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Abstract

Forecasting the future positions of mobile users is a valuable task allowing to
operate efficiently a myriad of different applications which need this type of
information. We propose MyWay, a prediction system which exploits the in-
dividual systematic behaviors modeled by mobility profiles to predict human
movements. MyWay provides three strategies: the individual strategy uses
only the user individual mobility profile, the collective strategy takes advantage
of all users individual systematic behaviors, and the hierarchical strategy that
is a combination of the previous two. A key point is that MyWay only requires
the sharing of individual mobility profiles, a concise representation of the user’s
movements, instead of raw trajectory data revealing the detailed movement of
the users. We evaluate the prediction performances of our proposal by a deep
experimentation on large real-world data. The results highlight that the syn-
ergy between the individual and collective knowledge is the key for a better
prediction and allow the system to outperform the state-of-art methods.

Keywords: Trajectory Prediction, Spatio-temporal Data Mining

1. Introduction

Predicting the future locations of a mobile user is a flourishing research
area that is powered by the increasing diffusion of location-based services. The
knowledge of mobile user positions fosters applications which need to know
this information to operate efficiently. Examples of such services are traffic5

management, navigational services, mobile phone control and so on. In a typical
scenario, a moving object periodically informs the positioning system of its
current location. Due to the unreliable nature of mobile devices and to the
limitations of the positioning systems, the location of a mobile object is often
unknown for a long period of time. In such cases, a method to predict the10

possible next position of a moving object is required in order to anticipate or
to pre-fetch possible services. The strong interest in this kind of applications
led to the study of several approaches in the literature addressing the location
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prediction problem. Some of them base the prediction on single users’ movement
history, while others extract common behaviors from the movement history of15

all the users in the system and use this global knowledge.
In this paper we propose a shift of paradigm based on the following idea: to

predict the future positions of a user we first use her systematic behaviors and,
if they are not sufficient we use the systematic behaviors of the crowd. This idea
is based on the conviction that typically any individual systematically visits a20

small set of locations and regularly moves between them by choosing the best
routes learned by the daily experience [1, 2]. The task we are addressing is the
prediction of the exact position visited by the user without applying any apri-
ori spatial discretization. MyWay is a system to forecast the future positions
of mobile users by using predictors which exploit the individual systematic be-25

haviors of a single user, the individual systematic behaviors of all users in the
system, and a combination of them. At individual level it requires that each
individual computes an abstract representation of her systematic behavior: the
individual mobility profiles that captures the paths that are regularly followed
by the user, called routines [3]. In particular, it adopts the concept of Personal30

Mobility Store (PMS) where continuously the raw trajectory data, produced by
the user mobile devices, are recorded. From the mobility data in the user PMS
it is possible to extract the individual mobility profile. It is worth to notice that
this vision assumes the computational capability at individual level to extract
such mobility profile by the raw trajectory data in the PMS. This is compat-35

ible with a scenario of increasing intelligence of the mobile devices as well as
with a scenario of cloud services. At collective level MyWay requires that the
individual mobility profiles are shared.

Our claim is that the prediction strategy which uses only individual mobility
profiles is comparable with a prediction strategy based on raw movement data.40

If confirmed, this approach has two important advantages: (i) it dramatically
minimizes the quantity of information to be transmitted: a mobility profile is a
concise representation of the information in the user PMS; and, (ii) it reduces
enormously the privacy risks: the mobility profile represents a systematic be-
havior, i.e., paths that are regularly followed by the user, but does not reveal45

all the details of her past spatio-temporal positions. MyWay is based on two
steps: a learning phase, that is simply represented by the acquisition of mobility
profiles; and a prediction phase, that given the current trajectory of a user pre-
dicts her future positions. We present the following three different prediction
strategies. Individual strategy predicts the user future positions using only the50

routines in her individual mobility profile. Collective strategy considers the rou-
tines of all users exploiting the possibility that a user could follow a path which
is systematic for another user but atypical for her. Hierarchical strategy uses
the collective strategy when the individual one fails. It exploits the possibility
to use two levels of knowledge (individual and collective), obtaining advantages55

from the previous strategies. The great novelty introduced by MyWay for which
it differs from the methods in the literature is that it does not apply any apri-
ori spatial discretization and this allows to predict the exact position visited
by the user. Moreover, most of the state-of-art approaches use the temporal
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information only as a time-stamp of an ordered sequence of visited locations60

without exploiting it during the mobility behavior extraction and so, during the
prediction.

In conclusion, MyWay is a flexible prediction system that empowers the
user with the full control on her own data: everyone may decide not to share
her profile and still can count on a powerful individual prediction strategy. We65

evaluate the proposed prediction strategies on large real-world data of about
5,000 users and 326,000 trajectories. Our evaluation highlights that the best
prediction strategy is the hierarchical one confirming our initial intuition that
the synergy between the individual and collective knowledge is the key for a
better prediction. We also compare our best prediction strategy to the case of70

constructing the predictor on shared raw trajectories instead of shared profiles.
The resulting performances of the two predictors are surprisingly very close and
the small difference does not compensate the price payed for sharing raw data
instead of models. By demonstrating the utility of sharing models concisely
representing users behaviors, MyWay enables application scenarios where the75

users are encouraged to contribute with their self-knowledge to improve the
quality of the service.

The remaining of the paper is organized as follows. Section 2 discusses some
works in the literature addressing problems which are similar to our problem.
Section 3 introduces some important notions which we use in our framework.80

In Section 4 we state the problem addressed in the paper. Section 5 describes
our prediction methods. In Section 6 we describe our validation measures while
in Section 7 we report a deep evaluation of MyWay by comparing it with the
state-of-the-art. Lastly, Section 8 concludes the paper.

