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FAST HESSENBERG REDUCTION OF SOME RANK STRUCTURED

MATRICES∗

L. GEMIGNANI† AND L. ROBOL‡

Abstract. We develop two fast algorithms for Hessenberg reduction of a structured matrix
A = D+ UV H where D is a real or unitary n× n diagonal matrix and U, V ∈ Cn×k . The proposed
algorithm for the real case exploits a two–stage approach by first reducing the matrix to a generalized
Hessenberg form and then completing the reduction by annihilation of the unwanted sub-diagonals.
It is shown that the novel method requires O(n2k) arithmetic operations and it is significantly faster
than other reduction algorithms for rank structured matrices. The method is then extended to the
unitary plus low rank case by using a block analogue of the CMV form of unitary matrices. It is shown
that a block Lanczos-type procedure for the block tridiagonalization of ℜ(D) induces a structured
reduction on A in a block staircase CMV–type shape. Then, we present a numerically stable method
for performing this reduction using unitary transformations and we show how to generalize the sub-
diagonal elimination to this shape, while still being able to provide a condensed representation for
the reduced matrix. In this way the complexity still remains linear in k and, moreover, the resulting
algorithm can be adapted to deal efficiently with block companion matrices.

Key words. Hessenberg reduction, Quasiseparable matrices, Bulge chasing, CMV matrices,
Complexity.
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1. Introduction. Let A = D+UV H where D is a real or unitary n×n diagonal
matrix and U, V ∈ Cn×k. Such matrices do arise commonly in the numerical treatment
of structured (generalized) eigenvalue problems [1, 3]. We consider the problem of
reducing A to upper Hessenberg form using unitary transformations, i.e., to find a
unitary matrix Q such that QAQH = H = (hij) and hij = 0 for i > j+1. Specialized
algorithms exploiting the rank structure of A have complexity O(n2) whenever k is
a small constant independent of n [12, 14]. However, for applications to generalized
eigenproblems the value of k may be moderate or even large so that it is worthwhile
to ask for the algorithm to be cost efficient w.r.t. the size k of the correction as well.

The Hessenberg reduction of a square matrix is the first basic step in computing its
eigenvalues. Eigenvalue computation for (Hermitian) matrices modified by low rank
perturbations is a classical problem arising in many applications [3]. More recently
methods for diagonal plus low rank matrices have been used in combination with
interpolation techniques in order to solve generalized nonlinear eigenvalue problems
[1,7]. Standard Hessenberg reduction algorithms for rank structured matrices [12,14]
are both theoretically and practically ineffective as the size of the correction increases
since their complexities depend quadratically or even cubically on k, or they suffer
from possible instabilities [8]. The aim of this paper is to describe a novel efficient
reduction scheme which attains the cost of O(n2k) arithmetic operations (ops). For a
real D the incorporation of this scheme into the fast QR–based eigensolver for rank–
structured Hessenberg matrices given in [13] thus yields an eigenvalue method with
overall cost O(n2k) ops. Further, in the unitary case the design of such a scheme is
an essential step towards the development of an efficient eigenvalue solver for block
companion matrices and, moreover, the techniques employed in the reduction are of
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independent interest for computations with matrix valued orthogonal polynomials on
the unit circle [4, 22, 23].

The proposed algorithm consists of two stages including a first intermediate re-
duction to a generalized τk-Hessenberg form1, where τk = k in the real case and
τk = 2k in the unitary case. A two-stage approach have been shown to be beneficial
for blocked and parallel computations [9, 20]. Our contribution is to show that the
same approach can conveniently be exploited in the framework of rank–structured
computations. Specifically, to devise a fast reduction algorithm we find Q as the
product of two unitary matrices Q = Q2Q1 determined as follows:
Reduction to banded form Q1DQH

1 is a banded matrix of bandwidth τk and Q1U
is upper triangular. In particular, this implies that the matrix B := Q1AQ

H
1

is in generalized τk-Hessenberg form, that is, its elements are 0 below the
τk-th subdiagonal.

Subdiagonal elimination We compute a unitary matrix Q2 such that Q2BQH
2 is in

upper Hessenberg form. The process employs a sequence of Givens rotations
used to annihilate the last τk − 1 subdiagonals of the matrix B.

It is shown that both steps can be accomplished in O(n2k) ops. For a real D
the algorithm for the reduction to banded form relies upon an adaptation of the
scheme proposed in [3] for bordered matrices. The subdiagonal annihilation procedure
employed at the second step easily takes advantage of the data–sparse representation
of the matrices involved in the updating process. The extension to the unitary setting
requires a more extensive analysis and needs some additional results. By exploiting
the relationships between the computation at stage 1 and the block Lanczos process we
prove that the band reduction scheme applied to ℜ(D) and UD : = [U,DU ] computes
a unitary matrix Q1 such that F : = Q1DQH

1 is 2k-banded in staircase form. A
suitable reblocking of F in a block tridiagonal form puts in evidence analogies and
generalizations of this form with the classical CMV format of unitary matrices [10,
11,21], and this is why we refer to F as a block CMV–type matrix. An application of
CMV matrices for polynomial rootfinding is given in [5]. The block CMV structure
plays a fundamental role for reducing the overall cost of the reduction process. To
this aim we first introduce a numerically stable algorithm for computing F in factored
form using a suitable generalization of the classical Schur parametrization of scalar
CMV matrices [10]. Then, we explain how bulge–chasing techniques can efficiently
employed in the subsequent subdiagonal elimination stage applied to the cumulative
B to preserve the CMV structure of the part of the matrix that actually needs to be
still reduced. Some experimental results are finally presented to illustrate the speed
and the accuracy of our algorithms.

The paper is organized as follows. The real case is treated in Section 2. The
two reduction steps applied to a real input matrix D are discussed and analyzed
in Subsection 2.1 and Subsection 2.2, respectively. The generalization for unitary
matrices is presented in Section 3. In particular, Subsection 3.1 and 3.2 provide
some general results on block CMV structures. Subsection 3.3, 11 and 3.5 deal with
the construction of the block CMV structure in the reduction process whereas the
computation and the condensed representation of the final Hessenberg matrix are the
topics of Subsection 3.6 and Subsection 3.7. Experimental results are described in in
Section 4 followed by some conclusions and future work in Section 5.

1We use the term generalized τk-Hessenberg matrix to mean a matrix with only τk non-zero
subdiagonals.
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2. Reduction processes: The real plus low rank case. In this section we
present a two phase Hessenberg reduction algorithm for a matrix A = D + UV H

where D is a real n× n diagonal matrix and U, V ∈ Cn×k.

2.1. Reduction to banded form. We show how it is possible to transform the
matrix A into a Hermitian banded matrix plus a low rank correction, i.e., Q1AQ

H
1 =

D1 + U1V
H
1 where

D1 =












× . . . ×
...

. . .
. . .

×
. . . ×

. . .
. . .

...
× . . . ×












, U1 =

[
X
0

]

, X ∈ C
k×k.

and D1 has bandwidth k. The computation can equivalently be reformulated as a
band reduction problem for the bordered matrix

E =

[
0k V H

U D

]

,

where 0k denotes the zero matrix of size k. The algorithm we present here is basically
an adaptation of Algorithm 2 in [2] for solving this problem efficiently. It finds a
unitary matrix Q = Ik ⊕Q1 such that QEQH is in generalized k-Hessenberg form.

The main idea behind the reduction is that the matrix D at the start is a (very
special kind of) k-banded matrix, since it is diagonal. We then start to put zeros in
the matrix U using Givens rotations and we right-multiply by the same rotations to
obtain a unitary transformation. This, generally, will degrade the banded structure
of the matrix D. We then restore it by means of Givens rotations acting on the left
in correspondence of the zeros of U . Since the rotations leave the zeros unchanged,
this also preserves the partial structure of U .

