
Clustering Individual Transactional Data for Masses of Users
Riccardo Guido�i

ISTI-CNR & University of Pisa, Italy

riccardo.guido�i@isti.cnr.it

Anna Monreale

University of Pisa, Italy

anna.monreale@di.unipi.it

Mirco Nanni

ISTI-CNR, Pisa, Italy

mirco.nanni@isti.cnr.it

Fosca Gianno�i

ISTI-CNR, Pisa, Italy

fosca.gianno�i@isti.cnr.it

Dino Pedreschi

University of Pisa, Italy

dino.pedreschi@di.unipi.it

ABSTRACT
Mining a large number of datasets recording human activities for

making sense of individual data is the key enabler of a new wave

of personalized knowledge-based services. In this paper we focus

on the problem of clustering individual transactional data for a

large mass of users. Transactional data is a very pervasive kind of

information that is collected by several services, o�en involving

huge pools of users. We propose txmeans, a parameter-free clus-

tering algorithm able to e�ciently partitioning transactional data

in a completely automatic way. Txmeans is designed for the case

where clustering must be applied on a massive number of di�erent

datasets, for instance when a large set of users need to be analyzed

individually and each of them has generated a long history of trans-

actions. A deep experimentation on both real and synthetic datasets

shows the practical e�ectiveness of txmeans for the mass clustering

of di�erent personal datasets, and suggests that txmeans outper-

forms existing methods in terms of quality and e�ciency. Finally,

we present a personal cart assistant application based on txmeans.

1 INTRODUCTION
�e most disruptive e�ect of our always-connected society is data,

the digital breadcrumbs le� behind us as a side e�ect of our everyday

usage of digital technologies. �anks to these data, human activities

are becoming observable, measurable, quanti�able and, predictable.

At individual level, each person generates more than 5Gb of data per

year. An avalanche of information that, for the most part, consists

of transactions (or baskets), i.e., a special kind of categorical data

in the form of sets of event data, such as the items purchased in

a shopping cart, the web pages visited in a browsing session, the

songs listened in a time period, the clinical events in a patient’s

history. Such kind of data may be key enablers of a new wave of

knowledge-based services, and of new scienti�c discoveries.

Several application contexts involve the analysis of a large num-

ber of datasets, each one characterized by di�erent properties. For

instance, this is the case of individual transactional data – retail

sales, web sessions, credit card transactions, etc. – where each

user produces historical data that need to be analyzed separately

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’17, August 13-17, 2017, Halifax, NS, Canada
© 2017 ACM. 978-1-4503-4887-4/17/08. . . $15.00

DOI: 10.1145/3097983.3098034

from other users. �is requires that a parameter-tuning phase is

included in any data mining method we want to apply, driven by

the necessity to automatically capture the wide diversity of indi-

vidual behaviors. Due to the potentially large number of datasets

(e.g. users in nowadays massive systems scale up to billion), it is

generally unfeasible to determine in an ad-hoc manner the optimal

parameter con�guration for each of them. �erefore, we need auto-
focus data mining methods that adjust their parameter se�ing to the

characteristics of the dataset under analysis, to the aim of extracting

personalized pa�erns from transactional data of each user [17].

In this paper we focus on the problem of performing transac-

tional clustering for a large number of di�erent datasets. Given a

collection of transactions, transactional clustering consists in dis-

covering groups of homogeneous transactions which share many

common items [30]. In the state of the art, all the methods for

transactional clustering require either a parameter tuning process

that is not automatic, or an extremely heavy automated process

that does not scale to large user bases [3, 12, 13, 30, 36]. Hence,

repeatedly applying the existing procedures on thousands or mil-

lions of di�erent datasets – which is the case when dealing with a

large population of users – is simply unfeasible. We refer to this

problem, i.e., the separate individual clustering of many individual

transactional datasets, as mass clustering.

�e problem to design parameter-free clustering algorithms has

been addressed in the context of non transactional data by solutions

like xmeans [22], which are perfect for solving many instances

of the clustering problems. Unfortunately, they are not directly

applicable to transactional data. To the best of our knowledge, the

only existing parameter-free transactional clustering algorithms are

[5, 7]. Nevertheless, they are based on a scanning schema which is

generally not e�cient and overestimates the real number of clusters.

In addition, they do not provide representative transactions, i.e., the

items that characterize the transactions contained in each cluster.

In this paper we propose txmeans, a new parameter-free cluster-

ing method providing a viable solution to the problem of clustering

a massive number of di�erent datasets. Our proposal follows a

strategy similar to xmeans [22], but is designed and improved for

�nding clusters in the speci�c context of transactional data.

Txmeans overcomes the de�ciencies of existing methods, indeed,

it automatically estimates the number of clusters and, besides ex-

tracting the clusters, it provides the representative transaction of

each cluster, which summarizes the pa�ern captured by that cluster.

Txmeans employs a top-down divisive approach which starts from

a unique cluster, and then iteratively splits the cluster into two

sub-clusters. Txmeans calculates the representative baskets as the

centroids of the sub-clusters by adopting a procedure described in

[12]. �e representative baskets enable txmeans to decide through

the Bayesian Information Criteria [24] (adapted to transactional

data) whether the cluster under analysis needs further partition-

ing or not. �e capability to adapt to speci�c individual datasets

combined with a high e�ciency put txmeans in the position of

outperforming all competitors when transactional clustering must

be applied on a very large number of di�erent datasets, both in

terms of clusters quality and in terms of running time.

We extensively validate our method using a large array of syn-

thetic and real datasets. Txmeans’ performance shows stability

across diversi�ed situations, including noise and varying clustering

structures, and it scales to large datasets. �e results suggest that

txmeans is the best approach for the clustering of a massive number

of datasets, but also for the clustering of a single individual dataset

txmeans’s performance are signi�cantly be�er than those of the

competitors. �e proposed approach enables sophisticated pro-

cesses, based on individual clustering, to o�er personalized services

such as prediction-based and recommendation-based services.

As �nal result, we show how to exploit the individual clusters

and representative transactions to build a personal cart assistant
that suggests to the customer the items to put in her shopping list.

�e paper is organized as follows. Section 2 discusses the re-

lated work. Section 3 de�nes the problem se�ing and Section 4

describes our clustering method. Section 5 shows a deep experi-

mentation, while Section 6 illustrates txmeans in a recommender

system application. Finally, Section 7 concludes the paper.

2 RELATEDWORK
In the literature there is a great variety of papers proposing ap-

proaches for clustering transactional data. Most existing algorithms

require the se�ing of di�erent parameters which o�en may be dif-

�cult to tune. �e �rst algorithm proposed for transactional clus-

tering is large item [30]. It requires a support threshold indicating

the minimum number of occurrences for an item to be large for a

cluster. �rough a scan of the transactions, it evaluates a global

cost function and decides the cluster for that transaction, or creates

a new one. Algorithms like rock and clope were proposed with the

same scanning strategy but di�erent cost functions [13, 35, 36].

�e most common parameter is the number of clusters k [12,

15, 32, 37]. Tkmeans [12] is an example of this category, and also

represents the �rst a�empt to use a clustering strategy – basically

the standard k-means [27] – di�erent from direct optimization of a

cost function. Also our txmeans does not minimize a cost function,

and it inherits from tkmeans the method to extract cluster centroids.

Another approach able to extract cluster centroids, but only for

categorical dataset, is k-modes [6] which employs the mode instead

of the mean. A recent approach with a di�erent purpose is proposed

in [9]: purtreeclust is a method for clustering customers through

their purchase trees which are built on the customers transactions.

