
Noname manuscript No.

(will be inserted by the editor)

Detecting Requirements Defects with NLP Patterns:

an Industrial Experience in the Railway Domain

Alessio Ferrari · Gloria Gori ·
Benedetta Rosadini · Iacopo Trotta ·
Stefano Bacherini · Alessandro Fantechi ·
Stefania Gnesi

Received: date / Accepted: date

Acknowledgments. The authors would like to thank Daniel M. Berry for kindly providing
the dictionaries used by SREE. This work was partially supported by the H2020-S2RJU-
OC-2017 Project ASTRail (ID: 777561).

A. Ferrari
ISTI-CNR, Via G. Moruzzi, 1, 56124, Pisa, Italy
Tel.: +39 050 621 2806
Fax: +39 050 315 2810
E-mail: alessio.ferrari@isti.cnr.it

G. Gori
University of Florence, Dipartimento di Ingegneria dell’Informazione,
Via Santa Marta, 3, 50139 Florence, Italy
E-mail: gloria.gori@unifi.it

B. Rosadini
Alstom Signalling Solutions, Via Pietro Fanfani, 21, 50127, Florence, Italy
E-mail: benedetta.rosadini@alstomgroup.com

I. Trotta
Alstom Signalling Solutions, Via Pietro Fanfani, 21, 50127, Florence, Italy
E-mail: iacopo.trotta@alstomgroup.com

S. Bacherini
Alstom Signalling Solutions, Via Pietro Fanfani, 21, 50127, Florence, Italy
E-mail: stefano.bacherini@alstomgroup.com

A. Fantechi
University of Florence, Dipartimento di Ingegneria dell’Informazione,
Via Santa Marta, 3, 50139 Florence, Italy
Tel.: +39 055 275 8639
Fax: +39 055 275 8570
E-mail: alessandro.fantechi@unifi.it

S. Gnesi
ISTI-CNR, Via G. Moruzzi, 1, 56124, Pisa, Italy
Tel.: +39 050 621 2918
Fax: +39 050 315 2810
E-mail: stefania.gnesi@isti.cnr.it

1

Abstract [Context and Motivation] In the railway safety-critical domain
requirements documents have to abide to strict quality criteria. Rule-based
natural language processing (NLP) techniques have been developed to auto-
matically identify quality defects in natural language requirements. However,
the literature is lacking empirical studies on the application of these techniques
in industrial settings. [Question/problem]Our goal is to investigate to which
extent NLP can be practically applied to detect defects in the requirements
documents of a railway signalling manufacturer. [Principal idea/results] To
address this goal, we first identified a set of typical defects classes, and, for
each class, an engineer of the company implemented a set of defect-detection
patterns by means of the GATE tool for text processing. After a preliminary
analysis, we applied the patterns to a large set of 1866 requirements previously
annotated for defects. The output of the patterns was further inspected by two
domain experts to check the false positive cases. Additional discard-patterns
were defined to automatically remove these cases. Finally, SREE, a tool that
searches for typically ambiguous terms, was applied to the requirements. The
experiments show that SREE and our patterns may play complementary roles
in the detection of requirements defects. [Contribution] This is one of the first
works in which defect detection NLP techniques are applied on a very large set
of industrial requirements annotated by domain experts. We contribute with
a comparison between traditional manual techniques used in industry for re-
quirements analysis, and analysis performed with NLP. Our experience shows
that several discrepancies can be observed between the two approaches. The
analysis of the discrepancies o↵ers hints to improve the capabilities of NLP
techniques with company specific solutions, and suggests that also company
practices need to be modified to e↵ectively exploit NLP tools.

Keywords Natural Language Processing · Requirements Engineering ·
Natural Language Requirements · Requirements Analysis · Defect Detection ·
Ambiguity · Precision · Recall · Industrial Case Study · Railway

1 Introduction

The CENELEC norms provide standards for the development of railway safety-
critical systems in Europe. The CENELEC EN 50128:2011, specific for soft-
ware, asks requirements documents for railway systems to be complete, clear,

precise, unequivocal, verifiable, testable, maintainable, and feasible – clause
7.2.4.4 of the norm (CENELEC, 2011). To ensure that these quality attributes
are met, companies developing railway products have a Verification Engineer
(VE) who reviews for defects any requirements document produced along the
development process. This review activity is time consuming and error prone,
and an automated review assistant might help VEs in their task. As well
known, requirements are normally edited in natural language (NL) (Mich et al,
2004; Kassab et al, 2014), and the railway domain makes no exception. Sev-
eral natural language processing (NLP) approaches have been developed to
assist requirements review. Part of this work focusses on the identification of

2

typical defective terms and constructions (Fabbrini et al, 2001; Berry et al,
2003; Gnesi et al, 2005; Gleich et al, 2010; Tjong and Berry, 2013; Arora
et al, 2015; Femmer et al, 2017), while other focus on artificial intelligence
techniques (Chantree et al, 2006; Yang et al, 2011; Ferrari and Gnesi, 2012).
However, the literature is lacking large-scale case studies concerning industrial
applications of NLP approaches for defect detection (Femmer et al, 2017).

This paper aims at filling this research gap, by providing the experience
done within a collaboration between a world-leading railway signalling com-
pany, the University of Florence, and ISTI-CNR to investigate the feasibility
of using NLP for defect identification in the requirements documents of the
company. In this experience, a professional VE of the company developed a
set of NLP-based defect detection patterns by means of the GATE tool (Gen-
eral Architecture for Text Engineering) for text analysis (Cunningham, 2002).
The VE applied the patterns on a dataset of 241 requirements, previously an-
notated for defects by the VE. A recall of 88.33% and a precision of 64.24%
were obtained. Given these encouraging results, the patterns were applied on
a larger dataset of 1866 requirements, previously annotated by another VE of
the company. This time, the performance was poorer, with a recall of 85.39%,
and a disappointing precision of 5.81%. The requirements were inspected by
two VEs, to analyse the false positive cases that led to the observed value of
precision. This analysis showed that many true linguistics defects were not con-
sidered in the initial annotation. After marking these defects as true positive
cases, the precision increased to 77.37%. To further improve the performance,
a set of discard patterns were defined to eliminate systematic false positive
cases. The final precision value achieved was 83.16%. After this activity, ex-
periments were performed with SREE (Tjong and Berry, 2013), a tool for
defect detection in requirements, which searches for typically defective terms.
SREE allowed the detection of defects that were not identified by means of our
patterns, although at the cost of lower precision. Further analysis showed that
SREE and our patterns may play complementary roles in defect detection.

This experience, which involved three professional VEs and a large-scale
experimentation on 1866 requirements, shows that NLP technologies can be
used to develop in-house tools for defect identification. Furthermore, the in-
ternal development of the tools can enable the VEs of the company to tune the
tools to account for part of the discrepancies that occur between manual re-
views and automated ones. This work is an extension of a previous conference
paper (Rosadini et al, 2017). With respect to the original paper, the current
work provides an improved structure, according to the guidelines of Runeson
et al (2012) for reporting case studies in software engineering, and adds the
following relevant contributions: (a) a thorough discussion of the false positive
cases of the large-scale study on the 1866 requirements dataset; (b) the in-
troduction of discard patterns to reduce the false positive cases, and increase
the precision of the approach; (c) an experience in which the SREE tool for
term-based defect detection is applied on the requirements.

