
Multiresolution and fast decompression for optimal web-based rendering

Federico Ponchioa, Matteo Dellepianea

aVisual Computing Lab, ISTI CNR, Pisa, Italy

Abstract

Limited bandwidth is a strong constraint when efficient transmission of 3D data to Web clients and mobile applications is needed.
In this paper we present a novel multi-resolution WebGL based rendering algorithm which combines progressive loading, view-
dependent resolution and mesh compression, providing high frame rates and a decoding speed of million of triangles per second in
JavaScript. The method is parallelizable and scalable to very large models.
The algorithm is based on the local multi-resolution approaches provided by the community, but ad-hoc solutions had to be studied
and implemented to provide adequate performances. In particular, a compression mechanism that reached very high compression
rate without impact on rendering performance was implemented. Moreover, the data partition strategy was modified in order to be
able to load different types of data (i.e. point clouds) and better adapt to the potentials and limitations of web-based rendering.

Keywords: multiresolution, WebGL, 3D Web, web based 3D rendering, online 3D content deployment, mesh compression

1. Introduction1

Limited bandwidth and increasing model sizes pose a chal-2

lenge in the transmission of 3D data to Web clients and mobile3

applications. A possible approach is to compress the 3D model4

in order to minimize transmission time. Most of the research in5

this field has been focused on optimizing compression ratio.6

Unfortunately, limited bandwidth often pairs with limited7

computational power, either because of JavaScript environment8

or low CPU power mobile devices, to the point that for most al-9

gorithms decoding time becomes the bottleneck even at moder-10

ately low bandwidth. Acceptable rates can be regained reducing11

compression ratio or using less sophisticate entropy compres-12

sion algorithms.13

A different approach makes use of progressive reconstruc-14

tion algorithms, which improve the user experience by provid-15

ing a simplified version of the model that refines while the re-16

maining part of the model is being downloaded. The model17

converges very quickly at the beginning of the download, and18

only the details require the full model. However this class of19

algorithms performs even worse in terms of decoding time (as20

shown in Limper [? ]) or in terms of compression ratio.21

In the context of multi-resolution methods another desirable22

feature could be the view-dependent refinement. This allows to23

prioritize the download, decode a specific part of the model and24

vary resolution of the rendered geometry to maintain a constant25

screen resolution. This is obtained by maximizing quality at a26

given frame rate.27

In addition to the above limitations, the 3D models that are28

now available on the web cover a much broader range of possi-29

bilities w.r.t. the past, including point clouds, triangle soups,30

topologically complex geometries, partially textured models.31

This leads to the necessity to propose a framework which could32

be robust enough to deal with different cases.33

34

In this paper we present a novel multi-resolution WebGL35

based rendering algorithm (Figure 1) which combines progres-36

sive loading, view-dependent resolution and mesh compression,37

providing good rates and a decoding speed of million of trian-38

gles per second in JavaScript. Additionally, the method is flexi-39

ble, since it is able to handle a variety of 3D formats, including40

textured models, non-manifold meshes, point clouds. Finally, it41

is also scalable, since it’s able to to deal with very large models.42

43

The method is based on a class of multiresolution structures44

[? ? ] where the “primitive” of the multiresolution is a patch45

made of thousands of triangles. The original approach was re-46

written to:47

• obtain a more efficient data partition, and handle more48

data formats than triangulated surfaces49

• compress the data structure in order to save disk space50

and bandwidth with no impact on performances51

• extend the original algorithm to remote rendering52

The paper is organized as follows: Section 2 provides an53

overview of related works. In Section 3 we describe the mul-54

tiresolution structure, focusing on the improvements over the55

existing method, and on how the compression algorithm was56

designed to optimize decoding time while maintaining an ad-57

equate compression ratio. In Section 4 we compare it with58

existing web solutions for mesh compression and progressive59

visualization, and we analyze the performances when dealing60

with different classes of 3D models. The proposed method rep-61

resents a solid alternative to current solutions, providing a prac-62

tical mean to handle 3D models on the web.63

Preprint submitted to Graphical Models September 22, 2017



Figure 1: Progressive refinement of the Happy Buddha: on the upper left corner the size downloaded, on the upper right corner the number of triangles in the refined
model. The header and index amount to 8KB

