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Abstract The availability of massive digital traces of

individuals is offering a series of novel insights on the

understanding of patterns characterizing human mobility.

Many studies try to semantically enrich mobility data with

annotations about human activities. However, these

approaches either focus on places with high frequencies

(e.g., home and work), or relay on background knowledge

(e.g., public available points of interest). In this paper, we

depart from the concept of frequency and we focus on a

high level representation of mobility using network ana-

lytics. The visits of each driver to each systematic desti-

nation are modeled as links in a bipartite network where a

set of nodes represents drivers and the other set represents

places. We extract such network from two real datasets of

human mobility based, respectively, on GPS and GSM

data. We introduce the concept of mobility complexity of

drivers and places as a ranking analysis over the nodes of

these networks. In addition, by means of community dis-

covery analysis, we differentiate subgroups of drivers and

places according both to their homogeneity and to their

mobility complexity.

Keywords Mobility network � Ranking � Communities

1 Introduction

One of the most fascinating challenges of our time is to

understand the complexity of the global interconnected

society and possibly to predict human behavior. A great

part of human behavior is observable through individual

movements, registered in many different layers: mobile

phone network, GPS devices, social media applications,

road sensors, credit card transactions, etc. Movement is the

‘‘hardware’’ of our daily life. We move to perform any

activity: we have to move to bring children at school, to

buy a new electronic device, to meet with colleagues at

work, etc. If we understand the patterns of human move-

ment, we can also comprehend the mechanics of human

behavior.

On the basis of this assumption, in the last years, we

have witnessed many studies exploring movements data to

understand different aspects related to the mobility of

individuals, such as the density of traffic (Giannotti et al.

2011), the identification of systematic movements (Trasarti

et al. 2011), the identification of groups of drivers fol-

lowing common routes (Monreale et al. 2009) and many

others. On one hand, the movement is an objective phe-

nomenon that can be observed, measured, and recorded

easily with the modern ICT services. On the other hand, the

intended activity of each movement is not always easy to

sense and register. A common approach to better under-

stand movement behavior consists into the study of the

motivations that push an individual to move toward a given
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destination. There are proposals in the literature to

semantically enrich movement data on the basis of move-

ment dynamics and properties. For example, Jiang et al.

(2012) tries to estimate home/work locations of an indi-

vidual by analyzing the frequency she visits a particular

place; Lafferty et al. (2001) observe a sequence of move-

ments to derive the sequence of activities performed;

Rinzivillo et al. (2014) extract a series of individual

mobility network to learn structured patterns of visits to

places; and Furletti et al. (2013) exploit the background

knowledge of the points of interest (POIs) available in a

territory to derive the activities of persons stopping nearby.

In this paper, we propose an approach that can be con-

sidered as an intermediate step between the movement

dynamics exploration and the semantic enrichment of

movements. We start from the analysis of individual

movements to understand the relevance of each destination.

However, we are not interested in the specific activity a

person is performing on her destination, rather we focus on

the ‘‘relevance’’ that a specific destination has for the

person.

A well-known proverb says that ‘‘Home is where the

Hearth is,’’ meaning that the home for an individual is not

just a mere geographical place, but it represents a complex

mixture of sensations, perceptions, and feelings linked to

that place. It goes without saying that this kind of definition

is strongly tied to a personal and subjective vision of that

place. From the analytical point of view, it is difficult to

measure this perception. The approaches based on

semantic enrichment are focused either on places of gen-

eral interest (like restaurants, shopping center) or on indi-

vidual-based destinations (like home or work). Our

proposal tries to fill this gap by starting from an individual

ranking of personal places to generalize to collective rel-

evance of destinations.

Concretely, we propose an approach based on complex

network analytics methods to model the relevance of a

place p according to the persons visiting p. The basic

intuition is based on the concept of complexity of individual

mobility: a person d is complex if she visits many different

complex places. In a similar way, a place p has a high

relevance, i.e., it is complex, if it is visited by many

complex visitors. This interwined relation among users and

places is modeled by means of a bipartite graph, called

Drivers–Places network. Starting from this model, we

propose two analytical processes based on ranking mea-

sures and community discovery. In the first process, we try

to understand both the mobility complexity of people

moving in a territory and the mobility complexity of places

for the collectivity. Therefore, the analysis is focused on

the mobility behavior of drivers with respect to some

specific places, which are considered important for both

their individual mobility and the collective mobility, and

on the mobility in the interesting places with respect to the

drivers who visit them. In the second analytical process,

based on application of community discovery algorithms,

we characterize the groups of similar drivers and places

with respect to mobility complexity.

We experiment our analytical methodology in real case

studies considering both GSM and GPS datasets of trajec-

tories. Our finding is that drivers and places complexity in

terms of mobility can be characterized according to the

similarity of the movements that lead a certain user in a

certain location. Then, by doing a deeper analysis with

GPS data, we show how certain communities are charac-

terized by their topological structure and by their mobility.

Finally, as additional point, studying ranking measures we

demonstrate that the method we use to calculate the

mobility complexity scores is a particular case of HITS

(Kleinberg et al. 1999), one of the most famous link

analysis algorithms.

The rest of this paper is organized as follows. Section 2

discusses papers related with our work. In Sect. 3, we

introduce some basic concepts useful to understand our

analytical methodology. Section 4 illustrates the process of

bipartite network Driver–Place construction, while Sect. 5

explains in detail the idea of mobility complexity. In

Sects. 6 and 7, we present the experimental results

obtained in the two case studies using real-life GPS and

GSM data. Finally, Sect. 8 contains conclusions and

describes future works.

2 Related work

In this section, we discuss some papers of the literature

which are related to our work. First, we summarize some

works which analyze mobility locations using a complex

network approach. Then, we discuss other works related to

link analysis methods and the analysis of bipartite networks

in economic scenarios.

The mobility history of a driver may enable many ser-

vices such as location recommendation or sales promotion.

In Zheng and Xie (2010), by taking into account users

travel experience and the subsequent locations visited, the

authors learn the location correlation from GPS trajectories

useful to construct a personalized location recommendation

system. Also our approach extracts a correlation between

drivers and places, and among the drivers themselves and

places themselves.

In Brilhante et al. (2012), the authors analyze the urban

mobility trying to feature the places in a city according to

how people move among them. The authors build a net-

work of points of interests by connecting places by the

individual trajectories passing through them. From such

network, they compute communities finding groups places
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highly connected by the mobility of the individuals. The

main difference with our approach is that we try to char-

acterize the relevance of the places with respect to the

drivers and vice-versa extracting from the movements data

their importance without the need of external data sources.

Mobility networks can be also employed to prevent the

spread of diseases. In Eubank et al. (2004) from move-

ments of individuals between specific locations, the phys-

ical contact patterns are modeled by dynamic bipartite

graphs. The study found that this network is strongly

connected with a well-defined scale for the degree distri-

bution and that the locations graph is scale-free.

In Hossmann et al. (2011), the authors represent the

mobility scenario by a weighted contact graph, where a tie

strength represents how long and often a pair of nodes is in

contact. This enables the mobility analysis by complex

network and graph theory. Similarly to us, they found that

mobility is strongly modular by using community detec-

tion. However, their finding is that communities are not

homogeneous entities, while we will show that there exist

both homogeneous and heterogeneous communities.

