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Abstract

Surveying the oceans’ floors represents at the same time a demanding and

relevant task to operators concerned with marine biology, engineering or sunken

cultural heritage preservation. Scientific researchers and concerned persons com-

bine their effort to pursue optimized solutions aiming at the mapping of under-

water areas, the detection of interesting objects and, in case of archaeological

survey mission, the safeguard of the detected sites. Among the typical tools

exploited to perform the cited operations the Autonomous Underwater Vehi-

cles (AUVs) represent a validated and reliable technology. These vehicles are

typically equipped with properly selected sensors that collect data from the sur-

veyed environment. This data can be employed to detect and recognize targets

of interest, such as manmade artefacts located on the seabed, both in an online

or offline modality. The adopted approach consists in laying emphasis on the

amount of regularity contained in the data, referring to the content of geomet-

rical shapes or textural surface patterns. These features can be used to label

the environment in terms of more or less interesting areas, where more interest-

ing refers to higher chances of detecting the sought objects (such as man-made

objects) in the surveyed area. This paper describes the methods developed to

fulfill the purposes of mapping and object detection in the underwater scenario

and presents some of the experimental results obtained by the implementation
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of the discussed techniques in the underwater archaeology field.

Keywords: Underwater Object detection, Optical and acoustic data

processing, Mosaicking, 3D reconstruction, Shape recognition, Texture analysis

1. Introduction1

Mapping the oceans’ floors represents an extremely demanding task to the2

man. The peculiar environmental setting is for the most part out of reach to3

human operators because of the hard environmental conditions that make the4

survey complex and dangerous. Nevertheless the sea waters cover approximately5

the 72% of the planet’s surface and mapping the seafloors is still a relevant task6

of typical concern to many involved operators such as biologists, engineers and7

archaeologists.8

On the other hand it is known that the oceans’ floors host large amounts of9

cultural heritage (more than 3 millions of wrecks according to the latest UN-10

ESCO reports) as a consequence of shipwreckages that took place during the11

past ages. This fostered the combined commitment between cultural institu-12

tions and scientific researchers to pursue a solution towards the safeguard of13

this collective patrimony. In this framework several ventures have been started,14

based on the effort of either national (THESAURUS - TecnicHe per lEsplo-15

razione Sottomarina Archeologica mediante lUtilizzo di Robot aUtonomi in Sci-16

ami, PAR FAS 2007-2013 Regione Toscana) as well as international (ARROWS17

- ARchaeological RObot Systems for the World’s Seas, European FP7 project)18

cooperating consortia ([1], [2] and [3]). These projects have been focused on19

the main purposes of mapping, diagnosing, cleaning and securing of underwater20

and coastal archaeological sites. To perform all the cited operations a marine21

vehicle, such as an autonomous underwater vehicle (AUV), can be profitably22

exploited. The vehicle can be equipped with properly selected sensors, in order23

to collect data from the surveyed environment in an optimal way.24

Typical sensors that turn out to be useful in this frame are optical cameras25

coupled with acoustic sensors, like sidescan sonars or multibeam sonars. The26

2



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

data collected by the AUVs during the mission campaigns can be processed in27

order to detect targets of interest located on the seabed. The main approach28

adopted in the processing procedure is to emphasize the amount of regular-29

ity detected in the captured data, hence highlighting fragments of geometrical30

shapes, such as primitive curves, or homogeneous areas exhibiting similar textu-31

ral patterns. A strong and persistent presence of this regularities is considered32

a clue for the presence of man made targets on the seafloor.33

The features are computed by processing the optical and acoustic collected34

data. The output result of the overall signal processing chain consists in the35

labeling of the represented environment in terms of more or less interesting36

scenarios. The term interesting usually refers to a quantitative index which37

numerically expresses our confidence about the presence of some specific sought38

object inside the environment. Hence it could be a score which, based on the39

number and relevance of the detected features, could indicate the likely presence40

of an interesting object. Given the generality of the proposed approach the41

object to be detected can be represented by a large variety of targets, here42

including archaeological wrecks as well as flora specimens, posidonia prairies or43

corals or even underwater industry structures like oil and gas pipelines.44

The methods developed to fulfill the cited purposes will be described in45

detail in the remaining part of the paper, which is organized as follows: section46

