelled with tuples of elements in the set L def

= R∪O∪{�}
where: requests of principals will be built out of R while their offers will be built out of
O, R∩O = /0, and � 6∈ R∪O is a distinguished label to represent components that stay
idle. We let a,b,c, . . . range over L and fix an involution · : L→ L such that

R⊆ O, O⊆ R, ∀a ∈ R∪O : a = a, and � = �

As usual, offer actions will be topped by bar (i.e. a). Let~v = (a1, ...,an) be a vector of
rank n ≥ 1, in symbols rv, then ~v(i) denotes the i-th element. We write ~v1~v2 . . .~vm for
the concatenation of m vectors ~vi, while |~v| = n is the rank (length) of ~v and ~vn for the
vector obtained by n concatenations of~v.

Definition 1. A tuple �
∗b�
∗ on L is a request (action) on b iff b ∈ O. A match (action)

on b is a tuple �
∗b�
∗b�
∗ on L with b∈ R∪O. The relation ./⊆ L∗×L∗ is the symmetric

closure of
·
./⊆ L∗×L∗ where ~a1

·
./~a2 iff |~a1| = |~a2| and both the following conditions

hold

– ∃b ∈ R∪O : ~a is either a request or an offer on b;
– ∃b ∈ R∪O : ~a1 is an offer on b =⇒ ~a2 is a request on b
– ∃b ∈ R∪O : ~a1 is a request on b =⇒ ~a2 is a offer on b.

Definition 2. Assume as given a finite set of states Q = {q1,q2, . . .}. Then a contract
automaton A of rank n is a tuple 〈Q, ~q0,Ar,Ao,T,F〉, where

– Q = Q1× . . .×Qn ⊆ Q n

– ~q0 ∈ Q is the initial state
– Ar ⊆ R,Ao ⊆ O are finite sets (of requests and offers, respectively)
– F ⊆ Q is the set of final states
– T ⊆ Q×A×Q is the set of transitions, where A⊆ (Ar ∪Ao∪{�})n and if

(~q,~a,~q′) ∈ T then both the following conditions hold:
• ~a is either a request or an offer or a match
• if~a(i) = � then it must be~q(i) = ~q′(i)

A principal is a contract automaton of rank 1 such that Ar ∩ co(Ao) = /0.

Note that a principal is not allowed to make a request on actions that it offers. Below, we
introduce two different operators for composing contract automata. Both products in-
terleave all the transitions of their operands. We only force a synchronisation to happen
when two contract automata are ready on their respective request/offer action. These
operators represent two different policies of orchestration. The first operator is called
simply product and it considers the case when a service S joins a group of services al-
ready clustered as a single orchestrated service S′. In the product of S and S′, the first

can only accept the still available offers (requests, respectively) of S′ and vice versa. In
other words, S cannot interact with the principals of the orchestration S′, but only with
it as a whole component.

This is not the case with the second operation of composition, called a-product:
it puts instead all the principals of S at the same level of those of S′. Any matching
request-offer of either contracts can be split, and the offers and requests, that become
available again, can be re-combined with complementary actions of S, and viceversa.
The a-product turns out to satisfactorily model coordination policies in dynamically
changing environments, because the a-product is a form of dynamic orchestration, that
adjusts the workflow of messages when new principals join the contract.

We now introduce our first operation of composition; recall that we implicitly as-
sume the alphabet of a contract automaton of rank m to be A⊆ (Ar ∪Ao∪{�})m.

Definition 3 (Product). Let Ai = 〈Qi, ~q0i,A
r
i ,A

o
i ,Ti,Fi〉, i∈ 1 . . .n be contract automata

of rank ri. The product
⊗

i∈1...n Ai is the contract automaton 〈Q, ~q0,Ar,Ao,T,F〉 of rank
m = ∑i∈1...n ri, where:

– Q = Q1× ...×Qn, where ~q0 = ~q01 . . . ~q0n
– Ar =

⋃
i∈1···n Ar

i , Ao =
⋃

i∈1···n Ao
i

– F = {~q1 . . .~qn |~q1 . . .~qn ∈ Q,~qi ∈ Fi, i ∈ 1 . . .n}

– T is the least subset of Q×A×Q s.t. (~q,~c,~q′) ∈ T iff, when~q =~q1 . . .~qn ∈ Q,
either there are 1≤ i < j ≤ n s.t. (~qi,~ai,~q′i) ∈ Ti, (~q j,~a j,~q′j) ∈ Tj,~ai ./~a j and