More precisely, let ℓ(i, j) be the function defined as

ℓ(i, j) : N2 −→ N

(i, j) 7−→ k(n+ j − i) + j

Lemma 1. The function ℓ is injective from the subset I ⊆ N2 defined by I =
[1, n]× [1, k] ∩N

2.

Proof. Assume that ℓ(i, j) = ℓ(i′, j′). Then we have that

0 = ℓ(i, j)− ℓ(i′, j′) = k((j − j′)− (i− i′)) + j − j′.

This implies that j ≡ j′ modulo k, but since j ∈ [1, k] we can conclude that j = j′.
Back substituting this in the above equation yields that i = i′, thus giving the thesis.

Since ℓ is injective and N is totally ordered the map ℓ induces an order on the set
I. This is exactly the order in which we will put the zeros in the matrix U . Pictorially,
this can be described by the following:









× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×









→









× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

0 × ×









→









× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

0 × ×

0 × ×









→









× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

0 × ×

0 0 ×









→









× × ×

× × ×

× × ×

× × ×

× × ×

0 × ×

0 × ×

0 0 ×









→ . . .
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The annihilation scheme proceeds by introducing the zeros from the bottom up along
downwardly sloping diagonals. Let R(A, (k, j)) = GkAG

H
k , where Gk = Ik−2 ⊕ Gk ⊕

In−k is a Givens rotation in the (k − 1, k)−plane that annihilates ak,j . The band
reduction algorithm is then described as follows:

Algorithm Band Red

for i = 1 : n− 1
for j = 1 : i
A = R(A, ℓ−1(ki+ j));
end

end

It is easily seen that we can perform each similarity transformation in O(k) arith-
metic operations and, therefore, the overall cost of the band reduction is O(n2k).

2.2. Subdiagonal elimination. Our algorithm for subdiagonal elimination and
Hessenberg reduction exploits the properties of bulge–chasing techniques applied to
a band matrix. Observe that at the very beginning of this stage the input matrix A
can be reblocked as a block tridiagonal matrix plus a rank-k correction located in the
first block row. At the first step of the Hessenberg reduction we determine a unitary
matrix H1 ∈ Ck×k such that H1A(2 : k + 1, 1) is a multiple of the of the first unit
vector. Then the transformed matrix A : = H1AH

H
1 , where H1 = 1 ⊕H1 ⊕ In−k−1,

reveals a bulge outside the current band which has to be chased off before proceeding
with the annihilation process. In the next figure we illustrate the case where k = 3.

× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
0 × × × × × × ×
0 0 × × × × × ×
0 0 0 × × × × ×
0 0 0 0 × × × ×

→

× × × × × × × ×
0 × × × × × × ×
0 × × × × × × ×
0 × × × × × × ×

0 × × × × × × ×

0 × × × × × × ×

0 × × × × × × ×
0 0 0 0 × × × ×

The crucial observation is that the bulge inherits the rank structure of the matrix
HH

1 . If we construct H1 as product of consecutive Givens rotations we find that
HH

1 is unitary lower Hessenberg and therefore the lower triangular part of the bulge
has rank one at most. Then the bulge can be moved down by computing its QR
decomposition. From the rank property it follows that the Q factor is again a unitary
Hessenberg matrix so that the process can be continued until the bulge disappears.
By swapping the elementary Givens rotations employed in both the annihilation and
bulge–chasing step we arrive at the following algorithm.

Algorithm Subd El

for j = 1 : n− 2
for i = min{n, j + k} : −1 : j + 2
A = R(A, (i, j));
for s = i+ k : k : n
A = R(A, (s, s− k − 1));
end

end

end
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The arithmetic cost of the algorithm is upper bounded by ⌈
n

k
⌉nkp where p is

the maximum number of arithmetic operation required to perform the updating A →
A : = R(A, (i, j)) at each step of the algorithm. A data–sparse representation of the
matrix A is provided by the following.

Lemma 2. At each step of the algorithm the matrix A satisfies

A−AH = UV H − V UH ,

for suitable U, V ∈ Cn×k.

Proof. The input matrix A = D1 + U1V
H
1 satisfies A − AH = U1V

H
1 − V1U

H
1

and the relation is maintained under the congruence transformation A → A : =
R(A, (i, j)).

Let Φ: Cn×n × Cn×k × Cn×k → Cn×n be defined as follows:

Φ(A,U, V ) = tril(A) + (tril(A,−1))H + (triu(UV H − V UH , 1)).

Based on the previous result we know that the above map provides an efficient
parametrization of the matrix A, so we can replace the (unstructured) transforma-
tion A → A : = R(A, (i, j)) in Algorithm Algorithm Subd El with its condensed
variant

(tril(A), U, V ) → (tril(A), U, V ) : = RΦ(Φ(tril(A), U, V )), (i, j)),

Φ(RΦ(Φ(tril(A), U, V )), (i, j))) = R(Φ(tril(A), U, V )), (i, j)) = R(A, (i, j)),

which can be employed by updating only the generators of the data–sparse represen-
tation at the cost of p = O(k) operations thus yielding the overall cost of O(n2k)
ops.

3. Reduction processes: The unitary plus low rank case. In this section
we deal with an extension of the approach to the case of unitary plus low rank matrices.
More precisely, we consider the case where A = D + UV H with D being an n × n
unitary diagonal matrix and U, V ∈ Cn×k.

A strong motivation for the interest in this class of matrices comes from the
companion block forms. If A(x) =

∑n

i=0 Aix
i with Ai ∈ Cm×m is a matrix polynomial

then the linear pencil

L(x) = x








An

Im
. . .

Im







−








−An−1 . . . −A1 −A0

Im
. . .

Im








has the same spectral structure of A(x) [18]. When the polynomial is monic the same
holds for the above pencil (and so the generalized eigenvalue problem associated with
it turns into a standard eigenvalue problem) and the constant term can be written
as Z + UWH where U = e1 ⊗ Im, WH = [−An−1, . . . , −A0 − I] and Z = Zn ⊗ Im
where Zn is the n × n shift matrix that maps en to e1 and ei to ei+1 for i < n.
In particular, Zn can be easily diagonalized so that we can consider an equivalent
eigenvalue problem for the matrix D + ŨW̃H where D is unitary diagonal generated
from the n−th roots of unity.
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3.1. Properties of unitary plus low rank matrices. The results stated in
the previous section mainly relied upon the fact that the matrix D is real in order
to guarantee that, at each step of the reduction, the transformed matrix PDPH is
Hermitian, where P denotes the product of all Givens rotations accumulated so far.
In particular, for a real D maintaining the matrix PDPH lower banded ensures that
the whole matrix is also upper banded (thanks to the Hermitian structure). This is
not true anymore in the unitary case. In fact, applying the previous algorithm “as it
is” leads to a matrix PDPH which is in generalized k-Hessenberg form, that is, it is
lower banded (with bandwidth k) but generally dense in its upper triangular part.

It is possible to prove, relying on the formalism of quasiseparable matrices, that
a structure is indeed present in the matrix PDPH , even if it is not readily available
to be exploited in numerical computations. Let us first recall some preliminaries
(see [15, 16] for a survey of properties of quasiseparable matrices).

Definition 3. Let A ∈ Cn×n a matrix. We say that A is (kl, ku)-quasiseparable
if, for any i = 1, . . . , n− 1, we have

rank(A[1 : i, i+ 1 : n]) ≤ ku, rank(A[i + 1 : n, 1 : i]) ≤ kl,

where we have used the MATLAB notation to identify off-diagonal submatrices of A.