2. Related Work85

The prediction approaches proposed in the literature can be classified on the
basis of the prediction strategy used. In the literature, a lot of works addressing
the location prediction problem propose methods that base the prediction only
on the movement history of the object itself [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].
We say that these approaches use the individual strategy for the prediction of90

user future positions. Some approaches of this category adopt time series anal-
yses [4, 5] to forecast user behavior in different locations from a spatio-temporal
point of view. Time series analyses enable estimations as the time of the future
visits and expected residence time in those locations [4]. In this kind of works
it is necessary to define the set of interesting locations to be considered in the95

analysis. In [5] these locations are areas defined statically while [4] provides a
method for extracting significant locations among which users move more fre-
quently. Others prediction approaches are based on Markovian processes [6]
and on machine learning techniques such as classification techniques [7, 8]. In
particular, in these two works the location prediction problem is treated as a100

classification problem: in [7] the location information considered for classifica-
tion refers to the history of user movements that is represented by a vector of
h time-ordered locations crossed by a user; while in [8] the classification tree is
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built based on simple, intuitive features extracted from the user visit sequence
data with associate a semantic meaning. In [13] in order to capture aspects of the105

individual’s mobility behaviors authors a modified Brownian Bridge model that
incorporates linear extrapolation. Other works such as [10, 11] provide methods
for the prediction of the route ahead of a moving object whose movement is
constrained to a road network. Kim et al. [10] assumes that the objects’ desti-
nations are known. Finally, some works combine historical spatial and temporal110

data about the user with contextual in contextual data such as accelerometer,
bluetooth and call/sms log [12] or with information about social relationships
with friends [14].

The main problem of approaches implementing the individual strategy is
that it fails in predicting future locations of non-systematic users. In these115

cases applying a collective strategy could improve the prediction. Prediction
approaches belonging to this category first extract mobility behavior for each
user considering only the user’s movement history, like in the individual strat-
egy, and then they merge all the individual models for the construction of the
predictor [15, 16, 17].120

Other approaches address the location prediction problem by using a global
strategy, i.e., they extract movement behaviors from the movement history of
all the users in the database and use this global knowledge to forecast the next
location visited by a specific moving object. The basic assumption in this case
is that people often follow the crowd, i.e., individuals tend to follow common125

paths. This strategy was followed in many papers; most of them extract frequent
patterns and association rules from data [18, 19, 20, 21, 22, 23, 24, 25, 26, 27]
using methods based on Apriori, PrefixSpan and FPGrowth techniques. Some
recent works instead use probabilistic models and in particular Markovian mod-
els [28, 29, 30, 31]. Some of these approaches are suitable for predicting the130

next location by using GSM data [20, 23, 26, 27]; while others work well with
GPS data [18, 19, 21, 22, 24, 25, 29, 30, 31]. Solutions based on GPS data typi-
cally apply a spatial discretization to make easier finding frequent or interesting
locations. Two main types of discretization are applied: the first one extracts
interesting places applying density based clustering techniques on spatial points135

[21, 25, 27]; while the second one simply uses a grid on the space, determining
for each trajectory the sequence of intersected cells [18, 19, 22, 24, 25, 30]. We
highlight the fact that our methods differ from these works because we do not
apply apriori spatial discretization allowing us to predict the exact positions vis-
ited. Moreover, contrary to what most of the above approaches does, we do use140

the temporal information during the mobility behavior extraction and during
the prediction. Some exceptions are [21, 25] which allow to choose the predic-
tion time specifying the temporal information. Others works such as [22] base
their location prediction approach on trajectory patterns which are intrinsically
equipped with temporal information.145

Another interesting way to exploit user mobility information for predicting
the next user location, is based on the idea to combine the global and individual
strategies in order to obtain more accurate predictions. In particular, the idea
is to have a global predictor constructed using all users’ mobility data and
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for each user also producing a predictive model based only on her individual150

movements. Therefore, during the prediction the idea is to use one of these
two predictors: when using the individual predictor is not possible to provide a
valid and accurate prediction then the global predictor is used [32, 33, 34, 35].
Their basic idea is similar to our hierarchical strategy where we provide the
possibility to combine individual prediction with either the collective one or155

the global one. However, we differ from works [32, 33, 34] also for the spatial
precision of the predictions. Indeed, [33] is based on GPS data but applies a
discretization based on clustering; while the others are based on GSM data.
Another interesting approach is [36] that uses a global model to improve the
personalized model; here, they compute a prediction score that is a combination160

of the global score and individual one.
All the above works test their proposals on small synthetic or small real

dataset both in terms of users and trajectories. We differ from them in test-
ing our methodology in a big data context using a large real-world trajectory
dataset.165

3. Background

In this section are discussed some important notions useful to understand
the prediction method and the powerful of our user-centric approach.

3.1. Mobility Profile

Movements are performed by people in specific areas and time instants.170

These people are called users and each movement is composed by a sequence of
spatio-temporal points (x, y, t) where x and y are the coordinates, while t is the
time stamp. We call trajectory the movements of a user described by a sequence
of spatio-temporal points:

Definition 1 (Trajectory). A trajectory m is a sequence of spatio-temporal175

points m = {(x1, y1, t1), . . . , (xn, yn, tn)} where the spatial points (xi, yi) are
sorted by increasing time ti, i.e., ∀1 ≤ i ≤ k we have ti < ti+1

The set of trajectories traveled by a user u makes her individual history :

Definition 2 (Individual History). Given a user u, we define the individual
history of the user as the set of trajectories traveled by her and denoted by180

Mu = {m1, . . . ,mk}.