�e txmeans method can recall purtreeclust in the construction of a

tree to extract the clusters, however the measure used to perform

the split is di�erent, and the predictive clustering trees works only

on classical categorical data and not on transactional data.

A further notion widely used in cost functions to measure the

similarity of data objects is entropy [2, 3, 8, 19]. In [3] is proposed

coolcat that iteratively chooses the suitable cluster for each transac-

tion by minimizing the entropy at each step. A similar procedure is

followed by the algorithm limbo [2]. A dual approach is proposed

in [19] where starting from a single cluster a Monte Carlo process

is used to select a transaction and to assign it to another cluster to

decrease the entropy. �e process is repeated until convergence.

Besides parameter tuning, when dealing with transactional data

another problem is high dimensionality: it makes algorithms in-

e�cient in terms of execution time and clustering quality. To not

su�er from high dimensionality, subspace clustering algorithms like

[11, 38] have been proposed, with the goal of �nding clusters em-

bedded in subspaces of the original data with their own dimensions.

Algorithms like [4, 10] use bipartite graph theory to cluster datasets.

�ey generate co-clustering results where columns and rows are

simultaneously partitioned. In transactional data this means an

unnatural split of the clusters that overlap over a few frequent

items. Moreover, they are o�en memory and time consuming, and

inappropriate for clustering large datasets.

Some proposals were made to overcome manual parameter tun-

ing. [8] introduces an entropy-based clustering evaluating the simi-

larity with incremental entropy, and �nally, generating a clustering

tree containing clusterings with di�erent numbers of clusters. �e

authors of [34] propose to run their algorithm with di�erent num-

bers of clusters and choose the result that optimizes a novel index of

quality. In terms of execution time this method is clearly ine�cient.

Atdc [7] is a parameter-free transactional clustering algorithm

which, similarly to our method, adopts a top-down strategy resem-

bling a decision tree algorithm. [5] proposes the practical parameter-

free method that through scanning automatically identi�es clusters

even in presence of rare items. Finally, also the dhcc algorithm

presented in [33] is a parameter-free procedure based on a divi-

sive hierarchical clustering approach. However, dhcc is especially

designed to work on categorical rather than transactional data.

�e main di�erence between these methods and txmeans is the

ability to extract centroids, i.e., representative itemsets for each clus-

ter. Moreover, among all the methods in the literature only txmeans
and practical are able to deal with rare and very common items:

rare items lead algorithms to return singleton clusters, while very
common items incorrectly causes the merge of di�erent clusters.

3 PROBLEM SETTING
In this section we de�ne the context and the problem we want to

solve, i.e., the mass transactional clustering problem.

Let B = {b1, . . . ,bN } be a set of N baskets (or transactions) and

I = {i1, . . . , iD } a set of D items., a basket bi is de�ned as a subset

of items such that ∅ ⊂ bi ⊆ I . Datasets of transactions B are usually

denoted as transactional data, and represent a special case of high-

dimensional categorical data. Indeed, each transactional dataset can

be represented as categorical by representing each a�ribute value as

a boolean a�ribute in I . In the following, we refer to transactional

data in the sense of high-dimensional categorical datasets which in

turns can also be considered as sparse categorical datasets.

De�nition 3.1 (Transactional Clustering). Given a set of baskets

B, we de�ne the transactional clustering problem as the partitioning

of B into K disjoint sets C = {C1, . . . ,CK } such that C is optimal in

terms of homogeneity and simplicity, and for each set Ci a repre-

sentative transactions ri is provided.

�is means that the baskets in eachCi must exhibit a high degree

of overlap in comparison to any transaction in B \Ci , while keeping

the clustering structure concise. Notice that, in general, the subset

Ii ⊆ I of a cluster is not disjoint to the subset Ij ⊆ I of other clusters.

When dealing with applications that involve a large number

of logically separated datasets, there is the need of solving many

instances of the transactional clustering problem. For instance,

each dataset might contain the baskets of a di�erent user and we

want to analyze each user separately in order to pro�le her.

De�nition 3.2 (Mass Transactional Clustering). Given a set of

users U = {u1, . . . , uM } each one with her personal set of baskets

B = {Bu1 , . . . ,BuM }, we refer to mass transactional clustering as

the problem which consists in solving the transactional clustering

problem individually on each set Bui of baskets of each user ui ∈ U .

Since the number of users u ∈ U can be very large in real ap-

plications, the above problem de�nition implies some technical

requirements on the methods aimed to solve it. First, the clustering

of each di�erent user dataset Bui can yield a di�erent number Ki
of clusters, which needs to be automatically determined, since a

repeated intervention of an expert manually se�ing the Ki for each

dataset is impractical. Second, since at leastM runs of the clustering

method are needed, i.e., one for each user dataset Bui , the algorithm

needs to be e�cient. Also, each dataset Bui can be large, depending

on the application and the temporal period covered by the data, thus

the algorithm needs to be scalable and applicable to big data. �ird,

in the context of transactional data an important semantic feature is

the notion of cluster representative, that is a transaction that should

represent the characteristics of the transactions belonging to the

cluster. Producing such kind of cluster summary is a signi�cant

plus, since it provides a simple way to explain the content of the

clusters, and can also support various useful personal applications,

among which the personal cart assistant application described in

Section 6 represents a typical example.

While each of the above requirements is satis�ed by some exist-

ing algorithm, there is no method meeting all of them together. �is

paper introduces an algorithm able to do it, also being competitive

against the state-of-art competitors on each single requirement.

4 PROPOSED METHOD
In this section we describe the components of txmeans. Inspired by

xmeans [22], txmeans is a hierarchical divisive clustering method

based on iterative bisections with the extraction of a representative

transaction for each cluster. Its aim is to reach e�ciency without

sacri�cing the clustering quality and, most important, without

parameter tuning. We start by introducing the overall algorithm,

and then we present details of the basic functionalities such as

stopping criteria, cluster representatives and spli�ing procedure.

4.1 Txmeans Algorithm
In analogy with [7, 22], we address the clustering problem through a

top-down, divide-and-conquer strategy: we start from an initial set

containing a single cluster, then, iteratively we try to split a cluster

in two sub-clusters. Bisecting strategies proved to be very e�ective

in several di�erent contexts like when clustering mobility data [14].

Algorithm 1: txmeans(B)
Input :B - set of baskets

Output :C - set of clusters, R - set of representative baskets

1 r ← дetRepr (B); // extract representatives

2 Q.push(〈B, r 〉); // initialize queue

3 R ← ∅; C← ∅; // initialize result

4 while Q , ∅ do
5 〈C, r 〉 ← Q .pop (); // extract from the queue

6 I ←
⋂
b ∈C ; // calculate common items

7 C∗ ← {c \ I |c ∈ C}; // remove common items from baskets

8 r∗ ← r \ I ; // remove common items from representative

9 C ′,C ′′, r ′, r ′′ ← bisectBaskets (C∗); // split cluster

10 bico ← bic ({C∗}, {r∗}, |C∗N |, |C
∗
D |); // BIC original

11 bics ← bic ({C ′,C ′′}, {r ′, r ′′}, |C∗N |, |C
∗
D |); // BIC splt

12 if bics > bico then
13 C ′ ← {c ∪ I | c ∈ C ′}; r ′ ← r ′ ∪ I ; // restore items

14 C ′′ ← {c ∪ I | c ∈ C ′′}; r ′′ ← r ′′ ∪ I ; // restore items

15 Q.push(〈C ′, r ′〉); Q.push(〈C ′′, r ′′〉); // update queue

16 else
17 C← C ∪ {C}; R ← R ∪ {r }; // update result

18 end
19 end
20 return C,R;

�e general schema of txmeans, which implements this approach,

is speci�ed in Algorithm 1. �e algorithm starts extracting a repre-

sentative basket r (described in Section 4.3) for the whole dataset

B, and puts both B and r into a queue Q that keeps track of the set

of baskets still to be considered for spli�ing (lines 1–2).