Banded matrices with lower bandwidth kl and upper bandwidth ku are a subset
of (kl, ku)-quasiseparable matrix. This is a direct consequence of the fact that, in a
banded matrix, each off-diagonal submatrix has all the non-zero entries in the top-
right (or bottom-left) corner, and its rank is bounded by the bandwidth of the large
matrix. However, the class of quasiseparable matrices enjoys some nice properties
that the one of banded matrices does not have, such as closure under inversion.

Before going into the details we introduce a very simple but important result that
is relevant to this setting, called the Nullity theorem [17, 19].

Theorem 4 (Nullity). Suppose A ∈ Cn×n is a non-singular matrix and let α
and β to be nonempty proper subsets of In : = {1, . . . , n}. Then

rank(A−1[α;β]) = rank(A[In \ β; In \α]) + |α|+ |β| − n,

where, as usual, |J | denotes the cardinality of the set J . In particular, if A and A−1

are partitioned conformally as follows

A =

[
A1,1 A1,2

A2,1 A2,2

]

, A−1 =

[
B1,1 B1,2

B2,1 B2,2

]

with square diagonal blocks, then the rank of each off-diagonal block of A matches the
rank of the corresponding block in the inverse.

Hermitian and unitary quasiseparable matrices share an additional property,
which we call rank symmetry, which makes them suitable to develop fast algorithms.

Theorem 5. Let U be a unitary or Hermitian n× n matrix. Then if U is lower
quasiseparable of rank k it is also upper quasiseparable with the same rank.

Proof. If U is Hermitian the result is obvious since each off-diagonal submatrix
in the lower triangular part corresponds to another submatrix in the upper triangular
part. In the unitary case, instead, we can rely on the Nullity Theorem that guarantees
that each submatrix of the form P [i+1 : n, 1 : i] has rank equal to the same submatrix
in the inverse of P . Since P−1 = PH we have the thesis.
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Remark 6. If H is a generalized k-Hessenberg matrix of the form A = D+UV H

where D is unitary and U, V ∈ Cn×k then

H = PAPH = PDPH + (PU)(PV )H .

Suppose that PDPH is lower banded with bandwidth k and PU is upper triangular.
Since PDPH is rank symmetric we can conclude that the upper quasiseparable rank
of H is bounded by τk = 2k.

3.2. The block CMV structure. The results of the previous section are not
constructive nor computationally helpful (at least in this form), since they do not
provide a representation for the upper part of the matrix PDPH and a fortiori of
the cumulative matrix H . In the spirit of [6] we pursue a different approach by
showing how to induce a particular banded structure of width 2k (the so-called CMV
shape [5,21]) on the unitary matrix PDPH . In this form the quasiseparable structure
of PDPH , even if not of minimal size, will be evident by the banded structure and,
therefore, easily recoverable and representable.

Definition 7 (CMV shape). A unitary matrix A is said to be CMV structured
with block size k if there exist k × k non-singular matrices Ri and Li, respectively
upper and lower triangular, such that

A =















× × L3

R1 × ×
× × × L5

R2 × × ×
× ×

R4 ×
. . .

. . .
. . .















where the symbol × has been used to identify (possibly) nonzero blocks.

In order to simplify the notation we often assume that n is a multiple of 2k, so
the above structures fit “exactly” in the matrix. However, this is not restrictive and
the theory presented here continue to hold in greater generality. In practice, one can
deal with the more general case by allows the blocks in the bottom-right corner of the
matrix to be smaller.

Remark 8. Notice that a matrix in CMV form with blocks of size k is, in par-
ticular, 2k-banded. The CMV structure with blocks of size 1 has been proposed as
a generalization of what the tridiagonal structure is for Hermitian matrices in [11]
and [21]. A further analogy between the scalar and the block case is derived from the
Nullity Theorem. We have for p > 0:

0 = rank(A[1 : 2pk, 2(p+ 1)k + 1 : n]) = rank(A[2pk + 1 : n, 1 : 2(p+ 1)k])− 2k

which gives

rank(A[2pk + 1 : 2(p+ 1)k, (2p− 1)k + 1 : 2(p+ 1)k]) = k.
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Pictorially we are setting rank constraints on the following blocks

A =















× × L3

R1 × ×
× × × L5

× × × ×

× ×

× ×
. . .

. . .
. . .















and by similar arguments on the corresponding blocks in the upper triangular portion.

3.3. Existence of the CMV structure. This section is devoted to show that
the reduction process simultaneously applied to the diagonal matrix ℜ(D) and the
rectangular one UD = [U,DU ] induces a CMV structure on the matrix A = D +
UV H . Observe that the construction of a unitary P such that TD := Pℜ(D)PH

is 2k-banded and, moreover, PUD is upper triangular can theoretically be analyzed
in the framework of block Krylov (Lanczos) methods for converting ℜ(D) in block
tridiagonal form having fixed the first block column of PH . Exact breakdowns occur
when the iteration can not be continued due to a rank drop and some modifications
are required to generate a block tridiagonal TD with subdiagonal blocks of varying
(decreasing) sizes. Conversely, we characterize the regular case where there is no
breakdown (and no rank reduction) in the corresponding block Lanczos process by
stating the following:

Definition 9 (No breakdown condition). We say that the matrix A ∈ Cn×n

satisfies the no-breakdown-condition related to U ∈ Cn×p and P ∈ Cn×n unitary
if PU is upper triangular of full rank and H = PAPH = (Hi,j) is a block upper
Hessenberg matrix, Hi,j ∈ Cp×p, 1 ≤ i, j ≤ s, and Hj+1,j with 1 ≤ j ≤ s − 1 are of
full rank.

In order to simplify our analysis of the reduction process simultaneously applied
to the diagonal matrix ℜ(D) and the rectangular one UD = [U,DU ] we assume the
following two conditions are satisfied:

1. The matrix ℜ(D) satisfies the no-breakdown-condition related to UD and the
unitary matrix QH ∈ Cn×n computed at end of the band reduction process
such that QHℜ(D)Q = TD is block tridiagonal.

2. The dimension n of ℜ(D) is a multiple of 2k, i.e., n = 2kℓ. This requirement
ensures that all the blocks of TD have constant size p = 2k.

We notice that the requirement (1) is not so strict as it might seem. In fact, whenever
a breakdown happens or, equivalently speaking, we find a rank loss in the associated
Lanczos scheme, then the reduction process can be continued in such a way that the
matrix obtained at the very end will still have a block CMV structure with blocks
of possibly varying sizes. However, this would complicate the handling of indices to
track this situation and so we will not cover this case explicitly.

The next results provides our algorithm for the reduction of a unitary diagonal
D into a block CMV shape.

Lemma 10. Let BR = QHℜ(D)Q be the 2k-banded matrix obtained by applying
the reduction scheme to the diagonal matrix ℜ(D) and the rectangular one [U DU ].
Assume also that the no-breakdown-condition of ℜ(D) related to [U DU ] and QH is
satisfied. Then the following structures are induced on BI and B defined as follows:
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(i) BI = QHℑ(D)Q is 2k-banded.
(ii) B = QHDQ is 2k-banded and CMV structured with blocks of size k.

Proof. We can look at the 2k-banded structure as a characterization of the oper-
ator ℜ(D) acting on Cn. In particular, it tells us that, if we see the columns of Q as
a basis for Cn, the j-th one is mapped by ℜ(D) in the subspace spanned by the first
j + 2k ones. Since, by construction, we have that

QH [U DU ] = R ⇐⇒ [U DU ] = Q








R̃
02k
...