2. Related Work64

This paper is related to several topics in the field of Com-65

puter Graphics. Among them: web-based 3D rendering, pro-66

gressive and multiresolution rendering approaches, and fast de-67

compression methods for 3D models.68

While a complete overview of all these subjects goes well be-69

yond the scope of the paper, in the next subsections we provide70

a short description of the state of the art, trying to focus on the71

aspects which are more related to the proposed approach.72

73

2.1. Web-based 3D rendering74

Three-dimensional content has always been considered as75

part of the multimedia family. Nevertheless, especially when76

talking about web visualization, its role with respect to images77

and videos has always been a minor one. Visualization of 3D78

components was initially devoted to external components, such79

as Java applets or ActiveX controls [? ].80

After some initial efforts for standardization [? ? ], the pro-81

posal of WebGL standard [? ], which is a mapping of OpenGL|ES82

2.0 [? ] specifications in JavaScript, brought a major change.83

Several actions related to the use of advanced 3D graphics has84

been proposed since then. For a general survey, please refer to85

the work by Evans [? ]. Since the use of OpenGL commands86

needs advanced programming skills, there have been several ac-87

tions to provide an ”interface” between them and the creation of88

web pages. We could subdivide the proposed systems between89

declarative approaches [? ], like X3DOM [? ] or XML3D [?90

], and imperative approaches, like Three.js [? ], SpiderGL [?91

] and WebGLU [? ]. The main difference between the groups92

is that the first ones rely on the concept of scenegraph, hence93

a scene has to be defined in all its elements, while the second94

ones provide a more direct interface with the basic commands.95

Other systems provide a sort of hybrid approach [? ], where a96

simple scene has to be defined.97

Evans [? ] points out in his survey that declarative approaches98

had a major impact in the research community, while imperative99

approaches were mainly used in the programming community.100

More in general, given the fact that the amount of data that101

needs to be sent to the webpage can be quite big, several efforts102

about a better organization of generic streamable formats [? ?103

] have been proposed. Nevertheless, when complex 3D data104

have to be streamed, these structures are not flexible enough to105

handle them.106

In order to face this problem, in the last three years some pro-107

gressive compression methods ad hoc for 3D streaming have108

been developed. Gobbetti et al. [? ] proposed a quad-based109

multi-resolution format. Behr et al. [? ] transmit different110

quantization levels of the geometry using a set of nested GPU-111

friendly buffers. Lavouè et al. [? ] proposed an adaptation for112

the Web (reduced decompression time at the cost of a low com-113

pression ratio) of a previous progressive algorithm [? ]. Other114

research has been also conducted to handle other types of data,115

like point clouds [? ], which may present different types of is-116

sues to face with.117

The rendering of textures or textured 3D models has been taken118

into account even before the standardization actions. In these119

cases the main issue is the amount of image data: standard tech-120

niques like mip-mapping can be adapted and improved both on121

the software and hardware side [? ]. The issue of handling ge-122

ometric data has been usually considered a minor one , due to123

the usual low complexity of 3D textured models [? ]. Never-124

theless, recently complex 3D models with texture coordinates125

are available from acquisition devices and technologies. Next126

subsections will provide further details.127

2.2. Progressive and Multi-resolution methods128

An important feature for user experience when rendering129

over slow connections or compressed models is progressive-130

ness: the possibility to temporarily display an approximated131

version of the model and to refine it while downloading or pro-132

cessing the rest of the data.133

The simplest (and widely used) strategy is to use a a discrete134

set of increasing resolution models (usually known as Level Of135

Detail, LOD). The main drawback with this approach is the136

abrupt change in detail each time a model is replaced.137

A change of paradigm was brought by progressive meshes,138

introduced by Hoppe [? ]. These meshes encode the sequence139

of operations of a edge collapse simplification algorithm. This140

sequence is traversed in reverse, so that each collapse becomes141

2



a split, and the mesh is refined until the original resolution. An142

advantage of progressive techniques is the much more smooth143

transition resolution changes, and the possibility to combine it144

with selective refining or view-dependent multiresolution, but145