At each iteration, a clusterC and its representative r are extracted

from Q (line 5). In steps 6–8 the algorithm identi�es the items I
which are common to all the baskets, and removes them from the

transactions of the cluster and from its representative. �e results

are denoted by ∗. �e point of this task is that such items (i) provide

no useful knowledge for the bisecting step, and (ii) a large number

of common items tends to �a�en the similarity values, making it

more di�cult to appreciate the variability in the other parts of the

transactions. Preliminary tests showed that keeping common items

a�ects the spli�ing step, degrading the overall performance.

�en, the partitioning of C into two disjoint sub-clusters C ′,C ′′

is calculated using bisectBaskets (described in Section 4.3) over

the clean transactions (line 9). A�er that, lines 10–11 calculate

the BIC (Section 4.2) on the original cluster (bico) and on the two

sub-clusters (bics). Here, |CN | is the number of baskets in C while

|CD | is the number of di�erent items in C . If the split is useful

(line 12) the common items are reinserted, andC ′,C ′′ and r ′, r ′′ are

added to Q (lines 13-15). Otherwise, the original cluster C and its

representative basket r are added to the �nal sets C and R (line 17).

4.2 Txmeans Stopping Criterion
Given a clusterC ⊆ B and two disjoint sub-clustersC ′,C ′′ ⊆ C , we

need a criterion to decide whether the spli�ing is actually useful,

i.e., the split signi�cantly improves the homogeneity ofC , in which

case it is performed and the procedure reiterates on each sub-cluster.

In the literature, various measures and cost functions are adopted

[5, 30]. However, they are all global measures which consider the

whole partitioning during the clustering process.

A local measure to drive this decision is the Bayesian Information
Criterion (BIC) [24], which selects the model with the highest BIC
value. BIC has been successfully employed in [22] to control the

spli�ing process and to determine the number of clusters. Yet, to

the best of our knowledge it was never considered for transactional

clustering, since it involves a variance computation [16] and thus

requires central values for each cluster which are unavailable in

most transactional clustering methods. �e representative baskets

computed in our solution provide exactly this kind of information,

thus enabling the use of the BIC criteria formalized as follows [22]:

bic (N , D, C, r) = L (N , D, C, r) −
|C |(D + 1)

2

log |C |

L =
∑
Ci

Ni logNi − Ni logN −
Ni

2

log 2π −
NiD

2

logσ 2 −
Ni − |C |

2

σ 2 =
1

Ni − |C |

∑
bi

dist (bi , r (i))
2

whereC and r are the set of clusters and their representatives, L is

the log-likelihood, N=|CN | and D=|CD | are the number of baskets

and items inC , |C | is the number of clusters (one in bico , and two in

bics , see Algorithm 1), Ni=|Ci | is the number of baskets in cluster

Ci , σ
2

is the variance and r (i) is the representative of basket bi .
According to literature [22], the BIC criterion can be adopted

with success when the size of the data sample is larger than the

data dimensionality, i.e., N � D. �is requirement is typically

satis�ed by the input dataset B. Moreover, BIC is evaluated over

each single clusterC , and not the whole dataset (the only exception

being the �rst iteration of the process). �erefore, it is expected

that the actual dimensionality, now reduced to |CD | (i.e., the set

of items in cluster C), is such that |CD | � D, since clusters group

similar transactions. Txmeans further strengthens this property by

removing the common items in each cluster before spli�ing. �is

step in�uences the computation of BIC by changing the similarity

values involved in most computations. In particular, (i) the e�ect

of items removal is an increase in the values of BIC, since the

dimensionality of data decreases, meaning (from a more theoretical

perspective) a smaller number of free parameters and therefore a

be�er model; and (ii) in practice, we veri�ed experimentally that

at each candidate split the e�ects of item removal on the original

cluster (bico) and on the new pair of clusters (bics) are usually

similar enough to keep the split decision una�ected.

4.3 Txmeans Bisecting Schema
Center-Based Optimization. At each iteration, the cluster split-

ting process invoked by txmeans tries to divide a clusterC into two

compact subgroups {C ′, C ′′}. �e criteria we adopt is based on a

distance function between the cluster elements and a representative
basket. More formally, we want to �nd a partitioning such that:

• C ′,C ′′ have corresponding representative baskets r ′,r ′′;
• the partitioning minimizes the Sum of Squared Errors

SSE =
∑
b∈C′

dist (b, r ′)2 +
∑
b∈C′′

dist (b, r ′′)2

wheredist (a,b) is a distance function based on the measure

of overlap of items between sets a and b.

Algorithm 2: дetRepr (B)
Input :B - set of baskets

Output :r - set of representative baskets

1 I ←
⋃
b ∈B b \

⋂
b ∈B b; // calculate not common items

2 ∀i ∈ I . f req(i) ← |{b ∈ B |i ∈ b}|; // calculate frequencies

3 i ← 0; r (i) ←
⋂
b ∈B b; d(i) ← ∞ ; // initialize variables

4 while I , ∅ do
5 m ← argsmaxi ∈I f req(i); // set of max-freq items

6 r (i+1) ← r (i) ∪m; // update representative

7 d(i+1) ←
∑
b ∈B dist (b, r (i+1))

2
; // compute SSE

8 if d(i) ≤ d(i+1) then I ← ∅; // best representative found

9 else i ← i + 1; I ← I \m; // update variables

10 end
11 return r (i) ;

A consequence of our notion of optimality is that each basket

belongs to the cluster minimizing the distance with its “centroid”,

i.e., maximizing the overlap among the items.

Distance Function. While in theory txmeans could adopt any

distance function dist (·, ·) for comparing transactions, in practice,

being designed for transactional data, the number of reasonable

choices is reduced. According to the literature [30], distances like

Euclidean or Manha�an are not suitable in this context. Indeed,

the function dist (a,b) should be based on the measure of overlap

of items between baskets a and b, which suggests measures such as

set intersection, match similarity or Jaccard coe�cient. Since the

la�er is known to be more robust and adequate for sparse vector

data (like transactions), txmeans adopts Jaccard distance as default.

Finally, we want to stress that a strategy like the one proposed by

the k-modes algorithm for categorical data does not work for sparse

transactional data. Indeed, if we binarize a sparse transactional

dataset in the corresponding categorical dataset, the zeros usually

predominate, and therefore the corresponding modes will be zero

for most of the columns, i.e., the centroids will be empty at every

iteration. Also, alternative approaches where lower thresholds are

adopted (i.e., lower than the 50% involved by the mode) might avoid

empty centroids but would introduce a new parameter to set, since

each dataset might require a di�erent threshold value.

Representative Baskets. Using Algorithm 2, txmeans extracts

the representative baskets following a parameter-free heuristics de-

�ned in [12] that �rst selects the items contained in every transac-

tion in B (lines 1–3), and then re�nes such approximation by adding

the most frequent items (lines 5–6). �is process is iterated as long

as each step improves the solution (lines 7–8), thus stopping when

a locally optimal representative r is generated. A representative

basket is a virtual transaction that (approximately) minimizes the

overall distance from all the baskets in the cluster, therefore captur-

ing the items that best characterize it, i.e., the typical combination

of items expected to appear in any of its transactions.