An interesting analysis on mobility data presented in

Pappalardo et al. (2015) discover two distinct classes of

individuals: returners, whose mobility is produced by the

commuting between home location and work location, and

explorers, whose mobility is generated by travels per-

formed toward locations different from home and work and

far from them. This work shows that returners and

explorers play a distinct quantifiable role in spreading

phenomena and that there exists a correlation between their

mobility patterns and social interactions.

A completely different type of mobility is discussed in

Kaluza et al. (2010) where it is built the network of ports

by using the itineraries of cargo ships. This network has a

heavy-tailed distribution for the connectivity of ports and

for the loads transported on the links with systematic dif-

ferences between ship types. Also in our work, we delin-

eate some characteristics given by certain mobility

patterns.

Complex networks are a powerful model to study and

describe realities with different components. In Hidalgo

and Hausmann (2009), the authors present a simple method

to infer the relative number of inputs available in a country

from trade data connecting countries to the products they

export. They show that countries approach over the long

run a level of income that is determined by the diversity of

inputs available in the country, as approximated by the

measures introduced. The same authors in Hidalgo and

Hausmann (2010) develop a method to characterize the

structure of bipartite networks called Method of Reflections

(MOR), and they apply it to trade data to illustrate how it

can be used to extract relevant information about the

availability of capabilities in a country. They interpret the

variables produced by MOR as indicators of economic

complexity.

Furthermore, other authors faced the same macro-eco-

nomical study with a slightly different approach. Caldarelli

et al. (2011, 2012) analyzed the bipartite network of

countries–products from United Nations data on country

production. The authors define the country–country and

product–product projected networks and introduce a novel

method of filtering information based on elements’ simi-

larity. As a result, they find that country clustering reveals

unexpected socio-geographic links among the most com-

peting countries.

Other works use a bipartite graph to observe micro-

economical relationships. In Pennacchioli et al. (2013), the

authors inspect the market basket transactions observed

over a large population for long time, offering a detailed

picture of customers’ shopping activity. They use the sys-

tem of all customer–product connections and MOR to

better understand the hidden knowledge governing the

interplay between human desires and needs on one hand,

and the offered goods and products on the other hand. They

create a framework to exploit the characteristics of the

customer–product matrix and test it on a transaction data-

base storing purchases in supermarkets.

3 Preliminaries

In this section, we introduce notions and procedures from

the state of art of mobility data mining that are employed in

our approach to extract the places used for the construction

of the Driver–Place network.

3.1 Systematic movements: mobility profiles

Movements are performed by users or drivers in specific

areas and time instants, and each movement is composed

by a sequence of spatio-temporal points. We call trajectory

the movements of a driver described by a sequence of

spatio-temporal points. The set of the trajectories traveled

by a driver makes the driver’s individual history. Given a

driver i, we call individual history the set of trajectories

Hi ¼ fm1; . . .;mng.

The profiling procedure proposed in Trasarti et al.

(2011) allows us to extract the systematic movements of a

driver i. Applying this procedure, the trajectories can be

grouped using a density-based clustering equipped with a

distance function defining the concept of trajectory simi-

larity. The result is a partitioning of the original dataset

C ¼ fC1. . .Ckg where Cc � Hi 8Cc 2 C. The clusters with

few trajectories and the one containing noise are filtered

out. Representative trajectories called routines rc are

extracted from each remained cluster. This set of routines
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is called mobility profile Si ¼ fr1. . .rkg of driver i. The

parameters required by the procedure in Trasarti et al.

(2011) are: (1) min size representing the minimum size for

a cluster of trajectories and (2) er representing the threshold

distance to consider two trajectories belonging to the same

cluster.

The mobility profile describes an abstraction in space

and time of the systematic movements of the drivers

completely ignoring exceptional movements. Thus, the

systematic behavior of each driver can be modeled with her

mobility profile, and the daily mobility of each driver is

characterized by her routines. Figure 1 depicts an example

of mobility profile extraction.

3.2 Systematic places: mobility POIs

The routines extracted following the procedure (Trasarti

et al. 2011) necessarily begin and end somewhere. The

systematic profiled drivers have a mobility that gravitates

around these locations. Thus, it results that these places are

surely very important for them. We employed the proce-

dure proposed in Guidotti et al. (2014) to identify these

places called individual POIs.

Given the mobility profile Si of the driver i, then, the

individual POIs of i are the set Ii such that

Ii ¼ fpj9r 2 Si:p ¼ startðrÞ _ p ¼ endðrÞg, where start(.)

and end(.) are two functions that given a routine return the

start and end point, respectively. We indicate with IP the

union of all the individual POIs. Note that, these POIs are

not just ‘‘places frequently visited by someone’’ like

restaurants, bar, museums, but they are places relevant in

people everyday systematic life. Therefore, they are not

only typical attraction points, but also important places for

the individual, such as home or work, which are not

available in the typical public sources.

Since individual POIs are spatial points represented by

GPS coordinates, it is unlikely to observe two points with

identical coordinates. Consequently, in order to discover

places visited by more than one driver, we need to group

close individual POIs in IP that should be part of the same

collective POIs (Guidotti et al. 2014). To this aim, fol-

lowing Guidotti et al. (2014), we compute a density-based

clustering on the individual POIs IP and then, we turn

each valid cluster and each noise point into a buffered

convex hull area representing a collective POI. In other

words, we increase the area covered by the clustered points

with a spatial buffer that together with the density-based

clustering allows us to describe a collective POI by an area

and not by GPS coordinates. Indeed, if we consider the

extreme case where a cluster contains one single individual

POI, without a buffering, we obtain the area covered by the

coordinates of the POI.

We denote by CP the set of collective POIs. The input

parameters of this procedure are (1) e representing the

threshold distance to consider two individual POIs

belonging to the same collective POI and (2) e0 that is the

distance of the buffer. Note that, two different POIs p and q

could be overlapped because of the buffering phase. Any-

way, keeping e0\e ensures that the center of p is not

included in q, otherwise the clustering algorithm would

have put them in the same cluster since they would have

been distant no more than e.
The clusters returned can also be composed of noise

points because each noise point represents an individual

POI supported by at least a routine and thus, it is relevant

for at least one driver. In the following, for the sake of

simplicity, we call a collective POI simply POI. In other

words, we can think to a POI as a geographical area with a

certain extension that is visited frequently by at least one

driver. Figure 2a–f illustrates how to extract POIs.

Alternative clustering methods to extract the POIs are

Guidotti et al. (2015), Ashbrook and Starner (2003), Cao

et al. (2010), Pappalardo et al. (2013), Zheng et al. (2010),

and Zhou et al. (2004). However, Guidotti et al. (2014) is

preferred since only systematic individual, and collective

POIs are extracted automatically discarding the noise.

4 Driver–place network

The problem we face consists in understanding both the

mobility of people moving in a territory and the mobility of

places which are interesting for the collectivity. Our goal is

twofold: we want to analyze (1) the mobility behavior of

drivers with respect to specific places which are worth for

both their individual mobility and for the collective

mobility and (2) the mobility of these valuable places with

respect to the drivers who visit them.

Fig. 1 The individual history (left), the clusters identified by the grouping function (center), and the extracted individual routines (right) forming

the individual mobility profile
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The methodology we propose to address this problem

is based on two main steps: (a) the construction of a

mobility data-driven network that describes the relation-

ship between places and drivers and (b) the mobility

complexity analysis based on the information modeled

by this network.