this high granularity was achieved at the cost of low compres-146

sion rates: about 37 bpv with 10 bit vertex quantization.147

A large number of progressive techniques were later devel-148

oped, but as noted in [? ], Table 1, the research focus, however,149

was on rate-distortion performances and speed was mostly ne-150

glected. Latest algorithms still run below 200KTs in CPU.151

Mobile and web application would be really too slow using152

these methods. As a compromise, pop buffers [? ] propose153

a method to progressively transmit geometry and connectivity,154

while completely avoiding compression.155

Another desirable feature, especially for large models, is156

view-dependent loading and visualization. Most multiresolu-157

tion algorithms were made obsolete by the increased relative158

performances of GPU over CPU around the first years of 2000.159

It simply became inefficient to operate on the mesh at the level160

of the single triangle. Several works [? ? ? ? ] achieved161

much better performances by increasing the granularity of the162

multiresolution to a few thousand triangles.163

The main problem when increasing the granularity is ensur-164

ing boundary consistency between patches at different resolu-165

tion: Yoon [? ] and Sander [? ] both employ a hierarchical166

spatial subdivision, but while the first simply disables simpli-167

fication of most boundary edges, which results in scalability168

problems, the second relies on global, spatial GPU geomorph-169

ing to ensure that progressive meshes patch simplification is170

consistent between adjacent blocks. The works by Cignoni [?171

? ] rely instead on a non hierarchical volumetric subdivision172

and a boundary preserving patch simplification strategies that173

guarantee coherence between different resolutions, while at the174

same time ensuring that no boundary persists for more than one175

level. While not progressive in a strict sense, given current ren-176

dering speed, the density of triangles on screen is so high that177

popping effects are not noticeable.178

An additional issue when dealing with view-dependent multi-179

resolution techniques is the handling of textured models. While180

the encoding of texture coordinates can be easily taken into181

account when creating the patches of different resolution, the182

boundary consistency among them needs to take into account183

the texture images. Previous multi-resolution methods [? ? ]184

proposed solutions for this, but they could fail when dealing185

with complex geometries.186

187

Compression comes as a natural extension to this family of188

multiresolution algorithms: each patch can be compressed inde-189

pendently from the others as long as the boundary still matches190

with neighboring patches. A wavelet based compression was191

developed in [? ] for terrains, a 1D Haar wavelet version in [? ]192

for generic meshes on a mobile application. A comprehensive193

account of compression algorithms and the convergence with194

view-dependent rendering of large datasets can be found on a195

recent survey from Maglo et al.[? ].196

2.3. Fast Decompression of 3D models197

Given that decompression speed is a key factor in order to198

be able to use compressed mesh, there’s been surprisingly little199

effort by the community to provide solutions.200

Gumhold and Straßer [? ] developed a connectivity only com-201

pression algorithm that was able to decompress at 800KTs in202

1998. Pajarola and Rossignac in [? ], in 2000, reported 26KTs203

for a progressive compression algorithm, and developed a high-204

performance Huffman decoding identifying entropy compres-205

sion as a possible bottleneck.206

Finally, Isenburg and Gumhold in 2003 [? ] developed a stream-207

ing approach to compression of gigantic meshes reaching an208

impressive decompression speed of 2MTs. The method ac-209

counts also for texture coordinates. A further work on this was210

proposed in 2005 [? ]. We don’t know of any following work211

specifically geared toward fast decompression. Even the recent212

survey by Maglo [? ] shows that most of the effort is devoted213

to compression quality, but the performances of the works by214

Isenburg haven’t been matched yet.215

3. Method216

Our multiresolution algorithm builds upon the methods de-217

scribed on [? ? ], which are recapped in Section 3.1 for com-218

pleteness. This Section provides a description of the novel219

method, by presenting an improved partition strategy, and a220

novel compression scheme (Section 3.2) tailored around the221

need for decompression speed, which is obtained using entropy222

encoding 3.3. Finally, the implementation for remote rendering223

(section 3.4) is presented.224

3.1. Batched Multiresolution225

Figure 2: Left: volume partition by Cignoni [? ]. Right: the volume partition
obatined with our method.