3

The remainder of the paper is structured as follows. Sect. 2 summarises related
works. In Sect. 3 we describe the patterns for defect detection used in the study.
In Sect. 4, we present our research methodology and the case study design.
In Sect. 5, the execution of the case study is described, while Sect. 6 presents
the results. Sect. 8 highlights the lessons learned, and Sect. 9 provides final
remarks, with implications for practice and future research.

2 Related Works

NLP techniques have been largely applied to automate several requirements
engineering tasks, including model synthesis (Robeer et al, 2016), classification
of requirements into functional/non-functional categories (Casamayor et al,
2012), classification of online product reviews (Maalej and Nabil, 2015), trace-
ability (Sultanov and Hayes, 2013; Cleland-Huang et al, 2010), detection of
equivalent requirements (Falessi et al, 2013), completeness evaluation (Ferrari
et al, 2014), information extraction (Gacitua et al, 2010; Quirchmayr et al,
2017; Lian et al, 2016), ambiguity detection (Tjong and Berry, 2013; Berry
et al, 2003), and its generalisation, defect detection. Since in this paper we fo-
cus on defect detection, we will discuss related works in this field. Techniques
developed to address the problem of defects in written requirements can be
broadly partitioned into two sets. The first set of techniques suggests to use
constrained NL or formal/semi-formal languages to prevent or limit defects.
The second set of techniques starts from unconstrained NL and generally aims
at detecting defects, either by means of manual verification, or by means of
automated tools.

2.1 Preventing and Limiting Defects

In the literature, several strategies were defined to prevent defects by means
of constrained natural languages (Mavin et al, 2009; Pohl and Rupp, 2011)
or (semi-)formal approaches (Mich, 1996; Ambriola and Gervasi, 2006; Kof,
2010; Gervasi and Zowghi, 2005).

Concerning the use of constrained natural languages, the EARS (Mavin
et al, 2009) and the Rupps template (Pohl and Rupp, 2011) are well known
constrained formats for editing requirements. Arora et al (2015) defined an
approach to check the conformance of requirements to these templates. Al-
though the adoption of constrained natural languages is not widespread in
industry, recent studies have shown that templates can be proficiently used by
domain experts (Mavin et al, 2016). On the other hand, templates can limit
the amount of requirements defects at the syntactic level, but linguistic defects
may still be present at the lexical, semantic and pragmatic levels. Addressing
these defects requires other techniques (Arora et al, 2015).

Among the works on (semi-)formal approaches, one of the earlier contri-
butions with a focus on defect prevention is the tool LOLITA (Mich, 1996),

4

which implements an approach for translating NL requirements into object-
oriented models. Similarly, Circe-Cico (Ambriola and Gervasi, 2006), starts
from NL requirements to generate models to support requirements analysis.
Zowghi et al (2001) and Gervasi and Zowghi (2005) suggest logic as a tool to
identify and analyse inconsistency in requirements from multiple stakehold-
ers. More specifically, they propose a tool, named CARL, that automatically
translates NL into logic and then uses theorem proving and model checking
to detect inconsistency in the requirements. The works of Kof aim to semi-
automatically formalise NL requirements into message sequence charts (Kof,
2008) and automata (Kof, 2009). More recently, Yue et al (2015) proposed a
method and a tool, called aToucan, to automatically generate a UML software
analysis model from textual, functional requirements specifications expressed
in the form of use cases. A systematic study of defects in use case specifications
expressed in restricted NL is presented by Zhang et al (2016).

The idea behind the works on (semi-)formal approaches is that the formal-
isation process may help in identifying requirements defects, since errors in
requirements would lead to inconsistencies or omissions in models, and, due to
the more formal nature of models, defects are easier to detect in models than
in textual requirements. However, through an analysis of two empirical stud-
ies, Kamsties (2005) concludes that formalization does not help to eliminate
defects from informal requirements documents. Indeed, during the formaliza-
tion process the analyst makes implicit assumptions, transforming defects into
errors. Therefore, even when formal modelling is applied, other techniques for
defect defection shall be used as a complement.

2.2 Detecting Defects

Approaches for defect detection can be categorised into manual approaches
and automated ones, mostly based on NLP. Early and successful techniques
for manual requirements inspection were provided by Fagan (1976) and Shull
et al (2000). Inspection checklists were developed, among others, by Anda and
Sjøberg (2002) and by Kamsties et al (2001), while a survey on the topic of
requirements inspection was published by Aurum et al (2002).

Automated NLP approaches for defect detection can be be categorised
into those that use rule-based techniques (Wilson et al, 1997; Berry et al,
2003; Gnesi et al, 2005; Gleich et al, 2010; Tjong and Berry, 2013; Arora
et al, 2015; Femmer et al, 2017) and those that leverage artificial intelligence
techniques (Chantree et al, 2006; Yang et al, 2011; Ferrari and Gnesi, 2012).
Our contribution falls into the first category, which collects all the works in
which defects are identified based on linguistic patterns.

The Ambiguity Handbook of Berry et al (2003) includes one of the most
influential classification of ambiguity-related defects in requirements, and pro-
vides a large set of examples of typically dangerous words and constructions.
Wilson et al (1997) define a quality model composed of quality attributes
and quality indicators, and develop an automatic tool (called ARM: Auto-

5

mated Requirement Measurement) to perform the analysis against the quality
model aiming to detect defects and to collect metrics. The tool was applied
to industrial requirements from NASA (Rosenberg et al, 1998). Gnesi et al
(2005) present QuARS, a tool for defect detection based on a quality model
developed by the authors. Similarly, Gleich et al (2010) implemented a grep-
like, pattern-based technique to detect defects, supported by statistical NLP
techniques such as POS tagging. Kiyavitskaya et al (2008) propose a two-
step approach to identify ambiguities in NL requirements. In the first step,
a tool applies a set of ambiguity measures to the requirements, in order to
identify potentially ambiguous sentences. In the second step, a (manually sim-
ulated) tool shows the specific parts that are potentially ambiguous in the set
of sentences identified. Tjong and Berry (2013) developed SREE, a tool that
identifies defects based on a pre-defined list of dangerous terms. Arora et al
(2015) use patterns of linguistic defects as the other works, and, in addition,
checks the conformance of the requirements to a given template.

Among the works that use artificial intelligence techniques, Chantree et al
(2006) present a technique that helps requirements analysts to identify so-
called innocuous ambiguities, i.e., linguistic ambiguities that have a single
reading in practice. The focus of this work is on coordination ambiguities
(i.e., due to the usage of coordinating conjunctions), and a set of heuristics,
developed according to a data-set built by human assessors, is presented to
discriminate between innocuous and nocuous ambiguities. This approach was
extended for anaphoric ambiguities (i.e., due to the usage of pronouns) by Yang
et al (2011). Finally, Ferrari and Gnesi (2012) propose a graph-based technique
to detect pragmatic ambiguities (i.e., ambiguities that depend on the context)
in NL requirements defined for a specific application domain.