2 concerns a brief summary of the existing commercial solutions for underwater47

vehicles, in section 3 the exploited sensors and their main features are discussed,48

section 4 represents the paper’s core and concerns the description of the main49

approach and the multiple techniques developed to the purpose of understanding50

and representing the underwater scenarios, finally section 5 concludes the paper51

by discussing potential future prospects in the field of the underwater optical52

and acoustic signal analysis.53

3
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Figure 1: Sub-Atlantic Mohawk (a), an example of commercial ROV vehicle (picture available

at http://flowergarden.noaa.gov/). Remus 100 (b), an example of commercial AUV (picture

available at http://hydroid.com/remus-100-marine). Popular Commercial AUVs (c-f) and

TifOne (g), the research AUV designed and implemented within the THESAURUS project.

Details of the optical and acoustic payload mounting on TifOne are displayed.

4
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2. Vehicle Platforms for Underwater Surveying54

Among the technological systems employed to survey the underwater setting55

it is appropriate to spend a few considerations about the mobile platforms that56

are typically employed for maritime survey purposes and provide a brief pre-57

sentation of their main properties and features. These mobile platforms can be58

roughly grouped in two classes: the Remotely Operated Vehicles (ROV, figure59

1-a), that can be directly maneuvered by human operators thanks to a wired60

connection from a control platform to the vehicle itself, and vehicles that are61

designed to perform underwater missions without human supervision, i.e. the62

already mentioned AUVs (figure 1-b). In the following the latter category will63

be considered for further analysis since AUV has been chosen as the reference64

mobile platform for the marine survey tasks in THESAURUS and ARROWS.65

Among the most relevant outcomes of the mentioned projects several solutions66

of AUVs specifically dedicated to the archaeological exploration task have been67

designed, implemented and experimentally tested.68

AUVs are programmable robotic vehicles that, depending on their design,69

can drive or glide through the ocean without the requirement of a real-time con-70

trol by human operators. When needed AUV’s control and localization may be71

performed by means of acoustic communication channels towards surface plat-72

forms or by exploiting underwater positioning methods based on networks of73

acoustic beacons distributed on the seafloor, such as Long, Short or Ultrashort74

Baseline technologies ([4]). Otherwise, once the mission has started the vehi-75

cle performs the planned tasks autonomously, without interacting with human76

operators until the end of the mission.77

Most of the available AUVs feature a torpedo-like shape. They are often78

employed as multi-purpose platforms for oceanographic experiments since they79

can be quite easily deployed in the marine environment and activated to per-80

form specific measurements. The main components that make up an AUV are:81

i) an essential system resulting from the combination of the chassis structure82

and all the engineering systems governing the mechanical behaviour (propellers,83

5
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actuators, etc.), here including a primary processing unit assigned to the im-84

plementation and control of basic tasks (navigation and attitude control, inter-85

nal humidity measurement and generic vehicle diagnostics), ii) a data capture86

system resulting from the integration of hardware tools (payload sensors) and87

software modules (ad hoc implemented data processing algorithms) dedicated88

to the tasks of surveying and understanding the environment. Installation of89

payload sensors can be adapted according to different mission scenarios, from90

physical parameters measurement such as CTD probing (conductivity, temper-91

ature and depth/pressure profiling), to inspections of the environment by means92

of optical and acoustic mapping sensors (TV cameras and side scan sonar).93

Existing AUVs feature strong pressure resistance, an important property94

that allows to reach relevant depths, typically from hundreds to thousands of95

meters. This enables the system to perform large scale mapping of vast areas96

as well as close-up inspections of the seafloor.97

So far a large number of commercial solutions have been proposed by com-98

panies operating in the maritime field. REMUS (figure 1-b,c) represents one of99

the most popular typologies of AUV. It is produced by Hydroid, which is part100

of Kongsberg Maritime Company (Norway). Its length varies from 1.6 m (RE-101

MUS 100) to 3.84 m (REMUS 6000) and it is rated for a maximum operating102

depth of 100 m (REMUS 100) to 6000 m (REMUS 6000). Its battery ensures a103

mission duration of 10 hours (REMUS 100) to 22 hours (REMUS 6000) and a104

maximum speed of 2.3 m/s.105

Hydroid is also the manufacturer of HUGIN (figure 1-d), another commercial106

AUV which is suitable for underwater inspection and mapping purposes. Its107

specifications are very similar to the REMUS ones, differing only for its larger108

dimensions (up to 6.4 m) and better performances in terms of battery endurance109