Bisecting Schema. Txmeans exploits the representative baskets

for partitioning a set of baskets B into two disjoint sets C ′,C ′′

using the bisecting procedure [27] reported in Algorithm 3. First of

all, two representatives are selected among the baskets in B (line

2). �ese initial centroids are selected with selectInitialCentroids ,
which randomly picks several pairs of baskets, and returns the

Algorithm 3: bisectBaskets (B)
Input :B - set of baskets

Output :C ′,C ′′ - baskets partitioning; r ′, r ′′ - repr

1 i ← 0; SSE(i) ← ∞; // init. variables

2 r ′
(i) , r

′′
(i) ← selectInitialCentroids (B); // init. variables

3 while True do
4 {C ′,C ′′} ← assiдnBaskets (B, {r ′

(i) , r
′′
(i) }); // assign baskets

5 r ′
(i+1)
←дetRepr (C ′); // calculate representative

6 r ′′
(i+1)

← дetRepr (C ′′); // calculate representative

7 SSE(i+1)←
∑

b∈C′
dist (b, r ′

(i+1))
2+
∑

b∈C′′
dist (b, r ′′

(i+1))
2
; // calc. SSE

8 if SSE(i+1) ≥ SSE(i) then
9 return C ′,C ′′, r ′

(i) , r
′′
(i) ;

10 end
11 i ← i + 1; // update variable

12 end

pair with the highest distance value. �en assiдnBaskets (line 4)

compares each basketb ∈ B to the two representative baskets r ′ and

r ′′ and associates it to the closest one. When all baskets have been

assigned to a cluster, r ′ and r ′′ are re-computed through дetRepr
(lines 5–6). �e process is reiterated as long as the SSE decreases

(lines 7–9), i.e., the SSE at step i+1 is higher than that of step i .

4.4 Termination and Complexity
We provide a few theoretical properties about txmeans, including

proofs of termination and computational complexity.

Theorem 4.1 (Termination). �e txmeans algorithm terminates
for any input dataset.

Proof. Both Alg. 2 and Alg. 3 terminate for any input data. �e stop

condition of the loop in Alg. 2 is that I becomes empty, since it decreases

strictly monotonically at each iteration (steps 9 or 11–12). Also, Alg. 3

follows the classical kmeans structure, and the loop stops when the SSE

does not strictly increase. Since the number of possible clusterings, and

thus of possible SSE values, is �nite, the strictly monotonic sequence of SSE

values produced throughout the iterations must eventually reach a (local)

minimum in a �nite number of steps. Finally, the loop in Alg. 1 iteratively

removes a cluster and replaces it with strictly smaller ones. In the worst

case all clusters will be broken down to singletons in a �nite number of

steps. �at avoids any possible unbounded loop, leading to termination. �

Theorem 4.2 (Complexity). �e computational complexity of
txmeans is O (It · N · K · D), where It is the number of iterations
required to reach convergence in a run of bisectBaskets, N=|B | is the
number of transactions in input, K is the number of clusters detected
and D is the number of distinct items in the dataset.

Proof. As mentioned in the proof of �eorem 4.1, the txmeans algo-

rithm iteratively splits the initial dataset B into sub-clusters. �e number

of iterations corresponds to the number K of clusters returned at the end

of the computation. All the operations performed at each iteration involve

scanning the transactions in the cluster only once, thus the overall cost is

O (N · D), notice that the size of the clusters is always O (N) in case all

iterations produce extremely unbalanced splits. �e only exception is Alg. 3:

it follows a kmeans structure with k=2, and all the operations performed at

each step are linear in the number of transactions and their length. �at

includes also the calls of Alg. 2, since they involve O (D) iterations each

taking only constant-time operations plus the distance computation in step

7. �e la�er, though apparently requiring O (N · D) time, actually can

be computed incrementally along the di�erent iterations (both numerator

and denominator of the Jaccard distance monotonically increase at each

iteration), thus taking only O (N), and li�ing the overall cost of Alg. 2 to

O (N · D). �ere is no clear bound on the number of iterations required by

Alg. 3 to converge, which is then kept as a parameter I t and leads to a cost

equal to O (I t ·N ·D), which dominates the complexity of each iteration of

txmeans. �e overall complexity, thus, results to be O (I t · N · K · D). �

�e theoretical complexity of txmeans is similar or smaller than

most competitors in the literature. Where not explicit, we inferred

the complexities from the corresponding papers. Tkmeans [12],

clope [36] and practical [5] follow a k-means structure, i.e., O (It ·
N ·K ·D) that is the same as txmeans. Coolcat [3] has a similar cost,

plus a O (S2) due to the initialization over a sample of size S , that

dominates the complexity if S >
√
N . Atdc [7] iteratively performs

a partitioning having cost O(It · N) followed by a stabilization step

O (It ′ · N · K). �e two steps are repeated till convergence, leading

to an overall cost of O(It · It ′ · It ′′ · N 2 · K2), where It , It ′ and It ′′

are the number of iterations for each component of the algorithm.

4.5 Dealing with Very Large Datasets
We remark that txmeans has been designed to solve the mass trans-

actional clustering problem, thus considering that many di�erent

datasets must be e�ciently clustered without parameter tuning.

While this situation usually results in analyzing small- or medium-

size datasets, nowadays we might need to move to a “big data”

context where each single dataset actually contains a huge set of

transactions, therefore calling for a scalable approach.

In this case, txmeans can be adapted to integrate a sampling

strategy. �anks to the representative baskets, the clustering can be

computed on a subset, then assigning the remaining transactions

according to their closest representative basket [3]. �e algorithm

exploiting the sampling is working as follows. First, it randomly

selects a subset S ⊂ B of SN transactions from the input dataset B.

To do that, it employs the approach proposed in [18] to estimate

SN , i.e., SN = ss/(1+ (ss −1)/N), where ss=Z 2p (p−1). Z and p are

�xed and set, respectively, to the z-score of con�dence level 99%

and to 0.5 (but potentially modi�able for special cases). �en the

transactions in S are clustered using Algorithm 1. Finally, the rest

of the transactions are associated to the proper cluster using the

representatives R through a k-nearest-neighbour strategy with k=1.

Empirical results show that, besides e�ciency, sampling im-

proves also clustering quality. �is is mainly due to noisy and rare

items, whose impact appears to be signi�cantly reduced by sam-

pling, since most of them will disappear and thus will not distort

the clusters structure. When clear from the context we will refer to

txmeans using the sampling strategy simply as txmeans.

5 EXPERIMENTS
In this section we evaluate the performance of txmeans in the

context of mass transactional clustering where only parameter-free

algorithms or methods using automated techniques for parameters

estimation can be employed. �en, we evaluate the scalability of

Figure 1: NMI , δk and RT evaluation for comparing algorithms on 10k di�erent dataset with structure DS1.

txmeans. We also assess the quality of the clusterings, by studying

the txmeans performance in various synthetic and real datasets.

5.1 Performance Indicators
To evaluate the clustering quality we compared the clusters re-

turned with the real ones. We quanti�ed the similarity between the

two sets of clusters with the Normalized Mutual Information (NMI)
[29]. NMI was preferred over purity because (i) it is more sensitive

to the change in the clustering results, and (ii) it takes into account

unbalanced distributions and does not necessarily improve when

the number of clusters increases (as purity does). Given two sets of

clusters C = {c1 . . . ck } and G = {д1 . . .дk ′ }

NMI(C,G) =
I (C,G)

0.5 ∗ H (C) + 0.5 ∗ H (G)
∈ [0, 1]

where I (C,G)=
∑
k
∑
j (|ck ∩ дj |/N) log(N |ck ∩ дj |/|ck | |дj |) is the

mutual information [29], and H (C)= -

∑
k (|ck |/N) log(|ck |/N) is

entropy [25]. Good clusterings have a NMI ∼1, bad clusterings ∼0.