All these works, and in particular the ones employing rule-based tech-
niques, were used as fundamental references to define the defect detection
patterns of our study. On the other hand, all the listed works provide limited
validation in real industrial contexts, as noted also by Femmer et al (2017).
Large data-sets annotated by experts were considered by Falessi et al (2013).
However, their focus is solely on redundancy defects (i.e., equivalent require-
ments), detected by means of information retrieval techniques. The task of
finding couples of equivalent requirements is radically di↵erent from the one
we are dealing with in our study, in which multiple linguistic defects occurring
in single requirements are considered. To our knowledge, the more general in-
dustrial work on defect detection is the one presented by Femmer et al (2017),
who experimented their tool named Smella on several datasets provided by
three companies. Although domain experts were interviewed to assess the ef-
fectiveness of the tool, analysis of the results was performed by two researchers.
Another industrial case study on defect detection was presented by Wilmink
and Bockisch (2017). Two datasets of 293 requirements in total were used as
a benchmark, and term-based defect detection techniques were employed to
detect ambiguities. The results were reviewed by domain experts.

Our work contributes to the recent literature on the industrial application
of defect detection NLP techniques (Femmer et al, 2017; Wilmink and Bock-

6

isch, 2017). Compared to the other studies, in our work the techniques are
implemented, tailored, and validated by domain experts. Furthermore, this is
the first work that shows how rule-based NLP patterns for defect detection
can be incrementally tuned to the needs of a company, to address the system-
atic – and domain-dependent – false positive cases typically raised by these
techniques.

3 A Rule-based Approach to Predict Defects

In this section, we first give a background on the NLP technologies used in
the study (Sect. 3.1). Then, we describe the NLP-patterns used (Sect. 3.2),
and the discard patterns developed to address systematic false positive cases
(Sect. 3.3). Finally, we also describe the tool SREE from Tjong and Berry
(2013), and we outline how the tool was used in our study (Sect. 3.4).

3.1 NLP Technologies

In this section, we list the natural language processing (NLP) technologies
included in the tool GATE (Cunningham, 2002) that was adopted to define
the patterns:

– Tokenization: this technology partitions a document into separate tokens,
e.g., words, numbers, spaces, and punctuation.

– Part-of-Speech (POS) Tagging: this technology associates to each to-
ken a Part-of-Speech, e.g., noun (NN), verb (VB), adjective (JJ), etc. Com-
mon POS taggers are statistical in nature, i.e., they are trained to predict
the POS of a token based on a manually annotated corpus.

– Shallow Parsing: this technology identifies noun phrases (NP) – in this
case we speak about Noun Chunking – and verb phrases (VP) – in this
case we speak about Verb Chunking – in sentences. For example, given the
sentence Messages are received by the system, a shallow parser identifies
{Messages, the system} as NP, and {are received} as VP.

– Gazetteer: this technology searches for occurrences of terms defined in a
list of terms. In our case, we used it to check the presence of vague terms.

– JAPE Rules: this technology allows defining rules (i.e., high-level regu-
lar expressions) over tokens and other elements in a text (Cunningham,
2002). A rule identifies sequences of elements that match the rule. Rules
are expressed in the intuitive JAPE grammar, which is similar to regular
expressions. JAPE rules can be rather long to report. In this paper, for
the sake of space, to describe JAPE rules we will use a more concise and
intuitive pseudo-code inspired to the JAPE grammar. In JAPE, and in our
rules, the symbols reported in Table 1 are used. Furthermore, when we
use a term in capital letters, this indicates a form of macro that identifies
terms of the specific type, e.g., NUMBER identifies numbers, while ELSE
identifies the term else in its various orthographic forms. Although these

7

macros di↵er in terms of semantics, we expect that the reader can infer
their meaning.

Table 1: Symbols used in the JAPE grammar.

Expression Meaning
< expr1 > | < expr2 > < expr1 > OR < expr2 >

< expr1 >,< expr2 > < expr1 > AND < expr2 >

! < expr > NOT < expr >

< expr > + One or more elements matching < expr >

< expr > ⇤ Zero or more elements matching < expr >

< expr >? Zero or one element matching < expr >

3.2 Patterns for Defect Detection

This section lists the classes of language defects considered, together with the
patterns (i.e., JAPE rules) defined to identify them. Patterns are defined in
terms of sequences of tokens to be matched within a requirement. Hence, the
output produced by one pattern when applied to a requirement is zero or n

requirement fragments (i.e., contiguous sequences of tokens in the requirement)
that match the pattern. In Table 2 we report the patterns in a compact version.
The JAPE implementation of the patterns, together with the discard-patterns
that will be introduced in Sect. 3.3, is available in our public repository1.
Below, we describe the defect classes addressed by each pattern.

Table 2: Pattern adopted for each defect class.

Defect Class Pattern

Anaphoric ambiguity
PANA = (NP)(NP)+
(Split)[0,1]
(Token.POS == PP | Token.POS =⇠ PR*)

Coordination
ambiguity

PCO1 = ((Token)+ (Token.string == AND | OR)) [2]
PCO2 = (Token.POS == JJ) (Token.POS == NN | NNS)
(Token.string == AND | OR) (Token.POS == NN | NNS)

Vague terms PV AG = (Token.string 2 Vague)

Modal adverbs
PADV = (Token.POS == RB | RBR),
(Token.string =⇠ ”[.]*ly$”)

Passive voice
PPV = (AUXVERB)(NOT)?(Token.POS == RB | RBR)?
(Token.POS ==VBN)

Excessive length PLEN = Sentence.len > 60

Missing condition
PMC = (IF)(Token, !Token.kind == punctuation)*
(Token.kind == punctuation)(!(ELSE | OTHERWISE))

Missing unit
of measurement

PMU1 = (NUMBER)((Token)[0, 1](NUMBER))?(!MEASUREMENT)
PMU2 = (NUMBER)((Token)[0, 1](NUMBER))?(!PERCENT)

Missing reference
PMR = (Token.string == “Ref”)(Token.string == “.”)
(SpaceToken)?(NUMBER)

Undefined term PUT = (Token.kind == word, Token.orth == mixedCaps)

1
https://github.com/ISTI-FMT/QUARS_plus_plus

https://github.com/ISTI-FMT/QUARS_plus_plus

8

– Anaphoric ambiguity Anaphora occurs in a text whenever a pronoun
(e.g., he, it, that, this, which, etc.) refers to a previous part of the text.
The referred part of the text is normally called antecedent. An anaphoric
ambiguity occurs if the text o↵ers more than one antecedent options (Yang
et al, 2011), either in the same sentence (e.g., The system shall send a

message to the receiver, and it provides an acknowledge message - it =
system or receiver?) or in previous sentences. The potential antecedents for
the pronouns are noun phrases (NP), which can be detected by means of
a shallow parser. The pattern PANA matches any sequence of two or more
noun phrases (NP), followed by zero or one sentence separators (Split),
followed by a personal pronoun (PP), or other types of pronouns (PR*).

