Reconstructing Power Lines from Images
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Abstract—We present a novel method for 3D reconstruction
of overhead power lines from a few images. The solution to
this problem has a deep impact over the strategies adopted to
monitor the many thousand kilometres of powerlines innervating
our countries;currently, the only effective solution is based on the
use of high-end laser scanners mounted on drones. The difficulty
with image-based 3D reconstruction algorithms is that images of
wires of the power lines typically do not have point features to
match among different images. We leverage on a few assumptions
that can be made on the power lines case and define an ad-hoc
strategy for solving the problem. We first use a Structure from
Motion algorithm to retrieve the approximate camera poses and
then formulate a minimization problem to simultaneously define
a 3D wire hypothesis and refine the camera poses so that the
projections of that wire are consistent on the supporting images.

Index Terms—image based reconstruction, power lines

I. INTRODUCTION

The ability to reconstruct 3D representations of power lines
has a clear impact on the field of asset monitoring (power
distribution lines) and risk mitigation. Any segment of a power
line is subject to multiple threats. The consumption caused
by atmospheric phenomena, the encroaching vegetation, or
even just the time passing by may cause interruption on
the power transmission and even risk for the people in its
close proximity. The most common defects consist of too-
low wire sag, because the wire extended too much over its
original length, and vegetation infiltration/collision. At the
present, 3D reconstruction of power lines is a difficult task and
the automation of the reconstruction and monitoring process
requires the adoption of high precision time-of-flight scanners
mounted on drones [1], [2]. In this setting, the drone flies
along the power line and collects dense 3D point clouds of
the surroundings, including the wires. Then, the point cloud is
processed to extract the shape of the wires and isolate it from
the rest of the environment [3], let it be urban [4] or forest
areas [5]. Because power lines innervate our countries on a
massive scale, monitoring the whole network is an intensive
and costly activity.

The much cheaper alternative of 3D reconstruction from
images, now extensively used in many other contexts, has
not been very successful so far. This is easily explained by
the fact that these techniques work if the images contain a
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sufficient number of point features to be matched, that is,
if there are many point correspondences between partially
overlapping images. Unfortunately, wires are very uniform
objects that typically do not show such characteristics. Fur-
thermore, wires are kind of elusive subjects with respect to
image segmentation. If the photographs are taken from above
there are innumerable chances for mistaking streets, rivers, and
plowed fields with wires. If taken from below the sky may be
too bright. If taken from their same height, the projections of
multiple wires can cross each other on the image plane.

Like existing approaches to the more general problem of
reconstructing wiry objects [6], we rely on the fact that the
images contain a sufficient number of features, although off
the wires, to enable a SfM method to compute the camera
poses accurately. Unfortunately, given the type of scenario, in
our case the dataset will be characterized by short baselines
compared to the long distances of image features from the
camera and, consequently, the pose estimation will be com-
puted with a large error margin. On the other hand, we can
exploit specific assumptions that do not hold in the general
case of image based reconstruction but they do in the specific
case of power lines, that we state in the following:

1) The photographs are shot towards a direction of view
roughly horizontal and orthogonal to the power lines.
This assumption will be used in Section III to simplify
the detection of the wires in the images

2) The wires of the power line are hung and hence each
wire lies on a plane which is orthogonal to the ground.
We can rely on IMU mounted on the camera to know
the gravity vector. This assumption will be used in
Section IV-A to formulate the minimization problem at
the core of our solution.

II. RELATED WORK

Image-based 3D reconstruction has seen a steep evolution in
the last decade and can now be considered a mature approach,
with a very consistent body of knowledge and many available
systems, e.g. Bundler [7], VisualSFM [8], Agisoft Photoscan
(http://www.agisoft.com/) just to mention a few of them.

The core idea of the image-based 3D reconstruction solu-
tions, also called Structure from Motion (SfM) methods, is: if
we can find a large enough set of feature correspondences
among a set of images, then we can both determine the
camera poses and the position in 3D space of such features.



Therefore, the whole literature on the subject revolves around
techniques to find good feature descriptors (that is as much
as possible invariant to geometric transformations), efficient
ways to match features between images, and effective bundle
adjustment strategies to globally optimize the approximation
error. Revising the literature on the general problem is well
beyond the scope of this paper (the interested reader can refer
to the survey papers [9], [10]), therefore we will limit our
references to the works on reconstructing wiry objects with
special focus on power lines.