The mobility data-driven network must capture the

information on which places are visited by a specific driver

and which drivers visited a specific interesting place. For

this reason, we propose to model the relationship between

places and drivers with a bipartite network, named Dri-

vers–Places network:

Definition 1 (Drivers–Places Network) The Drivers–

Places network G ¼ ðD; P, E) is a bipartite network such

that D is the set of drivers, P is the set of places,

D \ P ¼ ;, and E is the set of edges e ¼ ði; j;wÞ where wij

is the number of times driver i 2 P stopped in place j 2 D.

An example of Drivers–Places network is reported in

Fig. 3. A Drivers–Places network is composed of two

disjoint sets of nodes, i.e., drivers D and places P, such that

each link connecting a D-node to a P-node means that

driver i visited place j. Moreover, on each edge, we have

the information of how many times driver i stopped in

place j.

Given a Drivers–Places network G, we can represent its

adjacency matrix MjDj�jPj as a rectangular matrix. Indeed,

since there are only links between the two partitions (D and

P), we do not need to represent the massive number of

zeroes given by the links between nodes of the same par-

tition. In M, the rows represent the D-nodes (drivers), while

the columns represent the P-nodes (places), thus Mij¼1

means that driver i visited place j.

The above bipartite network can be built starting from

any dataset of trajectories describing the human mobility

and from a set of places which are considered interesting.

The crucial point in the network construction is the iden-

tification of interesting places that compose the set of

nodes P. As highlighted above, our goal is to consider

places which are interesting both for the individuals and for

the collective mobility. For example, we can use as places

the set of POIs coming from online static datasets collected

by specific websites (Brilhante et al. 2012). In our

approach, we consider the POIs extracted directly from the

driver movements by applying the method proposed in

Guidotti et al. (2014). This gives the not negligible

advantage to consider places capturing properties of

everyday human mobility both individual and collective.

We illustrate in Algorithm 1 the workflow of the pro-

cedure adopted to construct the Drivers–Places network.

Fig. 2 Sequences of steps to perform the POIs extraction: a individual mobility routines, b start and end points extraction, c individual POIs

separation, d density-based clustering, e buffering phase, f the collective POIs

Fig. 3 Example of Drivers–Places network. Every driver is linked to

the places visited and, every place is linked to its visitors. The thicker

the line the higher the number of visits
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Given the drivers mobility H and the required parameters,

we extract the mobility profiles and we derive from the

mobility profiles S the eligible drivers D (i.e., those

having a systematic behavior) and the POIs P (lines 1–

11). Then, considering the driver movements and the POIs

(lines 13–14), if driver i visited place j, i.e., it exists at

least a trajectory of driver i starting or ending in j (line

15), then an edge is added to the Drivers–Places network

G (line 17). Edges are weighted by counting the number

of visits wij, i.e., the number of times driver i visited place

j (line 16). Moreover, since we want to consider only

relevant links we need a mechanism to evaluate how

meaningful is the mobility of each driver i for each visited

place j, i.e., we want to identify which journeys are sig-

nificant. We exploit the concept of lift, typically applied

to association rules (Agrawal et al. 1993), to evaluate how

meaningful is the mobility of each driver i toward each

visited place j (line 22). The output of Algorithm 1 is the

bipartite network G ¼ ðD;P;EÞ where D is the set of

drivers, P the set of relevant places (i.e., the collective

POIs) and E the set of meaningful links (according to the

lift filter).

We briefly summarize in the following how the lift

coefficient is evaluated in order to remove meaningless

edges. We define the total number of visits as

W ¼
P

ði;jÞ2E wij, the total number of travels in a certain

location done by a driver i as li ¼
P

j2P wij, and the total

number of stops in a place j as sj ¼
P

i2D wij. Given a

driver i and a place j, let
wij

W
be the relative number of visits

done by driver i to place j, li
W

the relative number of visits

done by driver i to all places, and
sj

W
the relative number of

visits received by place j to all drivers. Then, the lift

coefficient of i and j is defined as

liftði; jÞ ¼
wij

W
li
W
� sj

W

¼ wij � W

li � sj

The lift coefficient takes values from 0 (when wij ¼ 0, i.e., i

has never visited j) to þ1. When liftði; jÞ ¼ 1, it means

that
wij

W
makes the connection between i and j relevant.

Therefore, liftði; jÞ\1 means that the event ‘‘i visited j’’ is

not significant. The value of 1 for the lift indicator is a

reasonable threshold to discern the meaningfulness of the

number of visits: if it is strictly higher, then, the mobility is

meaningful and the corresponding link is valid, otherwise

the mobility is not meaningful. In the following, with the

name Drivers–Places network, we refer to the bipartite

graph formed by only meaningful links (i.e., liftði; jÞ� 1).

In the experiments, we will consider Drivers–Places net-

work from which meaningless links are filtered out.

Finally, it is worth to recall that according to the pro-

cedures followed [i.e., (Trasarti et al. 2011; Guidotti et al.

Algorithm 1: buildDriverP laceNetwork(H, θ, ms, ε, ε′)
Input : H = {Hi, . . . Hn} - drivers mobility history

θ, ms - parameters for mobility profile exaction
ε, ε′ - parameters for POIs exaction

Output: G = (D, P, E) - driver place network

1 S ← ∅;
2 IP ← ∅;
3 for Hi ∈ H do
4 Si ← extractMobilityProfile(Hi, θ, ms);
5 Ii ← extractIndividualPOI(Si);
6 IP ← IP ∪ {Ii};
7 S ← S ∪ {Hi};
8 end
9 D ← {i | Hi ∈ S}; /* retrive the drivers’ indexes */

10 CP ← extractCollectivPOI(IP, ε, ε′);
11 P ← {j | POIj ∈ CP}; /* retrive the POIs’ indexes */
12 E ← ∅; /* build the edges */
13 for i ∈ D do
14 for j ∈ P do
15 if ∃m ∈ Hi | start(m) ∈ POIj ∧ end(m) ∈ POIj then
16 wij ← countV isits(Hi, POIj);
17 E ← E ∪ {(i, j, wij)};
18 end
19 end
20 end
21 G′ ← (D, P, E);
22 G ← liftFilter(F );
23 return G;
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2014)], the trajectories considered, i.e., starting or ending

in a POI, are mainly the trajectories belonging to the

mobility profiles of the users, i.e., systematic trajectories.

However, also occasional movements ending in every

collective or individual POIs are taken into account. Con-

sider for example two friends A and B, and A visited B in

the observation period, then also this trajectory will be

added to G since A moved from a systematic POI for her

(i.e., A’s home) to another one that is systematic for the

friend B (i.e., B’s home).

5 Mobility complexity

A Drivers–Places network describes a detailed picture of

the mobility between drivers and places in a certain area.

Our goal is to identify a method for discovering users and

places that in the Drivers–Places network are characterized

by a complex mobility. Intuitively, a user with a complex

mobility is a person visiting many different complex places,

while a complex place is a location visited by many users

with a high mobility complexity. In other words, the com-

plexity of a place depends on the complexity of people

visiting it and viceversa. This means that the definition of

mobility complexity requires a recursive evaluation of the

phenomenon. Note that, our proposal is to consider that the

mobility complexity of an individual does not depend only

on the diversity of visited locations, but we require to

consider also the complexity of visited locations. Our

experiments on real data show that our choice to have a

recursive definition of mobility complexity is reasonable

(see Sect. 6.4).