– Coordination ambiguity Coordination ambiguity occurs when the use
of coordinating conjunctions (e.g., and or or) leads to multiple potential
interpretations of a sentence (Chantree et al, 2006). Two types of coordi-
nation ambiguity are considered here. The first type includes sentences in
which more than one coordinating conjunction is used in the same sentence
(e.g., There is a 90� phase shift between sensor 1 and sensor 2 and sen-

sor 3 shall have a 45� phase shift). The second type includes sentences in
which a coordinating conjunction is used with a modifier (e.g., Structured
approaches and platforms – Structured can refer to approaches only, or also
to platforms). Two patterns were defined, one for each type. PCO1 matches
exactly two occurrences (notation “[2]”) of one or more Tokens followed
by a coordinating conjunction. PCO2 matches cases in which an adjective
(JJ) precedes a couple of singular (NN) or plural nouns (NNS), joined by
and or or.

– Vague terms Vagueness occurs whenever a sentence admits borderline
cases, i.e., cases in which the truth value of the sentence cannot be de-
cided (Berry et al, 2003). Vagueness is associated with the usage of terms
without a precise semantics, such as minimal, as much as possible, later,
taking into account, based on, appropriate, etc. In our context, we use the
list of 446 vague terms provided by the QuARS tool (Gnesi et al, 2005).
The list includes single-word and multi-word terms that were collected as
source of vagueness in requirements. PV AG matches any term included in
the set Vague of vague terms.

– Modal adverbs Modal adverbs (e.g., positively, permanently, clearly) are
modifiers that express a quality associated to a predicate. As noted by Gle-
ich et al (2010), adverbs are discouraged in requirements as potential source
of ambiguity. We noticed that, in the requirements of the company, most
of the adverbs causing ambiguity were modal adverbs ending with the suf-
fix -ly. For this reason, PADV matches adverbs in normal form (RB) or in
comparative form (RBR) that terminate ($ indicates string termination)
with -ly.

– Passive voice The use of passive voice is a defect of clarity in require-
ments, and can lead to ambiguous interpretations in those cases in which
the passive verb is not followed by the subject that performs the action
expressed by the verb (e.g., The system shall be shut down – by which ac-

9

tor?). Passive voice detection is also considered by Gleich et al (2010) and
by Femmer et al (2014). To identify passive voice expressions, PPV matches
auxiliary verbs followed by a verb in past participle (VBN), possibly with
negations and adverbs.

– Excessive length Longer sentences are typically harder to process than
short sentences, and can be source of unclarity. It was chosen to identify
all the sentences that are longer than 60 tokens. Although this is a rather
weak threshold – for generic English texts, Cutts (1996) recommends not
to exceed 40 tokens –, we considered this value appropriate for the length
of the sentences in her domain.

– Missing condition To be considered complete, each requirement express-
ing a condition through the if clause, shall have a corresponding else

or otherwise clause. PMC checks whether an if clause is followed by an
else/otherwise clause in the same sentence.

– Missing unit of measurement Each number is required to have an
associated unit of measurement, unless the number represents a reference
(see below). Hence, the patterns check whether a number has an associated
unit, or a percentage value associated to it.

– Missing reference This defect occurs when a reference that appears in
the text in the form Ref. <X> does not appear in the list of references of
the requirements document. To detect this defect we leverage the pattern
PMR to extract references in the text, and then – through Java code not
reported here – we check whether each number found appears in the list
of references.

– Undefined term This pattern searches all the terms that follow the
textual form used in the company for defining glossary terms (e.g., re-
strictiveAspect), which are expressed in camelCase format (i.e, mixedcap

orthography). As for the missing reference case, we leverage the PUT pat-
tern to search for terms expressed in camelCase, and then we automatically
search the glossary to check whether the term is present or not.

The defect classes associated to the patterns can be related to part of
the broad quality criteria specified by the CENELEC norms, and reported in
Sect. 1. Furthermore, they can be related to the di↵erent levels of language to
which the defect belong, namely lexical, syntactic, semantic and pragmatic –
see, e.g., Berry et al (2003) for a discussion in the context of NL requirements.
They can also be related to the level of detection, which, in our case, is ei-
ther lexical or syntactic. Table 3 reports these relationships, using a structure
similar to the one adopted by Gleich et al (2010).

3.3 Discard Patterns

A set of patterns was defined along the case study based on an analysis of the
false positive cases produced by the defect detection patterns (see Sect. 6.3.2).
For the sake of clarity, we refer to these additional patterns as discard patterns.
Each discard pattern is associated to one defect class. The defect class is the

10

Table 3: Patterns associated to the di↵erent CENELEC criteria, and to the
di↵erent levels of language.

Defect Class Criterion Lev. of Language Detection

Anaphoric ambiguity Unequivocal
Syntactic, Semantic,
Pragmatic

Syntactic

Coordination ambiguity Unequivocal Syntactic, Semantic Syntactic
Vague terms Precise Pragmatic Lexical
Modal adverbs Precise Pragmatic Syntactic
Passive voice Clear Semantic, Pragmatic Syntactic
Excessive length Clear Semantic, Pragmatic Lexical
Missing condition Complete Semantic, Pragmatic Syntactic
Missing unit of measurement Complete Semantic, Pragmatic Lexical
Missing reference Complete Semantic, Pragmatic Lexical
Undefined term Complete Semantic, Pragmatic Lexical

one whose patterns generate the systematic false positive cases. The discard
patterns, adapted from the JAPE rules reported in our repository, are reported
in Table 4, and briefly described below.

– Anaphoric ambiguity: the pattern DANA detects the pronoun within
the expression it shall be possible. The notation IT SHALL BE POSSIBLE
indicates another utility pattern that matches the expressions it shall be

possible, it may be possible and it should be possible, in their orthographic
variants, and possibly including other terms within the pattern (e.g., it
should also be possible). The JAPE notation “within” indicates that the
first argument is completely included in the second argument. Each am-
biguity detected through the pattern PANA is discarded when it includes
DANA.

– Vague terms: the pattern DV AG1 matches all the tokens in which the
terms sound and light are used as nouns, according to the annotations
of the POS Tagger. The JAPE notation “(?i)” indicates that all ortho-
graphic variants of the string shall be matched. Instead, the patternDV AG2

matches the term possible when used within the pattern IT SHALL BE -
POSSIBLE. DV AG3 matches any vague term included in the list of stop
phrases StopPhrasesV ague, which collects the set of domain specific terms
that include vague terms (e.g., distant signalling distance, near miss), ac-
cording to our analysis of the false positive cases. Each vague term detected
through PV AG is discarded when it includes DV AG1 , DV AG2 or DV AG3 .