Using the above definitions and following the profiling procedure proposed
in [3], we can retrieve the systematic movements from a certain set of trajec-
tories S. Thus, we group the trajectories using a density-based clustering (i.e.,
Optics [37]) equipped with a distance function defining the concept of trajectory185

similarity:

Definition 3 (Trajectory Similarity). Given two trajectories m and p, a
trajectory distance function dist and a distance threshold ε, we say that m is
similar to p iff dist(m, p) ≤ ε.
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Figure 1: The user individual history (black lines), the clusters identified by the grouping
function (C1, C2, C3) and the extracted individual routines (r1, r2) forming her individual
mobility profile.

The obtained result is a partitioning of the original dataset from which we190

filter out the clusters with few trajectories and the one containing noise. Fi-
nally we extract a representative trajectories from each remained cluster. These
representative trajectories are called routines and the set of routines is called
mobility profile. More formally:

Definition 4 (Routine and Mobility Profile). Let S a set of trajectories,195

ms a minimum size threshold, dist a distance function and ε a distance thresh-
old. Given a grouping function Group(S,ms,dist, ε) = Ĉ, such that Ĉ =
{C1 . . . Ck} where Ci ⊂ S, we define a routine ri as the medoid trajectory of a
group Ci. The set of routines extracted from Ĉ is called mobility profile and is
denoted by P = {r1 . . . rk}.200

The mobility profile, which is the key concept of MyWay, describes an ab-
straction in space and time of the systematic movements: the user’s real move-
ments are represented by a set of trajectories describing the generic path fol-
lowed. We must notice that the exceptional movements are completely ignored
due to the fact they are not part of the profile (i.e. they are part of the small205

clusters or of the noise).
When the routines are computed starting from the set of individual history

- i.e. S is equal to Mu of a user u - we obtain individual routines and an in-
dividual mobility profile Pu. Fig.1 depicts an example of individual mobility
profile extraction. Moreover, given the set of users U , we name collective mo-210

bility profile PC the set PC =
⋃

u∈U Pu containing all the individual routines of
the considered users.

3.2. Personal Mobility Store

Human mobility data and the knowledge that data mining can extract from215

it are an invaluable opportunity for organizations and individuals to enable new
applications. Unfortunately, today users have a limited capability to control
and to exploit their personal data. The need of user data control is leading to a
change of perspective towards a user-centric model for personal data manage-
ment. This vision is compatible with the data protection reform of EU and is220

promoted by World Economic Forum in own last report [38].
The basic idea is to introduce high levels of transparency and full control

for the user on the lifecycle of own personal data (e.g., collection, storage, pro-
cessing, sharing). Therefore, any user should have a personal data store that

6



helps her in gathering, storing, managing, using and sharing her own data un-225

der her own control. Personal data stores may focus on particular areas such as
“health”, “education” and so on. In this paper we consider that any user stores
all information about her movements on her own personal data store that we
call personal mobility store (PMS).

The user’s PMS may contain both trajectory data generated by her mobility230

but also more sophisticated knowledge extracted from this data as the individual
mobility profiles described above.

4. Problem Definition

The problem we want to face consists in predicting the future positions
visited by a user at specific time instants by exploiting the typical mobility235

behavior of users in the system. The different formulation of the problem and
the possible solutions are determined by the type of the object, the area in
which it is moving, the kind of prediction returned and how the notion of future
is defined. The main challenge of this problem is due to the complexity and
fine granularity of GPS data. Often, most of the works in the literature apply a240

spatial discretization by using clustering techniques on spatial points or simply
a grid on the space to reduce the complexity of the problem. Clearly, on one
hand, this makes easier finding frequent or interesting locations and patterns to
be exploited in the prediction; on the other hand, it impacts on the precision
of the prediction that often returns regions with a granularity imposed by the245

apriori discretization.
In this paper we want to study a prediction method that do not use any

apriori spatial or temporal discretization and that, given a user u and her current
trajectory m, aim at forecasting the future exact position visited by the user u at
a specific time instant t. This task is composed of two main steps: (i) learning a250

prediction model by observing historical movement data, and (ii) applying the
prediction model to forecast the future positions. In the following, we propose
MyWay, a system of prediction strategies capable to solve this challenging task.

5. The prediction system MyWay

In this section we present the details of MyWay, a system for predicting the255

future user’s position. It exploits the users systematic mobility stored in their
PMS, i.e., the user individual mobility profile, and the knowledge coming from
the crowd in the form of collective profile. To build such models we refer to the
mobility profiles presented in Section 3, but for our purpose we define a new
distance function between trajectories which is more efficient and gives a better260

result in terms of profile quality (with respect to the distance function used
in [3]). Then, we define the prediction method, two basic prediction strategies
called individual and collective, and a third strategy that combines the basic
ones, called hierarchical.

7



Figure 2: Computation of Interpolated Route Distance. The circular gray points are the real
points, the black squares are the interpolated ones. The dotted lines are the spatial distances
calculated.