~c = �
u~ai�

v~a j�
z with u = r1 + . . .+ ri−1, v = ri+1 + . . .+ r j−1, |~c|= m

and
~q′ =~q1 . . .~qi−1 ~q′i ~qi+1 . . . ~q j−1 ~q′j ~q j+1 . . .~qn

or there is 1≤ i≤ n s.t. (~qi,~ai,~q′i) ∈ Ti and
~c = �

u~ai�
v with u = r1 + . . .+ ri−1, v = ri+1 + . . .+ rn, and

~q′ =~q1 . . .~qi−1 ~q′i ~qi+1 . . .~qn and
∀ j 6= i,1≤ j ≤ n,(~q j,~a j,~q′j) ∈ Tj it does not hold that~ai ./~a j.

There is a simple way of retrieving the principals involved in a composition of
contract automata obtained through the product introduced above: just introduce pro-
jections ∏

i as done below.

Definition 4 (Projection). Let A = 〈Q, ~q0,Ar,Ao,T,F〉 be a contract automaton of
rank n, then the projection on the i-th principal is
∏

i(A) = 〈∏i(Q), ~q0(i),∏
i(Ar),∏i(Ao),∏i(T),∏i(F)〉 where i ∈ 1 . . .n and:

i

∏(Q)= {~q(i) |~q∈Q}
i

∏(F)= {~q(i) |~q∈F}
i

∏(Ar)= {a | a∈Ar,(q,a,q′)∈
i

∏(T)}

i

∏(Ao)= {a | a∈Ao,(q,a,q′)∈
i

∏(T)}
i

∏(T)= {(~q(i),~a(i),~q′(i)) | (~q,~a,~q′)∈T ∧~a(i) 6= �}

Definition 5 (a-Product). Let A1,A2 be two contract automata of rank n and m, re-
spectively, and let I = {∏i(A1) | 0 < i≤ n}∪{∏ j(A2) | 0 < j≤m}. Then the a-product
of A1 and A2 is A1 �A2 =

⊗
Ai∈I Ai.

Note that if A ,A ′ are principal contract automata, then A⊗A ′ = A �A ′.

B Detailing the Implementation of CAT

CAT consists of a class CAUtil and of other classes CA and CATransition, extending
two corresponding super-classes of JAMATA. The class CA provides the main function-
alities of CAT; its instance variables capture the basic structure of our automata:

– int rank is the rank of the automaton;
– int[] initial is the initial state of the automaton (the array is of size rank);
– int[] states the vector of the number of local states of each principal in the

contract automata (the array is of size rank);
– int[][] finalstates the final states of each principal in the contract automata;
– CATransition[] tra the transitions of the contract automata.

The n local states of a principal are represented as integers in the range 0, . . . ,n−1;
in this case, states.length = 1 and states[0] = n. The state of an automaton of
rank m > 1 is an m-vector states such that states[i] yields the number of states of
the ith principal. This low-level representation (together with the encoding of actions
and labels as integers) enabled us to optimize space.

The class CATransition, describes a transition of a contract automata. The instance
variables of a CATransition object are:

– int[] source (the starting state of the transition);
– int[] label (the label of the transition);
– int[] target (the arriving state of the transition).

The class CATransition provides methods to extract its instance variables, to check if
the transition is an offer, a request or a match, and to extract the (index of the) principal
performing the offer, if any. The methods not discussed in Section 2 are:

Liable detection consists of the methods CATransition[] liable() - returning tran-
sitions from a state s to a state t such that s is in the MPC but t is not - and
CATransition[] strongLiable() that similarly returns such transitions for the
MPC of the strong agreement property. In particular, liable services are those re-
sponsible for leading a contract composition into a failure.

Decentralization includes int[][] branchingCondition(), that returns two states
and an action for which the branching condition is violated. Another similar method
is int[][] extendedBranchingCondition() which deals with open-ended in-
teractions. The last method in this category is int[] mixedChoice() that returns
a mixed-choice state (a state where a principal has enabled both offers and requests
inside matches). All such methods return null when the conditions they check do
not hold.