02k







, R̃ nonsingular,

we have that the first 2k columns of Q are a basis for the space generated by the
columns of [U DU ]. Under the no breakdown condition we have that the (2k+ 1)-th
column of Q will be a multiple of the part of ℜ(D)Ue1 orthogonal to [U DU ]. Notice
that ℜ(D) = 1

2 (D + DH) and therefore the (2k + 1)-th column of Q will be also a
multiple of the part of DHUe1 orthogonal to [U DU ]. Extending this remark yields
that Q is the unitary factor in a QR factorization of a Krylov-type matrix Ũ , that is,

(1) QRU =
[

U DU DHU D2U (D2)
H
U D3U . . . (Dℓ−1)

H
U DℓU

]

︸ ︷︷ ︸

Ũ

,

with RU invertible. Since ℑ(D) = 1
2i(D − DH) we have that QHℑ(D)Q has a 2k-

banded structure and the j-th column of Q is mapped by the linear operator ℑ(D)
into the span of the first j + 2k ones. Given that D = ℜ(D) + iℑ(D) we have that
also QHDQ is 2k-banded.

It remains to show that QHDQ is in fact endowed with a block CMV structure.
For this it is convenient to rely upon Equation 1. We can characterize the i-th block
column of B by using

BEi = QHDQEi ⇒ QBEi = DŨR−1
U Ei,

where we set Ei := ei ⊗ Ik and DŨ can be explicitly written as

DŨ =
[

DU D2U U D3U DHU D4U . . . (Dℓ−2)
H
U Dℓ+1U

]

.

Recall that R−1
U is upper triangular, each block column of ŨR−1

U is a combination of

the corresponding one in Ũ and the previous ones. Thus we can deduce that:
• The block column of ŨR−1

U corresponding to the ones of the form DjU in Ũ
(which are in position 2j, except for the first one) are mapped into a linear
combination of the first 2(j+1) block columns by the action of D on the left.

• Since the block column of the form (DH)jU of Ũ are mapped in (DH)j−1U
the corresponding block column in ŨR−1

U will be mapped in a combination
of the previous ones.

The above remarks give bounds on the maximum lower band structure that are
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stricter than the ones given by being 2k-banded, and have the following shape:

QHDQ =











× × × × ×
R1 × × × ×

× × × ×
R2 × × ×

× ×
R4 ×











,

where Ri are suitable non-singular upper triangular matrices. Performing a similar

analysis on (QHDQ)
H

= QHDHQ yields a similar structure also in the upper part,
proving our claim about the CMV block structure of QHDQ.

The above description is theoretically satisfying, but applying the Lanczos process
to implicitly obtain the block CMV structure is not ideal numerically. In the next
subsection we introduce a different factored form of block CMV structured matrices
which is the basis of a numerically stable algorithm for CMV reduction presented in
Subsection 3.5 .

3.4. Factorizing CMV matrices. Block CMV matrices have interesting prop-
erties that we will exploit in the following to perform the reduction. We show here
that they can be factorized in block diagonal matrices with 2k × 2k diagonal blocks.

Theorem 11. Let A ∈ Cn×n, n = 2kℓ, be a block CMV matrix as in Definition 7.
Then there exist two block diagonal unitary matrices A1 and A2 such that A = A1A2,
which have the following form:

A1 =










× LA,2

RA,1 ×
. . .

× LA,2ℓ

RA,2ℓ−1 ×










, A2 =










Ik
× LA,3

RA,2 ×
. . .

×










,

where the matrices RA,j are upper triangular and LA,j are lower triangular. Moreover,
for any A1 and A2 with the above structure, the matrix A is block CMV.

Proof. The proof that we provide is constructive, and gives an algorithm for the
computation of A1 and A2. Assume that A has the following structure:

A =






A1,1 A1,2 L3

R1 A2,2 A2,3

...
...

. . .




 ,

and let Q1

[
S1

0

]
=

[
A1,1

R1

]

be a QR decomposition of the first block column. Then we

can factor A as
[
QH

1

I

]

A =

[
S1 Ã1,2 Ã1,3

Ã2,2 Ã2,3

]

Since S1 is upper triangular and A is unitary we must have that S1 is diagonal and
Ã1,2 = Ã1,3 = 0 because of the Nullity Theorem. Thus, we can assume to choose Q1
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so that S1 = I and we obtain

A =








Q1

I
. . .

I

















I

Ã2,2 Ã2,3

A3,2 A3,3 A3,4 RH
5

R2 A4,3 A4,4 A4,5

...
. . .










.

Notice that, if we look at Q1 as a 2×2 block matrix the block in position (2, 1) has to
be upper triangular, and we can force the one in position (1, 2) to be lower triangular
(the last k columns are only determined up to right multiplication by a k× k unitary
matrix).

We can continue the procedure by computing a QR factorization

Q2

[
S2

0

]

=

[
A3,2

R2

]

=⇒ QH
2

[
A3,2 A3,3

R2 A4,3

]

=

[
S2 ×
0 0

]

since the right-handside has rank k in view of Remark 8 and we assume R2 to be of
full rank. This provides a new factorization

A =








Q1

Q2

. . .

I

















I

Ã2,2 Ã2,3

S2 ×

Ã4,4 Ã4,5

...
. . .










,

where the upper zero structure follows from the lower one by re-applying the Nul-
lity theorem again and from the fact that the triangular matrices are nonsingular.
Iterating this procedure until the end provides a factorization of the form:

A =










× LA,2

RA,1 ×
. . .

× LA,2ℓ

RA,2ℓ−1 ×










·










Ik
× ×

RA,2 ×
. . .

×










As a last step, we observe that the superdiagonal blocks in the right factor need to be
lower triangular because of the presence of the lower triangular blocks in A, and for the
full-rank condition that we have imposed on the triangular block entries. Therefore,
the factorization has the required form. The other implication can be checked by a
direct computation.

3.5. From diagonal to CMV. We are now concerned with the transformation
of a diagonal plus low-rank matrix A = D+UV H , with D unitary, to a CMV plus low-
rank one where the block vector U is upper triangular. We have proved in Section 3.3
that this transformation can be performed under the no-breakdown condition. Here
we are going to present a different numerically stable approach which works without
restrictions and outputs a factored representation of the block CMV matrix with
relaxed constraints on the invertibility of the triangular blocks.

In order to perform this reduction, we shall introduce some formal concept that
will greatly ease the handling of the structure.
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Definition 12. We say that a unitary matrix Qj ∈ Cn×n is a block unitary
transformation with block size k if there exists an integer s and a 2k × 2k unitary
matrix Q̂j such that

Qj =





I(j−1)k

Q̂j

Isk



 .

The matrix Q̂j is called the active block of Qj, and the integer j = n
k
− s− 1 is used

to denote its position on the block diagonal.

Informally, we can seeQj as a block version of Givens rotations or, more generally,
of essentially 2 × 2 unitary matrices. We restrict ourselves to the case where n is a
multiple of 2k, since that makes the definitions and the notation much easier to follow.

To illustrate our interest in block unitary transformations we give the following
simple application, which will be the base of our reduction process.

Lemma 13. Let U ∈ Cn×k, n = ℓk. Then there exists a sequence of block unitary
transformations Q1, . . . ,Qℓ−1 such that

Q1 . . .Qℓ−1U = R,

with R being a n× k upper triangular matrix.

Block unitary transformations have some useful properties, that we will exploit
to make our algorithm asymptotically fast.

Lemma 14. Let Aj ,Bj , Cj ∈ Cn×n be block unitary transformations of block size
k and D a unitary diagonal matrix of size n = ℓk for some ℓ. Then, the following
properties hold:
(i) If |j − i| > 1 then AjAi = AiAj.
(ii) There exists a block unitary transformation Ei such that Ei = AiBi.
(iii) Given the sequence A1, . . . ,Aℓ−1, there exists a modified sequence of transfor-

mations Ã1, . . . Ãℓ−1 such that Ã1 . . . Ãℓ−1 = A1 . . .Aℓ−1D.
(iv) For any choice of Aj ,Bj+1, Cj with “V-shaped” indices, there exist three block

unitary transformations Ãj+1, B̃j, C̃j+1 such that AjBj+1Cj = Ãj+1B̃j C̃j+1.