In order to clarify the concept of user/place mobility

complexity consider the following example. Suppose that

Alice’s individual POIs are her home, the supermarket where

she works and a mall. Now, consider Bob having as indi-

vidual POIs his home, the farm where he works, his parents’

home, a jazz pub. The mobility complexity of Bob is lower

than Alice’s complexity even if his diversity of visited places

is higher. This happens because all Bob’s POIs are not

complex, while Alice has 2 over 3 complex places.

To understand the hidden knowledge governing the

interplay between the most visited places on one hand, and

who are the most interesting visitors, and to identify

complex users and places with respect to their mobility, we

propose to exploit link analysis, a data-analysis technique

used to evaluate relationships, i.e., connections, between

nodes. Among the widely adopted algorithms, there are

PageRank (Page et al. 1999) and HITS (Kleinberg et al.

1999). Since PageRank makes use of a damping factor, it is

not suitable for our analysis because we do not want to

model random jump between D-nodes and P-nodes and

vice-versa. Therefore, HITS would seem more suitable for

our analysis.

However, in Hidalgo and Hausmann (2009) and Cal-

darelli et al. (2011) is presented an ad-hoc link analysis

method for bipartite network, called Method of Reflection

(MOR). Like HITS, it iteratively calculates the value of the

previous-level properties of a node’s neighbors. MOR is

presented both in Hidalgo and Hausmann (2009) and

Caldarelli et al. (2011) with slight but significant differ-

ences. In this paper, we consider the method proposed in

Caldarelli et al. (2011) since it was proven that converge

with all the parameter settings.

Consider a bipartite network G ¼ ðD;P;EÞ described by

the adjacency matrix MjDj�jPj. Let d and p be two ranking

vectors to indicate how much a D-node is linked to the

most linked P-nodes and how much a P-node is linked to

the most linked D-nodes, respectively. Thus, it is expected

that the most linked D-nodes connected to nodes with high

pj score have an high value of di, while the most linked P-

nodes connected to nodes with high di score have an high

value of pj. This corresponds to a flow among nodes of the

bipartite graph where the rank of a D-node enhances the

rank of the P-node to which is connected and vice-versa.

Starting from i 2 D, the unbiased probability of transition

from i to any of its linked P-nodes is the inverse of its

degree d
ð0Þ
i ¼ 1

ki
, where ki is the degree of node i. Similarly,

the unbiased probability of transition from a P-node j to

any of its linked D-nodes is the inverse of its degree

p
ð0Þ
j ¼ 1

kj
. Let n be the iteration index, MOR is defined as:

d
ðnÞ
i ¼

XjV j

j¼1

1

kj

Mijp
ðn�1Þ
j 8i p

ðnÞ
j ¼

XjUj

i¼1

1

ki

Mijd
ðn�1Þ
i 8j ð1Þ

These rules can be rewritten as a matrix-vector

multiplication

d ¼ �Mp p ¼ �MTd ð2Þ

where �M is the weighted adjacency matrix. From these

rules we have

dðnÞ ¼ �M �MT dðn�1Þ pðnÞ ¼ �MT �Mpðn�1Þ ð3Þ

dðnÞ ¼Ddðn�1Þ pðnÞ ¼ Ppðn�1Þ ð4Þ

where DðjUj�jUjÞ ¼ �M �MT and PðjV j�jV jÞ ¼ �MT �M are related

to xðnÞ ¼ Axðn�1Þ that is, MOR is solvable using the power

iteration method (Lanczos 1950). This fact leads auto-

matically to the proof of convergence.

Using MOR we can interpret the variables produced as

indicators of mobility complexity. In practice, mapping the

definition of MOR on the Drivers–Places network we

obtain a mutual reinforcing definition of mobility com-

plexity: a driver with an high mobility complexity visits
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places with an average high mobility complexity; a place

with an high mobility complexity is visited by drivers with

an average high mobility complexity. In Appendix, we

formally proved that MOR is a particular case of HITS.

Thus, can be used both HITS or MOR to characterize the

structure of the network and to evaluate nodes ranking for

our Driver–Places network. However, we decided to use

MOR because useless scores are not calculated (see

Appendix) and because of the similarity between our

application and those on the networks presented in Cal-

darelli et al. (2011) and Hidalgo and Hausmann (2010). In

the following, we will use d and p to indicate driver and

place mobility complexity, respectively.

6 Case study on GPS data

To discover the latent knowledge in the relationship

between drivers and places, we applied the methodology

described above on datasets of trajectories. First of all, we

briefly report some consideration about the dataset used

and the mobility profile extraction. Then, we describe the

study performed to extract reliable Places as POIs and

what they represent on the analyzed area. Moreover, we

analyze the GPS Drivers–Places network to understand

how much the graph represents the overall mobility and

how mobility complexity values are distributed among

drivers and places. We also illustrate what arises applying

community detection to the projected graphs of the

bipartite network.

6.1 Mobility dataset

As proxy of human mobility, we used a GPS dataset col-

lected for insurance purposes by Octo Telematics S.p.A..1

containing 9.8 million car travels performed by about

160,000 vehicles active in Tuscany in May 2011. In par-

ticular, we focused our study on Pisa and Florence pro-

vinces. In the following, we analyze the GPS Drivers–

Places networks and what mobility complexity analysis

applied to them can reveal. In this context, for the con-

struction of the Drivers–Places network, we studied the

systematic movements by exploiting the procedures for

mobility profile and mobility POIs extraction described in

Sects. 3.1 and 3.2, respectively. We used the procedure

presented in 4 to extract the POIs.

Figure 4 (left) depicts a sample of the considered trajec-

tories. The mobility dataset is geographically too various to

be used for our purposes. Indeed, a basic issue is that mobility

is not the same in every geographical area: every area is

characterized by its own type of mobility with certain

properties depending on the surface, the topology and the

number of inhabitants. To consider this fact, we geographi-

cally filtered the dataset in provinces using as borders the

administrative ones and for each province we selected all the

trajectories passing through it. In this paper, we present the

results obtained for Pisa and Florence provinces which are

characterized by two different kinds of mobility.

In order to obtain reasonable routines, we performed

some test to retrieve the best parameters to extract reliable

mobility profiles. The distance function used in the clus-

tering step is Route Relative Synch described in Trasarti

et al. (2011). The clustering algorithm used is the density-

based algorithm Optics (Ankerst et al. 1999). We studied

Optics parameters on a subset of 1000 users in Pisa pro-

vince. We varied er 2 ½0:1; 0:3� with step 0.01, Fig. 5a. The

bigger er is, the more different trajectories are allowed to

be clustered together. Intuitively, this parameter represents

the percentage of dissimilarity between two trajectories in a

cluster, thus 0.1 means that we admit in the same cluster

trajectories having a degree of similarity at least equal to

90 % while 0.3 means having a degree of similarity at least

equal to 70 %. The choice of the above range of values is

due to the fact that for our goal we want routines generated

by trajectories with a degree of similarity lower than 70 %,

are unreasonable. Moreover, we cannot set er¼0 (i.e.,

100 % of similarity) because it is a too much strong

requirement to find groups of similar trajectories that

probably will lead to a no routine.

