
CaRE: A Refinement Calculus for Requirements
Engineering Based on Argumentation Semantics

Yehia Elrakaiby∗, Alessio Ferrari†, John Mylopoulos‡
∗ Lero - University of Limerick, Email: yehia.elrakaiby@lero.ie

† CNR-ISTI, Email: alessio.ferrari@isti.cnr.it
‡ University of Toronto and University of Trento, Email: jm@cs.toronto.edu

Abstract—The requirements problem consists of transforming
stakeholder requirements - however informal, ambiguous, con-
flicting, unattainable, imprecise and incomplete – into a consis-
tent, complete and realizable specification through a systematic
process. We propose a refinement calculus for requirements
engineering (CaRE) for solving this problem, which takes into
account the typically dialectic nature of requirements activities.
The calculus casts the requirement problem as an iterative
argument between stakeholders and requirements engineers,
where posited requirements are attacked for being ambiguous,
incomplete, etc. and refined into new requirements that address
the defect pointed out by the attack. Refinements are carried
out by operators provided by CaRE that refine (e.g., strengthen,
weaken, decompose) existing requirements, to build a refinement
graph. The semantics of the operators is provided by means
of argumentation theory. Examples are given to illustrate the
elements of our proposal.

I. INTRODUCTION

The core problem in requirements engineering (RE) consists

of transforming the requirements elicited from stakeholders -

however informal, ambiguous, conflicting, unattainable, im-

precise and incomplete - through a systematic refinement

process into a specification that is consistent, complete and

realizable. Variants of this problem have been addressed by

many contributions that constitute the backbone of RE research

and go as far back as seminal contributions by Douglas Ross

[1] and Michael Jackson [2]. Various IEEE/ISO Standards on

Software Requirements Specifications, such as [3] and [4],

have detailed the “defects” that need to be eliminated during

the refinement process.

The state-of-the-art in RE for dealing with this core problem

consists of approaches that offer refinement operators for elim-

inating specific types of defects. For example, Goal-Oriented

RE (GORE) techniques offer AND/OR refinements to move

requirements towards operationalizability (making require-

ments operationalizable through functions that the system-to-

be can perform) [5]. Others propose refinements for eliminat-

ing various forms of conflict, including inconsistencies [6], [7]

and obstacles [8]. Still others focus on recognizing ambiguity,

also by means of natural language processing (NLP) [9].

Unfortunately, existing proposals are limited in that they

focus on particular types of defect, e.g., inoperationalizability

in the case of GORE, inconsistencies and obstacles in the

specific case of KAOS [7], [8]. In this work-in-progress, we

propose a refinement calculus intended to addresses all defects

cited by the IEEE/ISO Standards through a small number

of refinement operators. Our calculus includes operators for

strengthening a requirement r into r+, i.e., r+ entails r;

weakening a requirement r into r−, i.e., r entails r−; rejecting

a requirement; introducing a new requirement; decomposing

r into r1, . . ., rn; and justifying r by introducing a “higher-

level” requirement r′ that explains the motivation for r1.

The key contribution of this work is to formally define what

does it mean for a specification to address (deal with) an initial

set of requirements. Addressing a requirement constitutes a

weaker notion than satisfying a requirement, because it allows

for a requirement to be weakened or altogether dropped, as

long as there is an acceptable argument for this.

Towards this end, we adopt argumentation semantics from

Dung [10], a state-of-the-art argumentation framework for

formal reasoning about arguments. The refinement process is

viewed as an argument between stakeholders and requirements

engineers where posited requirements are attacked by pointing

out defects (e.g., “r is too strong/weak”, “r is incomplete”,

“r is unattainable”, “r1, . . ., rm are conflicting”, etc.) and

new requirements are proposed that remove the defect pointed

out by the attack. Participants in the argument can counter-

propose, or outright reject what has been proposed and so on.

This argumentation process supports arguments of the form

“The set of requirements given so far is incomplete because

it doesn’t say anything about privacy, whereas the system-

to-be will be handling personal data”, or “This requirements

is not needed, drop it”. The process leads to a refinement

graph with many potential specifications S for an initial

set of requirements R, each consisting of leaf nodes of the

graph. Each S addresses R if there is an acceptable argument

that derives S from R through refinement. This makes the

derivation of S from R a Hegelian dialectic process of thesis-

antithesis-synthesis [11], also similar in spirit to the inquiry

cycle [12], though our proposal aims to include more structure,

technical details and reasoning support for the RE process.