– Modal Adverbs: the pattern DADV1 matches the terms manually and
automatically. Instead,DADV2 matches the term only within the expression
information purposes only. Each modal adverb detected through PADV is
discarded when it includes DADV1 or DADV2 .

– Undefined term: the pattern DUT matches any unknown term annota-
tion (PUT) that contains a known acronym, i.e., a term included in the list
KnownAcronym. Any PUT annotation is discarded when it includes DUT .

11

Table 4: Discard patterns.

Defect Class Discard Pattern

Anaphoric ambiguity
DANA = ((Token.POS == PP | Token.POS = PR*)
within IT SHALL BE POSSIBLE)

Vague terms

DV AG1 = (PV AG, Token.string ==⇠ “(?i)sound” | “(?i)light”,
Token.POS == NN | NNS)
DV AG2 = (PV AG within IT SHALL BE POSSIBLE)
DV AG3 = (PV AG within StophPhrasesV ague)

Modal adverbs
DADV1 = (Token.string ==⇠ “(?i)manually” | “(?i)automatically”)
DADV2 = (PADV within INFORMATION PURPOSES ONLY)

Undefined term DUT = (PUT contains KnownAcronym)

3.4 SREE Patterns

The tool SREE (Tjong and Berry, 2013) is a defect detection tool for NL re-
quirements that is oriented to achieve 100% recall for the defects in its scope,
even at the cost of lower precision. SREE leverages a set of dictionaries of typ-
ically defective terms (single and multi-word). A requirement that includes a
term that matches one of the terms of the dictionaries is returned by SREE as
a potentially defective requirement. Furthermore, the matched term is also re-
turned. The key feature of SREE resides in searching only for lexical matches,
without leveraging POS Taggers or other statistical tools that may, in princi-
ple, decrease the recall. The approach is analogous to the one adopted in our
work for the pattern for Vague terms (see Sect. 3.2).

SREE employs ten dictionaries, and each dictionary is associated to a defect
class. The defect classes, together with representative examples of the terms
included – called indicators by Tjong and Berry (2013) – are:

– Continuance: as follows, below, following, in addition, in particular, etc.;
– Coordinator: and, and/or, or;
– Directive: e.g., etc. , figure, for example, i.e., note, table.
– Incomplete: TBA, TBD, as a minimum, as defined, as specified, etc.;
– Optional: as desired, at last, either, eventually, if appropriate, in case of,

if necessary, etc.;
– Plural: contains a list of 11, 287 plural nouns, each ending in “s”;
– Pronoun: anyone, he, her, this, they, which, whom, yourself, etc.;
– Quantifier: all, any, few, little, many, much, several, some;
– Vague: (), [], as far as, as required, eventually, mutually-agreed, etc.;
– Weak: can, could, may, might, ought to, preferred, should, will, would.

The complete list of terms for each dictionary, with the exception of the
plural class, can be found in the work of Tjong and Berry (2013). For the plural
class, the authors of the current paper contacted Daniel M. Berry, who kindly
provided the list. In our study we adopted the dictionaries of SREE. Specifi-
cally, each SREE dictionary was imported in GATE as a separate Gazetteer.
In our evaluation we apply all the SREE dictionaries, with the exception of
the dictionary of the weak class, since this class was initially excluded from
the analysis.

12

SREE-reduced A subset of SREE was also adopted in our case study. The
selection, which we call SREE-reduced, is composed of the terms that are spe-
cific to SREE, and are not considered in our patterns. In particular, pronouns
are sources of anaphoric ambiguities, and are considered in our PANA pat-
tern. Furthermore, the coordinators and and or are sources of coordination
ambiguities and are considered in our PCO1 and PCO2 , while the expression
and/or was considered in our list Vague of vague terms. Finally, also part
of the terms included in the di↵erent SREE dictionaries are included in our
Vague list. Therefore, SREE-reduced is composed of the dictionaries of SREE
but excluding: (a) the dictionaries of the coordinator, pronoun and weak class;
(b) all the terms in the other dictionaries that were already part of the Vague

list.

4 Research Methodology and Case Study Design

The experience presented in this paper shares the typical characteristics of
case study research, in that the phenomenon under study is analysed within
its natural context – i.e., a railway company –, and the boundary between the
context and the phenomenon are not clearly evident, and cannot be fully con-
trolled (Yin, 2013). It also includes iterative and improving aspects that are
closer to action research (Baskerville and Wood-Harper, 1996), and technology
transfer (Gorschek et al, 2006). Overall, our empirical design can be regarded
as an exploratory and iterative case study. Its design largely follows the guide-
lines of Runeson et al (2012), adapted to the iterative context of our experience.
Specifically, in our study, each iteration follows a template reference structure,
which includes research question (RQ) definition, data collection procedures,
and data analysis procedures. Each iteration is based on specific RQs, and its
results are used as triggers to define additional RQs to be answered in the
next iteration. In the following, we first outline the RQs produced, and then
we describe the template structure adopted in each iteration.

4.1 Research Objective and Research Questions

The research objective of this study is as follows:

Research Objective: Understand to which extent NLP technologies can
be used by a railway company to detect defects in NL requirements.

The research objective can be decomposed into the following RQs. Each
RQ will be associated to one or more iterations of the case study. It should be
noticed that the RQs have been generated along with the case study iterations,
and were not already defined at the beginning of the study.

13

– RQ1: What is the accuracy of the NLP patterns for defect de-
tection?
We want to provide a quantitative measure of the e↵ectiveness of the pat-
terns in identifying requirements defects. The assumption is that the higher
the measures of accuracy, the more e↵ective are the patterns. To this end,
we want to compare the results of the application of the patterns with the
defects identified by domain experts, i.e., VEs. The accuracy is measured in
terms of precision and recall. The former indicates how many of the defects
identified by a tool are considered as defects by VEs. The latter indicates
how many of the defects identified by VEs are actually identified by a tool.
Precise definitions will be given in Sect. 4.3, and will consider single defects
– i.e., requirements fragments that are considered defective according to a
specific defect class – and defective requirements – i.e., requirements that
include at least one defective fragment.

– RQ2: Which are the cases of inaccuracy of the NLP patterns for
defect detection?
We want to provide a qualitative analysis of the e↵ectiveness of the pat-
terns. More specifically, we want to understand which are the specific cases
in which the patterns fail in identifying defects. This is done in terms of
(a) defects identified by VEs that are not detected by the patterns, i.e.,
false negative cases – which impact on recall; and (b) in terms of defects
that are detected by the patterns, but are not considered as defects by the
VEs, i.e., false positive cases – which impact on precision.

– RQ3: What is the precision of NLP patterns for defect detection
when complemented with discard patterns?
This question was generated after answering RQ2. Indeed, it was observed
that the defect detection patterns generate systematic false positive cases,
which could be addressed with discard patterns. The application of dis-
card patterns is expected to increase the precision of the overall approach,
and this question aims at quantitatively evaluating to which extent the
precision can be increased.