The parameter min size, i.e., the minimum number of

trajectories that must be in a cluster considered valid,

was varied in [4, 12], Fig. 5b. The aspects we considered

to tune the values are: (1) the dataset coverage, (2) the

profile distribution per user, and (3) the profile stability.

From these distribution we use fixed a value for

parameters in order to minimize the variance of observed

indicators. Anyway, in each plot after the middle values,

the curves change more rapidly than before them. We

choose er equal to 0.2 since it expresses 80% of simi-

larity between two trajectories and, a reliable value for

min size is 8 since a routine is a movement repeated a

sufficient number of times during a month. Figure 4

(right) depicts a sample of profiles extracted in Pisa

modeling the users’ systematic movements. Figure 5c

shows the number of routines per users in Pisa province

where each user has one or two routines on average,

which, should correspond to the commute to and from

work. Indeed, we can see that the average number of

routines per profile is 2, which is probably due to the

home-work-home pattern. Figure 5d shows the temporal

distribution of the trajectories and routines. Here, we

observe how the profile set has a working-like trend,

highlighting the three peeks during early morning,

lunchtime, and late afternoon.1 http://www.octotelematics.com/it.
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6.2 Mobility POIs analysis

Now, we analyze the process of POIs extraction in term of

parameters setting and results. The POIs are used as places

of the Drivers–Places networks. In the extraction of POIs,

we need to consider two issues: (a) a great number of POIs

must be visited by at least two users otherwise they would

not be a meaningful individual information in a global

scenario, (b) the POI shape cannot degenerate, i.e., they

cannot be too big, nor too long, nor tubular. Only two

parameters must be set in the POIs building process: e and

e0. However, we studied only e since e0 depends on e.
We tested the POIs construction using the routines of

1000 profiled users in Pisa province with e 2 20; 100½ �. In

this case, e in Optics represents the maximum distance (in

meters) between two individual POIs to consider them

close. We recall that every place is important for someone

because it is generated by a routine. We observed the

number of POIs extracted and the average number of users

in a POI [Fig. 6 (left)], the maximum area and diameter of

Fig. 4 (Left) A sample of the

considered trajectories in Pisa

province. (Right) Mobility

profiles extracted in Pisa

province
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Fig. 5 Parameters evaluation for mobility profile extraction. a, b, we

observe the variation in percentage of the number of users, number of

routines and number of mobility profiles remaining stable by varying

er and min size respectively. c, d, We show the distribution of the

number of users per size of the mobility profile, i.e., number of

routines, and the number of routines per time slot using er ¼ 0:2 and

minsize ¼ 8
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built POIs [Fig. 6 (right)]. Observing the plots a reasonable

value for e appears to be 50 m. Consequently, we set e0 ¼
45 to have a remarkable buffer even for single POIs. In

fact, this combination of parameters leads to a consistent

number of POIs which are visited on average by at least

two users. For each province, we obtain a POI distribution

per profiled user telling us that the biggest subset of pro-

filed users stop from 1 to 5 POIs. The average number of

profiled users per POI ranges from 2 to 4 meaning that a

place is on average always visited by at least two users.

This is due to the fact that there are many places (probably

users homes) which are visited only by a single user, while

other social POIs like hospitals and shopping centers vis-

ited by many users. Due to the home-work-home pattern,

the majority of the users visits at least two places. More-

over, both for Pisa and Florence, we note that the number

of POIs is correlated neither with the number of routines

nor with the surface, while it is quite correlated with the

number of inhabitants and users.

6.3 GPS drivers–places network analysis

In this section, we analyze the GPS Drivers–Places net-

work highlighting the topological characteristics of Pisa

and Florence bipartite networks. According to the type of

dataset used, we observe two different types of models.

Every network is made by few components, but in any

case, the giant component is composed of the majority of

nodes. Moreover, the Drivers–POIs networks are quite

sparse considering the large number of nodes both for

drivers and POIs and the fact that there are some POIs

which are related with the life of few individuals and thus,

they are not visited by many drivers.

We observed that the lift coefficient does not affect

significantly the number of edges deleted. We have a

reduction of 0:07% edges for Pisa and 0:16% for Florence,

which means that the links generated by extracting the

networks from systematic mobility data are already con-

siderably meaningful. At any rate, using the lift coefficient,

we ensure to remove irrelevant edges. Statistics in Table 1

show that the projected networks have a low level of

density.

Log–log degree distributions for Pisa and Florence

networks showed in Fig. 7 highlight that in both cities there

are few drivers and POIs with a high degree: the value

decreases following a long tailed power low distribution.

This means there are few places visited by many people

and many places visited by few drivers (probably one or

two). The driver degree distribution is more uniform, and

especially in Florence there are many drivers with a similar

degree that is quite high. The average degree for drivers

goes from 10 to 20, while the average degree for POIs goes

from 15 to 35. It means that, on average, each entity is

linked with a considerable number of other entities. This

highlights the good relationship between drivers and POIs:

the mobility of each driver is well represented because a

valuable number of POIs are taken into account.

6.4 Mobility complexity analysis

We applied MOR on the Drivers–Places networks of Pisa

and Florence with a threshold tolerance of 1:0e�8 to stop

the method. Figure 8 shows the semilog plots of the

mobility complexity distribution for drivers and places for

the two GPS datasets, the number of visits made and

received, and the number of travels and stops (i.e., the
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nodes degree). All the values are normalized between zero

and one. In both provinces, the mobility complexity dis-

tributions are obviously long tailed. Thus, there are few

complex drivers and many not very complex drivers. On

the other hand, there are few complex places, and many not

complex places. Some differences arise between the two

datasets. In Pisa, there is more heterogeneity among the

drivers with respect to the mobility complexity than in

Florence, where most of the drivers have a similar mobility

complexity. The same happens for the other curves.

Regarding the POIs, the mobility complexity distribution is

similar between Pisa and Florence, i.e., a similar number of

POIs per users is visited, while the other curves have longer

tails in Pisa than in Florence.

The couple of scores (d, l), i.e., the driver mobility

complexity score and visited locations score, and the pair

(p, s), i.e., the POI mobility complexity score and the

stopped drivers score are obviously correlated. For exam-

ple for Pisa, we have a Pearson (Galton 1886) coefficient

pearsonðd; lÞ ¼ 0:83 and pearsonðp; sÞ ¼ 0:79, with

p value smaller than 0.00001. This phenomenon is not

surprising. Indeed, the degree is always correlated to rank

analysis measures like PageRank and HITS. However,

similarly to what happens for PageRank and HITS, our

recursive definition of mobility complexity through MOR

captures more than the simple diversity of POIs and visi-

tors. Indeed, we do not consider only the diversity of places

visited by a user to define it complex but also the com-

plexity of his places. Similarly, for complex place, we do

not take into account only the fact that it is a popular place

(i.e., visited by a lot of users) but also the complexity of

visitors. Figure 9 confirms our intuition about this fact. It

reports the density scatter plot between the mobility com-

plexity and the number of visited places (or visitors): the

more the color of an area is red, the higher the density. We

can notice how, according to the long tails, the denser areas

are close to the origin. In the second column, we report a

zoom of these areas. We can observe that the phenomenon

is repeated in this smaller area. The outcome of this fig-

ure is that for a consistent group of nodes, both drivers and

places, the two measures are correlated: their points are

close to the black straight line representing the ideal situ-

ation in which the correlation is 1; on the other hand, for

another consistent group of nodes lying far from this line

the correlation is not so high. Take for example, the points

A and B of every plot. A is a node (either driver or place)

with a mobility complexity higher with respect to the

number of places visited/number of visitors. In other

words, the few places visited are very complex. On the

other hand, considering B, the complexity is very low for

the relative high degree. Thus, the many visited locations

(or the many visitors) are not complex.