The envisioned contributions of this ongoing work, some of

which are included in this report, are:

• A refinement calculus for RE that extends goal-oriented

approaches and addresses a full set of defects, inspired

by the IEEE/ISO standards;

• An argumentation semantics of what it means for a

specification to satisfy a set of stakeholder requirements;

1In GORE terminology, r′ is a higher-level goal than r justifying r.

RE 2018, Banff, Canada
RE@Next! Paper 364

2018 IEEE 26th International Requirements Engineering Conference

2332-6441/18/$31.00 ©2018 IEEE
DOI 10.1109/RE.2018.00-24

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on January 18,2021 at 14:59:57 UTC from IEEE Xplore. Restrictions apply.

• Reasoning support that, given an initial set of require-

ments R and a constructed refinement graph, returns all

specifications S that satisfy R.

The remainder of the paper is structured as follows. In

Sect. II, we present an informal overview of the calculus. In

Sect. III, we show how we propose to use argumentation to

provide semantics for the calculus. Finally, Sect. IV provides

our research roadmap, together with final remarks.

II. CALCULUS DESCRIPTION

CaRE consists of a systematic process and a calculus

for requirements elicitation, negotiation and refinement that

supports documentation of the process, agreement between

stakeholders2 and management of change. The calculus con-

sists of a collection of attacks types and refinements. The

attack types we adopt have been inspired by the IEEE/ISO

standards and represent defects that could be identified by

stakeholders in one or more requirements. Refinements, on

the other hand, are the means for fixing defects.

A. Attack Types

Attacks on requirements consist of pointing out defects

that make them unacceptable according to some stakeholders.

Requirements may be attacked individually or collectively. In

the former case, we refer to an attack as Single-Target Attack

(or STA) and in the latter as Multi-Target Attack (MTA).
a) Single-Target Attacks:

• NonAtomic: the requirement under attack is not opera-

tionalisable. For example, 〈r1:“System shall schedule a

meeting upon request”〉 is non-atomic since there is no

single action the system-to-be can perform to fulfill it.

• Ambiguous: the requirement admits multiple interpreta-

tions because it is vague, imprecise or ambiguous. For

example, 〈r2:“The authentication process shall be easy”〉
is ambiguous since the term easy is vague.

• Unattainable: the requirement is not feasible, i.e. doesn’t

have a realistic solution. For example, 〈r3:“The system

shall be available at all times”〉 is unattainable because it

assumes eternal availability of power and other resources.

• Unjustified: the requirement does not have an explicit

motivation. For example, 〈r4:“The system shall run on

Windows operating system”〉 may be attacked for missing

an explicit justification of why other operating systems

are not considered.

• Incomplete: the requirement is missing information. For

example, 〈r5:“In case of fault, the system shall send an

error message”〉 is incomplete because it does not specify

a recipient of the message.

• TooStrong: the requirement is unnecessarily strong or

unnecessary. For example, 〈r6:“The website shall use

HTTPS protocol”〉, may be too strong and unnecessary

for a website that does not handle sensitive data.

• TooWeak: the requirement is too weak. For example,

〈r7:“The DB system shall process 500 transactions/sec”〉
2In the body of the paper, the term “stakeholders” denotes also requirements

engineers.

is too weak if the expected workload for the system-to-be

is 1,000 transactions/sec.

• Rejected: the requirement is rejected. For example, in the

context of an app recommending nearby restaurants to

users, a requirement 〈r8:“The app shall support chatting

between the user and a recommended restaurant”〉 may

be deemed unacceptable.

b) Multi-Target Attacks:
• mConflict: the collection of requirements under attack

is not satisfiable, even though subsets are. For example,

the requirements 〈r9:“The train control system shall stop

the train if a red signal is missed”〉 and 〈r10:“The train

control system shall not apply brakes if the speed is

below 30 km/h”〉 (assuming that the driver is in charge

for speeds <30km/h) are conflicting.

• mIncomplete: the set of requirements is missing needed

requirements. For example, a set of requirements for a

social network platform is mIncomplete if it does not

include any privacy requirement.