– RQ4: Can a third-party tool identify additional defects?
We want to understand whether the usage of an additional tool can allow
us to address false negative cases, and to identify additional defects not
considered in the patterns. To this end, we apply the dictionaries of SREE,
a tool specifically designed to achieve 100% recall on the defects considered.
To answer this broad question, we decompose it into the following sub-
questions.

– RQ4.1: What is the accuracy of SREE with respect to the NLP
patterns for defect detection complemented with discard pat-
terns?
We first want to understand whether SREE identifies defective require-
ments identified by the VEs, and not identified by the patterns – i.e.,
false negatives. By answering this question, we provide a quantitative
evaluation of the accuracy of SREE in identifying defective require-
ments, in terms of recall and precision. The comparison with the pat-

14

terns is useful to understand whether SREE and the patterns can be
considered as complementary tools.

– RQ4.2: What is the precision of SREE for the defects in its
scope?
This question was generated after answering RQ4.1, and noticing that
SREE generates a large number of false positive requirements. This
suggested that SREE may be less precise than the patterns also at the
level of single defects. So, we wanted to further assess the precision of
SREE for the defects in its scope.

– RQ4.3: Which additional defects can be identified with SREE?
This question was generated after answering RQ4.1. Indeed, we consid-
ered that some of the false positive requirements issued by SREE could
include specific defects not considered by the patterns. Therefore, the
goal was to understand whether novel categories of defects can be iden-
tified with SREE.

– RQ4.4: Which are the false positive cases for SREE?
This question was generated after answering RQ4.1, and as a qualitative
complement to RQ4.2, to check which are the typical sources of false
positives at the level of defects.

4.2 Case and Subjects Selection

The selection of the case study is triggered by the involved company, and by
its need to support VEs in their task of requirements review with automated
tools. Specifically, the company, represented by the 5th author, contacted two
research institutions, namely ISTI-CNR, represented by the 7th author, and
University of Florence, represented by the 6th author. To experiment the fea-
sibility of using defect detection NLP techniques, the company allocated one
VE (VE1, 3rd author) dedicated to the task, ISTI-CNR provided an Expert in
defect detection through NLP (NLP-E, 1st author), and the University of Flo-
rence provided a second VE (VE2, 2nd author), who worked at the company as
VE, before moving to academia, inside a collaborative PhD program. A third
VE, (VE3, 4th author) had already conducted within the company a quality
review of parts of the datasets considered in the study. The characteristics of
the involved subjects will be described in Sect. 5.1.

4.3 Data Collection and Analysis Procedures

To collect and analyse the data necessary to answer the RQs, each iteration
followed a template structure. The template structure of the iterations is de-
picted in Fig. 1. The template is composed of eight tasks, which are further
grouped into three main phases, namely Preparation, Data Collection, and
Data Analysis. The phases are designed to ensure a minimal intervention of
NLP-E in the execution of the case study. Specifically, the contribution of

15

Research
Questions
(NLP-E, VE)

Patterns
Definition
(NLP-E, VE)

Dataset
Selection
(VE)

Dataset
Annotation
(VEs)

Patterns
Application
(VE)

Quantitative
Evaluation
(VE)

Qualitative
Evaluation
(NLP-E, VE)

Output
Annotation
(VEs)

Preparation

Data CollectionData Analysis

Fig. 1: Template structure adopted in the iterations of the case-study.

NLP-E was limited to the Preparation and Data Analysis phases. The Data
Collection phase was carried out by the VEs involved in the specific iterations.

Preparation The preparation phase consists of two tasks, described below.

– Research Questions: RQs are defined, which are going to be answered
by the iteration. If in the previous iteration, the RQs are considered to
require another iteration to be answered, the previous RQs are kept. Fur-
thermore, in this phase, a specific instance of the template is chosen so
that this is appropriate to answer the questions. In particular, the phases
of the template that will be performed are selected – not all the phases are
required for each iteration. This phase is led by NLP-E, in collaboration
with the VE involved in the iteration.

– Patterns Definition: patterns are defined and implemented to support
defect detection. The patterns will be employed in the iteration. In this
phase, we consider the definition of defect detection patterns, the defini-
tion of discard patterns, and also the implementation of the patterns that
support the dictionaries of SREE. If the patterns are defined in previous it-
erations, this phase is not performed. This phase is led by the VE involved
in the iteration, under the guidance of NLP-E.

Data Collection Procedure Data are collected according to the following tasks.
All the tasks are performed by the VEs involved in the iterations.

16

– Dataset Selection: a requirements dataset is selected, to which we apply
the patterns.

– Dataset Annotation: the dataset is manually annotated for defects by
one or more VEs. Annotations may have been performed also before the
current study, as for Large-scale Study - 1

st
Iteration, see Sect. 5.4. In this

case, for the sake of structure and clarity of the presentation, we consider
the annotation as it would be performed during this task. If the anno-
tations come from a previous iteration, this phase is not performed. The
output of this phase is a set of requirements which are annotated as ac-

cepted, if they do not contain defects, or rejected, if they contain at least
one defect. Furthermore, depending on the iteration considered, annota-
tions associated to specific defects are also provided. More specifically, the
annotation was performed as follows. Given a requirement, this was la-
belled as accepted if it appeared to fulfill the criteria normally adopted by
the company. These criteria are derived from the more general guidelines
provided by the CENELEC EN 50128:2011 norm (CENELEC, 2011), and
considering also the IEEE Std 1233-1998 as a reference (IEEE, 1998)2.
In particular, a requirement was labeled as accepted if it was: (a) fea-

sible: what is required is physically and technologically possible, can be
done with available resources and is not against laws and regulations; (b)
testable: can be demonstrated through repeatable tests or is at least veri-
fiable through inspection; (c) complete: stand-alone, no missing references,
undefined terms, to-be-defined parts, or missing conditions; (d) clear and

unambiguous; (e) uniquely identifiable; (f) consistent : no internal contra-
diction and no contradiction with other requirements. The requirement was
labeled as rejected in case it did not fulfill one of the criteria. In case the
requirement was marked as rejected for criterion (c) or criterion (d), the
VE involved stated whether the rejection was due to one or more linguistic
defect classes associated to the patterns listed in Sect. 3.2. In this case,
the VE involved labelled as defective(i) each requirement fragment that
included the i -th defect.

– Patterns Application: the patterns are applied on the annotated dataset,
and potentially defective requirements are produced as output.

– Output Annotation: the output of the patterns is annotated for defects
by one or more VE. In each iteration, this task is considered as mutually
exclusive with the Dataset Annotation task. Indeed this task is mainly
oriented to assess the precision of the output of the patterns, and has
been introduced when doubts were raised about the quality of the original
annotations, or whenever further assessment was required. This task is
performed as follows. For each requirement fragment labelled as defective
according to pattern i, each VE annotated the fragment as defective(i), if
the VE considered the defect as a true defect3. Overall, if a fragment was

2 The standard is currently replaced by ISO/IEC/IEEE 29148:2011 (ISO, IEC, IEEE,
2011).

3 In this context, we consider as a pattern i also a dictionary from SREE-reduced, as
defined in Sect. 3.4

17

annotated as defective(i) by at least one VE, the fragment was marked as
defective(i) in the annotated set used for the evaluation.