5.1. Distance Functions265

The mobility profile extraction process uses a distance function during the
clustering step to identify similar trajectories. The distance function is used in
the mobility profile extraction during the clustering process to identify similar
trajectories, as describe in Section 3. In pratice the distance function defined
between two trajectories determines if they are representing similar movements270

in space and time. There are many possibilities in defining such distance. Some
examples are described in [39] (i.e., the one used in [3]) and in [40], and each one
analyzes a different perspective and is used for a particular objective. Another
important aspect to consider is the complexity of such distance function which
greatly affects the performance of the whole process.275

In the work presented we define a distance function suitable for our purposes
called Interpolated Route Distance (IRD): it temporally aligns the two trajec-
tories m and p using the initial time, then for each time in m it interpolates a
point in p – if it does not exist – and viceversa. Finally, it computes the spatial
distance (spherical) between each pair of aligned points (real or interpolated).280

When one of the two trajectories has a longer duration the exceeding part is
compared with the last point of the other (i.e. we consider as if the user stops
at the last point when a trajectory ends). The average of those distances is the
result of IRD. Fig.2 and Algorithm 1 show how IRD is computed. We adopted
a different distance function from [3] for the following reasons:285

Sampling rate: Route Similarity is affected by the GPS sampling rate of the
trajectories assuming that both of them have the same rate in at the same
time. This is not true for our data and the bias introduced by may produce
anomalous effects.

Efficency: Route Similarity is highly inefficient comparing several time the290

same point to others.

Moreover, for our purposes we also defined a slight variation of IRD- We
call this distance function Constrained IRD (CIRD) since, besides the two tra-
jectories, it takes as input also two parameters (γ, σ) called respectively tail
percentage and prediction threshold. These parameters are used to verify if in295

the last γ% of the trajectory m exists a point which is further than σ meters from
the trajectory p. If this happens the distance function returns a special value
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representing an infinite distance, i.e., it considers the two trajectories not com-
parable. An example of the portion of trajectory influenced by the constraint
is depicted in Fig.2 as a blue box.300

Algorithm IRD (Trajectory t1, Trajectory t2)
Result: Distance d
d← 0;
i1 ← 1, i2 ← 1;
p1 ← getPoint(t1, i1), p2 ← getPoint(t2, i2);
while ¬(i1 = getSize(t1) ∧ i2 = getSize(t2)) do

d← d+ sphericalDistance(p1, p2);
len1 ←∞;
len2 ←∞;
if (i1 < getSize(t1)) then

len1 ← sphericalDistance(p1, getPoint(t1, i1 + 1));
end
if (i2 < getSize(t2)) then

len2 ← sphericalDistance(p2, getPoint(t2, i2 + 1));
end
if (len1 < len2) then

i1 ← i1 + 1;
p1 ← getPoint(t1, i1);
p2 ← getNearestPoint(t2, p1);

else
i2 ← i2 + 1;
p2 ← getPoint(t2, i2);
p1 ← getNearestPoint(t1, p2);

end

end
return d;

Algorithm 1: IRD distance function where getPoint return the ith point in
the trajectory (e.g. i=1 indicates the first point), sphericalDistance return the
spherical distance between two points, and getNearestPoint given a point and
a trajectory find the nearest interpolated point to the segments of the second
(i.e. the square points in Fig.2).

5.2. Prediction Method

We define the prediction method as a function over a mobility profile which,
given the current trajectory m, returns the exact future position s of the user
after a time period t̂. More in detail, the prediction method is composed of305

two functions: Match which finds in the profile the routine most similar to the
current trajectory, and LookAhead which predicts the future position having a
routine and the current user position.

Definition 5 (Match). Let γ and σ the CIRD parameters. Given a trajectory
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Figure 3: Match example between the current movement m and the routine r.

m, and a mobility profile P = {r1 . . . rn}, the routine r is selected if:

r = Match(m,P, γ, σ) = arg min
ri∈P

CIRD(Cut(r,m),m, γ, σ)

In the above definition, Cut(r,m) selects the sub-trajectory of the routine de-
fined between two points: q that is the closest point (real or interpolated) to310

the last point of the trajectory m, and b that is the temporally antecedent point
which makes the length of the sub-trajectory equal to m. If the routine is not
long enough b is the first point. The usage of CIRD (and therefore γ and σ
parameters) represents our interest in eliminating false positive given by com-
mon initial parts of the trip. The routines which make the distance undefined315

are not considered as match-able and are excluded from the computation. If P
is empty, undefined or CIRD returns an infinite distance for each r ∈ P , than
the process ends without any routine for the match, that is r is undefined. The
process of matching the trajectory m with a routine r is shown in Fig.3 where
in solid black we represent the portions that are compared, while in dotted red320

and green the parts ignored for the matching.
Once r is obtained, i.e., the most similar routine to the current trajectory

m, than we can use it to predict the position within a time period as follows:

Definition 6 (LookAhead). Let m be the current trajectory, r a routine and
t̂ a time period. Having q = (x, y, t) as the closest point in r to the user current325

position, i.e. the last point of m, we define LookAhead(r,m, t̂) = s, where s is
the predicted point in r at time t + t̂. When the routine is not defined at time
t+ t̂, s is the final point of r.

The combination of Match and LookAhead realizes the prediction methods
used for all the strategies in MyWay system. More formally we can define a
predictor as:

s = Pred(m,P, t̂, γ, σ) = LookAhead(Match(m,P, γ, σ),m, t̂)

where m is the current trajectory, P a mobility profile, t̂ a time period, and
s a point which is the resulting prediction. The difference between the three330

strategies is how the method is used. We must notice that if the result of Match
is undefined, than also s will be undefined.