In a multiresolution method, the model is split into a set of226

small meshes at different resolutions, obtained through a sim-227

plification process, that can be assembled to create a seamless228

mesh by simply traversing a tree which encodes the dependen-229

cies between each patch, using the estimated screen error to se-230

lect the resolution needed in each part of the model. The screen231

space error is computed starting from the geometric error due232

to the simplification process, and computing the corresponding233

size in pixel when projected on screen.234

3



For the simplification of the mesh we used the Quadric Edge235

Collapse method [? ]. This simplification proved to be the236

most accurate and reliable, even though the simplification speed237

may be lower than other algorithms. Since partitions have to238

be created in a pre-processing stage, it was decided to use the239

slower alternative to obtain more accurate results. Moreover,240

quadric edge collapse can be easily extended to handle textured241

models (see later).242

To build this collection of patches we need a sequence of243

non-hierarchical volume partitions (V-partition) of the the model;244

non hierarchical means essentially that no boundary is preserved245

between partitions at different levels of the hierarchy.246

Cignoni et al [? ] showed that any non-hierarchical se-247

quence of volume partitions can be the base of a patch based248

multiresolution structure. Good partition strategies minimize249

boundaries, thus generating compact cells. In addition, they250

allow streaming construction and generate well balanced trees251

even when the distribution of the model triangles is very irregu-252

lar. They used the Voronoi structure (see Figure 2, left), which253

is optimal for boundary minimization and balance. However,254

this partition is not suitable for streaming, leading to long pro-255

cessing times. On the other hand, the regular spatial subdivision256

used the previous version of the method [? ] might generate un-257

balanced trees for very irregular models. This may impact on258

adaptivity.259

We propose a different volume partition, defined by the leaves260

of a KD-tree built on the triangles of the model; to ensure the261

non hierarchical condition, the split ratio in the KD-tree alter-262

nates between 0.4 and 0.6 instead of the usual 0.5.263

Figure 2 shows a typical partition provided by our method. The264

choice of this partition helps to better stream the model and265

provides better adaptivity. Additionally, the very regular shape266

of the patches may be useful when adding texture support (see267

later).268

3.1.1. Extension to textured models and point clouds269

The main challenge with multiresolution textured models270

lies in the simplification algorithm: it needs to take into account271

texture seams, and minimize deformation of the texture on the272

surface. We used the algorithm employed in Meshlab [? ],273

which is an extension of Garland work [? ] based on quadrics274

in 5 dimensions which include texture coordinates in selection275

of the collapse and the vertex optimization computation.276

Enabling support for point clouds requires a few changes,277

merging into the same data structure, the functionality of Batched278

Multitriangulation [? ] and those of Layered Point Clouds [? ]:279

the simplification algorithm needs to be replaced with a point280

filtering approach, where half of the points are removed at each281

level. The octree structure of this data sampling perfectly fits in282

the compression and rendering paradigms explained in the next283

sections.284

3.2. Mesh Compression285

When porting multiresolution methods to the web, band-286

width becomes a further limitation. Hence, mesh compression287

becomes valuable not only to improve rendering performances,288

but also to reduce disk space occupancy.289

However, in addition to the issue of fast decompression, our290

multiresolution algorithm imposes a set of constrains to mesh291

compression:292

• each patch needs to be encoded independently from the293

others, so the method must be efficient and fast even on294

small meshes295

• boundary vertices, replicated on neighboring patches, need296

to remain consistent through compression297

• non manifold models must be supported298

It would be possible to exploit the redundancy of the data299

due to the fact that the same surface is present in patches at300

different levels of resolution. We choose not to do so in order301

to keep the compression stage independent of the simplification302

algorithm used and to simplify parallel decompression of the303

patches. Otherwise, we would have to keep track of and enforce304

dependencies. In the next subsections, the strategies for the305

compression of the elements of the 3D models are shown.306

3.2.1. Connectivity compression307

The compression of connectivity can be difficult to handle,308

especially in the case of non manifold meshes. We modified the309

algorithm presented in [? ], that supports non manifold meshes310

and surfaces with handles or holes.311

The face-face topology for compression is computed as fol-312

lows: we create an array containing three edges for each tri-313

angle, and sort it so that edges sharing the same vertices will314

be consecutive (independently of the order of the edges). The315

edges are then paired taking orientation into account, and all316

non paired edges are marked as boundary. Non manifold meshes317

will simply force the creation of some artificial boundaries.318

The encoding process starts with a triangle and expands iter-319

atively adding triangles. The processed region is always home-320

omorphic to a disk and if the region meets already considered321

triangles, we consider the common vertices as duplicated. The322

boundary of the already processed (encoded or decoded) region323

is stored as a doubly linked list of oriented edges (active edges),324

The list is actually implemented as an array for performances325

reasons. A queue keeps track and prioritize the active edges.326

The first triangle adds three active edges to the list; itera-327

tively an edge is extracted from the queue and, if not marked as328

processed, the following codes are emitted (see Figure 3):329

SKIP if the edge is a boundary edge, or the adjacent triangle330

has already been encoded; the edge is marked as processed.331

LEFT or RIGHT if the adjacent triangle shares two edges332

with the boundary; The two edges are marked as processed,333

a new edge added to the queue and its boundary adjacencies334

adjusted.335

VERTEX if the adjacent triangle shares only one edge with336

the boundary, in this case the edges is marked as processed and337

two new edges added to the queue. If vertex of the new triangle338

opposing the edge was never encountered before its position339

is estimated using parallelogram prediction and the difference340

encoded, otherwise its index is encoded (in literature this case341

4



Figure 3: The four decompression codes: black arrows represent the front, the red arrow the current edge, in green the new edges added to the front.

