
CaRE: A Refinement Calculus for Requirements
Engineering Based on Argumentation Semantics

Yehia Elrakaiby⇤, Alessio Ferrari†, John Mylopoulos‡
⇤ Lero - University of Limerick, Email: yehia.elrakaiby@lero.ie

† CNR-ISTI, Email: alessio.ferrari@isti.cnr.it
‡ University of Toronto and University of Trento, Email: jm@cs.toronto.edu

Abstract—The requirements problem consists of transforming

stakeholder requirements - however informal, ambiguous, con-

flicting, unattainable, imprecise and incomplete – into a consis-

tent, complete and realizable specification through a systematic

process. We propose a refinement calculus for requirements

engineering (CaRE) for solving this problem, which takes into

account the typically dialectic nature of requirements activities.

The calculus casts the requirement problem as an iterative

argument between stakeholders and requirements engineers,

where posited requirements are attacked for being ambiguous,

incomplete, etc. and refined into new requirements that address

the defect pointed out by the attack. Refinements are carried

out by operators provided by CaRE that refine (e.g., strengthen,

weaken, decompose) existing requirements, to build a refinement

graph. The semantics of the operators is provided by means

of argumentation theory. Examples are given to illustrate the

elements of our proposal.

I. INTRODUCTION

The core problem in requirements engineering (RE) consists
of transforming the requirements elicited from stakeholders -
however informal, ambiguous, conflicting, unattainable, im-
precise and incomplete - through a systematic refinement
process into a specification that is consistent, complete and
realizable. Variants of this problem have been addressed by
many contributions that constitute the backbone of RE research
and go as far back as seminal contributions by Douglas Ross
[1] and Michael Jackson [2]. Various IEEE/ISO Standards on
Software Requirements Specifications, such as [3] and [4],
have detailed the “defects” that need to be eliminated during
the refinement process.

The state-of-the-art in RE for dealing with this core problem
consists of approaches that offer refinement operators for elim-
inating specific types of defects. For example, Goal-Oriented
RE (GORE) techniques offer AND/OR refinements to move
requirements towards operationalizability (making require-
ments operationalizable through functions that the system-to-
be can perform) [5]. Others propose refinements for eliminat-
ing various forms of conflict, including inconsistencies [6], [7]
and obstacles [8]. Still others focus on recognizing ambiguity,
also by means of natural language processing (NLP) [9].

Unfortunately, existing proposals are limited in that they
focus on particular types of defect, e.g., inoperationalizability
in the case of GORE, inconsistencies and obstacles in the
specific case of KAOS [7], [8]. In this work-in-progress, we
propose a refinement calculus intended to addresses all defects
cited by the IEEE/ISO Standards through a small number

of refinement operators. Our calculus includes operators for
strengthening a requirement r into r+, i.e., r+ entails r;
weakening a requirement r into r�, i.e., r entails r�; rejecting
a requirement; introducing a new requirement; decomposing
r into r1, . . ., r

n

; and justifying r by introducing a “higher-
level” requirement r0 that explains the motivation for r1.

The key contribution of this work is to formally define what
does it mean for a specification to address (deal with) an initial
set of requirements. Addressing a requirement constitutes a
weaker notion than satisfying a requirement, because it allows
for a requirement to be weakened or altogether dropped, as
long as there is an acceptable argument for this.

Towards this end, we adopt argumentation semantics from
Dung [10], a state-of-the-art argumentation framework for
formal reasoning about arguments. The refinement process is
viewed as an argument between stakeholders and requirements
engineers where posited requirements are attacked by pointing
out defects (e.g., “r is too strong/weak”, “r is incomplete”,
“r is unattainable”, “r1, . . ., r

m

are conflicting”, etc.) and
new requirements are proposed that remove the defect pointed
out by the attack. Participants in the argument can counter-
propose, or outright reject what has been proposed and so on.
This argumentation process supports arguments of the form
“The set of requirements given so far is incomplete because
it doesn’t say anything about privacy, whereas the system-
to-be will be handling personal data”, or “This requirements
is not needed, drop it”. The process leads to a refinement
graph with many potential specifications S for an initial
set of requirements R, each consisting of leaf nodes of the
graph. Each S addresses R if there is an acceptable argument
that derives S from R through refinement. This makes the
derivation of S from R a Hegelian dialectic process of thesis-
antithesis-synthesis [11], also similar in spirit to the inquiry
cycle [12], though our proposal aims to include more structure,
technical details and reasoning support for the RE process.