Plots in Fig. 10a, c depict the driver mobility complexity

versus the average place mobility complexity. They high-

light: (1) there are few drivers with a high mobility com-

plexity visiting a lot of POIs with an average low mobility

complexity; (2) there are few drivers visiting few POIs

with an average high complexity, they probably visit only

their own places and perhaps a complex POI such as a

shopping center; and (3) we have many not complex dri-

vers visiting POIs that are not very complex on average,

i.e., they visit few complex POIs. Plots in Fig. 10b, d show

the place mobility complexity versus the average driver

Fig. 7 Distribution of the degree of the drivers (blue circles) and places (yellow triangles) in log–log scale for Pisa (a) and Florence (b) (color

figure online)

Table 1 GPS Drivers–Places network statistics for Pisa and Florence

Province |D| |P| |E| Lift impact

Pisa 13,642 9760 148,027 0.07 %

Florence 12,848 27,765 415,447 0.16 %

D set of drivers, P set of POIs, E set of edges, l lift impact in the

reduction of the number of edges
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mobility complexity. In this case, it appears that few POIs

are very complex and they are visited nearly by all drivers,

thus they are visited both by complex and not complex

drivers. Then, we have very few POIs not complex but

visited by some complex drivers. Moreover, there are many

places not so much complex because they are visited on

average by not complex drivers.

In general, we highlight that a large amount of drivers

have a low mobility complexity and visit not complex

places. Inspired by Pappalardo et al. (2015), we could

categorize them as common drivers because they do not

travel very much, going systematically in many complex

POIs and in few not complex POIs. Only few drivers have

a low complexity but visit complex POIs: this means that

they are more systematic than common drivers going only

in their places, irrelevant for others, and in a complex POI

such as a shopping center. We can claim this knowing the

formula used in MOR. Thus, they could be called sys-

tematic drivers. Finally, few users have a high complexity

visiting not complex POIs. The only way to achieve this is

that they visit a lot of POIs not complex on average. This

last category is a sort of explorers because they visit many

places that are not very common. A similar reasoning can

be done about places. In this case, it is clear that a large

part of POIs are concentrated in the bottom left corner of

Fig. 10b, d, meaning that they are private houses or not

common workplaces. Only few places are very complex

and a POI to be complex must be visited by many complex

drivers. In fact, the most complex POI has a low average

driver mobility complexity, and this is a signal that it is

visited by drivers of any type. This reasoning illustrates

how ranking measures might be helpful in classifying

human mobility.

Is it interesting to observe that the most complex POIs

are frequented by all kinds of drivers, both complex and

not complex. Figure 11 shows the ten most complex

POIs in Pisa and Florence. They are mainly big shopping

centers, hospitals and car parks close to locations visited

very often by many people. We underline that, in both

provinces, there are some complex POIs out of the main

town but always corresponding to car parks close to big

malls.
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Fig. 8 Distribution of the mobility complexity (squares), number of visits (circles), and number of travels/stops (triangles) in semilog scale. The

driver mobility complexity is in a, c, while the POIs mobility complexity is in b, d
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6.5 Mobility communities

In our analysis, we are also interested in observing if it is

possible to characterize some groups of similar places or

drivers in terms of mobility complexity. In particular, we

would like to understand if groups of places or drivers

show the homophily phenomenon (McPherson et al. 2001)

and, if this is the case, which is the relationship between the

mobility complexity and the degree of homophily. To this

end, we extract two projections from our Drivers–Places

network. The first projection, Drivers–Drivers, connects

two drivers i and i0 to each other if they have stopped in at

least a common POI. The second projection, POIs–POIs,

links two POIs j and j0 if they have been visited at least by a

common driver.

It is worth to notice that, when doing projection, very

high degree nodes in the bipartite network of the type that

is not projected to, can cause large cliques in the one-mode

network, i.e., the Drivers–Drivers and POIs–POIs net-

works. This can influence metrics and distributions of these

networks. In Table 2, we report some features describing

the projected networks. We observe how, in both networks

of Pisa and Florence, the average degree l and standard

deviation r are quite high. This is due to the effect

described above. However, the skewness of the degree

distribution 1 is always positive, the medians m are much

smaller than the means, and the density d are very low.

These indicators tell us that, even if the effect described

above is present, it does not affect the structure of the

network. In other words, even if there are places visited by

the majority of the drivers, thus linking many drivers

together in the projected network, the overall distribution

of the degree remains long tailed: there are few nodes

linked with many nodes and many nodes linked with few

nodes.

We weighted the edges on the projections to evaluate

the similarity between neighbors in order to estimate the

level of homophily within a community. We use the Jac-

card coefficient (Pang-Ning et al. 2006) to weight the

similarity between each couple of linked nodes for each

Fig. 9 Density scatter plots of mobility complexity against number visits for Pisa. The black straight line is the fitting function representing the

equivalence between mobility complexity and node degree
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community in the two partitions. More formally, given two

drivers i and i0 and two places j and j0 the corresponding

weights are:

wii0 ¼
jNðiÞ \ Nði0Þj
jNðiÞ [ Nði0Þj wjj0 ¼

jNðjÞ \ Nðj0Þj
jNðjÞ [ Nðj0Þj

where we denote with Nð�Þ the function that given a node v

returns the set of neighbors of v, More formally, given a

network G ¼ ðV;EÞ the set of neighbors of a node v 2 V is

defined as NðvÞ ¼ fu 2 V j9ðv; uÞ 2 Eg.

In order to extract groups of similar drivers and similar

places, we applied community detection on the Drivers–

Drivers and Places–Places projected networks obtained

from the Drivers–Places networks. Among several com-

munity detection algorithms such as Demon, Infohiermap

and Louvain (Coscia et al. 2012; Rosvall and Bergstrom
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Fig. 10 Scatter plots of mobility complexity versus the average score of the linked nodes

Fig. 11 Top ten POIs with respect to mobility complexity for Pisa (left) and Florence (right). They are large malls and shopping center or

parking areas close to them
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2011; Blondel et al. 2008), we adopted Demon on the two

projected networks since the communities returned have a

treatable size and there is not a dominant component as for

the other methods. The communities returned are inter-

esting because a community of drivers is composed of

people who visit the same POIs while, a community of

POIs is composed of places visited by the same group of

drivers. By studying the size, number of nodes and number

of edges community distribution, we notice that there are

few small size communities, many medium size commu-

nities and a few large communities. Figure 12 shows the

distributions for number of nodes, edges, median mobility

complexity, and median Jaccard coefficient both for drivers

and POIs in Pisa dataset for the communities extracted.

In the following, we denote homophilus communities

(i.e., with a high median Jaccard coefficient) with a low

median mobility complexity as homogeneous communities,

while heterophilous communities (i.e., with a low median

Jaccard coefficient) with a high median mobility com-

plexity as heterogeneous communities. In other words, the

first type of communities is those composed of very similar

drivers or very similar places. On the contrary, the second

type of communities is those composed of drivers or places

with a low degree of similarity. Why are we interested in

finding the relationship between mobility complexity of

users (or places) and similarity of users (or places) deriving

by the network component? Once getting the characteri-

zation of our communities we can use one of the two

involved components (similarity or complexity) for infer-

ring the other one. For example, based on our finding by

knowing simply that the mobility complexity of nodes

(drivers or POIs) in a community is high then, we can

directly infer that similarity of those nodes is low without

computing the similarity.