The problem with image-based reconstruction of wiry ob-

jects is that they typically do not show point features on the
images, which are so essential to any SfM pipeline. A common
approach is to generalize the idea of point correspondences to
line segment or curve correspondences. 3D segments are used
in [11] to improve the point cloud produced by conventional
SfM. The first step of the pipeline consists in finding the edges
in the images, which in these works is carried out by LSD [12]
line detectors. The next step is matching the edges. Given a
pair of edges on two images, the candidate 3D edge can be
found as the intersection of the projection of the edges in
space. Potentially, every pair of 2D edges can make a 3D
edge hypothesis. However, correct hypothesis are supported
by a higher number of 2D edges/cameras and this fact is used
to rank the them with several ranking formulas [11], [13]-[15].
In [6] a method is presented to faithfully reconstruct 3D wire
art, that is sculptures make by bending a metal wire. In their
approach the detection of the curve is simplified by placing the
sculptures on a white background and the work is focused by
solving the problem of matching the set of 2D curves correctly
by reasoning at junctions of segmented curves.
Curve and segments can also be used to improve the accuracy
of the camera poses. In [16] the authors use SfM recon-
struction for pose estimation, and then define a global energy
function of the camera pose parameters and accounting for
the reprojection error of the reconstructed 3D curves. In a
subsequent work [17], the same authors lay out the theory for
curve-based multiview reconstruction and camera estimation.
In [18] the authors used parametric Beziér curves to design a
SLAM approach entirely based on curves.

Power lines-specific methods

Concerning the specific case of power lines, most of the
effort has been focused on correct 2D segmentation, and not
to the 3D reconstruction. The problem with power lines is that
the context often makes their segmentation difficult. Typically,
the images are taken from above and the background may,
and in general will, contain roads, plowed fields, and rivers,
showing edges with similar characteristics to the power lines
and making the distinction difficult. On the other hand, on
close views where the power cables are almost parallel and
almost straight. These conditions have been harnessed in [19]
a pulse coupled neural filter (PCNN) and a variation of the
Hough transform are applied. In [20] the problem is tackled
by Hough transform and fuzzy c-mean clustering algorithm
while in [21] Radon transform and Kalman filter are used to
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Fig. 1. Steps for segmenting wires from images.

incrementally segment an entire power line. In [22], after an
initial classic SfM step, the domain is immersed in a grid
of 3D points and each one is back projected onto all images
to asses its likability to lie on the power line. Then, power
line points are interpolated with the parabola equation. In [23]
several software packages are tested for 3D reconstruction
from images and a catenary curve is fitted to the few on wire
points that are produced.

It should be noted that, although there are several methods
using curves for 3D reconstruction and pose estimation, they
all work in the assumption that the object of interest is seen
by many views with different angles and that there are many
edge features. These are not strict assumptions, they generally
hold in any image-based acquisition setup. Unfortunately, both
these assumptions are broken in the case at hand. In fact we
have a set of images of a power line where each image contains
only a fraction of it, with some degree of overlaps between
images. Furthermore, instead of a large collection of sparse
curves or segments we only have the curves to be reconstructed
in 3D, which can be as few as a single one.

III. IMAGE SEGMENTATION AND WIRE COUNTING

Since the images are taken along the power line and looking
towards it, the image background typically consists of the
sky and the wires stand out clearly, which allow us to use
a fairly simple and straightforward segmentation pipeline,
illustrated in Figure 1. The first step is to perform a Canny
edge extraction. This step typically returns two edges for each
wire, one “above” and one “below” the actual wire, where
the discontinuities lie. In order to merge them we run a dilate
filter followed by an erode step and finally use a tracking
algorithm to return the wires as an ordered sequence of pixel
coordinates. The tracking algorithm simply tries move from
one white pixel to the next looking only on the right, right
and above, and right and below pixels, therefore proceeding
nearly horizontally. Tracked sequences shorter than 300 pixels
are discarded.

Once the segmentation is complete, we proceed to counting
the number of wires of the power lines. This is achieved by
counting the intersection of vertical lines with the segmented
wires at regular step (100 pixels in our experiments) and taking
the rounding of the average value.



IV. WIRE RECONSTRUCTION AND CAMERA POSE
ESTIMATION

We run an SfM algorithm on the set of input images (by
using VisualSFM [8], [24]) which produces the camera poses,
although in an approximated way, and a set of 3D points. Our
target is to find, for each wire segmented in the images, a
3D curve that projects consistently onto all of the images, by
allowing small adjustments of the camera poses that we know
to be approximated. We first formulate our solution for the
case of a single wire and than extend it to the general case.

Since each wire lies in a vertical 3D plane, a 3D wire is
uniquely identified as the set of projections of all segmented
wires onto such a plane. In other words

W(C, 9) = U Pg’ch (wh)
Vh

where W is the set of 3D points representing the wire,
C ={Cy,...,Cp} is the set of extrinsic camera parameters
(6 per camera), § = {a,b,d} is the set of 3 parameters
describing the vertical plane

ax+by+d=0

Py ¢, is the projection on 6 of all the 2D points of the
segmented wire in the image h (indicated with wy) using the
extrinsic camera parameters C},.