The envisioned contributions of this ongoing work, some of
which are included in this report, are:

• A refinement calculus for RE that extends goal-oriented
approaches and addresses a full set of defects, inspired
by the IEEE/ISO standards;

• An argumentation semantics of what it means for a
specification to satisfy a set of stakeholder requirements;

1In GORE terminology, r0 is a higher-level goal than r justifying r.

1

Paper accepted at RE’18

• Reasoning support that, given an initial set of require-
ments R and a constructed refinement graph, returns all
specifications S that satisfy R.

The remainder of the paper is structured as follows. In
Sect. II, we present an informal overview of the calculus. In
Sect. III, we show how we propose to use argumentation to
provide semantics for the calculus. Finally, Sect. IV provides
our research roadmap, together with final remarks.

II. CALCULUS DESCRIPTION

CaRE consists of a systematic process and a calculus
for requirements elicitation, negotiation and refinement that
supports documentation of the process, agreement between
stakeholders2 and management of change. The calculus con-
sists of a collection of attacks types and refinements. The
attack types we adopt have been inspired by the IEEE/ISO
standards and represent defects that could be identified by
stakeholders in one or more requirements. Refinements, on
the other hand, are the means for fixing defects.

A. Attack Types

Attacks on requirements consist of pointing out defects
that make them unacceptable according to some stakeholders.
Requirements may be attacked individually or collectively. In
the former case, we refer to an attack as Single-Target Attack
(or STA) and in the latter as Multi-Target Attack (MTA).

a) Single-Target Attacks:
• NonAtomic: the requirement under attack is not opera-

tionalisable. For example, hr1:“System shall schedule a
meeting upon request”i is non-atomic since there is no
single action the system-to-be can perform to fulfill it.

• Ambiguous: the requirement admits multiple interpreta-
tions because it is vague, imprecise or ambiguous. For
example, hr2:“The authentication process shall be easy”i
is ambiguous since the term easy is vague.

• Unattainable: the requirement is not feasible, i.e. doesn’t
have a realistic solution. For example, hr3:“The system
shall be available at all times”i is unattainable because it
assumes eternal availability of power and other resources.

• Unjustified: the requirement does not have an explicit
motivation. For example, hr4:“The system shall run on
Windows operating system”i may be attacked for missing
an explicit justification of why other operating systems
are not considered.

• Incomplete: the requirement is missing information. For
example, hr5:“In case of fault, the system shall send an
error message”i is incomplete because it does not specify
a recipient of the message.

• TooStrong: the requirement is unnecessarily strong or
unnecessary. For example, hr6:“The website shall use
HTTPS protocol”i, may be too strong and unnecessary
for a website that does not handle sensitive data.

• TooWeak: the requirement is too weak. For example,
hr7:“The DB system shall process 500 transactions/sec”i

2In the body of the paper, the term “stakeholders” denotes also requirements
engineers.

is too weak if the expected workload for the system-to-be
is 1,000 transactions/sec.

• Rejected: the requirement is rejected. For example, in the
context of an app recommending nearby restaurants to
users, a requirement hr8:“The app shall support chatting
between the user and a recommended restaurant”i may
be deemed unacceptable.
b) Multi-Target Attacks:

• mConflict: the collection of requirements under attack
is not satisfiable, even though subsets are. For example,
the requirements hr9:“The train control system shall stop
the train if a red signal is missed”i and hr10:“The train
control system shall not apply brakes if the speed is
below 30 km/h”i (assuming that the driver is in charge
for speeds <30km/h) are conflicting.

• mIncomplete: the set of requirements is missing needed
requirements. For example, a set of requirements for a
social network platform is mIncomplete if it does not
include any privacy requirement.

• mTooStrong: here a collection of requirements is too
strong or redundant. This is the case of requirements
such as hr11:“The system shall support authentication
through fingerprint recognition”i and hr12:“The system
shall support authentication through iris recognition”i.