Besides NMI, we evaluated the deviation δk=|C|−|G| between

the real number of clusters and the number of clusters detected:

δk∼0 when the right number of cluster is detected, δk>0 if more

clusters than real ones are detected, δk<0 otherwise.

Finally, we analyzed the running time RT (in sec) of the methods.

Experiments were run on a Mac OS v10.11.4, 2,6 GHz i5, 8GB DDR3.

5.2 Competitors
We evaluate our method against a set of competitors sharing some

features with txmeans yet following di�erent algorithmic structures.

Practical [5] and atdc [7] are both parameter-free. Practical �rst

scans the data and assigns each basket to an existing cluster or to

a new one according to a cost function inspired by “tf-idf”; then,

it moves the baskets from a cluster to another one. Note how the

structure of practical and txmeans are completely di�erent. Atdc
adopts a divisive approach similar to txmeans, but atdc scans the

baskets and iterates between a partitioning and a stabilization phase.

Tkmeans [12] adapts the k-means [27] de�nition of distance to mea-

sure transactions dissimilarity, and computes centroids using the

same approach of txmeans. Coolcat [3] works on a random sample

of the baskets, as txmeans. We also report the performance of clope
[36] as it represents a reference approach and it was designed for

market-basket data, which is analyzed in our case study. Clope
requires a repulsion parameter r that is hard to be interpreted.

We omit the comparison with rock [13], subcad [11], limbo [2],

clicks [38] and largeitem [30], since, according to the literature, are

outperformed respectively by practical, atdc and clope. Moreover,

we omit the comparison with k-modes [6] and dhcc [33] because they

are designed for categorical data, and with purtreeclust [9] because

its target is the clustering of users through their transactions.

5.3 Mass Transactional Clustering Evaluation
In this section we evaluate txmeans and its competitors with respect

to the task of clustering a massive number of di�erent datasets
1
.

As already discussed, this is a common situation when the datasets

of a large number of users must be clustered in order to accom-

plish further tasks (as it is discussed and shown in Section 6). As

consequence, e�ciency in computing every single clustering and

freedom from parameters are two mandatory requirements to meet.

Since real datasets containing users’ transactions annotated with

cluster labels are publicly not available, we used the synthetic data

generator employed in [5], that we name DS1, to create individual

synthetic datasets. DS1 was kindly provided by the authors of [7],

where the generator is accurately described. DS1 allows to specify

the following parameters to modify the dataset and the clustering

structure: the number of baskets N , the number of items D, the

average basket length T , the number of clusters C , the percentage

of outliersO (i.e., proportion of items that do not contribute to form

any cluster), and the percentage P of overlap among transactions of

distinct clusters. Di�erent combinations of O and P allow to simu-

late various situations, thus enabling an objective experimentation.

By using DS1, we generated 100k datasets with characteristics

selected randomly in N∈[1000, 10000], D∈[100, 1000], T∈[10, 30],

C∈[4, 16], P∈[0, 50], O∈[0, 30]. Hence, we test mass transactional

clustering using a wide set of di�erent datasets generated with

random structures and simulating di�erent users, and we evaluate

the performance considering the clusterings of all the datasets.

Moreover, since we are simulating a real application scenario,

we are not suggesting the correct se�ing to the methods requiring

parameters. Indeed, for these algorithms we adopt two versions:

�xed parameter (fp) for which we �x a parameter se�ing for all

the datasets, and parameter tuning (pt) for which we simulate the

search of the best parameters through an heuristic for each dataset

by running each method several times and varying the parameters.

In this experiment we consider the following competitors: prac-
tical because is the best parameter-free algorithm according to the

state of the art, tkmeans because uses the same approach as txmeans
for extracting the centroid, and clope because has a completely dif-

ferent approach not requiring to specify as parameter the number

of cluster. As shown in the following, atdc and coolcat have rela-

tively poor performance, even when clustering simple and single

datasets. Hence their performance are not reported in this test.

We name the parameter-based competitors with �xed parameters

tkmeans-fp and clope-fp, and those with parameter tuning tkmeans-
pt and clope-pt. For tkmeans-fp and clope-fp we �x k=6 and r=2

respectively. We used the heuristic technique “knee method” to

select the bestk and r : we run tkmeans fork∈[4, 16] and we store the

1
�e Python code of the algorithms and the data generators is at h�ps://goo.gl/sAJ7WO.

https://goo.gl/sAJ7WO.

Figure 2: NMI , δk and RT evaluation for comparing algorithms on DS1 with N=2000, D=200, T=10 and C=6.

SSE for every run. �en we select as best k the one corresponding in

the “knee” point in which the SSE curve changes [27]. We adopted

a similar technique for clope considering the trend change of the

Pro�t function [36] with r∈[0.1, 3.5]. Note that these parameters

cannot be selected by optimizing an evaluation metric like NMI
because at this stage we do not possess any information about the

clustering structure of the dataset we have to analyze.

Figure 1 depicts the boxplots of NMI ,δk ,RT (from le� to right).

�e numbers represent the median values of each boxplot. Txmeans
shows remarkably the best performance: it returns for each dataset

the purest clusters (a median level of 0.97 NMI) in a few seconds

without any parameter tuning and it deviates on average of only

2 clusters from the real number. Considering these three aspects

at the same time, this level of performance is reached by none of

the competitors. Practical and tkmeans-pt have a NMI gap w.r.t.

txmeans of only 0.03. However, they both have a median RT two or-

ders of magnitude greater than txmeans. Moreover, while tkmeans-
pt succeeds in minimizing δk , practical has an average deviation

of ∼50 clusters, that is unacceptable because, even if the clusters

extracted are pure, they would provided a too dispersed summary

of users’pa�erns for any real application. Tkmeans-pt is highly pe-

nalized in terms of RT by the multiple runs for tuning the number

of clusters k , while tkmeans-fp has lower running times, but also

lower NMI and higher δk . Note that, tkmeans-fp has overall good

NMI and δk because the most frequent number of clusters for the

generated datasets is exactly 6. Clope is not competitive in none of

the versions. In conclusion, txmeans is the best algorithm in case

of transactional clustering on a massive number of datasets.

5.4 Assessing Clustering�ality
�e goal of these experiments is to evaluate the ability of txmeans
and its competitors to correctly identify clusters under speci�c

circumstances in synthetic datasets and real-world datasets.

Synthetic Datasets. For synthetic datasets, we study the per-

formance when speci�c datasets among those generated on the

previous experiment must be clustered. In particular, we employ

DS1 to generate di�erent datasets with controlled overlap percent-

age P∈{0, 10, 20, 30, 40, 50} and outliers percentageO∈{0, 10, 20, 30}

and we �x the other dimensions to N=2000, D=200,T=10,C=6.

In this experiment we o�er a signi�cant advantage to parameter-

dependent algorithms, by se�ing their parameters to optimal values:

the real number of clusters k for tkmeans and coolcat, and for clope
the value of r that minimizes δk , with r ∈ [1.0, 3.5]. Finally, the

sample S for coolcat is selected through the same function adopted

by txmeans. Figure 2 shows the performance by barplots of NMI ,

Figure 3: Structure of synthetic data for DS2, DS3, DS4.