• mTooStrong: here a collection of requirements is too

strong or redundant. This is the case of requirements

such as 〈r11:“The system shall support authentication

through fingerprint recognition”〉 and 〈r12:“The system

shall support authentication through iris recognition”〉.
Attacks have a type and take as arguments a single require-

ment or a set, as well as a statement that offers a rationale for

the attack. For instance, TooWeak(r7, “System is supposed to

handle 1,000 tps”), or mConflict({r9, r10}, “train control can’t

be in manual and automatic mode at the same time”).

B. Refinement Operators

Refinement operators are intended to remove defects pointed

out by attacks. Each operator operates on a single requirement

or a set under attack, and it is applicable for attacks of one or

more attack types. One exception are attacks of type Rejected

– if a requirement has been rejected. In this case, there is no

possible fix and this requirement represents a dead end. The

proposed operators are intended to address all attack types.

They are as follows:

• weaken: produces a weaker requirement than its operand.

For example, the unattainable requirement r3 may be

weakened into 〈r13:“The system shall be available at all

times, with interruptions of ≤2 hours”〉. As indicated ear-

lier, weaken is applicable for attacks of type Unattainable

and TooStrong.

• strengthen: produces a stronger requirement than its

operand. For instance, r7 may be strengthened into

〈r14:“The system shall process 1,200 tps”〉. strengthen is

applicable for attacks of type Incomplete, TooWeak and

Ambiguous.

• reduce: decomposes its operand into a set r1, ..., rn using

AND-, OR-, or XOR-refinement. In the case of AND-

refinement, the operand is satisfied if all requirements

are satisfied, i.e. every ri (1 ≤ i ≤ n) is satisfied. In the

case of OR-refinement, the operand is satisfied if any ri

365

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on January 18,2021 at 14:59:57 UTC from IEEE Xplore. Restrictions apply.

is satisfied. Finally, the operand of an XOR-refinement is

satisfied whenever exactly one ri is satisfied. reduce is

applicable for attacks of type NonAtomic.

• add: introduces a new requirement and it is applicable for

attacks of type Unjustified, Incomplete and mIncomplete.

• resolve: replaces a set of conflicting requirements

r1, ..., rn with a new set of non-conflicting requirements

r′1, ...r
′
m. Conflict resolution typically consists of weak-

ening or dropping some of the requirements in r1, ..., rn
such that the new set r′1, ...r

′
m is not conflicting. resolve

is applicable for attacks of type mConflict.

C. Incremental Construction of a Refinement Graph

The process of building a refinement (hyper)graph G =
〈R,E〉 from an initial set of stakeholder requirements R0

proceeds as illustrated by the informal pseudo-code reported

below. Each node r ∈ R in the graph is associated to a

requirement. Each hyper-edge e ∈ E, where E ⊆ P(R)×P(R)
represents the application of a refinement operator. In the

following, R denotes a set of requirements.

BUILD-REFINEMENT-GRAPH(R0)

E ← ∅
R ← R0

do
– Select R ⊆ R, such that an attack type

A applies on R
– Define an attack of type A on R
– Select a refinement operator o
that is applicable for A
– Apply o on R resulting in r1, . . . , rn
R ← R ∪ {r1, . . . , rn}
e ← 〈R, {r1, . . . , rn}〉
E ← E ∪ e
while there are applicable attacks on any R

return G ← 〈R,E〉

This process creates a refinement (hyper)graph with one

(hyper)edge for every refinement that has as source(s) all

operands of the refinement and as destinations all the new

requirements resulting from the refinement. Leaf nodes in that

graph are those that haven’t participated in any refinement

because there are no applicable attacks.

A specification consists of a set of leaf nodes of the

refinement graph that together address all requirements in

R0. Note that, since no attack is applicable to leaf nodes,

these must be atomic, and that is why they can be included

in the specification. Specifications constitute solutions to the

requirements problem defined by the initial set of stakeholder

requirements R0, by addressing all requirements in it. The

semantics of addressability is founded on the notion of ac-

ceptability from argumentation theory [10]: a set of statements

is acceptable if none of them is attacked, or none of the

attacks against them are acceptable. Establishing acceptability

constitutes the key problem in reasoning with arguments.