Proof. All the properties can be checked easily using the definition of block uni-
tary transformation. We only discuss (iv). Notice that the product of the block
unitary transformations is a 3k×3k unitary matrix embedded in an identity. Assume
for simplicity that the size of the matrices is 3k, so we do not have to keep track of
the identities.

Let S := A1B2C1. We can compute its QR factorization by using 3 block unitary
transformations such that

ÃH
2 S =





× × ×
× × ×
0k × ×



 , B̃H
1 ÃH

2 S =





× × ×
0k × ×
0k × ×



 , C̃H
2 B̃H

1 ÃH
2 S = D,

where D is a diagonal unitary matrix (since an upper triangular unitary matrix has
to be diagonal). The diagonal term can be absorbed into the block unitary transfor-
mations, so we can assume without loss of generality that D = I. Thus, we have the
new decomposition A1B2C1 = S = Ã2B̃1C̃2, as desired.

A strict relationship exists between block CMV matrices and block unitary trans-
formations.
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Lemma 15. A unitary matrix A ∈ Cn×n, n = ℓk, is CMV structured with block
size k if and only if there exist block unitary transformations A1, . . . ,Aℓ−1 such that

A =

{

A1A3 . . .Aℓ−1A2A4 . . .Aℓ−2 if ℓ is even

A1A3 . . .Aℓ−2A2A4 . . .Aℓ−1 if ℓ is odd
,

and all the block unitary transformations have active blocks of the form

[
× L
R ×

]

, R, LHnonsingular upper triangular.

Proof. Assume that ℓ is even. The other case is handled in the same way. Let
A1 := A1A3 . . .Aℓ−1 and A2 := A2A4 . . .Aℓ−2. These two matrices are block diagonal
and have the structure prescribed by Theorem 11, so A1A2 is block CMV.

On the other hand, every CMV matrix can be factored as A = A1A2, and the
diagonal blocks of these two matrices have the structure required to be the active
part of a block unitary transformation. Therefore, both A1 and A2 can be written
as the product of a sequence of odd and even-indexed block unitary transformations,
respectively. This concludes the proof.

Remark 16. If we remove the assumption about the invertibility of the upper
triangular blocks R,LH of the unitary transformations Aj in the previous lemma then
the factored representation still implies a block CMV shape of the cumulative matrix
A. Indeed, these block CMV shaped matrices are the ones considered in the actual
reduction process (compare also with Lemma 18).

Lemma 17. Let A1, . . . ,Aℓ−1 ∈ Cn×n and Bℓ−1, . . . ,B1 ∈ Cn×n, n = ℓk, be two
sequences of block unitary transformations of block size k. Then, there exist an n× n
unitary matrix P and a sequence of block unitary transformations of block size k
C1, . . . , Cℓ−1 ∈ Cn×n such that

PA1 . . .Aℓ−1Bℓ−1 . . .B1P
H = C1 . . . Cℓ−1.

Moreover, P (e1 ⊗ Ik) = e1 ⊗ Ik.

Proof. We prove the result by induction on ℓ. If ℓ = 1 there is nothing to prove,
and if ℓ = 2 we can choose P = I and we have

A1B1 = C1

which can be satisfied thanks to property (ii) of Lemma 14. Assume now that the
result is valid for ℓ − 1, and we want to prove it for ℓ. We can write

A := A1 . . .Aℓ−1Bℓ−1 . . .B1 = A1A2B1,

where we have set A2 := A2 . . .Aℓ−1Bℓ−1 . . .B2. Since the first block column and
block row of A2 is equal to the identity, we can rewrite it as A2 = Ik ⊕ Ã, with
Ã = Ã1 . . . Ãℓ−2B̃ℓ−2 . . . B̃1. By the inductive hypothesis we have that there exists a
unitary matrix P̃ so that P̃ ÃP̃H = C̃1 . . . C̃ℓ−2.

If we set P2 := Ik ⊕ P̃ then P2A1 = A1 and P2B
H
1 = BH

1 , so we have

(2) P2AP
H
2 = A1D2 . . .Dℓ−1B1,
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where we have set Dj+1 := Ik ⊕ C̃j. We can move B1 to the left since it commutes

with all the matrices except the first two, and by setting A1D2B1 = B̂2C1D̂2, thanks
to property (iv) of Lemma 14, we get

P2AP
H
2 = B̂2C1D̂2D3 . . .Dℓ−1

Left-multiplying by B̂H
2 and right-multiplying by B̂2 yields:

(B̂2P2)A(B̂2P2)
H = C1D̂2D3 . . .Dℓ−1B̂2.

The part of the right-handside that follows C1, that is the matrix D̂2D̂3 . . .Dℓ−1B̂2

has the same form of the right-handside in Equation (2), but with one term less. We
can reuse the same idea ℓ− 3 times and obtain the desired decomposition.

We show here the special form required by the block unitary transformation is not
very restrictive. In particular, every time that we have a CMV-like factorization for
a matrix in terms of block unitary transformations, we can always perform a unitary
transformation to obtain the required triangular structure inside the blocks.

Lemma 18. Let A ∈ Cn×n, n = ℓk, a unitary matrix that can be factored as

A =

{

A1A3 . . .Aℓ−1A2A4 . . .Aℓ−2 if ℓ is even

A1A3 . . .Aℓ−2A2A4 . . .Aℓ−1 if ℓ is odd
,

with Aj ∈ Cn×n block unitary transformation of block size k. Then, there exist a
unitary transformation P , which is the direct sum of ℓ unitary blocks of size k × k,
such that PAPH = Ã satisfies

Ã =

{

Ã1Ã3 . . . Ãℓ−1Ã2Ã4 . . . Ãℓ−2 if ℓ is even

Ã1Ã3 . . . Ãℓ−2Ã2Ã4 . . . Ãℓ−1 if ℓ is odd
,

where the active blocks of Ãj are of the form

[
× L
R ×

]

, R, LH upper triangular.

Proof. Assume that we are in the case ℓ even, and let us denote A = AlAr =
(A1A3 . . .Aℓ−1) · (A2A4 . . .Aℓ−2). It is not restrictive to assume that the blocks in
Ar are already in the required form. In fact, if this is not true, we can compute a
block diagonal unitary matrix Q (with k × k blocks) such that QAr has the required
shape. Then, by replacing Al with AlQ

H we get another factorization of A where the
right factor is already in the correct form.

We now show that we can take the left factor in the same shape without deterio-
rating the structure of the right one. Let Q1 be a unitary transformation operating on
the first block row such that Q1Al has the block in position (1, 2) in lower triangular
form. Then we have

Q1AlArQ
H
1 = Q1AlQ

H
1 Ar = A

(1)
l Ar

since Ar and Q1 commute. Moreover, A
(1)
l has the first block row with the correct

structure.
We now compute another unitary transformation Q2 operating on the second

block row such that Q2A
(1)
l has the second row with the correct structure. Now the
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matrix ArQ
H
2 loses the triangular structure in the block in position (3, 2). However,

we can compute another transformation P3 operating on the third block row that
restores the structure in P3ArQ

H
2 , and therefore we have

Q2A
(1)
l ArQ

H
2 = (Q2A

(1)
l PH

3 ) · (P3ArQ
H
2 ) = A

(2)
l A(2)

r

since the right multiplication by PH
3 does not degrade the partial structure that

we have in A
(1)
l . We can iterate this process until all the blocks have the required

structure, and this proves the lemma.

In the sequel we refer to the matrix Ã defined in the previous lemma as a CMV
structured unitary matrix with block size k even if there is no assumption about the
invertibility of the triangular blocks. We now have all the tools required to perform
the initial reduction of U to upper triangular form and of D to block CMV structure.