Algorithm

DS2
(N =1000,D=75,C=3)

DS3
(N =1000,D=100,C=6)

DS4
(N =1000D=125,C=9)

NMI δk RT NMI δk RT NMI δk RT

txmeans 0.66 11.5 0.42 0.87 6.8 0.43 0.83 10.4 0.62
practical 0.57 51.8 20.96 0.73 20.7 6.06 0.68 36.6 12.22

atdc 0.53 49.1 130.86 0.65 48.4 189.52 0.72 49.5 261.92

tkmeans 0.67 - 2.12 0.75 - 3.41 0.86 - 4.79

coolcat 0.01 - 14.4 0.22 - 24.97 0.34 - 31.94

clope 1.00 - 0.16 0.99 - 0.10 0.99 - 0.10
Table 1: Clustering performance on DS2,DS3,DS4 datasets.
Best performer in bold, second best performer in bold-italic.

with δk reported below the bars. When varying the percentage of

outliers O for a given level of overlap P , the NMI of all the algo-

rithms has small �uctuations. �e overall level of NMI decreases

signi�cantly when P grows. Txmeans and tkmeans are the two most

stable ones, but the la�er is given the right number of clusters as

input. However, txmeans maintains good performance for P≥30

and O=30 and overcomes also tkmeans. Clope is the best performer

when there is no overlap and no noise, then its performances rapidly

decrease for growing P . Coolcat is always the worst performer.

Moreover, it is worth to notice that even though the di�erence

of NMI between txmeans and practical can be considered small,

practical has a signi�cant deviation δk , already observed also in

Section 5.3, which represents a clear weakness of this approach.

Both practical and atdc largely overestimate the number of clusters,

while the overestimation of txmeans is very small.

Finally, the average RT values are reported on the right of Fig-

ure 2. As previously observed, txmeans is the most e�cient: its

RT is one order of magnitude smaller than clope and two orders of

magnitude smaller than practical. Furthermore, like coolcat, due to

the sampling, txmeans is also the most constant in RT .

We performed additional experiments on other simpler synthetic

datasets (DS2,DS3,DS4) generated according to the state of the art

[5, 7, 34]. �e clustering structure of these dataset is reported in

Figure 3. �ese datasets have a well de�ned clustering structure,

and each basket distinctly belongs to one cluster. DS2, has a one-

layer clustering withC=3 clusters of the same size and each basket

Algorithm

Mushrooms
(N =8124,D=22,C=2)

Zoo
(N =101,D=17,C=7)

Congress
(N =435D=16,C=2)

NMI δk RT NMI δk RT NMI δk RT

txmeans 0.406 3.5 1.082 0.826 -2.2 0.066 0.358 7.0 0.304

practical 0.001 -0.5 5.775 0.426 -5.3 0.029 0.470 0.3 0.124
atdc 0.216 4.0 33.421 0.736 -3.0 0.091 0.297 1.0 0.319

tkmeans 0.158 * 302.645 0.773 * 2.161 0.475 * 5.448

coolcat 0.005 * 73.184 0.544 * 0.890 0.413 * 13.015

clope 0.419 * 7.754 0.796 * 0.005 0.382 * 0.042
Table 2: Clustering performance on real-world data sets.
Best performer in bold, second best performer in bold-italic.

has length T=5 and is characterized by D/C=15 di�erent items.

DS3 and DS4 are built similarly to DS1, but they have a two-layer

clustering structure: in DS3 the top layer has four clusters, two

of which have sub-clusters; in DS4 the top layer has �ve clusters,

four of which have sub-clusters. In both cases the items overlap in

sub-clusters is 0.4 and the average basket length is T∈{5, 10}.

For each clustering structure DS2,DS3,DS4 we generate ten

datasets. Tab. 1 reports the mean value of the evaluation measures.

�e deviation δk is considered only for parameter-free methods.

Clope is the best performer but we must consider that the best r is

provided as input, and that in practice, as previously shown, this

requires an extensive tuning. Txmeans is the second best performer

w.r.t. NMI for DS3 and the third for DS2 and DS4 without requiring

any tuning. Also tkmeans has very good performance. All the

parameter-free algorithms overestimate the number of clusters, but

the overestimation of txmeans is much smaller than that of practi-
cal and atdc. Finally, txmeans also has the smallest RT . Also these

experiments con�rm the e�ectiveness of txmeans in extracting in

the shortest time the clusters with the highest quality.

Real-World Datasets. Moving to real-world, we analyzed three

datasets from the UCI repository
2
: Mushrooms, Congressional Votes

and Zoo. Classes information is used as ground truth for validation.

As showed in Table 2, txmeans performs well on all the datasets.

Like before, the deviation δk is considered only for parameter-

free methods. For Mushrooms dataset txmeans is the second best

performer with respect to NMI and δk and the best performer with

respect to RT . Good performances are obtained only by txmeans
and clope: practical underestimates the number of clusters, while

atdc overestimates it. �e parameter-free algorithms underestimate

the real number of species in Zoo. Despite this fact, txmeans is

the best performer and returns a partitioning even be�er than

parameter-based algorithms for which the number of clusters was

correctly speci�ed. In Congressional dataset txmeans is not the

best one but the results are comparable to those obtained by the

competitors. Overall, the experiments on real datasets suggest that

txmeans provides consistent and stable results with respect to the

competitors con�rming the suitability observed on synthetic data.

5.5 Evaluating Scalability
We evaluate the scalability of txmeans by observing its performance

when varying N ,D,C on DS1. We �xed T = 20, P = 20%,O = 20%.

�e �rst column of Figure 4 shows the scalability varying C . For

NMI we observe that whenC is small there are be�er performances

2
h�p://archive.ics.uci.edu/ml/

Figure 4: DatasetDS1, scalabilityw.r.t: (�rst column) clusters
C, (second column) items D, (third column) baskets N .

Figure 5: NMI and RT varying S onDS1 (N = 10, 000, D = 1, 000,
T=20, P=20 and O=10) (le�), and onMushrooms (right).

with small datasets, while with highC there are be�er performances

for large datasets. �e RT does not �uctuate when varying C .

�e second column reports the variation ofD with �xedN=100, 000.

�e NMI is in�uenced by the dataset density, indeed �xing N we

observe that increasingD the NMI values decrease drastically. How-

ever, the NMI decreases more slowly for higher number of clusters.

�e RT grows less than linearly in D and it is higher for high C .

Finally, in the third column of Figure 4 we observe the scalability

varying N (with D=100). �e NMI grows with N : the more the

baskets, the less the noise, and the be�er are the representatives.

�e RT grows linearly and it is not in�uenced by C .

5.6 Evaluating Sample Size
In this last experimental section we evaluate the performance of

txmeans varying the size of the initial sample S both in case of

synthetic and real world datasets. Figure 5 (le�) illustrates the

variations of NMI and RT for txmeans on DS1 when changing the

sample size S for a dataset with T=20, D=1, 000, N=10, 000, P=20,

O=10, while on the (right) we can observe the same indicators for

the Mushrooms dataset. A clear trend appears for both datasets: a

�rst peak of high values of NMI is positioned in a range of sample

size between 0.05 and 0.15, then the trend decreases a li�le before

stabilizing. �e range [0.05, 0.15] con�rms that the function using

the z-score [18] that we adopted to select the size SN of the initial

sample S is a good choice. Indeed, it returns samples S with a size

which is generally between the 5% and the 20% of the whole dataset.

Finally, the RT grows linearly with the sample size.

http://archive.ics.uci.edu/ml/

6 REAL CASE STUDY APPLICATION
�e e�ciency and the freedom from parameters of txmeans makes

it possible to adopt clustering-based strategies in applications that

need to handle mass transactional clustering. We present an appli-

cation where clustering individual transactional data for masses of

users is necessary to build personalized recommendation systems

that requires to analyze thousands of shopping sessions datasets.

In this context, transactional data are typically treated with simple

strategies, while more complex approaches are avoided exactly

for the same reasons that motivated the development of txmeans.
Enabled by the capabilities of txmeans, the proposed solution is a

�rst a�empt to go in the opposite direction.