The individual strategy predicts the future positions of a user by exploiting
only the systematic behavior of the user herself. Therefore, it is particularly
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Figure 4: MyWay prediction strategies schema.

suitable for users having an high degree of systematic mobility. More formally,335

we define the individual predictor for a user u as: s = Pred(m,Pu, t̂, γ, σ).
The collective strategy considers the routines of all users for the prediction,

thus exploits the possibility that a user could follow an atypical path for her but
systematic for another user. More formally, we define the collective predictor
as: s = Pred(m,PC , t̂, γ, σ).340

The collective strategy, mixing up all the user’s routines with the routines of
the crowd, loses the added value of knowing the individual mobility profile of a
specific user which enables very accurate predictions. For this reason we define
the hierarchical strategy as a composition of the two basic ones:

s =

{
Pred(m,Pu, t̂, γ, σ) if defined
Pred(m,PC , t̂, γ, σ) otherwise

It first uses the individual predictor, and if it cannot find a prediction, the
collective one is used. In other words, the idea behind the hierarchical strategy
is to recognize the specificity of the individual profile compared to the collective
profile.

The resulting three predictors are shown in Fig.4, depicting how the indi-345

vidual history, the individual profile and the individual predictor are inside the
user PMS, while the collective predictor is outside and therefore handled by a
third party that orchestrates the users’ information as well as the hierarchical
predictor. This third party, usually called coordinator, has the responsibility for
the storage and management of the users’ profiles. Our experiments will show350

how the hierarchical strategy achieves the best performances.

6. Evaluation Measures

In this section we present some measures used to evaluate the prediction
results. It is important to note how the proposed method is challenging a very
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Figure 5: Example of usage of the spatial and temporal tolerances: the red triangles are the
real points s′ and s′′ such that |t′ − t′′| ≤ temptol, the green circle is the predicted point such
that ‖s− s′′‖ ≤ spattol.

hard prediction problem due the following considerations: (i) users do not move355

every time in the same period of the day (at least not exactly); (ii) movement
speed is not constant during the travel, even following the same route; (iii)
possible errors deriving from spatial sampling of the data could influence deeply
the predicted position both in time and space. Consequently, it is reasonable to
consider a set of tolerances to fairly evaluate the results. In the following, we will360

use spattol and temptol to describe the spatial and temporal tolerances which
generate a spatio-temporal area around the real point. This area contains all
the values considered correct for the prediction problem. An example of usage
of these tolerances is shown in Fig.5.

Definition 7 (spatio-temporal tolerance). Given the predicted position s365

at time t, the real position s′ at time t′, and the position s′′ at time t′′ that is
the closest real position to s such that |t′ − t′′| ≤ temptol, then the prediction is
considered correct if and only if ‖s− s′′‖ ≤ spattol.

It is worth to underline that if temptol = 0 then s′ = s′′ and thus we are
predicting exactly the point where the user will transit in future without any370

temporal tolerance. To enhance the importance of spattol we can consider tow
different environments for applying prediction. For example, taking into account
an academic campus, it is completely meaningless to adopt spattol greater than
kilometers because nearly every prediction would be classified as correct. On
the other hand, if we are considering tool roads then low spattol would be375

inadequate.
Furthermore, let T S be the set of trajectories for which we want a prediction,

T P the set of trajectories for which a prediction is provided, and T PC the set of
trajectories for which the future spatio-temporal position is correctly predicted,
then the following validation measures are defined:380

• Prediction rate = |T P|
|T S| allows to estimate the predictive ability and corre-

sponds to the percentage of trajectories for which a prediction is supplied;

• Accuracy rate = |T PC|
|T P| allows to estimate the prediction goodness and

corresponds to the percentage of future spatio-temporal positions correctly
predicted;385
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• Spatial Error =
∑

∀(s,s′′)‖s−s′′‖
|T P| allows to estimate the error of the predic-

tions (both correct and incorrect).

7. Experiments

In this section we evaluate MyWay ’s prediction strategies performances.

7.1. Experimental Setting390

Dataset. As a proxy of human mobility, we used real GPS traces collected
for insurance purposes by Octo Telematics S.p.A. This dataset contains 9.8
million car travels performed by about 159, 000 vehicles active in a geographical
area focused on Tuscany in a period from 1st May to 31st May 20111. From
this dataset we selected only the users traveling through Pisa province with at395

least 20 travels considering only week-days. Considering that in Pisa province
there are about 476, 260 trajectories, this led to a dataset with 30% of the all
users and 80% of the all trajectories, that is about 5, 000 users and 326, 000
trajectories. We considered as training set the first 3 weeks and as test set
the remaining last week. We tested MyWay using two different test sets: one400

got by considering only the first 33% of each trajectory (test33), and one by
considering the first 66% (test66). These two test sets represent two levels of
knowledge of the current movements and we will show how they affect accuracy
and prediction rate.