C AMPL Code

The code of weakagreement.mod and weaksafety.mod is depicted in Figure 3. For
further details about CAT, we refer the interested reader to the full documentation, avail-
able online at
https://github.com/davidebasile/workspace/tree/master/JaMata/doc.

https://github.com/davidebasile/workspace/tree/master/JaMata/doc

weakagreement.mod
1

n number of nodes # m number of actions 2

param n; param m; param K; param final; #final node 3

set N := {1..n}; set M := {1..m}; param t{N,N}; param a{N,N,M}; 4

var x_t{N,N} >=0 integer; var z_t{N,N,N} >=0; 5

var gamma; var p{N} binary; var wagreement; 6

7

#flow constraints 8

subject to Flow_Constraints {node in N}: 9

sum{i in N}(x_t[i,node]*t[i,node]) - sum{i in N}(x_t[node,i]*t[node,i]) = 10

if (node == 1) then -1 11

else if (node == final) then 1 12

else 0; 13

; 14

15

subject to p1{node in N}: p[node] <= sum{i in N}(x_t[node,i]*t[node,i]); 16

subject to p2{node in N}: sum{i in N}(x_t[node,i]*t[node,i]) <= p[node]*K; 17

18

subject to Auxiliary_Flow_Constraints {snode in N diff {1},node in N}: 19

sum{i in N}(z_t[snode,i,node]*t[i,node]) - sum{i in N}(z_t[snode,node,i]*t[node,i]) =20

if (node == 1) then - p[snode] 21

else if (node == snode) then p[snode] 22

else 0; 23

24

subject to Auxiliary_Flow_Constraints2{i in N, j in N,snode in N}: 25

z_t[snode,i,j]*t[i,j] <= x_t[i,j]*t[i,j]; 26

27

subject to threshold_constraint {act in M}: 28

sum{i in N,j in N} x_t[i,j]*t[i,j]*a[i,j,act] >= gamma; 29

30

#objective function 31

maximize cost: gamma; 32

weaksafety.mod
1

n number of nodes # m number of actions 2

param n; param m; param K; param final; #final node 3

set N := {1..n}; set M := {1..m}; param t{N,N}; param a{N,N,M}; 4

var x_t{N,N} >=0 integer; var z_t{N,N,N} >=0; 5

var gamma; var p{N} binary; var v{M} binary; var wagreement; 6

7

#flow constraints 8

subject to Flow_Constraints {node in N}: 9

sum{i in N}(x_t[i,node]*t[i,node]) - sum{i in N}(x_t[node,i]*t[node,i]) = 10

if (node == 1) then -1 11

else if (node == final) then 1 12

else 0; 13

; 14

15

subject to p1{node in N}: p[node] <= sum{i in N}(x_t[node,i]*t[node,i]); 16

subject to p2{node in N}: sum{i in N}(x_t[node,i]*t[node,i]) <= p[node]*K; 17

18

subject to Auxiliary_Flow_Constraints {snode in N diff {1},node in N}: 19

sum{i in N}(z_t[snode,i,node]*t[i,node]) - sum{i in N}(z_t[snode,node,i]*t[node,i]) =20

if (node == 1) then - p[snode] 21

else if (node == snode) then p[snode] 22

else 0; 23

24

subject to Auxiliary_Flow_Constraints2{i in N, j in N,snode in N}: 25

z_t[snode,i,j]*t[i,j] <= x_t[i,j]*t[i,j]; 26

27

subject to vi: sum{i in M} v[i] = 1; 28

29

subject to threshold_constraint : 30

sum{act in M,i in N,j in N} (v[act]*x_t[i,j]*t[i,j]*a[i,j,act]) <= gamma; 31

32

#objective function 33

minimize cost: gamma; 34

Fig. 3. The implementation in AMPL of the optimization problem for deciding weakagreement and
weak safety.

	 Playing with our CAT and Communication-Centric Applications
	Introduction
	CAT at work
	Linear programming and contract automata
	Concluding Remarks
	Contract Automata
	Detailing the Implementation of CAT
	AMPL Code