We aim at defining an objective function that minimizes the
projection error of the wires on the plane 6, allowing both
the plane and the camera parameters (C}) to change but
constraining the reprojection error of the SfM feature points
to be below a given threshold. Note that if the camera pose
resulting from the SfM were exact, the 3 plane parameters
alone would define a solution. Unfortunately, the 3D feature
points used for estimating the pose estimation are far away
from the camera with respect to the distance between cameras
(the baseline in the triangulation process), which means that
the orientation and position of the camera as returned by SfM
are not very reliable.

In other words, being aware that the camera poses are not
accurate, we allow small adjustments in order to make the
wire projection coincident on a common plane.

A. Wire Projection Error

We define the wire projection error as a function of the
projection of the segmented 2D wires onto the supporting
plane defined by 6. We recall that we do not have any point-to-
point correspondence between the portion of wire in different
image, we only know that their union must be a subset of
the wire. Figure 2 illustrates the projection of the same 2D
wire from two neighbour cameras on a plane (#), as seen
from each of the two input images (top row) and from a third
perspective (bottom). If the plane and the camera parameters
were optimized, only one wire should be seen.

We define the error as the sum of a distance function
between each point of the first projection and the closest point
among all the other projections.

Fig. 2. top: two segmented wires are projected onto a plane 6. The two images
show the view from the two cameras, respectively. If the camera poses and the
plane where exact, the two yellow curve should coincide; bottom: the same
scene as seen from a different point of view.

Fig. 3. Left: Calculation of the wire projection error on the plane 6. Right:
the error function is near O only in the overlapping region.
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where p; is the 3D projection on the plane 6, n; the normal
with respect to the projected wire, p; is the closest point all
the other projected wires Py ¢, (wi),k # h and ng it is its
normal. The distance function I' is defined as the euclidean
distance plus a term that increases exponentially when points
with different normal get close to each other [25]:

1—n; ng)?
D) = Iy =il + 0
where the right term of the sum is a function of the angle
between the normal, parametrized by « and §. Its maximum
value is reached when two points with opposite normals share
the same 3D position and it is equal to &2°, In our experiments
we obtained the best results by setting « to the average inter-
point distance of points of the same wire on the plane 6 and
£ = 2. Finally, the term % is used to express the error
in pixels, with focaly, the focal distance of the camera i and
A(h, ) the distance of its center of projection from the plane.



Summarizing, the wire projection error is:
ew =Y €u,i(Cn,0)/ > #wn
Vh Vh

where #wj, is the number of points of the wire i in the image
h. Please note that the wire projection error can be 0 only if
the two portions of the wire are in fact the very same.

B. Points Reprojection Error

Let F = {fo,..., fn} the 3D points computed by the STM
pipeline. Each of these points has at least 3 correspondences
among the images. The reprojection error of the feature ¢
is computed by projecting the 3D point onto each image,
computing the distance to its 2D feature point and averaging
the result:

1
er(fi) = #Corry(i) Z

heCorry (i)

[Projc, (fi) — Corrp(i)||

where Corry(i) is the set of images containing a correspon-
dence, and Corrp(i) the 2D correspondence point. However,
we are not interested in preserving initial 3D feature points
but only to find an equivalent configuration that minimizes
the wire reprojection error. Therefore, we replace each feature
point f; with the 3D point f/ minimizing the quadratic distance
to the projective lines. In other words we recompute the 3D
point cloud in each minimization step.

The contribution of the points reprojection error is then
averaged on the number of features #F":

ep(@) =3 ﬁepm)

i€ F’

Summarizing, the complete optimization problem for the sin-
gle wire hypothesis is:

minimize ew (C,0)
@r (1)
subject to  ep(C) < €g
where €g is the initial feature reprojection error.

C. Minimization Setup

The minimization process is carried out by relaxing the
constraint in problem 1 and adding it to the objective function:

mirg?glize ew (C,0) + Meg —ep(C)] 2)

Please note that here A determines how much the point
reprojection error may be allowed to increase in order to create
a consistent 3D reconstruction onto the plane ¢ and it is tuned
empirically. In principle we could use the signed value of this
error term and maximize the value of the solution of 2 over
A and so obtaining a tight bound for the original problem,
that is, we could implement a proper Lagrangian relaxation.
Unfortunately, the non-linearity of the error function and the
possibly high number of terms over which it is computed
(that is, wire points) would make the process very slow and
impractical.