III. A SEMANTICS OF CARE BASED ON ARGUMENTATION

Argumentation theory studies the fundamental mechanism

that humans use in argumentation and develops formal mod-

els and reasoning support to implement this mechanism on

computers [10]. This section shows how refinement graphs

can be mapped into arguments in ASPIC+ [13], a framework

for structured argumentation that extends Dung’s argumen-

tation theory. Such a mapping gives formal semantics to

CaRE refinement graphs and enables reasoning that determines

whether a given set of stakeholder requirements is addressed

by a specification. In the following, we consider a simplified

version of the description of ASPIC+ presented by Caminada

and Amgoud [14]. An ASPIC+ argumentation theory is a

tuple 〈L, IR,KB, n〉 where

• L is a logical language (closed under negation).

• IR is a set of defeasible inference rules of the form

φ1, ..., φn ⇒ φ, where φ, φ1, ..., φn are meta-variables

ranging over the set of well-formed formulas of L. A

defeasible rule means that if one accepts all antecedents,

then one must accept the consequent unless there is a

sufficient reason to reject it. Defeasible rules with empty

premises, i.e. rules of the form ⇒ φ, are assumptions.

• n : Rd → L is a partial function that gives names to

(some) defeasible rules. Informally, n(r) is a proposition

which means that r is applicable.

We assume in this section that L is a propositional language.

Moreover, two formulas φ and ψ are contradictory iff φ = ¬ψ
and ¬φ = ψ. Note that ¬¬φ = φ.

A. Construction of Arguments & Attacks

a) Construction of Arguments: Consider an initial ar-

gumentation theory AT . Let L of AT be a propositional

language that includes the propositions {a,b,c}. Those propo-

sitions, put forward by stakeholder s1, mean the following:

• a: trains are using the latest fail-safe air brake system

(FABS),

• b: therefore, trains need 500m to stop,

• c: 〈r1:“there shall be a minimal distance of 500m between

trains”〉
Figure 1 depicts how the above statements are represented as

an ASPIC+ argumentation theory AT and the arguments that

are constructed on the basis of it. In particular, AT includes

{⇒ a, a ⇒ b, argre : b ⇒ c}. The arguments constructed on

the basis of AT are {A1, A2, A3}3. Those arguments can be

written as A1 = [⇒ a], A2 = [A1 ⇒ b] and A3 = [A2 ⇒ c].
The conclusion and premises of an argument A are denoted by

conc(A) and prem(A) respectively. For example, conc(A3)
and conc(A2) are c and b respectively. On the other hand,

prem(A3) and prem(A2) are {a, b} and {a} respectively.

3Due to space limitations, we do present formally the construction of
arguments on the basis of argumentation theories. Interested readers are
referred to [13], [14].

366

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on January 18,2021 at 14:59:57 UTC from IEEE Xplore. Restrictions apply.

A1

A2

trains use FABS

trains stop in 500m

<r1: a minimum
distance of 500m>

A3

Assumption
argre

(regular) conclusion

Fig. 1: Argument Construction

A1

A2

trains use FABS

trains stop in 500m

<r1: a minimum
distance of 500m>

A3

argre

trains stop in 550m

journal says 500m

Rebut Attack

B1

B2

Fig. 2: Rebuttal Attack

b) Attacking Requirements: After identification of re-

quirements, they are examined by stakeholders to determine

whether they contain defects. In ASPIC+, there are two

basic types of attacks: rebuttal attacks which denote a con-

flict relation between the conclusions of two arguments and

undercut attacks which represent an attack on the validity of

some inference. The attacks identified in the previous section

are mapped into the form of one of those two basic types.

For example, consider that stakeholder s2 argues that “I read

recently in a scientific journal that latest tests revealed that

FABS requires 550m to stop”. Therefore, “trains need 550m

to stop and not 500m”. This conflict situation is presented by

adding the following propositions to the argumentation theory.

• d: I read recently that FABS requires 550m to stop,

• e: trains need 550m and not 500m to stop.

In AT , those arguments will be represented by {⇒ d, d ⇒ e},

leading to the construction of the arguments of B1 and B2

shown in Figure 2. Since the conclusion of B2 is contradictory

to the conclusion of A2, B2 is said to (rebut) attack A2. B2

also rebut attacks A3 since A3 is a continuation of A2
4. In the

former case, the attack is called a direct attack, whereas in the

latter case the attack is indirect. Notice that rebuttal attacks

are symmetric, i.e. A2 and A3 also attack B2.

c) Dung’s Argumentation Framework: Argumentation

allows reasoning about conflicts between arguments and deter-

mining which arguments are justified, i.e. should be accepted.