6.5.1 Drivers communities

A community of drivers is composed of people visiting

similar places (POIs). Figure 13a, c shows the scatter plot of

the median mobility complexity against median Jaccard

Table 2 GPS Drivers–Drivers

and POIs–POIs network

statistics for Pisa and Florence

Province-type |N| |E| l r m 1 d |C|

Pisa—Drivers–Drivers 13,642 3,144,699 461.13 613.79 175.00 1.76 0.0338 220

Pisa—POIs–POIs 9,760 1,353,382 277.33 384.54 137.50 3.36 0.0284 1,028

Florence—Drivers–Drivers 12,848 2,961,669 672.24 699.69 382.50 1.97 0.0359 256

Florence—POIs–POIs 27,765 3,597,603 560.02 653.26 338.00 2.65 0.0093 1,205

N set of nodes (drivers or places), E set of edges, l average degree, r degree standard deviation, m degree

median, d network density, 1 degree skewness, C set of communities extracted
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Fig. 12 Statistics about the communities extracted on the Drivers–

Drivers network and POIs–POIs network in Pisa dataset. From left to

right, we find the number of communities per number of nodes,

number of edges, median mobility complexity and median Jaccard

coefficient. The distributions for the Drivers–Drivers communities are

in the top row, while the distributions for the POIs–POIs communities

are in the bottom row
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coefficient for drivers communities. We observe that the

more complex is a community, the less similar is its drivers,

and the less complex is a community the more similar are its

drivers. Drivers visiting not complex places cannot have a

high value of mobility complexity because, according to

what exposed previously, they are quite systematic and do

not visit complex POIs. On the other hand, if a community is

made of complex drivers, they can be similar each other but

only until a certain level because if all of them visited the

same complex POIs, then, their mobility complex score

would have been lower by definition. This means that their

community would have been less complex. In other words,

we found that homophilic communities tend to have a low

mobility complexity. This information could be used to

predict a new location visited by a certain driver. In fact, if a

group of drivers frequent the same places, with a high

probability, they have a similar lifestyle and/or similar

interests. Therefore, it is plausible that similar drivers will

visit similar places in the near future. This supposition

becomes even more probable for nodes in homogeneous

communities.

6.5.2 Places communities

A community of POIs is made of locations visited by

similar drivers. Similarly to driver communities, the same

results are exposed in Fig. 13b, d about POIs. The behavior

of mobility complexity and Jaccard coefficients still holds

for homogeneous communities and heterogeneous com-

munities. However, this time most of the communities are

concentrated in an area between low median mobility

complexity and middle median mobility complexity, that

is, there are more homogeneous communities. This indi-

cates that these groups of places are visited from a set of

drivers quite narrow and not very variable. So, we can

observe that the homophily phenomenon is more evident in

the Place–Place network. The POIs community informa-

tion in conjunction with mobility complexity could be used

to classify a place according to mobility criteria. In fact, if

a group of places is visited by drivers with certain char-

acteristics, then, it means that these places are suitable for

this kind of people.
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Fig. 13 Scatter plots of Driver and POIs mobility complexity versus Jaccard per community. In both cases and both dataset, we can observe an

anti-correlation: high jaccard, i.e., similarity, means low mobility complexity, while high mobility complexity means low similarity
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6.5.3 Communities summary

Summarizing, the main result emerging from the study of

the communities on the projections is that: the more

complex a community is the weaker are the ties among

their nodes, i.e., the nodes do not tend to be homophilic; on

the other hand, the less complex a community is, the

stronger are the links and consequently the similarity

among their nodes. These communities could be called

heterogeneous when the median mobility complexity is

high and homogeneous when the median mobility com-

plexity is low. Therefore, the mobility society could be

roughly split in subsets with a different mobility behavior:

a set of (1) homophilic and not complex groups of drivers

and POIs and (2) a set of groups of drivers and POIs which

are not very similar and having a low level of complexity.

7 Case study on GSM data

A Drivers–Places network can be constructed on the basis

of mobile phone network traces that are commonly and

massively available from telecom operators. In this setting,

we do not need to extract POIs from the mobile phone

traces, but we use directly the raw data of each user phone

call composed of hcallerid; cell1; cell2i (see Fig. 14). In

particular, the phone cells are POIs and we add an edge for

each cell in which the user appears during a call. Starting of

this network, we can perform the same kind of mobility

complexity analysis like that one, presented in Sect. 6.4,

for GPS traces and compare the results. The GSM dataset

used for our case study is composed of call data collected

by a big telecom operator during October 2013 in Tuscany,

in particular in the provinces of Pisa, Lucca, Livorno and

Florence. It contains about 67.3 millions of calls made by

979,000 users . We focused our study on the data of Pisa

and Florence province in order to make the analytical

results comparable with those obtained in the previous case

study on GPS data.

In the following, we analyze the GSM Drivers–Places

networks of Pisa and Florence in order to understand what

the mobility complexity analysis applied to it can reveal.

Starting from GSM data, we obtained bigger networks due

to the high numbers of drivers (see Table 3). Indeed, in this

case, we have both occasional and systematic drivers who

move from a cell to another one. On the contrary, we have

only a limited number of cells (places). In this kind of

network, the lift coefficient has a considerable impact both

for Pisa and Florence (20.87 and 14:20% respectively).

Table 3 reports the dimensions of the bipartite networks of

the two provinces. In both cases, we obtain networks with a

low level of density. We note that the GSM Drivers–Dri-

vers and Places–Places networks are denser than the GPS

ones.

Figure 15 shows two different degree distributions for

drivers and places. On the other hand, in GPS data, we

obtained a bipartite network with comparable distributions

of the degree for drivers and places. This happens because

in the GSM Drivers–Places network every place is a cell

and consequently has a very high degree due to the large

spatial coverage (2–5 km2). Indeed a GSM cell captures a

considerably larger set of drivers in terms of visits if

compared with the POIs extracted in the GPS case study

(0.5–2 km2).

We also analyzed the distribution of the mobility com-

plexity for drivers and places of the two GSM datasets (for

Pisa and Florence). Figure 16 shows the results. We can

observe that, as for the GPS case study, also this time we

have long tailed power low distributions. However, these

curves are more uniform due to the fact that there is a

considerable low number of places.

Finally, we performed the analysis of communities

extracted from GSM Drivers–Places networks in order to

study groups of similar drivers and places with respect to

Fig. 14 An example of Drivers–Places network extracted from GSM data. Lines represent sequences of calls for drivers A, B and C while the

towers represents common cells X, Y and Z. The gray background is other trajectories of calls not considered in the example
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mobility complexity. Unfortunately, we did not find any

interesting result due to the small number of cells in this

kind of networks.

8 Conclusion

In this paper, we present a network analytics approach to

study human mobility. From the observation of raw

movements, we construct a high level representation of

mobility by means of a bipartite network, the Driver-Place

network. The network contains an edge between two nodes

d and p when there is at least a visit of a driver d to the

place p. Starting from this network, we depart from the

analysis of degree distribution of nodes. We focus on the

intuition that a deeper understanding of mobility phenom-

ena should consider the mobility of a person in her whole.