is often referred as a “split”). This is a key difference with [?342

], where in the second case a SKIP code would be emitted, to343

keep the encoded region simple.344

If the mesh is composed of several connected components,345

the process is restarted for each component.346

The order in which the active edges are processed is im-347

portant as we would like to minimize the number of VERTEX348

split operations, and generate a vertex-cache-friendly triangle349

order. To do so, we simply prioritize the right edges in the350

VERTEX operation, so that the encoding proceeds in ’spirals’.351

If the mesh is not homeomorphic to a disk, some split opera-352

tions are required. This strategy reduces the number of splits353

to less than 1% in our examples, incurring in an average of 0.2354

bpv cost.355

This algorithm is certainly not optimal in term of bitrate,356

but it is extremely simple, linear in the number of triangles and357

robust to non-manifold meshes; as we will see in the results,358

speed is more important than bitrate.359

3.2.2. Geometry and vertex attribute compression360

To ensure consistency between boundary vertices of adja-361

cent patches, we adopt a global quantization grid for coordi-362

nates, normals and colors. The global grid step for vertex posi-363

tion quantization is chosen automatically, based on the quadric364

errors during the simplification step in construction.365

Geometry and vertex attributes are encoded as differences366

to a predicted value. The distribution of these values exhibit a367

bias which we can exploit to minimize the number of bits nec-368

essary to encode them. Our strategy is based on the assumption369

that most of the bias is concentrated on the position of highest370

bit (the log2 of the value) of these value while the subsequent371

bits are mostly random. We simply store in an array, which is372

later entropy coded, the number of bits necessary to encode the373

value; the subsequent bits are stored in an uncompressed bit-374

stream. In this way we need to decode a single symbol, from a375

limited alphabet, and read a few bits from a bitstream to decode376

a difference.377

Each new vertex position, result of a VERTEX code, is es-378

timated using a simple parallelogram predictor, and the differ-379

ences with the actual position encoded as above. Color infor-380

mation is first converted into YCbCr color space and quantized,381

we encode the difference with one of the corner of the edge pro-382

cessed when emitting the VERTEX code. Normals vector are383

estimated using the decode mesh position and connectivity, and384

differences encoded as usual.385

3.2.3. Texture coordinates and textures386

Texture coordinates in the dataset are stored per vertex, repli-387

cating vertices on texture seams. They are compressed using the388

same parallelogram prediction algorithm employed for the ver-389

tex coordinates. Employing more sophisticated methods would390

drastically increase decoding time (see timings in Table 2 in [?391

]) or require additional linear algebra JavaScript libraries, for a392

limited decrease in bitrate.393

Texture images are first mip-mapped to create different levels of394

detail, and then stored into the dataset as JPEG binaries. Tex-395

tures are loaded on demand like the mesh patches, hence the396

mipmap level for rendering follows the same rules described in397

Section 3.4.398

3.2.4. Point clouds399

In the case of point clouds, the compression strategy for400

the vertex coordinates cannot rely on parallelogram prediction,401

in this case, after coordinate quantization we sort the points in402

z-order and store the differences between consecutive points us-403

ing the same approach used for the meshes.404

3.3. Entropy coding405

Once that connectivity, geometry and attributes have been406

encoded into a stream of symbols and bits, the symbol stream407

is compressed following the biased probability distribution of408

the symbols.409

Entropy decoding is the speed bottleneck in many mesh de-410

compression methods, often due to the main goal of minimizing411

bit per vertex. Pajarola and Rossignac [? ] developed a high-412

performance Huffman decoding algorithm in order to overcome413

this problem. The main advantage of this method is that it re-414

duces the decoding phase to a couple of table lookups. Arith-415

metic coding, for example, outperforms Huffman in term of416

compression rate, but exhibits lower speed. A problem with this417

approach is the initialization time required to create the, possi-418

bly very large, decoding tables. It is then not suitable for decod-419

ing small meshes where the construction time would dominate420

over the decoding time.421

Unlike Huffman and other variable-length codes, Tunstall422

code [? ] maps a variable number of source symbols to a fixed423

number of bits. Since in decompression the input blocks con-424

sists of a fixed number of bits and the output is a variable num-425

ber of symbols, Tunstall is slightly less efficient than Huffman,426

especially where the bit size of the input block is small. The427

decoding step is very similar to the high-performance Huffman428

algorithm, as it consists in a lookup table and a sequence of429

5



symbols for each entry, but the table size is only determined by430

the word size, and a fast method to generate it described in [? ].431

Given an entropic source of M symbols, to generate an op-432

timal encoding table for a word size of N bits, we need to gen-433

erate 2N symbol sequences that have a frequency as close as434

possible to 2−N , allows to encode every possible input (it is435

complete) and no sequence is a prefix of any other sequence436

(it is proper).437

Tunstall optimal strategy starts with the M symbols as initial438

sequences, removes the most frequent sequence A and replaces439

it with M sequences concatenating A with every symbol until440

we reach 2N sequences. The most time consuming step of the441

algorithm is to find the most probable sequence.442

If we use a matrix where the first column contains the sorted443

symbol in order of probability, and at each step we replace the444

sequence with highest probability with M sequences adding a445

new column, we can observe that this table is sorted both in446

columns and rows (see Figure 4). This allows to select the next447

sequence by keeping each row in a queue and using a priority448

queue to keep track of which queue has the highest front ele-449

ment.450

Figure 4: First four steps in construction of a Tunstall code with four symbols,
the sequences A, B, AA, BA are replaced with a new column, beside each se-
quence, its probability is shown. In green the candidates for the next expansion.

To initialize the decoding table the symbol frequencies needs451

to be transmitted in advance.452

Finally, an important advantage of variable-to-fixed coding453

is that the compressed stream is random accessible: decoding454

can start at any block. This makes it especially suited for par-455

allel decompression in GPU. Unfortunately, current limitations456

in the capabilities of WebGL do not allow for such an imple-457

mentation.458

3.4. Remote view-dependent rendering459

In the context of batched multiresolution approaches, the460

rendering requires the traversal of the patch tree, which is usu-461

ally quite small since each patch is in the range of 8-32K ver-462

tices. An approximated screen space error in pixel is calculated463

by taking into account the view matrix, the bounding sphere of464

the patch, and the quadric error (or any other error metric) cal-465

culated during simplification.466

At each step of the traversal, the selected nodes of the tree cor-467

respond to a complete representation of the model; each addi-468

tional node included in the traversal increases locally the reso-469

lution of the model. The traversal is stopped whenever one of470

these four conditions is reached: a required patch is not avail-471

able, triangle budget is reached, the error target is met, or472

there’s no available memory left. The latter three parameters473

can be defined in advance, in order to deal with hardware re-474

sources. Once the traversal is terminated, the collection of se-475

lected patches is rendered as simple geometry. New patches are476

downloaded in order of screen error, to maximize the improve-477

ment in rendering quality of the model.478

Since the rendering can start when the first patch is down-479

loaded and the model is refined as soon as some patch is avail-480

able, this is effectively a progressive visualization albeit with481

higher granularity. On the other hand, this structure is view de-482

pendent and thus able to cope with very large models, on the483

order of hundreds of millions of triangles.484

Figure 5: First column: before refinement. Second column: after refinement.
From top to bottom: a visual representation of the geometric patches represent-
ing the model, the model with pure geometry, the model with color information.