In CaRE, this notion of acceptability determines the status

of requirements, more precisely a requirement is said to be

4We refer interested readers to [13] for more detailed definitions of attacks
and their identification.

acceptable only it is justified. Notice that a requirement is

acceptable only if does not have defects. ASPIC+ relies on

Dung’s Argumentation Framework (DAF) [10]. A DAF is a

pair 〈A,D〉, where A is a set of arguments and D is a set of

attacks among those arguments. Based on DAFs, the justifi-

cation of arguments is determined through the calculation of

the so-called extensions. In this paper, we consider only the

grounded extension, which represents the skeptical semantics

of argumentation frameworks, i.e. the arguments that should

“always” be accepted.

d) Construction of DAF: Based on the arguments and

attacks in Figure 2, a DAFexmp is constructed as follows:

A = {A1, A2, A3, B1, B2}
D = {(A2, B2), (B2, A2), (A3, B2), (B2, A3)}

e) Computation of Grounded Extensions: determines the

arguments that are “always” justified or acceptable. The com-

putation of the grounded extension for DAFexmp produces the

arguments {A1, B1}. This is interpreted as “only arguments

A1 and B1 are (always) justified”.

f) Justified Conclusions: are the statements or proposi-

tions that are justified. They are simply the conclusions of

the arguments in the grounded extension. For example, the

justified conclusions of AT before and after stakeholder s2
pointed out the defect in r1 are as follows:

• before: {a, b, c}
• after: {a, d}

Notice that the requirement r1 was acceptable (c was ac-

ceptable) until the intervention of stakeholder s2. To restore

the acceptability of r1, refinements are needed. Before the

description of refinements, we first present the second basic

attack type in ASPIC+.

g) Undercut Attacks: Imagine that stakeholder s3 argues

that r1 does not have a justification:

• g: r1 is not justified.

In this case, s3 does not attack the premises of the requirement

argument argre but rather it points out a problem with the

requirement itself. We represent this case in the form of an

(undercut) attack as shown in Figure 3. The DAF computed

for Figure 3 is as follows:

A = {A1, A2, A3, C1}
D = {(C1, A3)}

Notice that, as opposed to the previous rebuttal attack, the

undercut attack is asymmetric, i.e. C1 attacks A3 but not vice

versa. The grounded extension and justified conclusions are:

• Extension: {A1, A2, C1}
• Conclusions: {a, b, g}

Thus, this undercut attack renders the requirement, denoted by

c, unjustified.

B. Refinements and Refinement Graph

a) Refinements: The computation of extensions reveals

the state of requirements according to the negotiation between

367

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on January 18,2021 at 14:59:57 UTC from IEEE Xplore. Restrictions apply.

A1

A2

trains use FABS

trains stop in 500m

<r1: a minimum

distance of 500m>

A3

argre
r1 is not justified

Undercut Attack

C1

argatt

Fig. 3: Argument Construction

A1

A2

trains use FABS

trains stop in 500m

<r1: a minimum

distance of 500m>

A3

argre
r1 is not justified

C1

r2 justifies r1

<r2: avoid train collision>

D1

D2
argatt argref

Fig. 4: Refinement

stakeholders, i.e. whether they are acceptable or not. This

enables stakeholders to identify which requirements have

defects and therefore should be refined. To address the defect

in r1, stakeholder s2 proposes the following:

• i: 〈r2:“avoid train collisions”〉,
• h: r2 provides a justification for r1.

Figure 4 depicts the statements above and how they affect the

argumentation theory. In particular, by providing a justification

for r1, s2 is able to fix the issue identified by stakeholder s3
(i.e. that r1 is not justified). This results in the construction

of the arguments D1 and D2. By providing a justification for

r1, this refinement argument undercuts C1. Consequently, the

DAF computed for Figure 4 becomes as follows:

A = {A1, , A2, A3, C1, D1, D2}
D = {(C1, A3), (D2, C1)}

The grounded extension and justified conclusions are:

• Extension: {A1, A2, A3, D1, D2}
• Conclusions: {a, b, c, i, h}

Thus, stakeholder s3, by proposing the refinement above, is

able restore the acceptability of r1.