Attacks have a type and take as arguments a single require-
ment or a set, as well as a statement that offers a rationale for
the attack. For instance, TooWeak(r7, “System is supposed to
handle 1,000 tps”), or mConflict({r9, r10}, “train control can’t
be in manual and automatic mode at the same time”).

B. Refinement Operators

Refinement operators are intended to remove defects pointed
out by attacks. Each operator operates on a single requirement
or a set under attack, and it is applicable for attacks of one or
more attack types. One exception are attacks of type Rejected
– if a requirement has been rejected. In this case, there is no
possible fix and this requirement represents a dead end. The
proposed operators are intended to address all attack types.
They are as follows:

• weaken: produces a weaker requirement than its operand.
For example, the unattainable requirement r3 may be
weakened into hr13:“The system shall be available at all
times, with interruptions of 2 hours”i. As indicated ear-
lier, weaken is applicable for attacks of type Unattainable
and TooStrong.

• strengthen: produces a stronger requirement than its
operand. For instance, r7 may be strengthened into
hr14:“The system shall process 1,200 tps”i. strengthen is
applicable for attacks of type Incomplete, TooWeak and
Ambiguous.

• reduce: decomposes its operand into a set r1, ..., rn using
AND-, OR-, or XOR-refinement. In the case of AND-
refinement, the operand is satisfied if all requirements
are satisfied, i.e. every r

i

(1  i  n) is satisfied. In the
case of OR-refinement, the operand is satisfied if any r

i

2

is satisfied. Finally, the operand of an XOR-refinement is
satisfied whenever exactly one r

i

is satisfied. reduce is
applicable for attacks of type NonAtomic.

• add: introduces a new requirement and it is applicable for
attacks of type Unjustified, Incomplete and mIncomplete.

• resolve: replaces a set of conflicting requirements
r1, ..., rn with a new set of non-conflicting requirements
r

0
1, ...r

0
m

. Conflict resolution typically consists of weak-
ening or dropping some of the requirements in r1, ..., rn

such that the new set r01, ...r0m is not conflicting. resolve

is applicable for attacks of type mConflict.

C. Incremental Construction of a Refinement Graph

The process of building a refinement (hyper)graph G =
hR,Ei from an initial set of stakeholder requirements R0

proceeds as illustrated by the informal pseudo-code reported
below. Each node r 2 R in the graph is associated to a
requirement. Each hyper-edge e 2 E, where E ✓ P(R)⇥P(R)
represents the application of a refinement operator. In the
following, R denotes a set of requirements.

BUILD-REFINEMENT-GRAPH(R0)

E ;
R R0

do

– Select R ✓ R, such that an attack type
A applies on R

– Define an attack of type A on R

– Select a refinement operator o
that is applicable for A
– Apply o on R resulting in r1, . . . , rn

R R [{r1, . . . , rn}
e hR, {r1, . . . , rn}i
E E [e

while there are applicable attacks on any R

return G hR,Ei

This process creates a refinement (hyper)graph with one
(hyper)edge for every refinement that has as source(s) all
operands of the refinement and as destinations all the new
requirements resulting from the refinement. Leaf nodes in that
graph are those that haven’t participated in any refinement
because there are no applicable attacks.

A specification consists of a set of leaf nodes of the
refinement graph that together address all requirements in
R0. Note that, since no attack is applicable to leaf nodes,
these must be atomic, and that is why they can be included
in the specification. Specifications constitute solutions to the
requirements problem defined by the initial set of stakeholder
requirements R0, by addressing all requirements in it. The
semantics of addressability is founded on the notion of ac-
ceptability from argumentation theory [10]: a set of statements
is acceptable if none of them is attacked, or none of the
attacks against them are acceptable. Establishing acceptability
constitutes the key problem in reasoning with arguments.