User’s Profiles. We extracted from the training set three different collec-405

tions of individual mobility profiles P100, P500 and P1000 obtained by using the
following distance threshold values: 100, 500, 1000 meters. We analyze some
statistics of these profiles for selecting the more promising for our prediction
strategies. The aspects we consider are: (i) the dataset coverage, (ii) the pro-
file distribution per user, and (iii) the profile distribution in time. In Fig.6(left)410

the number of routines per users is shown. The first important aspect to no-
tice is the coverage of the dataset, in fact for P100 we have only the 57, 9% of
the users with at least one routine against the 72.7% for P500 and the 77.4%
for P1000. Moreover, we observe that both P100 and P500 have two peeks at
0 and 2 representing respectively, the users without regularity and the users415

with common behavior home-work and back. Instead, P1000 has a lot of users
having only one routine. This happens usually when the behaviors are mixed
together by the clustering algorithm due a too permissive threshold. Finally, in
Fig.6(right) the temporal distribution of the trajectories and routines is shown.
It illustrates how all the three profile sets follow the same trend of the trajectory420

data, highlighting the three peeks during morning, lunchtime and evening. In
this case, we can see how P100 is too strict eliminating a lot of mid-frequent
behavior while P500 and P1000 are more similar to the original data allowing a

1This dataset can’t be shared due the country privacy law, we are working with the data
provider in order to find a way to share at least a sample.
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Figure 6: Routines per user distribution (left), trajectories and routines time start distribution
(right) and the dataset coverage (bottom).

better representation of the reality. From this empirical study we decided to use
P500 because the used threshold is not so strict to eliminate all the secondary425

behaviors, but also not so permissive to mix the home-work/work-home behav-
iors. Moreover, in Fig.6(bottom) the dataset coverage is studied. We considered
covered a trajectory which is represented by a profile in the resulting set. Here
the difference between the P100 and P500 compared with the difference between
P500 and P1000 shows how the increasing of the threshold does not correspond430

to the same increasing of coverage. In other word the set P500 represents a good
trade-off considering the coverage and the quality of the profile extracted.

7.2. Prediction Evaluation

Individual Strategy. The individual prediction consists in using the mobil-
ity profile of a single user to predict her future positions. In Fig.7 the accuracy435

obtained over the two test sets test33(left) and test66(right) is shown. Here,
different levels of spatial tolerance spattol are used (from 50 m to 1 km) with
a temporal tolerance temptol of 30 seconds. The first aspect to notice is how
varies the accuracy for different time periods t̂ used for the look ahead: the
prediction for very short-term (1-5 minutes) is lower than the mid-term (5-20440

minutes). This is due to the fact that in the short-term predictions the speed of
the current movement may be very different from that in the routine, e.g., an
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Figure 7: (Individual) Accuracy rate on test33(left) and test66 (right) using a temptol of 30
sec, different spattol values and varying the look ahead.

extemporary acceleration, deceleration or a traffic light may affect the predic-
tion accuracy. On the other hand, for the mid-term prediction the speed tends
to be similar to the average speed and the prediction becomes more precise.445

For example, considering a variation of speed of 30km/h in one minute we have
a spatial difference of 500 meters. Clearly, using an higher temporal tolerance
this effect disappears, but this strongly depends on the application in which
the prediction is used. The second aspect to notice is the higher accuracy rate
in test66 w.r.t. test33. This happens because in test66 the knowledge on the450

current movement is higher and therefore our method is able to better under-
stand which is the best routine to use. The third aspect, shown in Fig.8(left),
is the prediction rate that is higher in test33 than in test66. The limited knowl-
edge on the current movement allows the predictor to match more routines even
though they are not the exact future trajectory. In details, passing from test33455

to test66, we have an increasing of 10−15% for the accuracy rate and a decrease
of 5 − 8% for the prediction rate. This behavior is really interesting because
highlights how MyWay reacts to the information gained from the query or, in
other words, how it can tune the prediction in a real scenario as the user proceed
along her travel.460

In Fig.8 the prediction rate (left) and the accuracy rate (right) are studied
varying the prediction threshold. We observe that relaxing this threshold the
two measures respectively increase and decrease. Allowing a more loose match-
ing in the end part of the current trajectory more predictions are produced (due
to the constraint in CIRD); on the other hand, the accuracy rate decreases but465

it is important to note how this is not proportional. In other words, the predic-
tion method shows another feature: it is possible to tune the system according
to the application needs in order to be more conservative - i.e. if the errors in
prediction are considered critic fails - or speculative -i.e. having a prediction is
better even if we introduce errors. Note that the prediction tale γ parameter is470

not shown due to the lack of space but extensive tests revealed that it enhances
the prediction threshold effect.

To better understand the quality of the prediction, we study the relation
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Figure 8: (Individual) How the prediction threshold affects the prediction and accuracy rate
using a spattol of 250 m and a temptol of 30 seconds.
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Figure 9: (Individual) Predictability of users vs. prediction rate.

between the users’ predictability and the prediction rate obtained with this
strategy. For this analysis we consider: the prediction rate and the support475

rate, defined as the ratio between the number of trajectories represented by the
routines and the number of trajectories in the individual history. The result is
shown in Fig.9 where each point refers to a user and in red we represent the linear
regression of those points. The dotted black line represents the performance of
a theoretical perfect system which matches exactly all the movements to the480

proper routine. If the user’s routines cover k% of her movements, the theoretical
system is able to predict a maximum of k% of the trajectories because the rest is
composed by not systematic movements that are unpredictable using the user’s
mobility profile. Comparing the two lines we can notice how our system is close
to the theoretical one.485

Finally, we analyze the spatial error of the predictions shown in Fig.10. We
observe on the left how the spatial error increases considering higher look-ahead
values, and it slightly decreases with higher value of temptol, while on the right
we can see the effect of a higher prediction threshold which makes CIRD more
permissive and therefore the spatial error increases.490
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Figure 10: (Individual) The spatial error using test33 and test66 varying the temptol(left) and
the prediction threshold (right).
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Figure 11: (Collective) Accuracy rate on test33(left) and test66 (right) using a temptol of 30
sec, different spattol values and varying the look ahead.