The extension of the local multiresolution solution to re-485

mote rendering is quite straightforward. The data structure is486

composed of a fixed size header describing the attributes of487

the models, an small index which contains the tree structure488

of the patches and the position of each patch in the file, and the489

patches themselves. We use HTTP Range requests to down-490

load header and index, ArrayBuffers to parse this structures into491

JavaScript; the patches are then download prioritizing highest492

screen error.493

Remote rendering is possible due to the WebGL framework: in494

6



this case, the implementation was integrated in 3DHop [? ],495

a set of tools for web publication based on the SpiderGL [? ]496

graphics library. The patches are encoded as binary files. Figure497

5 shows an example of a model before and after view-dependent498

refinement.499

4. Results500

The proposed method has been tested on several cases, in-501

cluding very complex geometries. Additionally, whenever pos-502

sible a comparison with existing systems was performed. A503

demo page, that shows the comparison and a few examples, is504

available at http://fastdec.duckdns.org (for reviewers only).505

Our implementation has been successfully tested on major506

browsers on a variety of platform, from desktop machines to507

low end cell phones. The results we report here were mea-508

sured on an iCore5 3.1Gh, using Chrome 41. Timings on other509

browsers (e.g.Firefox) where comparable. Regarding the mul-510

tiresolution model construction, this is a preprocessing opera-511

tion. Compression time is negligible, since it can be performed512

at about 1M triangles per second. The most cumbersome part513

is the quadric simplification algorithm, that runs at about 60K514

triangles per second per core. Nevertheless, the model con-515

struction must be performed only once.516

The results section is organized as follows: the first part517

is dedicated to a qualitative comparison with available com-518

mercial or free solutions for remote rendering; the second part519

shows the results of the tests made on our compression scheme;520

the third part comments the performances of the system on a521

variety of examples.522

4.1. Comparisons with existing systems523

Several solutions for the visualization of 3D data with We-524

bGL have been proposed in the last years. Most of them, un-525

fortunately, do not deal with any strategy about compression526

and progressive visualization. Hence, they are able to deal only527

with smaller 3D entities.528

529

Table 1 shows a comparison of the available systems. Also530

the issue of scalability (the capacity to handle very big mod-531

els) is taken into account. The most similar and used systems532

are Potree, which is limited to point clouds, and Sketchfab, a533

widely used commercial tool, which uses a progressive visual-534

ization which is not view-dependent. Additionally, the scalabil-535

ity of the implementation of Sketchfab is unclear, and anyway536

the support for more complex models is currently limited not537

only for the ”Basic” (50 Mb uncompressed size), but also for538

the ”Pro” (200 Mb) and ”Business” (500 Mb) accounts. Our539

method is able to handle models of any size (see later).540

Hence, our method proves to be the most flexible one, since541

efficient solutions were developed to ensure not only perfor-542

mances, but also wide usability.543

4.2. Entropy Compression: Comparison544

Compression is an important issue when dealing with more545

complex models, and the need for remote rendering raises ad-546

ditional issues. Hence, we tested, both in C++ and JavaScript,547

compression rates and decompression speed of:548

• our implementation of Tunstall coding (T)549

• Huffman coding (H), in the high-performance version of550

Pajarola [? ] (our implementation, C++ only)551

• available implementations of LZMA552

in C++: http://www.7-zip.org/sdk.html553

and JavaScript: https://code.google.com/p/js-lzma/554

• lz-string, a LZW based JavaScript implementation555

http://pieroxy.net/blog/pages/lz-string/index.html556

The results are presented in Table 2, the lenght of 32K has557

been chosen since it is typical in our application.558

Huffman and Tunstall are very similar in term of decom-559

pression speed, the difference is mainly in the time required to560

generate the decoding tables which are much larger for Huff-561

man, especially when increasing the number of symbols. We562

tested also other probability distributions and found little dif-563

ference in terms of speed. LZMA and LZW avoid this startup564

cost, however their more complex and adaptive dictionary man-565

agement allows them to outperform Huffman and Tunstall in566

term of decompression speed only for very small runs (and very567

small dictionaries). In terms of compression ratio, Huffman and568

LZMA performed quite close to the theoretical minimum, while569

Tunstall was about 10% worse.570

We did not implement Huffman in JavaScript, as we are571

confident the result would be very similar. On the other hand572

the numbers for LZMA change dramatically. Lz-string serves573

as a comparison, as a better library, optimized for JavaScript.574

The poor LZMA performances in JavaScript help explain the575

relatively slow performances of CTM in Limper [? ].576

4.3. Mesh Compression: Comparison577

We used the Happy Budda model (in Figure 1), to compare578

compression ratio and decompression speed with OpenCTM579

(CTM) [? ] Pop buffers (POP)[? ], P3DW [? ], WebGL-580

loader (CHUN) [? ]. We compare our multiresolution (OUR)581

and, to test single resolution performances of our compression582

approach, a version (FLAT) which loads only the highest res-583

olution level of the model. In each case the model has been584

quantized at 11 bit for coordinates and 8 bit for normals, and in-585