Thus, we propose to study the characteristics of the net-

work with a link analysis approach, where each element of

the network is related with the topological properties of its

neighborhood. This approach improves the traditional

studies on mobility by augmenting the quantitative esti-

mation of indicators and patterns with a qualitative char-

acterization of nodes. We are not solely interested on the

volume of traffic attracted by a particular place (or gen-

erated by a driver), but we want to state the capability of a

place to attract drivers that have visited many other places.

To this aim, a driver visits many places and she influences

each place she visits. A place is visited by many drivers

and each driver gives a contribution according to her pre-

viously visited places.

We call such measure mobility complexity. The inherent

estimation of this complexity if computed by means of the

Method of Reflection (we prove a formal equivalence of

MOR with HITS in Appendix). This methods provides a

measure of relevance of the two families of nodes: complex

drivers are persons that visits many complex destinations;

complex places are zones visited by many complex drivers.

The recursive definition of this measure allows to capture

properties of mobility that a mere quantitative evaluation

can not provide. In particular, if we compare the com-

plexity of nodes, with their degree, we can notice that there

are new evidences that emerge. For instance, in Sect. 6, we

show that the two measures are related, but mobility

complexity adds new levels of interpretation. For example,

there are places with low visits (i.e., low degree) that have

Fig. 15 Distribution of the degree for the GSM networks of the drivers (blue circles) and places (yellow triangles) in log–log scale for Pisa

(a) and Florence (b)

Table 3 GSM Drivers–Cells network statistics for Pisa and Florence

Province Pisa Florence

|D| 251,895 511,672

|P| 82 195

|E| 908,700 2,773,960

l 20.87 % 14.20 %

jEDj 89,478,486 181,756,827

dD 0.0028 0.0014

jCDj 74 16

jEPj 3315 18,803

dP 0.9982 0.9941

jCPj 3 3

D set of drivers, P set of places, E set of edges, l lift impact in the

reduction of the number of edges, ED;P set of edges, dD;P density and

CD;P of the Drivers–Drivers or Cells–Cells network, respectively
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high complexity, whereas there are places with very high

degree and low complexity.

This measure for mobility opens many application sce-

narios. From the point of view of traffic management, the

complexity of places may support a mobility manager to

reorganize the connections among places by means of

public transportation service. It is also relevant to have a

complexity estimation in emergency situation, when, for

example, it is necessary to isolate part of the road network.

The driver mobility complexity may be used to provide

highly customized services to individuals. For example, an

insurance company may offer different prices to different

profiles of user.

We envisage other future developments of the

approach. As a first exploration, we want to further

develop the community analysis performed on the pro-

jected networks. The experimental results give a clear

indication that there are group of drivers that are similar

and visit similar places. This property may be refined to

compare mobility behaviors in different regions of a

country. It also interesting to investigate how external

behaviors are mapped on complexity property. Consider

for example the problem of simulating an epidemic sce-

nario. The added value of mobility complexity may pro-

vide more reliable simulation, given the capability of

having different exploration of the geographical space:

complex places may be considered as high risk zone for

contagion, whereas complex drivers are, very likely,

vectors that can spread the epidemy faster.
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Appendix: Method of reflection as particular case
of HIT

In this section, we show that the Method of Reflection

(MOR) (Caldarelli et al. 2011) can be seen as a particular

case of HITS (Kleinberg et al. 1999). In HITS, we have the

authority score, which estimates the value of a node, and its

the hub score, which estimates the value of its links to other

nodes. Authority and hub values are defined in terms of

each other in a mutual recursion manner:

h
ðnÞ
i ¼

XjPj

j¼1

Aija
ðn�1Þ
j 8i a

ðnÞ
j ¼

XjPj

i¼1

Aijh
ðn�1Þ
i 8j

where n is the iteration index, A is the adjacency matrix

An�n, h the of hub scores vector, a the authority scores

vector, and P is the set of nodes. Hub and authority update

rules can be viewed as matrix-vector multiplication:

h ¼ Aa a ¼ AT h ð5Þ

In practice, HITS performs a series of iterations by com-

puting for each step:

hðnÞ ¼ AAT hðn�1Þ aðnÞ ¼ AT Aaðn�1Þ

that are normalized to guarantee the convergence. A

common technique used to calculate the hub and

authority scores is the power iteration method (Lanczos

1950).

Comparing the equations of HITS (5) with the equa-

tions of MOR (2) in Sect. 5, it is easy to observe that

HITS and MOR are very similar. Indeed, we have the

same kind of computation applied to different matrices:

HITS uses a standard adjacency matrix A, while MOR

uses an adjacency matrix M weighted with the degree of

the nodes.

In the following, we formally prove this similarity.

Theorem 1 Let G be a bipartite graph and �A its weighted

adjacency matrix. �AðjDjþjPjÞ�ðjDjþjPjÞ its weighted adjacency

matrix. Applying HITS to G by using �A is equivalent to

apply MOR to G.

Proof Since the graph G ¼ ðD;P;EÞ is bipartite we have

that D \ P ¼ ;, thus the weighted adjacency matrix

�AðjDjþjPjÞ�ðjDjþjPjÞ has the form

�A ¼
0 �M

�MT 0

� �

where �MjDj�jPj is the same adjacency matrix used in MOR

and ð �MTÞjPj�jDj
is its transposed matrix. Now we have that

�AT ¼ �A since

�AT ¼ 0 ð �MTÞT

ð �MÞT
0

" #

¼
0 �M

�MT 0

� �

¼ �A

Applying HITS to G means hðnÞ ¼ �A�AT hðn�1Þ and aðnÞ ¼
�AT �Aaðn�1Þ where �A�AT ¼ �AT �A ¼ Â, that is

Â ¼
0 �M

�MT 0

� �
0 �M

�MT 0

� �

¼
�M �MT 0

0 �MT �M

� �

¼
D 0

0 P

� �

By applying the power iteration method to Â we obtain

minðjDj; jPjÞ ¼ s eigenvalues with the following set

k1; k1; k2; k2. . .; ks=2; ks=2 and maxðjDj; jPjÞ � minðjDj; |P|)

eigenvalues equal to zero. Assuming that ki [ kj for i\j

for the convergence, there are s
2

eigenvalues each one

associated with an eigenpair. Given the eigenpair ad
i and h

p
i

associated with the eigenvalue ki, it must hold that

ad
i 6¼ h

p
i 6¼ 0. The only possibility is that ad

i and h
p
i have the

form

ad
i ¼

d�
i

0

� �

h
p
i ¼

0

p�
i

� �

Therefore, the results are ad
1 and h

p
1 because

k1 ¼ qð�AÞ ¼ qðDÞ ¼ qðPÞ
�Aad

1 ¼ k1ad
1

�Ah
p
1 ¼ k1h

p
1

and removing the useless zeroes we get

Dd1 ¼ k1d1 Pp1 ¼ k1p1

that is the result of MOR.

This statement proves that MOR is a particular case of

HITS with a weighted adjacency matrix applied to a

bipartite graph. It is worth to underline that the above

theorem only proves the equivalence of the two algorithms

under some conditions; and it clearly does not suggest that

HITS could replace MOR in the calculus of ranking score

on bipartite networks. Indeed, it would be useless since

many multiplications per zero would be performed.
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