(up to 74 hours).110

The mentioned vehicles represent interesting solutions given their versatility111

for applications to a wide range of underwater operations, from pipeline moni-112

toring to mine countermeasure missions, here including mapping for biological113

inspection and geological assessment purposes. The main drawbacks of the de-114

6
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scribed systems are represented by their relevant cost (from 100Ke to 1Me)115

and by their voluminous dimensions (HUGIN may weigh up to 1550 Kg), which116

make them impracticable for operations carried out by small groups of people117

and implies the rental of expensive dedicated machinery and supporting ships118

in order to perform a safe and proper deployment.119

Many companies provide solutions that can be considered relatively comfort-120

able in terms of transport and deploy, such as the OceanServer IVER-3 (figure121

1-e) or the modular Teledyne GAVIA (figure 1-f). Both the vehicles have an122

approximating length of 2 meters and a weight of about 50 Kg. The additional123

modularity feature of the Teledyne GAVIA enables the user to adapt the vehi-124

cle to the experimental requirements, by installing onboard the proper payload125

sensor modules. This represents a crucial requirement, that inspired the me-126

chanical design activity within both projects, THESAURUS and ARROWS.127

Indeed modularity represents a desirable condition in order to make the sen-128

sor platform versatile and adaptive to different mission scenarios, such as the129

strongly varying altitude parameter (distance of the vehicle from the seafloor)130

that typically differentiates between large scale survey missions (e.g. 40 m alti-131

tude) or close range observations of localized spots (few meters altitudes).132

The following sections concern a detailed description of the engineering and133

information technology results achieved within the research projects previously134

introduced, representing the scientists’ answer to the lack of current market135

solutions dedicated to the fulfillment of archaeologists’ desiderata. This is true136

for what concerns the lack of embedded software systems for the processing,137

integration and understanding of the captured payload sensor data, aiming at138

the discovery of currently undetected underwater archaeological sites.139

3. AUV Sensor Equipment for Optimal Data Acquisition140

In the circumstances described in this paper the AUV is equipped with141

sonars and optical cameras in order to map the seafloors. More in detail the142

sensing system features two digital cameras in stereo configuration with a sonar143

7
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device, which can be a multibeam or a side scan sonar. The choice of the144

acoustic payload sensors to be employed during the missions depends on the145

specific purpose of the mission itself and on the environmental scenario that has146

to be surveyed. The side scan sonar and the multibeam forward looking sonar147

return large scale maps of the seafloor that are typically processed to detect148

obstacles, objects or areas of the seafloor showing interesting features. On the149

other hand the multibeam echosounder returns detailed 3D bathymetry maps150

of the inspected area in the form of point cloud data.151

Typically optical and acoustic sensors are installed on the same AUV, they152

share the vehicle reference frame and capture co-located data, that is they re-153

turn a multi-sensor description of the environment from a common perspective.154

Considering the object detection as a primary goal for this work, the selected155

sensor suite turns out to be the optimal choice. Indeed optical and acoustic de-156

vices feature complementary properties in terms of resolution and best operating157

conditions.158

An example of a research-oriented AUV, equipped with optical and acoustic159

payload sensors, is represented in figure 1-f, displaying the TifOne, an AUV that160

has been developed by the Mechatronics and Dynamic Modelling Laboratory of161

the University of Florence in the framework of the ARROWS project.162

Due to the complex and noisy environment in which the survey operations163

are performed, the data collected by the payload sensors must undergo multi-164

ple processing stages, starting from the enhancement of the raw output signal,165

ending with specific computer vision and image processing techniques with the166

purpose of extracting as much information as possible from the collected data.167