cludes colors. The apparently better performances by WebGL-586

loader (CHUN) are explained by the fast that it is not a multi-587

resolution method, hence the whole model has to be down-588

loaded before being able to decompress and visualize the model.589

This means that the compression rate of the highest resolution590

in our method (FLAT) is higher, and in any case WebGL-loader591

becomes unusable when more complex models are used.592

Our decompression JavaScript implementation can decode593

about 1-3 million triangles per second with normals and colors594

in a single thread, on a desktop machine and 0.5 MT/s on a595

iPhone Five. Performances are somewhat degraded when the596

code is run during streaming visualization.597

7



Table 1: Comparison of the main systems for web-based rendering.
3D Meshes 3D Textured Point Clouds Streamable Compressed View-Dependent Scalable

OpenCTM [? ] Yes Yes No No Yes No No
WebGL-loader [? ] Yes Yes No Yes Yes No No
Pop Buffers [? ] Yes Yes No Yes Yes No No
Potree [? ] No No Yes Yes Yes Yes Yes
SketchFab [? ] Yes Yes Yes Yes Yes No (Yes)
Our Method Yes Yes Yes Yes Yes Yes Yes

C++ JavaScript
symbols T H LZMA T LZMA LZW

4 1058 520 1066 201 19 55
9 369 212 170 145 10 23

13 423 168 95 150 6 20
17 359 136 77 163 6 19
22 332 98 67 180 6 17

Table 2: Decompression speed in million of output symbols per second for
Poisson distribution of 32K sequences

FLAT OUR CTM CHUN POP P3DW
MB 1.9 3.9 3.5 2.8 15 4.5
bpv 28 57 51 41 220 66
full 0.4 0.9 5.3 0.06 0.5 10

Table 3: Statistics for the Happy Buddha: model size in megabytes, bit per
vertex and time in seconds required to fully decompress the model.

An important comparison is with the work by Rodriguez598

[? ], which employs the same multiresolution batched strat-599

egy. For their mobile multiresolution application they report600

compression rates of 45-50 bpv on large colored meshes (which601

should be compared to our 28bpv). The difference is probably602

mostly due to the different connectivity encoding which, in their603

case, requires 20bpv against our 4 or 5bpv. It is difficult to com-604

pare the speed of the two decompression approaches since they605

run natively in C# on an iPhone4 while we run in JavaScript606

on the same platform. Our implementation speed is still, if a607

bit faster than their 50KTS 1, at about 60KTs. The difference608

is probably due their more sophisticate (and slow) arithmetic609

encoding.610

C++ decompression speed is of course faster, reaching 9MTs,611

including colors and normals, and 16MTs for just position and612

connectivity. The speed reported in [? ] of 35KTs for just the613

connectivity, as they mention, is due to the dynamic memory614

allocation in their implementation.615

4.4. Compression of Textured models616

In the case of textured models, the compression and quan-617

tization has to be applied not only on the geometric attributes,618

but also on the texture image.619

Regarding the latest, using 13 bits quantization for a 4096x4096620

1The number is extrapolated from the decoding time of a large mesh given
in their paper

pixel texture (which amount to half pixel precision) results in an621

hardly noticeable distortion (see Figure 6). With parallelogram622

prediction, texture coordinates are encoded in about 8 bpv (with623

a reduction of 48 to 1 respect to the standard 6 floats per face).624

We had to include the replicated vertices coordinates, that in625

our samples amounted to at most 15% of the total amount in626

models with many seams. Overall, adding texture coordinates627

increases the data size of about 25%, and decompression speed628

decreases accordingly.629

We uploaded a few textured model to Sketchfab, for a com-630

parison with a state of the art industrial solution: our multires-631

olution structure results on average 10% smaller, although it632

includes all the resolutions.633

4.5. Streaming and Rendering634

Loading the geometry through the Range HTTP request re-635

quires an increased number of HTTP calls: one for each patch,636

or 30-60 calls every million triangles. This does not really im-637

pact over performances: the overhead is quite small (about 400638

bytes per call) and pipelining (the process of enqueueing re-639

quests and responses between browser and server) ensures full640

utilization of the available bandwidth. Random access is really641

necessary only to fully exploit the view-dependent characteris-642

tics of the multiresolution structure: the code could be easily643

modified to load the model with a single call if a higher number644

of HTTP calls is problematic on certain web hosting architec-645

tures.646

In the demo page (http://fastdec.duckdns.org) it is possible647

to compare the performances of our method w.r.t. existing solu-648

tions in the case of a slow connection. Moreover, very complex649

geometries are also available for further testing. In the follow-650

ing, we show some example of the performances of the com-651

pression method in several types of models, in order to test its652

flexibility.653

4.5.1. Point clouds654

Point clouds are a quite common type of models, especially655

when large environments are taken into account. Terrestrial656

laser canners, but also UAV may provide dense point clouds.657

Ad-hoc solutions for encoding and rendering have been devised658

[? ], but their implementation is usually very hard to be ex-659

tended to triangulated surfaces.660

On the contrary, the method proposed in this paper can be seam-661

lessly applied also in point clouds: the data that are compressed662

and streamed are only the vertices attributes.663

664

8



Figure 6: Example of textured model from left to right: texture coordinates quantized at 12 bits, at 13 bits and uncompressed. Notice the slight distorsion when
precision is lower than half a pixel.