Theorem 19. Let D ∈ Cn×n be a unitary diagonal matrix and U ∈ Cn×k with
n = ℓk for some ℓ ∈ N. Then, there exists a unitary matrix P such that PDPH is
CMV structured with block size k and PU(e1 ⊗ Ik) = (e1 ⊗ Ik)U1.

Proof. The proof is divided in two stages. First, we show that we can build a
unitary matrix PU such that PUU = R is upper triangular. Then, we use Lemma 17
to construct another unitary matrix PC = Ik ⊕ P̃C so that PC · (PUDPH

U ) · PH
C is in

block CMV shape. We then set P := PCPU and conclude the proof.
In view of Lemma 13 we can set PU = A1 . . .Aℓ−1 so that PUU = R. Applying

the same transformation to D yields

PUDPH
U = A1 . . .Aℓ−1DAH

ℓ−1 . . .A
H
1 = A1 . . .Aℓ−1Bℓ−1 . . .B1,

where we have used property (ii) of Lemma 14 to merge D into the right block uni-
tary transformations. We may now use Lemma 17 to obtain unitary transformations
C1, . . . , Cℓ−1 and a unitary matrix PV so that

PV · (PUDPH
U ) · PH

V = C1 . . . Cℓ−1

We now want to manipulate the above factorization to obtain one in CMV form,
according to Lemma 15. Let us left multiply the above by C2 . . . Cℓ−1 and right
multiply it by its inverse. We get:

(C2 . . . Cℓ−1)C1 . . . Cℓ−1(C2 . . .Cℓ−1)
H = C2 . . . Cℓ−1C1.

Since C1 commutes with all the factors except C2, the above expression is equal to

C2C1C3 . . .Cℓ−1.

We can repeat the operation and move C4 . . .Cℓ−1 to the left and, using the commu-
tation properties, obtain

(C4 . . .Cℓ−1)C2C1C3 . . . Cℓ−1(C4 . . . Cℓ−1)
H = C4 . . . Cℓ−1C2C1C3 = C2C4C1C3C5 . . . Cℓ−1.

We repeat this process until we obtain all the Ci with even indices on the left and the
ones with odd indices on the right. Since this is the structure required by Lemma 15
and we have performed operations that do not involve C1, we can write this final step
as a matrix PS with PS(e1 ⊗ Ik) = e1 ⊗ Ik, so that

PSPV PUA(PSPV PU )
H = C2 . . . Cℓ−2C1 . . . Cℓ−1,
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assuming ℓ is even. Since PSPV (e1 ⊗ Ik) = e1 ⊗ Ik by construction we have that
PSPV PUU = R. We can compute another unitary block diagonal transformation PT

obtained through Lemma 18 to ensure the correct triangular structure in the unitary
blocks, and so the proof is complete by settings P := PTPSPV PU .

We now comment on the computational cost of performing the algorithm in the
proof of Theorem 19. Assume that the matrices are of size n, the blocks are of size
k, and that n is a multiple of k. The following steps are required:
(i) A block QR reduction of the matrix U . This requires the computation of O(n

k
)

QR factorizations of 2k × 2k matrices. The total cost is O(n
k
· k3) ∼ O(nk2).

(ii) The application of Lemma 17, which requires about O((n
k
)2) QR factorizations

and matrix multiplications, all involving 2k×2k or 3k×3k matrices. Therefore,
the total cost is of O(n2k) flops.

(iii) The manipulation of the order of the transformations requires again O((n
k
)2)

operations on 2k × 2k matrices, thus adding another O(n2k) flop count.
(iv) The final application of Lemma 18 requires the computation of O(n

k
) QR fac-

torizations, and thus another O(nk2) contribution.
The total cost of the above steps is thus of O(n2k) flops, since k ≤ n, and the

dominant part is given by steps (ii) and (iii).

3.6. Preserving the CMV structure. In this subsection we deal with effi-
ciently implementing the final part of the algorithm: the reduction from block CMV
form to upper Hessenberg form. In order to describe this part of the algorithm we
consider the factored form that we have presented in the previous section, that is the
factorization (here reported for ℓ even)

ACMV = A1 . . .Aℓ−1B2 . . .Bℓ−2.

In the following we are interested in showing how, using an appropriate bulge-chasing
strategy, we can maintain the sparse structure of ACMV during the Hessenberg re-
duction procedure of ACMV + UV H .

Given that the block structure and the indexing inside the blocks can be difficult
to visualize, we complement the analysis with a pictorial description of the steps, in
which the matrix has the following structure:

ACMV =

Let P1 be a sequence of 2k− 2 Givens rotations that operate on the rows with indices
2, . . . , 2k, starting from the bottom to the top. These are the rotations needed to put
the first column of ACMV + UV H in upper Hessenberg-form. Since we do not make
any assumption on the structure of U and V beyond having U in upper triangular
form (the block U1 in Theorem 19 can be absorbed in the factor V ), we do not restrict
the analysis to the case where these rotations create some zeros in ACMV .

Our task is to determine a set of unitary transformations P2, which only operate
on rows and columns with indices larger than 3 (in order to not destroy the upper
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Hessenberg structure created by P1), such that P2P1ACMV P
H
1 PH

2 has the trailing
submatrix obtained removing the first row and column still in block CMV shape.

We start by applying the first k − 1 rotations in P1 from both sides. Applying
them from the left degrades the upper triangular structure of the block in position
(2, 1), and makes it upper Hessenberg. Pictorially, we obtain the following:

P1,1ACMV =

,

where P1,1 has been used to denote the first k − 1 rotations in P1, and the gray area
mark the fill-in introduced in the matrix. Applying them from the right, instead,
creates some bulges in the upper triangular blocks in position (4, 2). These bulges
correspond with a rank one structure in the lower triangular part of this block and can
be chased away by a sequence of k − 1 rotations. We can chase them by multiplying
by these rotations from the left and from the right and then proceed in the same way
until they reach the bottom of the matrix as follows:

−→

,

−→ . . .

We now continue to apply the rotations from the left, and this will create bulges
in the lower triangular structure of the block (1, 3). Similarly, these bulges have a
rank one structure and they can be chased until the bottom of the matrix, as shown
in the next picture:

−→ −→

,

and we continue the procedure until we absorb the bulge at the bottom of the matrix.
Handling the remaining rotations from the right is not so easy. Applying them at
this stage would alter the first column of the block in position (3, 2) and create a
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rank 1 block in position (3, 1). Since we want to avoid this fill-in we roll-up the first
column of the block (3, 2) by using some rotations on the left. As a consequence of the
Nullity theorem, this will automatically annihilate the diagonal entries of the lower
triangular matrix in position (3, 5) and, at the last step, the first row of the block in
position (3, 4). We perform a similar transformation (operating only from the left) on
the other lower blocks. We obtain the following structure:

−→ −→ . . .

After this reduction we still have to perform some transformations from the right.
These transformations only operate on odd-indexed blocks, and thus commute with
transformations operating on even-indexed blocks. This will be important in the
following, since we keep these transformation “in standby”, and we will only apply
them later.

We can now finally apply the transformations on the first block column. The
first rotation will propagate the only non-zero element that we have left in the first
column of the block (3, 2), and that will extend the upper Hessenberg structure of the
block in position (2, 1). The following rotations will create bulges in the Hessenberg
structure, which we will chase to the bottom of the matrix. Notice that we are able
to do so since all the rotations operate on even-indexed blocks, thus commuting with
the ones we have left “in standby”.

After the chasing procedure, we apply these last rotations. This creates some
fill-in, as reported in the following picture.

.