Data Analysis Procedure Data analysis is performed according to the following
tasks.

– Quantitative Evaluation: the accuracy of the patterns in detecting de-
fects is evaluated. In particular, we compare the annotations performed by
the VEs with the annotations performed by the patterns. Specifically, we
evaluate the values of precision and recall of the patterns with respect to
the annotations performed. Evaluation measures for single defects and for
entire requirements are provided, and defined as follows.

– Evaluation Measures by Defect: To measure the e↵ectiveness of the pat-
terns, we first provide a set of measures that focus on single defective
fragments identified by the patterns. Given the pattern associated to the
i -th defect, we consider the amount of true positive tp

D as the number
of requirements fragments labeled as defective(i) and correctly identi-
fied by the pattern; the amount of false positive fp

D as the number of
requirements fragments wrongly identified as defective by the pattern;
the amount of false negative fn

D as the number of requirements frag-
ments labeled as defective(i) that are not discovered by the pattern.
Based on these definitions, we define the measure of precision (pD) and
recall (rD) as:

p

D =
tp

D

tp

D + fp

D
r

D =
tp

D

tp

D + fn

D

The precision p

D is negatively influenced by the amount of defects
wrongly identified (fpD). The recall rD is negatively influenced by the
amount of undetected defects (fnD).

– Evaluation Measures by Requirement: to have a view of the e↵ectiveness
of the patterns applied together, we provide a set of measures that focus
on the number of requirements, instead of on the number of defective
fragments. Here, we consider the amount of true positive tp

R as the
number of requirements labeled as rejected for which at least one of
the patterns correctly identified a defective requirement fragment; the
amount of false positive fp

R as the number of requirements wrongly
identified as defective (i.e., at least one of the patterns triggered a defect
while the requirement was marked as accepted); the amount of false
negative fn

R as the number of requirements marked as rejected for
which none of the patterns triggered a defect. The measures of precision
p

R and recall rR are defined as for pD and r

D, but considering tpR, fpR,
and fn

R.

This task was performed by the VE involved in the iteration. The VE pro-
vided NLP-E with the tables with the quantitative evaluation. Depending
on the iteration, di↵erent evaluation measures are used, among those listed
above.

18

– Qualitative Evaluation: cases of inaccuracy of the patterns are evalu-
ated and classified. In particular, the results produced by the patterns are
inspected by the VEs, and classes of inaccuracy cases are provided. This
task was supported by NLP-E, who was provided with representative ex-
amples for each class, and supported the VEs in refining the classes. The
interaction was performed by means of on-line calls, and shared documents.

4.4 Validity Procedure

The validity procedure adopted aims to ensure the validity of the data used
in the study, and reported in this paper.

To ensure the validity of the annotations performed on the datasets during
the Output Annotation task, the annotation process is independently per-
formed by two VEs. The inter-rater agreement is computed by means of the
Cohen’s Kappa (Landis and Koch, 1977). In case of disagreement, if at least
one of the annotators considered a requirement as defective, the requirement
was considered defective in the final set used during the analysis. This validity
procedure was not followed in the Pilot Study, due to its preliminary nature
(Sect. 5.3). Furthermore, it was not followed during the Dataset Annotation
task. Specific threats associated to this aspect are discussed in Sect. 7.

Second, we ensure the validity of the quantitative results reported, by repli-
cating part of the study. In particular, the Large Scale Study – 1

st
and 2

nd

Iterations, initially conducted by VE1 were partially replicated by VE2. Dis-
crepancies of the results were evaluated and root causes of the discrepancies
were assessed.

Third, to limit the researcher bias, the intervention of NLP-E was limited to
the Preparation and Data Analysis phases, while Data Collection was entirely
performed by the VE involved in each iteration. NLP-E never had access to the
datasets used, but solely to the quantitative results produced, and to specific
examples to be used to support the Qualitative Analysis task, and to report
the case.

5 Case Study Execution

This section describes the execution of the case study. We first describe the
characteristics of the case and the subjects involved, and then we describe the
di↵erent iterations performed in relation to the RQs.

5.1 Case and Subjects Description

The Company and its Process The company produces signalling equipment
for both railway and urban transport applications. In order to e�ciently pro-
duce such systems, the company develops a set of di↵erent products aimed to
provide generic functionalities; specific projects based on their product lines

19

are then developed in order to satisfy customer’s specific needs. These needs
are usually expressed in requirements released by the customer to the compa-
nies tendering for contract. The requirements are then elaborated and refined
by the company, without relying on standard editing guidelines. The company,
for both products and projects, applies the V-model for life-cycle management
according to the CENELEC standard (CENELEC, 2011). As dictated by the
standard, a requirements’ review activity is performed by the Validation Team,
according to the criteria reported in Sect. 4.3.

The Subjects Involved The subjects involved in the case are VE1, VE2 and
VE3. The background of the three VEs is as follows:

– VE1 has a 3-year working experience in requirements review, as well as
testing and validation;

– VE2 has a 2-year working experience in requirements review, as well as
process metrics and traceability;

– VE3 has a 10-year working experience in requirements review, and other
tasks performed in the Validation Team. VE3 has a strong expertise in
contract requirements review, and has an in-depth knowledge of the project
associated to the dataset D-Large, described later in this paragraph.

VE1, VE2 and VE3 belonged to di↵erent groups within the same com-
pany, but they were subject to the same company practices. VE1 and VE2
voluntarily participated to the study. VE3 participated to the study since the
requirements reviewed by him before this work was conceived (D-Large, see
below) were used in the case study.

Datasets The datasets made available by the company for this research activ-
ity consist of:

– Pilot Dataset (D-Pilot): this dataset consists of 241 system require-
ments. This dataset was randomly selected from the requirements docu-
ments of a wayside Automatic Train Protection (ATP) system and an in-
terlocking (IXL) system belonging to the same product. ATP systems are
embedded platforms that enforce the rules of signaling systems, by adding
an on-board automatic control over the speed limit allowed to trains along
the track. Instead, IXL systems controls the movement of trains in the
railway yard, by setting signal statuses, and moving railway switches. This
dataset is composed by the following requirements types: functional, archi-
tectural, interface and performance.

– Large-scale Dataset (D-Large): this dataset consists of 1866 require-
ments. The requirements belong to a requirements document concerning
a system-of-systems that includes an interlocking system, an ATP, a CTC
(Centralised Tra�c Control) and an Axle Counter. Interlocking and ATP
systems have been briefly described above. CTC systems monitor and dis-
patch trains. Axle Counters are embedded systems located along the rail-
way line, which detect the passing of a train between two points on a track.

20

Table 5: Outline of the di↵erent iterations performed.