Figure 7: Pompei point cloud: original PLY file, 95M points, 2.26 Gb; uncompressed multires cloud, 1.68 Gb; compressed cloud, 326 Mb. Top left: the full
compressed model, top right: a detail. Bottom left: a detail of the uncompressed point cloud . Bottom right: the same detail of the compressed point cloud

9



Figure 8: Big statue rendered in a browser: original PLY file, 84M triangles,
1.6GB; uncompressed model, 2.54 Gb; compressed model, 158 Mb. Top left:
the full compressed model, top right: a detail. Bottom left: a detail of the
uncompressed model . Bottom right: the same detail of the compressed model

Figure 7 shows an example of a point cloud of Insula V665

of Pompei, obtained with terrestrial laser scanning. The top666

part shows the compressed model and a point of view where667

all the details are visible. The bottom part of the Figure shows668

the difference between the compressed and uncompressed point669

clouds: the quantization of the original data brings to a reduc-670

tion of points, since the quantization tends to ”regularize” the671

points grid (in this case the quantization step was 0.5 mm). This672

effect is not noticeable in triangulated surfaces, but it may be an673

issue for point clouds. In this case, it’s possible to change the674

quantization step in order to find the best tradeoff between com-675

pression and data quality.676

677

4.5.2. Dense triangulated models678

View-dependent progressive method have been especially679

devised to handle dense, triangulated 3D models. For this rea-680

son, the proposed method is able to provide optimal perfor-681

mances even when hundred millions triangles have to be taken682

into account. In the following, two examples of complex ge-683

ometries are shown.684

685

Figure 8 shows the 3D model of a 3-meter tall statue which686

was acquired with triangulation structured light scanner. The687

compressed model, which is nearly 10 % of the original PLY688

file, exhibits a detail that is undistinguishable from the uncom-689

pressed version.690

691

In Figure 9 we show our system rendering the Portalada, a692

180M triangles model at 30fps. The triangle budget has been693

fixed at 1M triangles and the streaming requires 2-3 seconds694

to reach full resolution on a good connection. The original695

model is 3.6GB, while the compressed multiresolution model696

is 838MB. The Figure also shows how the view-dependent par-697

adigm is able to handle different resolutions of different parts of698

the model when peculiar points of view are shown.699

4.5.3. Non-optimal, topologically complicated models700

Some of the solutions proposed for progressive view depen-701

dent rendering proved to be limited since their basic assump-702

tions on data processing didn’t take into account that most of703

the more complex 3D models come from acquisition devices or704

techniques. This leads very often to the presence of geometric705

artifacts or unbalanced density.706

707

Figure 10 shows two examples where the method deals with708

non-optimal geometries. On the left side, a model exhibiting709

strong topological artifacts. On the right side, a model with710

very unbalanced data density. In both cases, the method is able711

to deal with the issues and provide an accurate and reliable ren-712

dering.713

5. Conclusions and possible improvements714

The method proposed in this paper is a multi-resolution so-715

lution that provides remote view-dependent rendering of com-716

pressed 3D data. The main improvements w.r.t. current solu-717

tions are: the effectiveness in a wide range of bandwidth avail-718

ability, computing power and rendering capabilities; the pos-719

sibility to handle a wide variety of 3D models types, includ-720

ing very complex geometries; a mesh compression strategy that721

provides the best tradeoff between data compression and ren-722

dering performances.723

Nevertheless, improvements in both compression and ren-724

dering performances can be obtained by further exploitation of725

the characteristics of some types of models.726

727

For example, in the case of Point clouds, the rendering par-728

adigm plays a key role to obtain a satisfying visualization. The729

current rendering method could be improved by implementing730

and extending existing approaches [? ]. The attributes (i.e. ra-731

dius) that could be used for efficient rendering can be easily732

inserted in the compression framework.733

734

The compression and rendering of textured models can be735

further improved, by working on ways to better compress and736

handle textures, or moving to other texturing paradigms. An737

example could be the projective textures (a similar approach on738

point clouds was recently proposed by Arikan [? ]), that could739

remove the need for parametrization, and open to even more740

complex datasets.741

Acknowledgements742

The research leading to these results was funded by EU743

FP7 project ICT Harvest4D (http://www.harvest4d.org/ , GA744

10



Figure 9: Portalada rendered in a browser: original PLY file, 180M triangles, GB; compressed model, 621 Mb. Top left: the full model, top right: a detail of the
figure above the arch, bottom right: the resolution of the model as seen from the bottom left view point (without frustum culling)

Figure 10: Left: a model with severe topological issues. Right: a model with very imbalanced vertex distribution

11



n. 323567) and EU INFRA Project Ariadne (GA n. 313193,745

http://www.ariadne-infrastructure.eu/ ).746

12