A preliminary step in the manipulation of the data consists in the restoration of168

the signal and in the enhancement of the relevant properties, whose integrity is169

crucial for the correct understanding of the scenario. In our specific case we are170

concerned with correcting those systematic geometrical distortions introduced171

in the signal due to the peculiar perception of the environment, which is intrinsic172

in every employed sensor.173

As an example consider the geometrical distortions affecting the side scan174

8
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Figure 2: Side scan sonar map represented by Slant (up) and Ground (down) corrected coor-

dinates.

sonar mapping: the measured time of the backscatter echo is not linearly pro-175

portional to the seabed ground range. Indeed, within a row of a Side Scan Sonar176

map, different segments of pixels with the same given length, starting from dif-177

ferent positions of the row, correspond to spatial segments with different lengths178

on the horizontal (ground) range axis. To correctly represent the data in the179

seabed frame the Slant-to-Ground transformation indicated below is required:180

yi,j =

√

c2t2i,j

4
−H2

i (1)

where yi,j is the j − th horizontal range sample in the i − th ping, c is the181

sound velocity in the sea, ti,j is the j− th slant range (time) sample in the i− th182

ping and Hi is the first echo return of the i − th ping, i.e. the sensor i − th183

altitude value. Besides the transform in equation (1) allows to get rid of the184

9
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central black stripe in the raw output sonogram, which is caused by the acoustic185

wave propagation through the water column (figure 2).186

Figure 3: Sidescan sonar map: altitude distortions and corresponding restoration. Original

side scan map available on http://www.jfishers.com/.

Relevant sources of image distortion come from the random distortions in187

the sonogram formation, caused by the unpredictable fluctuations in the AUV188

attitude (figure 3).189

In both the mentioned examples auxiliary sensor devices, such as inertial190

measurement units, gyrocompass, DVL, etc., can be exploited to provide the191

vehicle’s position and pose values during the payload acquisition. This addi-192

tional information can be profitably used to restore the corrupted data (see for193

example [5]). Results of the restoration are presented in the lower part of figure194

3.195

In the underwater mapping field the signal pre-processing stage represents196

10
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an important step to be performed before applying algorithms aiming at a high197

level understanding of the surveyed scenario. Indeed the performance of an198

automatic understanding system, which involves algorithms borrowed from the199

computer vision, machine learning and image processing background, strongly200

depends on the quality of the captured data. Actually we have to be confident201

that the data, either considered as a straight raw output of the sensor or as202

the result of the preprocessing stages, exhibit the highest achievable quality.203

This is an auspicious precondition, that should be pursued in order to allow the204

dedicated processing units to automatically detect those features and attributes205

of conspicuous importance for the understanding process.206

4. Analysis of the Captured Data and Underwater Scene Understand-207

ing208

A mixture of unfavourable factors makes the collection of reliable data in the209

underwater setting a hard task: due to the perturbations’ spherical spreading210

the optical and acoustic energy collected by the sensors decreases proportionally211

to the squared inverse of the travelled distance.212

Moreover the underwater medium heavily affects the spectrum of the optical213

signal by filtering out a large percentage of the visible frequency range ([6] and214

[7]). This reduces the maximum operational range of the optical sensor to few215

meters. Underwater imaging is also corrupted by typical hazing effects that may216

strongly reduce the visibility in the image.217

4.1. Mosaicking218

The described sensing limitations can be tackled in case a large set of data219

relating to the same scenario is available. By exploiting computer vision algo-220

rithms that perform the alignment and the integration of multiple maps it is221

possible to generate a representation of the entire surveyed environment. This222

can be obtained by exploiting mosaicking procedures. These techniques start223

from the hypothesis that the surveyed environment features a planar morphol-224

ogy or can be approximated as planar from the camera point of view. Let’s225

11
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consider a point x in multiple consecutive maps resulting from the projections226

onto the camera plane of the same 3D world point. Under the hypothesis that227

the different images are related by a projective transformation (homography in228

case of planar projection), the relation between the point coordinates in image229

i and j can be formally expressed as:230

xi ∼ Hi,jxj (2)

where Hi,j represents the homography transform that maps points of image231

j on image i. In case of projections of 3D points on the camera plane the232

homography is usually represented by a 3× 3 matrix with 8 degrees of freedom.233

The homography can be estimated directly from the captured images by234

considering 3 conditions for every interest point, defined by equation (2). Given235