Collective Strategy. The collective strategy uses the collective mobility
profile composed by the union of all the individual profiles (Sec.3). In Fig.11
the accuracy and the prediction rate over the two test sets are reported. We
notice how the collective strategy presents a decrease of 15− 20% in accuracy,
while the prediction rate is increased by a 30 − 45% obtaining values greater495

than 85% as shown in Fig.12. The effect of the collective knowledge strongly
increases the performances, indeed almost all the queries have a prediction even
if their quality decreases. This is due to the fact that we are using strangers
behaviors to predict the user’s movements.

Moreover, Fig.13(left) shows how this strategy overcomes the predictability500

limitation: the red line is over the black dotted one representing the fact that
the prediction rate for most of the users is over the support of their profiles.
Looking at the spatial error, Fig.13(right), and comparing it to the individual
strategy we note that it increases following the lower accuracy rate provided by
this strategy.505

Hierarchical Strategy. The idea behind the hierarchical strategies is to
recognize the specificity of the individual profile compared to the collective pro-
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Figure 12: (Collective) How the prediction threshold affects the prediction and accuracy rate
using a spattol of 250 m and a temptol of 30 seconds.
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Figure 13: (Collective) Predictability of users vs. prediction rate (left) and the spatial error
varying the temptol (right).

file, in other word it consists in using the user’s individual profile and, in the
case it fails, in using the collective profile. Obviously this strategy achieves the
same prediction rate of the collective one because in the worst case this last510

strategy is used while, as expected, the evaluation results show an increasing
of accuracy equal to 10% as shown in Fig.14. Therefore the hierarchical strat-
egy outperform the basic versions realizing the best trade-off between accuracy
and prediction rate. Analyzing Fig.15 we can notice that the spatial error, as
well as the accuracy rate, is mitigated by the two levels of prediction showing a515

decreasing in every combination of the parameter values.

7.3. Data Sharing vs Profile Sharing

Now, we want to compare MyWay with a global predictor extracting the
routines directly from raw data. In other words, we performed the profiling
process considering the set S of trajectories in Def. 4 equal to all the trajectory520

data. In this way we obtain global routines and a global mobility profile. Note
that, a global routine, instead of representing the systematic movement of an
individual, represents a common behavior of the crowd. In Fig.16 and 17(left)
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Figure 14: (Hierarchical) Accuracy rate on test33(left) and test66(right) using a temptol of 30
sec.
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Figure 15: (Hierarchical) The spatial error using test33 and test66 varying the temptol(left)
and the prediction threshold (right).

we report the prediction performances of the global predictor. We observe that
its prediction rate is substantially the same of our collective strategy, and its525

accuracy rate increases of less than 3%. This means that for the prediction
task the global profile does not increase significantly the level of knowledge.
In other words, compared with the collective profile some routines are missing
due to the higher level of abstraction. Moreover, some new routines, composed
by a common not systematic behavior, are created but the overall prediction530

power remains similar. This is also confirmed in Fig.17(right) showing that
the collective profile covers the global profile and viceversa. The containment
between them highlights that they substantially represent the same set of be-
haviors. Fig. 18 shows as the hierarchical approach applied in the global context
(individual/global combination) improves the accuracy rate leading to similar535

performances of our hierarchical strategy.
Furthermore, we observe that MyWay presents some other advantages w.r.t.

the global predictor.
Data disclosure. A global predictor requires that the user shares with the

coordinator her individual history that describes in detail all her movements;540
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Figure 16: (Global predictor) Accuracy rate on test66 using a temptol of 30 seconds (left) and
comparison between test33 and test66 varying the prediction threshold σ (right).
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Figure 17: (Global predictor) Prediction rate (left), collective and global coverage (right).

on the contrary, MyWay, in the worst case, requires to disclose only the indi-
vidual mobility profile, a model that surely reveals the user mobility behavior
with less details. This aspect is very important because today, people are often
reluctant to share personal information because in the current systems users
have a limited capability to control and exploit it. Therefore, in order to en-545

able applications that require the active participation of people, it is necessary
to encourage individuals in contributing with their self-knowledge to improve
the quality of services offered by those applications. The opportunity of shar-
ing models instead of detailed trajectories without causing deterioration of the
performances is a good advantage of our system.550

Communications. The need of sharing all raw data also raises a problem
in the communications cost needed to transfer all the data from all the users to
the coordinator. With MyWay we can transmit only the information which is
really needed for the prediction (routines) leading to a reduction of more than
97% of the data (i.e., spatio-temporal points). This is essential for a realistic555

application which wants to gather information from a wide number of users.
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Figure 18: (Hierarchical approach with global predictor) Accuracy rate on test33(left) and
test66(right) using a temptol of 30 seconds.

Computational cost. The main difference between the profile extraction
in the collective and global predictor is the fact that the first is composed of
the union of the individual profiles computed locally by the users, while the
second is the profile extracted from the whole data computed by a coordina-560

tor. This means that we have O(
∑

u∈U |Mu|) for the collective predictor and
O(|

⋃
u∈U Mu|) for the global one. Considering that the number of trajectories

per user is significantly lower (of orders of magnitude) than the entire dataset,
we can appreciate the great advantage of our system in terms of computational
cost. For our experiments we obtained an average runtime of 10 seconds for565

the individual profile (which are computed at individual level), and more than 8
hours for the construction of a global profile (computed on a centralized server).