�e application consists in a Personal Cart Assistant suggesting

to retail customers potential items to add to their current basket

based on their shopping behavior. �e suggestions are based on the

representative baskets and clusters obtained from their purchasing

history. In the following we describe our solution, we present

baselines approaches, and we show comparative empirical results.

Personal Cart Assistant. Given the baskets Bu of a customeru,

the personal cart assistant (pca) method cluster Bu using txmeans to

obtain Cu = {C1, . . . ,Ck } and Ru = {r1, . . . , rk }. Pu = 〈Cu ,Ru 〉 is

the customer’s shopping pro�le [1] used as basis for a model-based

collaborative �ltering approach [26, 28]. �en, given the current

incomplete basket L = {i1, . . . , in } of user u, pca �nds the ri ∈ Ru
which is closer to L in terms of Jaccard distance, and then uses the

baskets inCi to generate suggestions. A weight is associated to each

candidate item, computed as the sum of similarities between current

basket L and the baskets in Ci that contain the candidate items.

�en, only the highest-weight items are suggested. �is process is

an instance of the general collaborative �ltering approach, with a set

of users (here corresponding to single baskets), user’s preferences

(the items in L), users selected as similar w.r.t. the user’s preferences

(the baskets inCi) based on item bought in the past (ri). A di�erence

from classical collaborative �ltering is that our user’s preferences

(i.e., the shopping list L) are binary instead of scores [21].

Baselines. We compared the performances of our method against

the following baselines. Last suggests the items in the last basket

purchased. Rand suggests random items among those in Bui . Most
recommends the most frequent items in Bui . Mbcf is a memory-

based collaborative �ltering method on transactional data [21].

Although in the literature there are other methods personalized

on user behavior, e.g. [23, 31], none of them try to complete the

current shopping list, and thus cannot be directly compared.

Real Dataset. We tested our method over real data describing

the purchases of the customers of a large Italian supermarket chain.

Customers are provided with a loyalty card which allows to link dif-

ferent shopping sessions, and therefore reconstruct their personal

shopping history. We analyzed a dataset of 2, 670, 343 shopping

sessions occurred in Leghorn province over 2010–2013, correspond-

ing to about 10k loyal customers, i.e., customers active in at least

ten months every year. For each customer we have N∼240 baskets,

D∼100 di�erent items, and an average basket length T of ∼8 items.

Representative Baskets Analytics. �e number of clusters per

customer ranges from 2 to 22 with a mean of ∼5 and a skewed

le� normal distribution: every customer has her own purchasing

Representative Baskets (Support)

A

{bread, breakfast snacks, pasta, yogurt, tomato sauce} (0.55),

{basil, body cream, bovine steak, fresh pasta,

onions, shampoo, tomatoes, toothpaste} (0.45)

B

{salad bag, wine, apples, tomatoes} (0.17),

{salad bag, wine, apples, tomatoes, chocolate, bananas} (0.29),

{salad bag, wine, oranges, onions, potatoes} (0.44),

{salad bag, wine, oranges, onions, milk, kiwi} (0.12)

C

{bovine steak, bread, milk} (0.11),

{bovine steak, bread, milk, fresh cheese, tomato sauce} (0.18),

{bovine steak, brad, milk, fresh cheese,

tomato sauce, pasta, tomatoes, canned tuna} (0.17),

{bread, milk, sugar, absorbent, fresh cheese, eggs} (0.18),

{bread, milk, sugar, absorbent, chocolate,

�our, fresh cheese, prepared for cakes}(0.36)

Table 3: Examples of representative baskets.

behavior made of a di�erent number of pa�erns. In Table 3 we

report the representative baskets of three customers to highlight

the di�erences in terms of number of clusters and baskets com-

position. Customer A has two very di�erent representatives: the

�rst one contains perishable items while the second one is also

related to bathroom products. Customer B always purchases salad
bags, wine but, the �rst two representatives are characterized by

apples, tomatoes, while the second two by oranges, onions. �e

purchases of customer C are characterized by two di�erent pat-

terns: we notice three representatives dominated by bovine steak,
bread, milk, versus two representatives containing cake ingredients

and female personal products. Finally, in general, there is a sort

of “matrioska e�ect” where most of the representatives contain a

small kernel of frequent items and larger representatives contain

additional frequent item. �is delineates two shopping behaviors:

big-purchases typically performed on a monthly base, containing

disparate types of items and not only perishable foods, and small-
purchases performed more frequently, containing both the favorite

and most consumed items together with perishable products.

Recommendation Evaluation. �e �rst three years of data is

used to extract the representative transactions and the cluster for

each customer, while the last year is used for testing. We observe

that for each customer ∼4 clusters are detected, thus few pa�erns

are needed to represent the shopping behavior of a customer. For

each customer we test the methods over each session L, in chrono-

logical order, updating the models as follows: pca assigns L to a

cluster with respect to the representative baskets, mbcf considers

also L into the model, most updates the frequencies of each item in

L, last becomes L, rand also considers the items in L in its choices.

Only baskets having length at least ω ∈ [2, 16] were considered,

and the current basket L in the test set is split in two parts w.r.t. a

percentage θ∈[0.2, 0.8]. As quality measure we report the F0.5 [20],

which puts more emphasis on precision than recall as we focus

on providing useful suggestions. �e evaluations are aggregated

by averaging the scores of all the customers. Figure 6 shows F0.5

for the recommenders varying ω and θ . Pca performs be�er than

any other approach with a minimum improvement of at least 0.02

(obtained over mbcf, the second best method), corresponding to 1

to 3 more items correctly suggested. Figure 6 (le�), with varying

ω and θ=0.5, shows that the larger is the minimum basket length,

the worse are performances. �e fact that for short baskets the

recommendation is easier reveals that the probability that frequent

Figure 6: Recommendation performances as F0.5 on real
dataset varying minimum length ω (le�), split θ (right).

items are regularly purchased is high. Figure 6 (right) shows that,

for ω≥6, the larger is the portion θ of L considered, the be�er are

the performances, as expected, and pca is the best method.

7 CONCLUSIONS
In this paper we have introduced the mass transactional clustering

problem and txmeans, a parameter-free transactional clustering

algorithm able to partition e�ciently a massive number of di�erent

datasets and to provide representative transactions for all clusters.

Our proposal applies a bisecting strategy to �nd groups of similar

transactions, and gives the possibility to work on a sample of the ini-

tial data, making it applicable also in the context of big data. �anks

to these features, txmeans is able to outperform existing algorithms

both on synthetic and real-world datasets. Finally, we have shown

an application scenario on a real retail sale dataset, where we built

on top of txmeans results a personal cart assistant, able to suggest

to the customer new items to put in her shopping list.

�e main future developments of the work include the improve-

ment of personal recommender systems through the integrated

analysis of both individual pa�erns (already employed in this pa-

per) and collective pa�erns, obtained by applying txmeans on the

representative baskets of all customers. Also, we plan to apply

txmeans to several other contexts. For example, in the analysis of

semantically enriched mobility data, txmeans might help in the iden-

ti�cation of personal point of interests typically visited by people,

while in the analysis of individual health indicators it might extract

the typical pa�erns characterizing the health conditions of a person

during the daily activities. It would be interesting also applying

our algorithm on social media data to infer individual pa�erns of

interests and preferences in terms of music, food, movies, etc. In

all these applications the temporal dimension of each transaction

might play an important role in the analysis. Unfortunately, the cur-

rent version of our algorithm does not capture this particular data

dimension. �us, a future research direction would be to extend

txmeans for considering also the temporal dimension.