n points we have 3n equations and 8 + n unknown (scale unkown has to be236

considered if we perform the estimation exploiting points from the captured237

cameras), so we must have at least 4 points to correctly estimate Hi,j .238

The x points are usually selected based on the detection of reliable fea-239

tures in the data, such as SIFT features ([8]). The features that are detected,240

matched and exploited to estimate Hi,j correspond to those features appearing241

in the overlapping areas of consecutive maps. The transformed maps are finally242

stitched together and eventually processed by blending techniques to generate243

a final seamless mosaic map.244

In the unfavourable case that the number of detected reliable features is too245

low due to bad quality or very noisy data the feature based mosaicking may246

become an unfeasible operation.247

Under that condition the additional data collected by auxiliary sensors mea-248

suring the vehicle attitude may help towards the estimation of the required249

transformations.250

In the framework of the ARROWS project the mosaicking procedure based251

on a feature matching approach has been tested on a set of acoustic and optical252

data captured during experimental campaigns performed in Sicily and Israel.253

12
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Figure 4: Optical mosaic map. The image results from the stitching process of 61 frames

captured by a Basler ACE GigE camera during an experimental campaign performed at the

Cala Minnola site, in front of the Levanzo Island, Sicily.

During a mission at the Levanzo Island, in Sicily a set of optical images has254

been captured at the Cala Minnola site and have been processed to return an255

13
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Figure 5: Image a): Forward Looking Sonar mosaic map. The image results from the stitching

process of 17 frames captured by a Blueview MB P900 sonar during an experimental campaign

performed in Israel, at the Caesarea ancient harbour. Image b): Linear detail, belonging to a

pier wall structure, of the mosaic map on the left. Image c): The linear structure represented

in image b) has been detected by means of the geometry detection techniques described in

this paper.

overall map of the archaeological scene, as illustrated in figure 4. The same pro-256

cedure has been tested during the Israel campaign. In the latter circumstance257

a multibeam forward looking sonar sensor (Blueview MB-P900) has been em-258

ployed to survey a pier wall in the nearness of the Caesarea harbor. Part of the259

captured data has been processed to obtain a large scale map of that area, as260

illustrated in figure 5-a.261
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4.2. Geometry presence assessment262

A relevant activity has been developed bearing in mind the primary goal263

of an archaeological mission, that is the detection of potential structures re-264

lated to human made objects. The automated system that should perform this265

task, must recognize specific features exhibited by the selected candidates and266

put forward an hypothesis on the manmade object’s nature. Hence a set of267

proper criteria has to be chosen in order to grab the most relevant objects’268

attributes. Within the multiple possible choices we oriented our approach to-269

wards assessing the presence of regularity features contained in the captured270

data. These regularity attributes may refer to the geometric shapes that define271

the contours of objects as perceived by the sensor device, hence fragments of272

primitive curves such as lines, circles or ellipses. Starting from the hypothesis273

that a high concentration of regular curves is a marker for the presence of man-274

made objects or shipwrecks, we focused our work on the automatic detection275

of elementary geometric features (line segments, elliptical arcs) in images. This276

represents a classical computer vision issue which has been thoroughly tackled277

and discussed by the scientific community (see for example [9] and [10]). The278

current procedures for geometric features recognition can be roughly classified279

into Hough-based and region chaining methods.280

The Hough-based algorithms make use of implementative variations of the281

Hough transform. These methods ensure that pixels belonging to the same geo-282

metric structure are mapped to the same point into a parameter space whose283

dimensionality is given by the number of parameters. This typology of al-284

gorithms implies elevated computational costs since the procedure complexity285

grows proportionally with the number of the curve parameters. Therefore it286

is a good choice to detect lines, but not to detect circular or elliptical shapes.287