III. A SEMANTICS OF CARE BASED ON ARGUMENTATION

Argumentation theory studies the fundamental mechanism
that humans use in argumentation and develops formal mod-
els and reasoning support to implement this mechanism on
computers [10]. This section shows how refinement graphs
can be mapped into arguments in ASPIC+ [13], a framework
for structured argumentation that extends Dung’s argumen-
tation theory. Such a mapping gives formal semantics to
CaRE refinement graphs and enables reasoning that determines
whether a given set of stakeholder requirements is addressed
by a specification. In the following, we consider a simplified
version of the description of ASPIC

+ presented by Caminada
and Amgoud [14]. An ASPIC

+ argumentation theory is a
tuple hL, IR,KB, ni where

• L is a logical language (closed under negation).
• IR is a set of defeasible inference rules of the form
�1, ...,�n) �, where �,�1, ...,�n are meta-variables
ranging over the set of well-formed formulas of L. A
defeasible rule means that if one accepts all antecedents,
then one must accept the consequent unless there is a
sufficient reason to reject it. Defeasible rules with empty
premises, i.e. rules of the form) �, are assumptions.

• n : R
d

! L is a partial function that gives names to
(some) defeasible rules. Informally, n(r) is a proposition
which means that r is applicable.

We assume in this section that L is a propositional language.
Moreover, two formulas � and are contradictory iff � = ¬
and ¬� = . Note that ¬¬� = �.

A. Construction of Arguments & Attacks

a) Construction of Arguments: Consider an initial ar-
gumentation theory AT . Let L of AT be a propositional
language that includes the propositions {a,b,c}. Those propo-
sitions, put forward by stakeholder s1, mean the following:

• a: trains are using the latest fail-safe air brake system
(FABS),

• b: therefore, trains need 500m to stop,
• c: hr1:“there shall be a minimal distance of 500m between

trains”i
Figure 1 depicts how the above statements are represented as
an ASPIC

+ argumentation theory AT and the arguments that
are constructed on the basis of it. In particular, AT includes
{) a, a) b, argre : b) c}. The arguments constructed on
the basis of AT are {A1, A2, A3}3. Those arguments can be
written as A1 = [) a], A2 = [A1) b] and A3 = [A2) c].
The conclusion and premises of an argument A are denoted by
conc(A) and prem(A) respectively. For example, conc(A3)
and conc(A2) are c and b respectively. On the other hand,
prem(A3) and prem(A2) are {a, b} and {a} respectively.

3Due to space limitations, we do present formally the construction of
arguments on the basis of argumentation theories. Interested readers are
referred to [13], [14].

3

A1

A2

trains use FABS

trains stop in 500m

<r1: a minimum
distance of 500m>

A3

Assumption
argre

(regular) conclusion

Fig. 1: Argument Construction

A1

A2

trains use FABS

trains stop in 500m

<r1: a minimum
distance of 500m>

A3

argre

trains stop in 550m

journal says 500m

Rebut Attack

B1

B2

Fig. 2: Rebuttal Attack

b) Attacking Requirements: After identification of re-
quirements, they are examined by stakeholders to determine
whether they contain defects. In ASPIC

+, there are two
basic types of attacks: rebuttal attacks which denote a con-
flict relation between the conclusions of two arguments and
undercut attacks which represent an attack on the validity of
some inference. The attacks identified in the previous section
are mapped into the form of one of those two basic types.

For example, consider that stakeholder s2 argues that “I read
recently in a scientific journal that latest tests revealed that
FABS requires 550m to stop”. Therefore, “trains need 550m
to stop and not 500m”. This conflict situation is presented by
adding the following propositions to the argumentation theory.

• d: I read recently that FABS requires 550m to stop,
• e: trains need 550m and not 500m to stop.

In AT , those arguments will be represented by {) d, d) e},
leading to the construction of the arguments of B1 and B2

shown in Figure 2. Since the conclusion of B2 is contradictory
to the conclusion of A2, B2 is said to (rebut) attack A2. B2

also rebut attacks A3 since A3 is a continuation of A2
4. In the

former case, the attack is called a direct attack, whereas in the
latter case the attack is indirect. Notice that rebuttal attacks
are symmetric, i.e. A2 and A3 also attack B2.

c) Dung’s Argumentation Framework: Argumentation
allows reasoning about conflicts between arguments and deter-
mining which arguments are justified, i.e. should be accepted.
In CaRE, this notion of acceptability determines the status
of requirements, more precisely a requirement is said to be