Profile update. Profiles extracted cannot last forever: the mobility of the
users may change significantly during different periods, thus it is reasonable to
consider a method to update the profiles in a running system. In the collective570

strategy we can suppose to have at individual level a method to check if the
last profile is still valid or not - e.g., considering the profile coverage over the
most recent user’s trajectories. In the case of a variation, the user recomputes
a new model, sends it to the coordinator updating the collective profile by
substituting the old user’s profile with the new one. In the global scenario this is575

not possible, in fact the user must send continuously her data to the coordinator
which periodically recomputes the overall profile to remain up-to-date.

For all these reasons we believe that MyWay represents the best way to build
a realistic predictive system able to deal with a real big data context.

7.4. Comparing with State-of-Art580

In this section we compare the prediction performances of MyWay with
individual and global competitors.

Individual Competitor. First, we compare our prediction system with
the machine learning based individual predictor presented in [7]. Since this
method uses an apriori spatial discretization, for a fair comparison we decided585

to use a grid that strongly affects our results. In particular, we perform the
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Figure 19: Individual competitor performances using different values of sequence length and
grid side.

comparison constructing for each spatial tolerance (250, 500 and 1000 meters)
two different kinds of grid. The first one has a cell side equal to the square
inscribed in a circle with radius equal to our spatial tolerance (lower bound
xl); while the second one has a cell side equal to the square inscribing this590

circle (upper bound xu). Note that, this approach does not use any notion
of lookahead, i.e., it cannot predict the future position after a specified time
interval from the current time, but it can just predict the next cell. It deals
with trajectories represented as sequences of cells in a grid. We reimplement and
test this method on our individual routines showing the performances in Fig.19.595

As in [7], we discretize the trajectories in sequences of length h and we studied
the goodness of a prediction varying this value. Note that, we use our individual
routines instead of the starting dataset of trajectories because in [7] the authors
state that they use systematic movements. Comparing the performances of our
individual strategy (Fig. 7 & Fig. 8) with this competitor, we can see that our600

method provides more accurate predictions. This is true even if we consider
for the competitor the sequence length that gets the best results. However, the
machine learning predictor gets an higher prediction rate w.r.t. our individual
strategy. Nevertheless, as shown above, we can overtake this lack by using our
hierarchical strategy. Moreover we also test our individual predictor using an605

infinite temptol in order to exclude the time dimension (not considered by the
competitor) and using spattol = 500 we obtain a prediction rate of 87% and an
accuracy over 70% which are clearly higher than the competitor performances
for any value of h.

Global Competitors We also compared our proposal with method pre-610

sented in [22], called WhereNext, that uses a pattern based methodology to
predict the next cell of a movement. This is a global approach and considers all
the trajectories to generate trajectory patterns that contain the information on
the travel time between two consecutive cells. The global method differs com-
pletely from the collective one, which combines the set of individual profiles,615

because only the behavior followed by the crowd will survive to the process of
extraction. WhereNext is just able to predict the next cell and the time spent
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Figure 20: WhereNext performances using different value of minimum score and gride size.

on average for moving from the current cell to the next one. Since even this
method applies a spatial discretization, we use the same grid defined above. The
goodness of predictions got by WhereNext depends on the quality of trajectory620

patterns and on the minimum score used to consider admissible a prediction.
In Fig.20 the results of this competitor are shown for the different grids. Com-
paring them with MyWay, we can see that our individual strategy, in general,
performs better than WhereNext in terms of both accuracy and prediction rate.
While considering the collective strategy we pay the increasing of the prediction625

rate - 40% greater than WhereNext - with decreasing of accuracy which let the
competitor win using the 250 grid with an advantage of 5%. This disadvantage
disappear if we compare WhereNext with the hierarchical strategy.

7.5. Participation Analysis

In the experiments we shown before we considered a complete participation630

of the users, but in reality MyWay users may choose: (i) to contribute to the
collective knowledge sharing their profiles obtaining a better service using the
hierarchical strategy or (ii) to maintain their profile private using only the indi-
vidual strategy. Therefore we studied how the participation of the user effects
the overall performances by analyzing the prediction rate and the accuracy vary-635

ing the percentage of users sharing their profiles. Fig.21 shows the two measures
and the overall performances in the two test cases. This result fills the gap be-
tween the individual strategy and the hierarchical one which are represented
by 0% and 100%. We observe how a greater sharing of routines enables better
performances. In particular, the prediction rate dramatically increases at each640

step, while the accuracy slightly decreases. This happens because a larger num-
ber of trajectories become predictable allowing more possible error thanks to
the rapid increase of the predictive power, but the overall performances clearly
improve.
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Figure 21: Increasing the participation of the users the prediction rate increase loosing some
accuracy (left), but the overall performance rises (right)

8. Conclusion and Future Work645

In this paper, we have proposed MyWay, a system for predicting future
positions of mobile users at specific time instants. It is based on three strate-
gies that exploit in different ways the individual systematic behaviors of users
in the daily mobility, described by their individual mobility profiles. The in-
dividual strategy takes advantage of the single user’s regularity; the collective650

strategy exploits individual systematic behaviors of all users, and the hierarchi-
cal strategy combines both of them using two levels of knowledge (individual
and collective). We have evaluated our prediction strategies on large real-world
trajectory data. Our experiments show that the best prediction strategy is the
hierarchical one. Our finding is that individuals can avoid to share the raw data655

and disclose only their (less detailed) mobility profile without deteriorating the
prediction performances. Future investigations will be focused on the study of
a well-defined methodology for an apriori evaluation of the predictive powerful
of mobility profiles.Finally, it would be interesting to study how much the per-
formances improve if we take into account for the prediction not only the best660

matching routine, but also the first k best matching routines.
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