In the authors experience Hough based procedures have been useful to detect288

the presence of structures featuring mostly linear shapes, such as architectural289

elements or remains of ancient walls. An example comes from the Israel mission290

mentioned in section 4.1: the captured acoustic dataset has been processed to291

detect the presence of primitive curves and the result is illustrated in figure 5-c,292
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where the red line identifies a pier wall structure (detailed in figure 5-b) detected293

by the algorithm.294

The second class of detection methods relies on region growing and chaining295

techniques. This method exploit the geometric properties of the shapes directly296

assessed from the images, such as straightness for line segments or curvature297

properties for ellipses.298

These algorithms usually start with a seed pixel or a group of pixels. Then299

additional pixels are added, provided that they obey some geometric properties300

of the candidate shape. For example a pixel with coordinates p and intensity301

x(p) can be considered aligned to an elliptical arc a if the angle θ formed by302

the normal na(p) to the arc and the image gradient falls below a predetermined303

threshold θth, as expressed by equation (3) and illustrated in figure 6:304

θ (∇x(p),na(p)) ≤ θth (3)

Starting from the work presented in [11] we implemented a procedure for305

primitive curves recognition purposes. The Ellipse and Line Segment Detector306

(ELSD) algorithm described in that paper is based on the Gestalt theory, whose307

applications to computer vision issues are thoroughly discussed in [12]. In a308

nutshell this method is based on the so called Helmoltz’s perception principle309

Figure 6: Elliptical collinearity condition.
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which formally states that in an unstructured image, only a very small number310

of detections (false alarms) should take place. The decision about a meaningful311

candidate curve is based on the probability of observing candidates as structured312

as the considered one: the smaller this probability value is, the more meaningful313

the candidate curve is to be considered.314

More details about the implemented curve recognition procedure and its315

application to archaeological sites detection can be found in [13], [14]. This316

technique can also be exploited on sonar maps to perform attentive analysis of317

the data (figure 7). By applying the curve recognition algorithm to the new318

maps, as soon as they become available during the mission, an istantaneous319

label of interest is assigned to the surveyed regions. Based on that the system320

can autonomously decide in real time whether a specific area is worth of more321

detailed inspection or not.322

Once more it is worth reminding that a correct restoration of the signal, as323

illustrated in figure 3, may affect critically the curve recognition process. This324

is even more important in case the surveyed environment features large varieties325

of shapes and contours, such as archaeological sites including amphoras, plates326

and complex wrecks.327

Figure 7: Attentive analysis procedure based on geometry detection applied to the side scan

sonar map of figure 3. The blue curve growth is proportional to the number of detected

curves, the red line represents the threshold over which the detected number of curves is to

be considered relevant and the black line represents a ground truth reference.
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4.3. Texture analysis328

As previously mentioned, this work is mainly concerned about detecting329

regularity features in the captured data. Besides shape information, the regu-330

larity in terms of textural features can be exploited to group pixels of an image331

in classes that share similar patterns. In this sense the surface appearance of332

the objects located in the surveyed environment is the attribute that can be333

exploited to perform image segmentation and classification.334

More in particular the appearance of an object’s surface can be represented335

in the spatial frequency domain and the surface patterns may be classified by336

exploiting their specific frequency content, which plays therefore the role of a dis-337

criminative signature. A mathematical tool that has been succesfully employed338

to perform this operation is the 2D Gabor wavelet function, whose mathematical339

definition is expressed by equation 4.340

h(x, y) = exp

[

−
1

2

(

x2

σ2
x

+
y2

σ2
y

)]

cos(2πu0x) (4)

The wavelet orientation can be adjusted by properly rotating the coordinate341

system, as in equation 6.342

x′ = x cos θ0 + y sin θ0 (5)

y′ = −x sin θ0 + y cos θ0 (6)

In the Fourier domain the transformed Gabor wavelet is represented as a 2D343

Gaussian function centered at the specific u0 radial frequency value. From a344

signal processing point of view the Gabor wavelet can be considered a bandpass345

filter centered on the specific wavelet band.346

The convolution with the Gabor wavelet, which is performed on small win-347

dows centered on the image pixels, becomes a multiplication between the trans-348

formed functions in the Fourier domain and this results in the emphasis of the349

common frequency components. This operation is repeated by varying u0 and350

θ0, then, for every convolution result, specific features are computed, such as351
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Figure 8: Image a): Preliminary training for the texture classification algorithm (original

image taken from http://note.sonots.com/). Image b): Texture classification of side scan

sonar maps by means of Gabor filtering (original image taken from http://www.ise.bc.ca/).