Input Output
#imgs | #pts ep Ew ep EwW time (s)
7 498 27.6 4549 33.5 3106 58
7 498 | 30.73 | 20183.55 | 31.5 | 16050.54 235
7 498 | 30.73 | 20183.55 | 32.5 | 17055.54 122
6 494 33.2 4050 40.1 3483 46
TABLE I

RESULTS FOR A = 10. DUE TO THE RELAXATION, THE CONSTRAINT ON
THE FEATURE PROJECTION ERROR IS NOT RESPECTED BUT THE
REPROJECTION ERROR FALLS SENSIBLY, AS IT CAN BE SEEN IN FIGURE 4

D. Initialization of plane 0

As problem 2 has in general several minima, it is important
to set an initial solution which is as much as possible near to
the optimal value. Here we use the notion the the photographs
are taken along the power line and estimate the plane normal as
orthogonal to the line fitting the point of view of the cameras.
The offset, that is, the distance of the plane from the cameras,
is chosen as half the average value of the distance of the SfM
points from the cameras, since in practical those points are
almost all further away than the power line (see left side of
Figure 4 for an example of estimated plane).

E. Extension to a generic number of wires

Because the wires in a power line run parallel to each other,
extending the formulation to a generic number of wires is
trivial. The only change to problem 1 is to turn the objective
function to a sum over the wires detected in the images and add
one separate offset per wire, so that instead of the parameter
6 we have a,b,dy,...,d, where n is the number of wires.

V. RESULTS

We tested our pipeline on real world scenarios. The images
of power lines where taken from a height of 1.80mt from the
ground and we used few 6000 x 4000 images for each wire
section (the portion of wire suspended between two pylons).
Table I shows the input data and processing results for two
datasets with 7 and 6 images respectively. The algorithm is
executed on a PC equipped with Intel I7 Quad Core 3GHz.
We use the Newuoa algorithm for unconstrained nonlinear
optimization [26].

Since in this phase we did not have access to a ground truth
reconstruction of the power lines, we relied on the presence
of reconstructed 3D points whose visual feature was also
visible on Google Map. We use these correspondences to align
the results (camera, plane and 3D points) with the Map and
estimate the approximation provided by our method. Figures 4
shows the 3D reconstruction and the 2D superimposition
with Google Map. We can see that the resulting plane is
fairly well corresponding with the visible power lines but the
approximation introduced by using reconstructing point and
maps does not allow us to make precise metric statements at
this stage. We measured the distances on the same map of
Figure 4 and we could see that the actual pylons are 250 mt
from each other, our estimation is 7 meters away from the real
plane on one side and 12 on the other, while the actual wire is
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Fig. 4. On the left side we show the superimposition of the result obtained by our algorithm with the aerial view provided by Google Maps. We manually
traced the actual wire position with a green segment. The yellow line shows the initial plane estimation computed as in Section IV-E, while the red line is
the location of the final plane. On the right, the same dataset as seen from beyond the cameras. Note how the initial projections of segmented wire sections

(in yellow) are then aligned in the final configuration (in red).

Fig. 5. Result obtained by parameterizing the solution with only two planes
(shown as gray rectangles) and assigning the segmented wires to the plane
by hand.

105 meters from the closest camera, resulting in a 10% error
on depth estimation. Although such estimation cannot be said
to be accurate, we should consider it in the light of the fact
that the average value of the point reprojection error is very
high and make the problem almost undetermined.

The first two rows of Table I are about the same dataset
shown in Figure 4. However, the first experiment only con-
siders a single wire (the highest in the segmentation), while
the second simultaneously reconstructs all of the 6 wires.
As it can be seen from the second line of table I, when
optimizing simultaneously for multiple wires we obtain a
longer processing time but a smaller average error (per wire).
This should not come as a surprise since that more wires
means more constraints on camera positions. The third rows
also concerns optimization for all the wires but this time we
used the knowledge of the wires configuration (three pairs at
different heights distributed on two vertical planes) and could

parametrize the target function with only two planes. This is
only done to state that we can leverage on the knowledge of
type of power lines to define a more ad-hoc parametrization
and obtain better results (see Figure 5).

VI. DISCUSSION AND CONCLUSIONS

Our approach uses assumptions that hold in the particular
case of power lines and provides a simple solution to a
real problem, in an context where previous solutions to the
acquisition of wiry objects could not be applied. We were
able to formulate an ad hoc parameterization of the domain
of solutions that allowed the problem to be formulated as a
simple and elegant minimization problem. On the downside,
our approach depends on the success the SfM reconstruction
pipeline and of the segmentation process. We performed
experiments where the correspondence between wires among
images could be determined trivially but this is not always
true. It is necessary that we address the problem of making our
algorithm resilient to wrong associations of segmented wires,
most likely by introducing an outer optimization cycle driven
by a RANSAC-like approach. Furthermore, since we use a
Lagrangian relaxation approach but cannot afford to maximize
the min problem over the A parameter, it is clear that we are
empirically trading camera pose error for consistency of wire
projection on the plane 6. Our next step is to found this balance
automatically without penalizing the running time.
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