4We refer interested readers to [13] for more detailed definitions of attacks
and their identification.

acceptable only it is justified. Notice that a requirement is
acceptable only if does not have defects. ASPIC

+ relies on
Dung’s Argumentation Framework (DAF) [10]. A DAF is a
pair hA,Di, where A is a set of arguments and D is a set of
attacks among those arguments. Based on DAFs, the justifi-
cation of arguments is determined through the calculation of
the so-called extensions. In this paper, we consider only the
grounded extension, which represents the skeptical semantics
of argumentation frameworks, i.e. the arguments that should
“always” be accepted.

d) Construction of DAF: Based on the arguments and
attacks in Figure 2, a DAF

exmp

is constructed as follows:

A = {A1, A2, A3, B1, B2}
D = {(A2, B2), (B2, A2), (A3, B2), (B2, A3)}

e) Computation of Grounded Extensions: determines the
arguments that are “always” justified or acceptable. The com-
putation of the grounded extension for DAF

exmp

produces the
arguments {A1, B1}. This is interpreted as “only arguments
A1 and B1 are (always) justified”.

f) Justified Conclusions: are the statements or proposi-
tions that are justified. They are simply the conclusions of
the arguments in the grounded extension. For example, the
justified conclusions of AT before and after stakeholder s2

pointed out the defect in r1 are as follows:
• before: {a, b, c}
• after: {a, d}

Notice that the requirement r1 was acceptable (c was ac-
ceptable) until the intervention of stakeholder s2. To restore
the acceptability of r1, refinements are needed. Before the
description of refinements, we first present the second basic
attack type in ASPIC

+.
g) Undercut Attacks: Imagine that stakeholder s3 argues

that r1 does not have a justification:
• g: r1 is not justified.

In this case, s3 does not attack the premises of the requirement
argument argre but rather it points out a problem with the
requirement itself. We represent this case in the form of an
(undercut) attack as shown in Figure 3. The DAF computed
for Figure 3 is as follows:

A = {A1, A2, A3, C1}
D = {(C1, A3)}

Notice that, as opposed to the previous rebuttal attack, the
undercut attack is asymmetric, i.e. C1 attacks A3 but not vice
versa. The grounded extension and justified conclusions are:

• Extension: {A1, A2, C1}
• Conclusions: {a, b, g}

Thus, this undercut attack renders the requirement, denoted by
c, unjustified.

B. Refinements and Refinement Graph

a) Refinements: The computation of extensions reveals
the state of requirements according to the negotiation between

4

A1

A2

trains use FABS

trains stop in 500m

<r1: a minimum
distance of 500m>

A3

argre
r1 is not justified

Undercut Attack

C1

argatt

Fig. 3: Argument Construction

A1

A2

trains use FABS

trains stop in 500m

<r1: a minimum
distance of 500m>

A3

argre
r1 is not justified

C1

r2 justifies r1

<r2: avoid train collision>

D1

D2
argatt argref

Fig. 4: Refinement

stakeholders, i.e. whether they are acceptable or not. This
enables stakeholders to identify which requirements have
defects and therefore should be refined. To address the defect
in r1, stakeholder s2 proposes the following:

• i: hr2:“avoid train collisions”i,
• h: r2 provides a justification for r1.

Figure 4 depicts the statements above and how they affect the
argumentation theory. In particular, by providing a justification
for r1, s2 is able to fix the issue identified by stakeholder s3

(i.e. that r1 is not justified). This results in the construction
of the arguments D1 and D2. By providing a justification for
r1, this refinement argument undercuts C1. Consequently, the
DAF computed for Figure 4 becomes as follows:

A = {A1, , A2, A3, C1, D1, D2}
D = {(C1, A3), (D2, C1)}

The grounded extension and justified conclusions are:
• Extension: {A1, A2, A3, D1, D2}
• Conclusions: {a, b, c, i, h}

Thus, stakeholder s3, by proposing the refinement above, is
able restore the acceptability of r1.