ACKNOWLEDGMENTS
�is work is partially supported by the European Community H2020

Programnder the funding scheme “INFRAIA-1-2014-2015: Research

Infrastructures” grant agreement 654024 (h�p://www.sobigdata.

eu)“SoBigData” . We thank UniCoop Tirreno for allowing us to

analyze the data and to publish the results.

REFERENCES
[1] Gediminas Adomavicius and Alexander Tuzhilin. 2001. Using data mining

methods to build customer pro�les. Computer 2 (2001), 74–82.

[2] Periklis Andritsos, Panayiotis Tsaparas, and others. 2004. LIMBO: Scalable

clustering of categorical data. In EDBT. Springer, 123–146.

[3] Daniel Barbará, Yi Li, and Julia Couto. 2002. COOLCAT: an entropy-based

algorithm for categorical clustering. In CIKM. ACM, 582–589.

[4] Charles-Edmond Bichot. 2010. Co-clustering Documents and Words by Mini-

mizing the Normalized Cut Objective Function. MMA 9, 2 (2010), 131–147.

[5] Mohamed Bouguessa. 2011. A practical approach for clustering transaction data.

In MLDM. Springer, 265–279.

[6] Fuyuan Cao, Jiye Liang, and Liang Bai. 2009. A new initialization method for

categorical data clustering. ESA 36, 7 (2009), 10223–10228.

[7] Eugenio Cesario, Giuseppe Manco, and Riccardo Ortale. 2007. Top-down

parameter-free clustering of high-dimensional categorical data. TKDE 19, 12

(2007), 1607–1624.

[8] Keke Chen and Ling Liu. 2005. �e” Best K” for entropy-based categorical data

clustering. (2005).

[9] Xiaojun Chen and others. 2016. PurTreeClust: A purchase tree clustering algo-

rithm for large-scale customer transaction data. In ICDE. IEEE, 661–672.

[10] Inderjit S. Dhillon. 2001. Co-clustering documents and words using bipartite

spectral graph partitioning. In KDD. 269–274.

[11] Guojun Gan and Jianhong Wu. 2004. Subspace clustering for high dimensional

categorical data. SIGKDD Explorations Newsle�er 6, 2 (2004), 87–94.

[12] Fosca Gianno�i, Cristian Gozzi, and Giuseppe Manco. 2002. Clustering transac-

tional data. In PKDD. Springer, 175–187.

[13] Saikat Guha, Rajeev Rastogi, and Kyuseok Shim. 1999. ROCK: A robust clustering

algorithm for categorical a�ributes. In ICDE. IEEE, 512–521.

[14] Riccardo Guido�i, Roberto Trasarti, and Mirco Nanni. 2015. TOSCA: TwO-Steps

Clustering Algorithm for Personal Locations Detection. In SIGSPATIAL. ACM,

38:1–38:10.

[15] Zhexue Huang. 1998. Extensions to the k-means algorithm for clustering large

data sets with categorical values. DAMI 2, 3 (1998), 283–304.

[16] Robert E Kass and Larry Wasserman. 1995. A reference Bayesian test for nested

hypotheses and its relationship to the Schwarz criterion. Journal of the american
statistical association 90, 431 (1995), 928–934.

[17] Eamonn Keogh, Stefano Lonardi, and Chotirat Ann Ratanamahatana. 2004. To-

wards parameter-free data mining. In KDD. 206–215.

[18] JWKJW Kotrlik and CCHCC Higgins. 2001. Organizational research: Determin-

ing appropriate sample size in survey research appropriate sample size in survey

research. ITLPJ 19, 1 (2001), 43.

[19] Tao Li, Sheng Ma, and Mitsunori Ogihara. 2004. Entropy-based criterion in

categorical clustering. In ICML. 68.

[20] Christopher D Manning, Prabhakar Raghavan, and others. 2008. Introduction to
information retrieval. Vol. 1. Cambridge university press.

[21] Andreas Mild and �omas Reu�erer. 2003. An improved collaborative �ltering

approach for predicting cross-category purchases based on binary market basket

data. JRCS 10, 3 (2003), 123–133.

[22] Dan Pelleg, Andrew W Moore, and others. 2000. X-means: Extending K-means

with E�cient Estimation of the Number of Clusters.. In ICML, Vol. 1.

[23] Ste�en Rendle and others. 2010. Factorizing personalized markov chains for

next-basket recommendation. In WWW. ACM, 811–820.

[24] Gideon Schwarz and others. 1978. Estimating the dimension of a model. �e
annals of statistics 6, 2 (1978), 461–464.

[25] Claude Elwood Shannon. 2001. A mathematical theory of communication. SIG-
MOBILE 5, 1 (2001), 3–55.

[26] Xiaoyuan Su and Taghi M Khoshgo�aar. 2009. A survey of collaborative �ltering

techniques. Advances in AI 2009 (2009), 4.

[27] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, and others. 2006. Introduction
to data mining. Vol. 1. Pearson Addison Wesley Boston.

[28] Lyle H Ungar and Dean P Foster. 1998. Clustering methods for collaborative

�ltering. In AAAI, Vol. 1. 114–129.

[29] Nguyen Xuan Vinh, Julien Epps, and James Bailey. 2009. Information theoretic

measures for clusterings comparison: is a correction for chance necessary?. In

ICML. ACM, 1073–1080.

[30] Ke Wang, Chu Xu, and Bing Liu. 1999. Clustering transactions using large items.

In CIKM. ACM, 483–490.

[31] Pengfei Wang, Jiafeng Guo, and others. 2014. Modeling retail transaction data

for personalized shopping recommendation. In CIKM. 1979–1982.

[32] Yongqiao Xiao and Margaret H Dunham. 2001. Interactive clustering for trans-

action data. In DaWaK. Springer, 121–130.

[33] Tengke Xiong, Shengrui Wang, André Mayers, and Ernest Monga. 2012. DHCC:

Divisive hierarchical clustering of categorical data. Data Mining and Knowledge
Discovery 24, 1 (2012), 103–135.

[34] Hua Yan, Keke Chen, and Ling Liu. 2006. E�ciently clustering transactional data

with weighted coverage density. In CIKM. ACM, 367–376.

[35] Yinghui Yang and others. 2005. GHIC: A hierarchical pa�ern-based clustering

algorithm for grouping Web transactions. TKDE 17, 9 (2005), 1300–1304.

[36] Yiling Yang, Xudong Guan, and Jinyuan You. 2002. CLOPE: a fast and e�ective

clustering algorithm for transactional data. In TKDE. ACM, 682–687.

[37] Ching-Huang Yun, Kun-Ta Chuang, and Ming-Syan Chen. 2006. Adherence

clustering: an e�cient method for mining market-basket clusters. Information
systems 31, 3 (2006), 170–186.

[38] Mohammed J Zaki and Markus Peters. 2005. CLICKS: Mining subspace clusters

in categorical data via K-partite maximal cliques. In ICDE. 355–356.

http://www.sobigdata.eu
http://www.sobigdata.eu

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Setting
	4 Proposed Method
	4.1 Txmeans Algorithm
	4.2 Txmeans Stopping Criterion
	4.3 Txmeans Bisecting Schema
	4.4 Termination and Complexity
	4.5 Dealing with Very Large Datasets

	5 Experiments
	5.1 Performance Indicators
	5.2 Competitors
	5.3 Mass Transactional Clustering Evaluation
	5.4 Assessing Clustering Quality
	5.5 Evaluating Scalability
	5.6 Evaluating Sample Size

	6 Real Case Study Application
	7 Conclusions
	Acknowledgments
	References