We notice that the fill-in on the lower triangular matrices in the second block su-
perdiagonal has re-introduced the elements that were annihilated due to the Nullity
theorem, but shifted down and right by one. In fact, a careful look at the matrix
reveals that the complete CMV structure has been shifted down and right by one
entry, and thus removing the first row and column give us a matrix with the same
structure, as desired. We summarize the previous procedure in the following result.

Theorem 20. Let ACMV a matrix in block CMV form, as defined previously. Let
P a sequence of 2k − 2 Givens rotations acting on the rows 2, . . . , 2k, starting from
the bottom to the top. Then there exist a unitary matrix Q such that

Ã = QPACMV P
HQH
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has the same block CMV structure of ACMV in the trailing matrix obtained removing
the first row and the first column. Moreover, QPU has only the first k + 1 rows
different from zero.

Proof. Follow the steps described in the previous pages. The claim on the struc-
ture of U after the transformation follows by noticing the all the transformations
except the ones contained in P operates on rows with indices larger than k + 1.

The same procedure can be applied in all the steps of Hessenberg reduction, and
the CMV structure shifts down and right of one entry at each step. This provides a
concrete procedure that allows to perform the reduction to upper Hessenberg form in
a cheap way.

We can perform a flops count for the above algorithm, to ensure that the complex-
ity is the one expected. First, notice that applying a Givens rotation to the matrix A
has a cost of O(k) flops, given the banded structure that we are preserving. Following
the algorithm in Theorem 20 shows that we only need O(n) rotations to perform a
single step, therefore we have O(nk) flops per step, which yields a total cost of O(n2k)
operations.

However, whilst the algorithm allows to compute the Givens rotations needed at
each step in order to continue the process, it is not clear, at this stage, how to recover
the reduced matrix at the end of the procedure. This is the topic of the next section.

Remark 21. Notice that, after the first step, the transformed matrix Ã has the
trailing part in block CMV form, but the trailing matrix is not unitary. Therefore, in
order to apply the algorithm in the following steps (and still make use of the Nullity
theorem), it is necessary to formally consider the entire matrix, and just limit the
chasing on the trailing part. Also notice that in the proof of Theorem 20 we rely on the
Nullity theorem to guarantee that some elements have to be zero. This does not happen
in practice due to floating-point arithmetic but since everything here is operating on a
unitary matrix after some steps we have fl(QACMV Q

H) = QACMV Q
H +∆ and the

entries in the perturbation have to be ≈ u norm-wise without error amplification.

3.7. Representing the final matrix. The previous section provides a concrete
way to compute the transformations required to take the diagonal matrix plus low-
rank correction into upper-Hessenberg form. The computation of the transformations
is possible since, at each step, we have a structured representations of the part of the
matrix that needs to be reduced. However, with the previous approach, we do not
have an explicit expression of the part of the matrix that has already been reduced
to upper Hessenberg form. The aim of this section is to show how to represent that
part.

To perform this analysis, we use the following notation: We denote by Pj and by
Qj , respectively, the product of 2k − 2 rotations that cleans the elements in the j-th
column in order to make the matrix upper Hessenberg in that column and the product
of rotations applied to perform the subsequent bulge chasing. Thus the matrix after j
steps is QjPj . . .Q1P1(ACMV + UV H)PH

1 QH
1 . . . PH

j QH
j and it will continue to have

a 2k-banded structure in the bottom-right part that still have to be reduced.
Let then PACMV P

H be the the unitary matrix obtained at the end of the process,
that is P = Qn−2Pn−2 . . . Q1P1.

Lemma 22. Each row of PACMV P
H admits a representation of the form

eHj PACMV P
H = [wH 0 . . . 0]PH

j+1 . . . P
H
n−2,

where w ∈ Cj+2k for any j ≤ n− 2k.
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Proof. It follows directly by the preservation of the CMV structure (and so in
particular of the 2k-banded structure) and by noting that after reducing the j-th
column the rotations on the left will not alter the j-th row anymore, and the ones
on the right will update it only when performing the first cleaning step, but not the
bulge chasing (since these will act on zero components).

Notice that a similar result also holds for the columns, since the situation is
completely symmetric. The above representation is usually known as Givens–Vector
representation [24, 25], and can also be seen as a particular case of generators-based
representation [15, 16]. Being the matrix upper Hessenberg we only need to store
the upper triangular part plus the subdiagonal, so the above representation needs
only O(nk) storage, since we need to represent O(n) vectors of length k and O(nk)
rotations.

4. Numerical results. In this section we report numerical experiments that
validate the proposed algorithm. We tested the accuracy and the runtime of our
implementations.

The software can be downloaded for further testing at http://numpi.dm.unipi.it/
software/rank-structured-hessenberg-reduction. The package contains two functions:
rshr dlr implements the Hessenberg reduction for a real diagonal plus low rank

matrix. This function is implemented in MATLAB and FORTRAN, and a
MATLAB wrapper to the FORTRAN code is provided and used automati-
cally if possible.

rshs ulr implements the analogous reduction for the unitary plus low-rank case. It
is only implemented as a MATLAB function.

4.1. The real diagonal plus low rank case. We have checked the complexity
of our reduction strategy by fixing n and k, respectively, and comparing the runtime
while varying the other parameter. We verified that the complexity is quadratic in n
and linear in k.

When measuring the complexity in n we have also compared our timings with
the DGEHRD function included in LAPACK 3.6.1.

The tests have been run on a server with an Intel Xeon CPU E5-2697 running at
2.60GHz, and with 128 GB of RAM. The amount of RAM allowed us to test DGEHRD
for large dimensions, which would have not been feasible on a desktop computer.

The results that we report are for compiler optimizations turned off. This makes
the dependency of the timings on the size and rank much clearer in the plots, and
allows us to clearly connect the timings with the flop count. However, each experiment
has been repeated with optimization turned on that yields a gain of a factor between
2 and 4 in the timings, both for DGEHRD and for our method, so there is no significant
difference when comparing the approaches.

Figure 1 shows the complexity of our method as a function of the size n. The
behavior is clearly quadratic, as shown by the dashed line in the plot. It is also clear
that the method is faster than LAPACK for relatively small dimensions (in this case,
n ≈ 16) if the rank is small. Given that the ratio between the two complexities is
n3/n2k = n

k
this suggests that our approach is faster when k / n

8 . As an example,
consider the timings for k = 32 that are also reported in Figure 1; we expect our
approach to be faster when n > 8k = 256, and this is confirmed by the plot.

In particular, our constant in front of the complexity is just 8 times larger than
a dense Hessenberg reduction. We believe that a clever use of blocking might even
improve this result, and could be the subject of future investigation.

http://numpi.dm.unipi.it/software/rank-structured-hessenberg-reduction
http://numpi.dm.unipi.it/software/rank-structured-hessenberg-reduction
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Figure 1. Complexity of the Hessenberg reduction method in dependency of the size n. The

quasiseparable rank k has been chosen equal to 4 in this example. In each example the tests have

been run only when k < n.
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Figure 2. Complexity of the Hessenberg reduction method in dependency of the quasiseparable

rank k. The dimension n has been chosen equal to 2048 in this example, and rank varies from 1 to

256.

We performed a similar analysis for the cost as a function of the rank. Figure 2
shows that the growth of the complexity with respect to k is essentially linear. We
have taken a matrix of size 2048 and we have compared the performance of our
own implementation with the one in LAPACK. It is worth noting that since our
implementation only requires O(nk) storage if n grows large enough then it also
provides an alternative when a dense reduction cannot be applied due to memory
constraints. Moreover, the linear behavior is very clear from the plot.