Note that defects that correspond to rebuttal attacks
(Sect. III-A.b) are addressed through the specification of
preferences. More precisely, we allow stakeholders to choose
which, among the conflicting propositions, is more likely to
be true. ASPIC

+ supports the expression of such preferences
and the computation of extensions based on them. Due to
space limitations, preferences will not be further discussed
here but interested readers are referred to [13] for details on
how preferences affect the computation of extensions.

b) Refinement Graph: Throughout the evolution of the
negotiation process above, we construct an argumentation
theory that tracks the evolution of requirements, attacks to-
wards them and refinements that succeed in restoring their
acceptability. On the other hand, the refinement graph shows
the requirements and their update through refinements. Re-
finements shown in the graph are the ones that are justified
through argumentation. Figure 5 shows an example of a
fragment of a refinement graph, coupled with its corresponding
argumentation graph. The figure depicts the progression of the
refinement process: r1 is found to be unjustified, since it does
not have a clear motivation. This leads to a refinement that
fixes the problem through the addition of a new requirement
(add operator), r2, which provides a motivation for r1. If r1

and r2 are not attacked, then the refinement process ends.
However, r2 may be considered non-atomic, since it is too
abstract. Therefore, the reduce operator is applied, and a
novel requirement r3 is produced, with the same content of r1
– notice that other requirements with different content than
r1 could also be produced at this stage. By iterating this
refinement process, leaf nodes will be all the nodes for which
no attack is applicable, as specified in Sect. II-C.

IV. ROADMAP AND CONCLUSION

This paper presents work-in-progress on CaRE, a require-
ments engineering methodology equipped with an expressive
calculus for requirements elicitation, negotiation and refine-
ment that supports documentation of the requirements process,
convergence towards consensus among stakeholders, rational-
ization and management of requirements change as follows:

• Negotiation and agreement: thanks to its argumentation
structure and the dialectical nature of argumentation,
CaRE is well suited for capturing the arguments ex-
changed between stakeholders and requirements engi-
neers during the requirements engineering process;

• Refinement and elicitation: is supported through the
systematic identification of defects (attacks) and refine-
ments. In particular, this process leads to identification of
missing requirements, rejection of unnecessary ones and
refinement of those that are too strong or too weak;

• Documentation of the process: is supported by the re-
finement graph that captures arguments (requirements,
attacks and refinements) exchanged between stakeholders
in the requirements process;

• Rationalization of requirements change: is supported
since every change is motivated by an attack and there
is room for stakeholders to counter-attack during the
refinement process.

• Management of change: is supported since requirements
and attacks can be easily added, revised or removed, lead-
ing automatically to the computation of new extensions
that show whether requirements are still acceptable or
not. Refinement graphs are also updated accordingly.

The proposed calculus extends GORE approaches by offer-
ing a rich set of attack types as well as powerful refinement
operators for addressing the defects pointed out in attacks.

5

argatt

argref

argatt

argref

argre

argre

<r2: avoid train
collision>

<r1: a minimum
distance of 500m>

A1

A2

trains use FABS

trains stop in 500m

<r1: a minimum
distance of 500m>

A3

r1 is not justified

C1

r2 justifies r1

<r2: avoid train
collision>

D1

D2

add

<r3: a minimum
distance of 500m>

reduce <r2: avoid train
collision>

r2 is nonatomic

r3 reduces r2

<r3: a minimum
distance of 500m>

E1

F1

G1

G2

Fig. 5: A fragment of refinement graph, mapped with the argumentation graph

The closest work to our proposal is the thesis of Li [15]
where a rich refinement calculus is proposed, but is not
cast in argumentation terms and consequently lacks proper
semantics. In [16], the Goal Structuring Notation (GSN) is
used to explicitly represent the elements of safety arguments
and their relationships. The main objective of this work is
to present an argument that a system is acceptably safe to
operate in a given context. In contrast, our work focuses on
requirements refinements, negotiation and elicitation. There
have been proposals in Software Engineering for capturing
design rationale during the design process [17]. Such work
differs from our proposal in that it is not intended to offer a
calculus for design. Rather, it strives to model the rationale
behind design decisions.