Note that defects that correspond to rebuttal attacks

(Sect. III-A.b) are addressed through the specification of

preferences. More precisely, we allow stakeholders to choose

which, among the conflicting propositions, is more likely to

be true. ASPIC+ supports the expression of such preferences

and the computation of extensions based on them. Due to

space limitations, preferences will not be further discussed

here but interested readers are referred to [13] for details on

how preferences affect the computation of extensions.

b) Refinement Graph: Throughout the evolution of the

negotiation process above, we construct an argumentation
theory that tracks the evolution of requirements, attacks to-

wards them and refinements that succeed in restoring their

acceptability. On the other hand, the refinement graph shows

the requirements and their update through refinements. Re-

finements shown in the graph are the ones that are justified
through argumentation. Figure 5 shows an example of a

fragment of a refinement graph, coupled with its corresponding

argumentation graph. The figure depicts the progression of the

refinement process: r1 is found to be unjustified, since it does

not have a clear motivation. This leads to a refinement that

fixes the problem through the addition of a new requirement

(add operator), r2, which provides a motivation for r1. If r1
and r2 are not attacked, then the refinement process ends.

However, r2 may be considered non-atomic, since it is too

abstract. Therefore, the reduce operator is applied, and a

novel requirement r3 is produced, with the same content of r1
– notice that other requirements with different content than

r1 could also be produced at this stage. By iterating this

refinement process, leaf nodes will be all the nodes for which

no attack is applicable, as specified in Sect. II-C.

IV. ROADMAP AND CONCLUSION

This paper presents work-in-progress on CaRE, a require-

ments engineering methodology equipped with an expressive

calculus for requirements elicitation, negotiation and refine-

ment that supports documentation of the requirements process,

convergence towards consensus among stakeholders, rational-

ization and management of requirements change as follows:

• Negotiation and agreement: thanks to its argumentation

structure and the dialectical nature of argumentation,

CaRE is well suited for capturing the arguments ex-

changed between stakeholders and requirements engi-

neers during the requirements engineering process;

• Refinement and elicitation: is supported through the

systematic identification of defects (attacks) and refine-

ments. In particular, this process leads to identification of

missing requirements, rejection of unnecessary ones and

refinement of those that are too strong or too weak;

• Documentation of the process: is supported by the re-

finement graph that captures arguments (requirements,

attacks and refinements) exchanged between stakeholders

in the requirements process;

• Rationalization of requirements change: is supported

since every change is motivated by an attack and there

is room for stakeholders to counter-attack during the

refinement process.

• Management of change: is supported since requirements

and attacks can be easily added, revised or removed, lead-

ing automatically to the computation of new extensions

that show whether requirements are still acceptable or

not. Refinement graphs are also updated accordingly.

The proposed calculus extends GORE approaches by offer-

ing a rich set of attack types as well as powerful refinement

operators for addressing the defects pointed out in attacks.

368

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on January 18,2021 at 14:59:57 UTC from IEEE Xplore. Restrictions apply.

argatt

argref

argatt

argref

argre

argre

<r2: avoid train

collision>

<r1: a minimum

distance of 500m>

A1

A2

trains use FABS

trains stop in 500m

<r1: a minimum

distance of 500m>

A3

r1 is not justified

C1

r2 justifies r1

<r2: avoid train

collision>

D1

D2

add

<r3: a minimum

distance of 500m>

reduce <r2: avoid train

collision>

r2 is nonatomic

r3 reduces r2

<r3: a minimum

distance of 500m>

E1

F1

G1

G2

Fig. 5: A fragment of refinement graph, mapped with the argumentation graph

The closest work to our proposal is the thesis of Li [15]

where a rich refinement calculus is proposed, but is not

cast in argumentation terms and consequently lacks proper

semantics. In [16], the Goal Structuring Notation (GSN) is

used to explicitly represent the elements of safety arguments

and their relationships. The main objective of this work is

to present an argument that a system is acceptably safe to

operate in a given context. In contrast, our work focuses on

requirements refinements, negotiation and elicitation. There

have been proposals in Software Engineering for capturing

design rationale during the design process [17]. Such work

differs from our proposal in that it is not intended to offer a

calculus for design. Rather, it strives to model the rationale

behind design decisions.