Our implementation relies on a compressed diagonal storage scheme (CDS) in
order to efficiently operate on the small bandwidth, and it never needs to store the
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Figure 3. Relative backward error on the original matrix of the computed Hessenberg form,

for various values of n and k in the real diagonal plus low rank case. The dashed line represents the

machine precision multiplied by the size of the matrix.

large n× n matrix.
Finally, we have tested the backward stability of our approach. In order to do so

we have computed the Hessenberg form with our fast method, along with the change
of basis Q by accumulating all the plane rotations. Then, we have measured the norm
of A−QHHQ. The results are reported in Figure 3.

The experiments show that our method is backward stable with a backward error
smaller than O(nu), where n is the size of the matrix and u the unit roundoff. In
practice one can prove from Algorithm in Section 2 that the backward stability is
achieved with a low-degree polynomial in n and k times the unit roundoff, obtaining
an upper bound of the form O(n2ku).

The numerical results have been obtained by averaging different runs of the algo-
rithm on random matrices.

4.2. The unitary case. In the unitary diagonal plus low rank case we have
used our MATLAB implementation to test the accuracy of the algorithm. We also
report some results on the timings that show that the asymptotic complexity is the
one we expect.

The implementation of the unitary plus low-rank case is slightly more involved of
the Hermitian one, mainly due to the bookkeeping required to handle the application
of plane rotations in the correct order. Nevertheless, the software developed for the
real diagonal plus low rank case could be adapted to efficiently handle also this case.

We have reported the results for the timings (taken in MATLAB) for our imple-
mentation of the Hessenberg reduction of unitary plus low rank matrices in Figure 4
and Figure 5. These two figures report the dependency on the size (which is quadratic)
and on the quasiseparable rank k (which is linear).

We believe that an efficient implementation of this reduction could be faster than
LAPACK for small dimension, as it happens for the real diagonal plus low rank case.
However, due to the increased complexity, it is likely that this method will be faster
for slightly larger ratios of n

k
, compared to what we have for the real diagonal plus

low rank case.
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Figure 5. Complexity of the Hessenberg reduction method in dependency of the quasiseparable

rank k for the unitary plus low rank case. The rank k has been chosen between 16 and 512, with a

fixed size n = 8192.

Similarly to the Hermitian case, we have also performed numerical experiments
with the purpose of estimating the backward error. The results are reported in Fig-
ure 6 and are completely analogous to the ones obtained for the real diagonal plus
low rank case.

5. Conclusions and Future Work. In this paper we have presented a fast
algorithm for reducing a n × n real/unitary diagonal D plus a low rank correction
in upper Hessenberg form. To our knowledge this is the first algorithm which is
efficient w.r.t the size k of the correction by requiring O(n2k) flops and provides
a viable alternative to the dense LAPACK routine for small sizes. The approach
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for the unitary case relies upon some theoretical and computational properties of
block unitary CMVmatrices of independent interest for computations with orthogonal
matrix polynomials. The application of our algorithm for solving interpolation-based
linearizations of generalized eigenvalue problems is still an ongoing research.

In particular, the output of both reduction algorithms is already in a rank struc-
tured form which could be exploited in an iteration (such as the QR method) to
compute the eigenvalues of the matrix A. This could provide a method with optimal
complexity for the computation of eigenvalues of matrix polynomials, expressed in
monomial and interpolation bases.

REFERENCES

[1] A. Amiraslani, R. M. Corless, and P. Lancaster, Linearization of matrix polyno-

mials expressed in polynomial bases, IMA J. Numer. Anal., 29 (2009), pp. 141–157,
doi:10.1093/imanum/drm051, http://dx.doi.org/10.1093/imanum/drm051.

[2] G. S. Ammar and W. B. Gragg, O(n2) reduction algorithms for the construction of a

band matrix from spectral data, SIAM J. Matrix Anal. Appl., 12 (1991), pp. 426–431,
doi:10.1137/0612030, http://dx.doi.org/10.1137/0612030.

[3] P. Arbenz and G. H. Golub, On the spectral decomposition of Hermitian matrices modified by

low rank perturbations with applications, SIAM J. Matrix Anal. Appl., 9 (1988), pp. 40–58,
doi:10.1137/0609004, http://dx.doi.org/10.1137/0609004.
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[20] B. Kågström, D. Kressner, E. S. Quintana-Ort́ı, and G. Quintana-Ort́ı, Blocked algo-

rithms for the reduction to Hessenberg-triangular form revisited, BIT, 48 (2008), pp. 563–
584, doi:10.1007/s10543-008-0180-1, http://dx.doi.org/10.1007/s10543-008-0180-1.

[21] R. Killip and I. Nenciu, CMV: the unitary analogue of Jacobi matrices, Comm. Pure Appl.
Math., 60 (2007), pp. 1148–1188, doi:10.1002/cpa.20160, http://dx.doi.org/10.1002/cpa.
20160.

[22] B. Simon, CMV matrices: five years after, J. Comput. Appl. Math., 208 (2007), pp. 120–154,
doi:10.1016/j.cam.2006.10.033, http://dx.doi.org/10.1016/j.cam.2006.10.033.

[23] M. Van Barel and A. Bultheel, Orthonormal polynomial vectors and least squares approx-

imation for a discrete inner product, Electron. Trans. Numer. Anal., 3 (1995), pp. 1–23
(electronic).

[24] R. Vandebril, M. Van Barel, and N. Mastronardi, Matrix computations and semiseparable

matrices. Vol. 1, Johns Hopkins University Press, Baltimore, MD, 2008. Linear systems.
[25] R. Vandebril, M. Van Barel, and N. Mastronardi, Matrix computations and semiseparable

matrices. Vol. II, Johns Hopkins University Press, Baltimore, MD, 2008. Eigenvalue and
singular value methods.

http://dx.doi.org/10.1016/j.laa.2015.08.026
http://dx.doi.org/10.1145/365723.365735
http://dx.doi.org/10.1145/365723.365735
http://dx.doi.org/10.1145/365723.365735
http://dx.doi.org/10.1016/0024-3795(91)90402-I
http://dx.doi.org/10.1016/0024-3795(91)90402-I
http://dx.doi.org/10.1016/S0024-3795(02)00457-3
http://dx.doi.org/10.1016/S0024-3795(02)00457-3
http://dx.doi.org/10.1137/060658953
http://dx.doi.org/10.1137/060658953
http://dx.doi.org/10.1007/s11075-008-9172-0
http://dx.doi.org/10.1007/s11075-008-9172-0
http://dx.doi.org/10.1007/s11075-008-9172-0
http://dx.doi.org/10.1016/j.laa.2006.06.028
http://dx.doi.org/10.1016/j.laa.2006.06.028
http://dx.doi.org/10.1016/0024-3795(86)90125-4
http://dx.doi.org/10.1016/0024-3795(86)90125-4
http://dx.doi.org/10.1016/0024-3795(84)90177-0
http://dx.doi.org/10.1016/0024-3795(84)90177-0
http://dx.doi.org/10.1007/s10543-008-0180-1
http://dx.doi.org/10.1007/s10543-008-0180-1
http://dx.doi.org/10.1002/cpa.20160
http://dx.doi.org/10.1002/cpa.20160
http://dx.doi.org/10.1002/cpa.20160
http://dx.doi.org/10.1016/j.cam.2006.10.033
http://dx.doi.org/10.1016/j.cam.2006.10.033

	1 Introduction
	2 Reduction processes: The real plus low rank case
	2.1 Reduction to banded form
	2.2 Subdiagonal elimination

	3 Reduction processes: The unitary plus low rank case
	3.1 Properties of unitary plus low rank matrices
	3.2 The block CMV structure
	3.3 Existence of the CMV structure
	3.4 Factorizing CMV matrices
	3.5 From diagonal to CMV
	3.6 Preserving the CMV structure
	3.7 Representing the final matrix

	4 Numerical results
	4.1 The real diagonal plus low rank case
	4.2 The unitary case

	5 Conclusions and Future Work
	References