Moving forward, we plan to complete this research by
providing a full formalization of CaRE in ASPIC+. Secondly,
we will consider a more detailed and formal requirements
language that includes assumptions, functional, and quality
requirements, in the spirit of Li et al. [15], [18]. Thirdly,
we propose to build a reasoner for refinement graphs that
determines whether there is a specification for a given set
of initial requirements. Finally, we propose to integrate into
our framework existing NLP tools – as, e.g., SREE [9] –
that support automated identification of requirements defects.
Our goal is to come to a tool-supported method in which
formal argumentation is transparent to the user, making CaRE
easy to use by common requirements analysts. A cost-benefit
evaluation on the practical applicability and scalability of
CaRE is also foreseen as part of our future work.

ACKNOWLEDGMENT

This work was supported, in part, by Science Foundation
Ireland grant 13/RC/2094 and ERC Advanced Grant 291652.

REFERENCES

[1] D. T. Ross, “Structured analysis (sa): A language for communicating
ideas,” IEEE TSE, no. 1, pp. 16–34, 1977.

[2] M. Jackson, “Information systems: Modelling, sequencing and transfor-
mations,” in ICSE’78. IEEE Press, 1978, pp. 72–81.

[3] “IEEE Recommended Practice for Software Requirements Specifica-
tions,” IEEE Std 830-1998, pp. 1–40, Oct 1998.

[4] “Iso/iec/ieee international standard - systems and software engineer-
ing – life cycle processes –requirements engineering,” ISO/IEC/IEEE
29148:2011(E), Dec 2011.

[5] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-directed re-
quirements acquisition,” Sci. Comput. Program., vol. 20, no. 1-2, pp.
3–50, 1993.

[6] A. Hunter and B. Nuseibeh, “Managing inconsistent specifications:
reasoning, analysis, and action,” ACM Trans. Softw. Eng. Methodol.,
vol. 7, no. 4, pp. 335–367, 1998.

[7] A. V. Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications, 10th ed. Chichester, UK: John
Wiley & Sons, 2009.

[8] A. Van Lamsweerde, “Handling obstacles in goal-oriented requirements
engineering,” IEEE TSE, vol. 26, no. 10, pp. 978–1005, 2000.

[9] S. F. Tjong and D. M. Berry, “The design of SREE: a prototype potential
ambiguity finder for requirements specifications and lessons learned,” in
REFSQ’13. Springer, 2013, pp. 80–95.

[10] P. M. Dung, “On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games,”
Artificial intelligence, vol. 77, no. 2, pp. 321–357, 1995.

[11] G. W. F. Hegel, Ph’́anomenologie des Geistes, 1807.
[12] C. Potts, K. Takahashi, and A. I. Anton, “Inquiry-based requirements

analysis,” IEEE software, vol. 11, no. 2, pp. 21–32, 1994.
[13] S. Modgil and H. Prakken, “The ASPIC+ framework for structured

argumentation: a tutorial,” Argument Comput., vol. 5, pp. 31–62, 2014.
[14] M. Caminada and L. Amgoud, “On the evaluation of argumentation

formalisms,” Artif. Intell., vol. 171, no. 5-6, pp. 286–310, 2007.
[15] F.-L. Li and J. Mylopoulos, “Desiree-a refinement calculus for require-

ments engineering,” arXiv preprint arXiv:1604.03184, 2016.
[16] T. Kelly and R. Weaver, “The goal structuring notation a safety

argument notation,” in Proc. of Dependable Systems and Networks 2004
Workshop on Assurance Cases, 2004.

[17] J. Conklin and M. L. Begeman, “gibis: A hypertext tool for exploratory
policy discussion,” ACM Trans. Inf. Syst., vol. 6, no. 4, pp. 303–331.

[18] F.-L. Li, J. Horkoff, A. Borgida, G. Guizzardi, L. Liu, and J. Mylopou-
los, “From stakeholder requirements to formal specifications through
refinement,” in REFSQ’15. Springer, 2015, pp. 164–180.

6

	Introduction
	Calculus Description
	Attack Types
	Refinement Operators
	Incremental Construction of a Refinement Graph

	A Semantics of CaRE based on Argumentation
	Construction of Arguments & Attacks
	Refinements and Refinement Graph

	Roadmap and Conclusion
	References