the energy of the filtered image, as in [15]. Hence for every image pixel we352

obtain a set of features describing the pixel frequency content. The similarity353

between pixels is assessed by comparing the computed feature vectors by means354

of a proper proximity criterion. To this aim popular clustering algorithms, like355

K-means (see for example [16]), can be successfully employed. The final seg-356

mentation of the map is performed by repeating the described operation for357

every pixel.358

The algorithm can be executed as an unsupervised procedure where the clus-359

ter centroids are estimated iteratively from the data, by applying techniques as360

the cited K-means. An advanced implementation is based on a preliminary361

training stage in which a set of known classified patterns are processed with dif-362
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ferent Gabor wavelets in order to provide the main spectral features for various363

classes, such as rock, sand, mud, posidonia, etc. The results obtained this way364

are then used to train the algorithm, which is later employed to classify areas365

in new captured data, based on the increased a priori knowledge. A conceptual366

sketch of this procedure is represented in figure 8-a and a result of the seg-367

mentation process applied on real side scan sonar data is represented in figure368

8-b.369

This way it is expected that the resulting process may be employed also for370

online purposes, aiming at a fast preliminary classification of the environment371

to quickly identify the interesting spots.372

4.4. 3D Reconstruction373

The techniques described so far allow to perform a large scale mapping of374

the seafloor. This is an important step since in the first instances of the survey375

operations the main goal is that of detecting those regions of the seabed that376

feature high probabilities for the presence of archaeological objects. Once a377

certain area has been identified a dedicated survey on the localized spot must be378

performed. The data captured during this close-range survey can be employed379

for an offline stage of signal processing, aiming at the generation of 3D models380

of the interesting targets.381

Accurate 3D models of the objects can be obtained by processing optical data382

by advanced photogrammetry methods, such as Structure From Motion (see [17]383

and [18]). This method is based on the estimation of the 3D coordinates of a384

point Xi from the projection xij of the point itself on the multiple image planes,385

defined by the subscript j. The link between Xi and the point xij , identifying386

the projection on the j-th image, is expressed by:387

λjxij = PjXi (7)

where the camera matrix Pj represents our knowledge about the camera388

intrinsic parameters ( aspect ratio, skew, focal length and camera center co-389

ordinates) and the camera extrinsic parameters (the rotation and translation390
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transforms that define the camera pose and position with respect to a global391

world reference frame). λj is a scale factor which accounts for the representation392

of the image point xij in homogeneous coordinates.393

Figure 9: 3D sparse point cloud (left) and refined mesh (right) of an amphora generated

from optical data. The image displays a detail of the Cala Minnola wreck site, an underwa-

ter archaeological site that has been surveyed in the experimental mission performed in the

ARROWS project framework.

It is presumed that the projections of xi on different images are recognized394

as generated from the same spatial point. This can be performed by methods395

for the detection and matching of salient features, as the SIFT method touched396

in the 4.1 paragraph. The computation is performed by exploiting multiple397

constraints on the xi, resulting from equation (7), expressed for different camera398

poses j. The estimation of the point coordinates and camera matrices results in399

the generation of a 3D point cloud, such as the one on the left side of figure 9.400

The result can be further refined by estimating the dense cloud and, later,401

the mesh surface fitting the point cloud. This can be performed by exploiting402

popular open source softwares such as Meshlab ([19]). An example of point403

cloud processing is illustrated on the right side of figure 9.404

Another typical way of obtaining 3D bathymetric data in the underwater405

environment is by employing acoustic multi-beam sonars. The output data406

returned by the multibeam sonar consists of a set of 3D points lying in the407

intersection between the acoustic beams and the seafloor plane. The depth408

values and the direction of arrival of the scatterers are hence the direct output409
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Figure 10: Heterogenous dataset captured during an experimental session at the small pool

of the Ocean Systems Lab, Heriot Watt Universtity (Edinburgh). In the left upper part the

pool bathymetry map captured by the Blueview MB2250 is illustrated. The right upper part

represents the optical mosaic obtained by stitching the GoPro images of the pool floor while

the lower part represents the integration between the bathymetric map and the optical mosaic.