Moving forward, we plan to complete this research by

providing a full formalization of CaRE in ASPIC+. Secondly,

we will consider a more detailed and formal requirements

language that includes assumptions, functional, and quality

requirements, in the spirit of Li et al. [15], [18]. Thirdly,

we propose to build a reasoner for refinement graphs that

determines whether there is a specification for a given set

of initial requirements. Finally, we propose to integrate into

our framework existing NLP tools – as, e.g., SREE [9] –

that support automated identification of requirements defects.

Our goal is to come to a tool-supported method in which

formal argumentation is transparent to the user, making CaRE

easy to use by common requirements analysts. A cost-benefit

evaluation on the practical applicability and scalability of

CaRE is also foreseen as part of our future work.

ACKNOWLEDGMENT

This work was supported, in part, by Science Foundation

Ireland grant 13/RC/2094 and ERC Advanced Grant 291652.

REFERENCES

[1] D. T. Ross, “Structured analysis (sa): A language for communicating
ideas,” IEEE TSE, no. 1, pp. 16–34, 1977.

[2] M. Jackson, “Information systems: Modelling, sequencing and transfor-
mations,” in ICSE’78. IEEE Press, 1978, pp. 72–81.

[3] “IEEE Recommended Practice for Software Requirements Specifica-
tions,” IEEE Std 830-1998, pp. 1–40, Oct 1998.

[4] “Iso/iec/ieee international standard - systems and software engineer-
ing – life cycle processes –requirements engineering,” ISO/IEC/IEEE
29148:2011(E), Dec 2011.

[5] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-directed re-
quirements acquisition,” Sci. Comput. Program., vol. 20, no. 1-2, pp.
3–50, 1993.

[6] A. Hunter and B. Nuseibeh, “Managing inconsistent specifications:
reasoning, analysis, and action,” ACM Trans. Softw. Eng. Methodol.,
vol. 7, no. 4, pp. 335–367, 1998.

[7] A. V. Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications, 10th ed. Chichester, UK: John
Wiley & Sons, 2009.

[8] A. Van Lamsweerde, “Handling obstacles in goal-oriented requirements
engineering,” IEEE TSE, vol. 26, no. 10, pp. 978–1005, 2000.

[9] S. F. Tjong and D. M. Berry, “The design of SREE: a prototype potential
ambiguity finder for requirements specifications and lessons learned,” in
REFSQ’13. Springer, 2013, pp. 80–95.

[10] P. M. Dung, “On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games,”
Artificial intelligence, vol. 77, no. 2, pp. 321–357, 1995.

[11] G. W. F. Hegel, Ph’́anomenologie des Geistes, 1807.
[12] C. Potts, K. Takahashi, and A. I. Anton, “Inquiry-based requirements

analysis,” IEEE software, vol. 11, no. 2, pp. 21–32, 1994.
[13] S. Modgil and H. Prakken, “The ASPIC+ framework for structured

argumentation: a tutorial,” Argument Comput., vol. 5, pp. 31–62, 2014.
[14] M. Caminada and L. Amgoud, “On the evaluation of argumentation

formalisms,” Artif. Intell., vol. 171, no. 5-6, pp. 286–310, 2007.
[15] F.-L. Li and J. Mylopoulos, “Desiree-a refinement calculus for require-

ments engineering,” arXiv preprint arXiv:1604.03184, 2016.
[16] T. Kelly and R. Weaver, “The goal structuring notation a safety

argument notation,” in Proc. of Dependable Systems and Networks 2004
Workshop on Assurance Cases, 2004.

[17] J. Conklin and M. L. Begeman, “gibis: A hypertext tool for exploratory
policy discussion,” ACM Trans. Inf. Syst., vol. 6, no. 4, pp. 303–331.

[18] F.-L. Li, J. Horkoff, A. Borgida, G. Guizzardi, L. Liu, and J. Mylopou-
los, “From stakeholder requirements to formal specifications through
refinement,” in REFSQ’15. Springer, 2015, pp. 164–180.

369

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on January 18,2021 at 14:59:57 UTC from IEEE Xplore. Restrictions apply.