of this sensor. This information can be integrated with additional sensor pose410

and position measurements. This enables the generation of 3D point cloud of411

the environment. The mapping performance of a Blueview MB-2250 multibeam412

sonar has been tested by collecting an experimental dataset within the small413

pool environment of the Ocean Systems Laboratory, Heriot Watt University of414

Edinburgh (Scotland). The collected maps have been processed to extract the415

linear subset of interest from the data, corresponding to the intersection between416

the sensor beams and the pool floor. Later, by integrating these data with the417

pose measurements of the sensor, it was possible to perform the 3D alignment of418

the point cloud. The point cloud obtained this way has been further processed419

to generate the 3D mesh of the terrain (figure 10, upper left), and the result has420

been integrated with the optical mosaic of the floor (figure 10, upper right). The421
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optical dataset has been obtained by employing a GoPro camera, collecting data422

simultaneously with the MB-2250. The result of the fusion between bathymetry423

and textural information is represented in the lower part of figure 10.424

4.5. Data Integration425

During the survey missions each of the employed payload sensors will pro-426

vide an individual description of the environment. To the purpose of robustly427

recognizing archaeological objects it is useful to introduce a synthesis structure428

summarizing all the informative content related to a seabed area.429

This can be formally defined as a multi-dimensional map, made up of multi-430

ple layers, each of which refers to a specific category of information. A point in431

this map returns the entire available information for the corresponding 3D point432

in the world ([20]). This information may refer to (i) the raw captured data,433

(ii) the output results of data analysis algorithms, (iii) the bathymetry data434

collected by dedicated sensors or estimated by computer vision procedures. A435

point in the map p can be formally defined as an n-D vector, where n represents436

the dimensionality of the collected information, which varies with the number437

of employed payload sensors and the implemented algorithms for data analysis:438

p(x, y) = {p1(x, y), ..., pn(x, y)} (8)

According to the previous definition, an example of the multi dimensional439

map that would realistically represent the output of an AUV archaeological440

mission, could be built as in the following:441

p1(x, y) = Optical Map Intensity value in (x, y)

p2(x, y) = Acoustic Map Intensity value in (x, y)

...

pn(x, y) = Bathymetry Map value in (x, y) (9)

A conceptual sketch of the described fusion map is illustrated in figure 11. In442

comparison with object recognition procedures based on an individual data ty-443
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pology, it is expected that considering the whole set of available information can444

be a promising way to perform an efficient object recognition task, reliable with445

respect to false alarms rejection. A preliminary example of data integration, re-446

sults from the stitching of camera images mosaic on the multibeam bathymetry447

map (figure 10). Future work will involve enlarged sets of heterogeneous data448

and it will be performed on the real data that will be captured during the final449

experimental surveys of the ARROWS project.450

5. Conclusions451

The robotic and automation technology presented in this paper will make452

easier the underwater archaeologists’ work, carried out in a hostile and complex453

environment.454

The many implemented procedures aim at providing the archaeologists with455

methods to perform a thorough analysis of the large and heterogenous amount456

of data returned by the payload sensors. The proposed processing options aim457

at the fulfillment of all the archaeologist’s requirements and enable him to in-458

directly perform measurements and formulate historical interpretations on the459

findings. Moreover, in order to disseminate knowledge regarding the underwater460

cultural heritage and to increase the sensitivity for its preservation, the devel-461

Figure 11: Conceputal diagram illustrating the fusion map. A point in the multilayer structure

summarizes all the available information about the surveyed environment.
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oped tools allow to address different audiences, including the general public. In462

particular, one of the purposes of this work is to devise new dissemination chan-463

nels making use of 3D immersive environments to make more attractive the col-464

lected information. The developed methodology has been tested by organizing465

specific campaigns in relevant European sites, such as the Egadi Archipelagos466

in Italy, or the Estonian area of the Baltic sea. Most of the presented results,467

including the collection of the data, its processing using the reported methods,468

the 3D reconstructions and the virtual scenarios developed with the aim of repli-469

cating the experience of wreck exploration and survey, have been made possible470

in the framework of the European FP7 project ARROWS.471
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