ID Iteration Name Nature RQs Patterns Dataset

0 Pilot Exploratory
RQ1
RQ2

Def. Det. Patterns D-Pilot

1 Large-scale - 1st Exploratory
RQ1
RQ2

Def. Det. Patterns D-Large

2 Large-scale - 2nd Explanatory
RQ1
RQ2

Def. Det. Patterns D-Large

3 Large-scale - 3rd Improving RQ3
Def. Det. Patterns
+
Discard Patterns

D-Large

4 Large-scale - 4th Improving RQ4.1 SREE D-Large

5 Large-scale - 5th Explanatory
RQ4.2
RQ4.3
RQ4.4

SREE-reduced D-Large

Table 6: Tasks performed and subjects involved in each iteration.

ID
Res.
Quest.

Pat.
Def.

Data.
Sel.

Data.
Ann.

Pat.
App.

Out.
Ann.

Quant.
Eval.

Qual.
Eval.

0
VE1
NLP-E

VE1
NLP-E

VE1 VE1 VE1 - VE1
VE1
NLP-E

1
VE1
NLP-E

- VE1 VE3
VE1/
VE2

-
VE1/
VE2

VE1
NLP-E

2
VE1
NLP-E

- - - -
VE1
VE2

VE1/
VE2

VE1/VE2
NLP-E

3
VE2
NLP-E

VE2
NLP-E

- - VE2 - VE2 -

4
VE2
NLP-E

VE2
NLP-E

- - VE2 - VE2
VE2
NLP-E

5
VE2
NLP-E

VE2
NLP-E

- - VE2
VE1
VE2

VE2
VE2
NLP-E

They were originally written by the customer in international English lan-
guage and refined by the company. No particular glossary restrictions are
applied and no guideline was provided. This dataset is composed by the
following requirements types: functional, architectural, interface and er-
gonomical.

In all these datasets safety requirements are not included, since they are
handled by an independent safety assessment process, which produces separate
safety requirements documents.

5.2 Iterations

The execution of the case study consists in a set of iterations, which follow the
template structure outlined in Sect. 4. Each iteration is aimed at answering one
or more RQs, and, although the overall case study is exploratory, each iteration
has a di↵erent flavour, which range from exploratory, to explanatory and to

21

improving. Furthermore, in each iteration, di↵erent tasks of the template are
performed. Tables 5 and 6 give an outline of the di↵erent iterations. Overall,
the case study consists of six iterations. The first one is a Pilot Study, based on
a preliminary requirements dataset (D-Pilot), while the others belong to the
Large-scale Study, based on a larger requirements dataset (D-Large). Table 5
shows the nature of the iteration, the associated RQs, the patterns and dataset
used. Iterations from 0 to 2 were dedicated to investigate the accuracy of NLP
patterns (RQ1, RQ2), with di↵erent levels of insight. Iteration 3 was dedicated
to improve the precision of the patterns (RQ3). Iteration 4 and 5 were focused
on the application of the SREE dictionaries (RQ4.1-4). Table 6 shows the
tasks performed together with the subjects who participated to the task. The
notation VE1/VE2 indicates that the task, initially conducted by VE1, was
replicated by VE2.

Here, we briefly summarise the rationale, execution and results of each
iteration, with reference – explicit or implicit – to Table 5 and 6. We do not
provide all the justifications for the content of the tables, since extensive details
are given in the subsequent sections.

– Pilot Study: this iteration was oriented to have a first understanding of
the applicability of NLP patterns for defect detection in the context of the
company. To this end, the defect detection patterns (Def. Det. Patterns in
Table 5, reported in Sect. 3.2) were defined by VE1 under the guidance
of NLP-E, with the objective of maximizing recall, as suggested by Berry
et al (2012). Then, they were applied by VE1 on a limited dataset of the
company, i.e., D-Pilot, which was previously annotated for defects by VE1.
A recall of 88.33% (rR) and a precision of 64.24% (pR) were obtained,
and the recall rD for single defects reached 100% for the majority of the
patterns.

– Large Scale Study - 1

st

Iteration: given the encouraging result of the
previous iteration, the defect detection patterns were applied by VE1 on
D-Large, annotated for defects by VE3. The goal was now to understand
whether the approach was applicable on a larger set of requirements of the
company, annotated by a subject who did not participate to the definition
of the patterns. Furthermore, the tasks named Patterns Application and
Quantitative Evaluation, originally performed by VE1, were replicated by
VE2 (VE1/VE2 in Table 6), to confirm the validity of the produced data. In
this iteration, the results were acceptable in terms of recall (rR = 85.39%),
but particularly poor in terms of precision, with p

R = 5.81%. A non-
systematic Qualitative Evaluation performed by VE1 suggested that many
potential linguistic defects were ignored by VE3 in his annotation, thus
leading to the low value of precision observed.

– Large Scale Study - 2

nd

Iteration: this iteration aimed at systemat-
ically explaining the poor results of the previous one. In particular, we
were interested in understanding whether the false positive cases produced
according to the annotations of VE3 could be considered as true positives
(i.e., defects), if an additional annotation was performed with a focus on

22

linguistic defects. Therefore, the output of the Pattern Application task
from the previous iteration was considered – as shown in Table 6, the tasks
from Patterns Definition to Patterns Application were not performed again.
The Output Annotation task was carried out by VE1 and VE2, and their
agreement was assessed. Quantitative Evaluation was performed by VE1,
and then replicated by VE2. The precision obtained was pR = 77.37%, and
the average precision at defect level – average of pD for the di↵erent defects
– was 72.81%. This confirmed the e↵ectiveness of the patterns for linguis-
tic defects. The Qualitative Evaluation, also replicated, was supported by
NLP-E, and allowed the identification of classes of systematic false positive
cases, which could be potentially discarded with additional patterns.

– Large Scale Study - 3

rd

Iteration: based on the Qualitative Evalua-
tion of the previous iteration, we wanted to understand to which extent the
precision could be further increased through additional patterns, designed
to discard false positive cases (Discard Patterns in Table 5, reported in
Sect. 3.3). VE2 took the lead in this activity due to other company-related
commitments of VE1, and defined a set of discard patterns under the guid-
ance of NLP-E. With these patterns, the precision p

R further increased to
83.16%, and the average p

D reached 81.36%.
– Large Scale Study - 4

th

Iteration: this iteration aimed at understand-
ing whether the defect-detection capabilities of the approach could be
complemented with the usage of an additional tool, namely SREE (see
Sect. 3.4). To have a general, initial indication, we considered the anno-
tations performed by VE3 on D-Large (annotations already used in Large

Scale Study - 1

st
Iteration), and we checked whether SREE was able to

identify requirements that were annotated as defective by VE3, but were
not identified by our patterns. To this end, the performance of SREE, in
terms of pR and r

R, were compared with those of the defect detection pat-
terns complemented with discard patterns. VE2 performed all the tasks
included in this iteration. The Quantitative Evaluation task showed that
SREE achieved higher recall with respect to our patterns (rR = 96.63% vs
85.39%), but at the cost of lower precision (pR = 5.45% vs 6.24% – i.e.,
351 additional false positive requirements). SREE was therefore recognised
as an appropriate complement to our patterns, i.e., undetected defective
requirements could be identified, but further investigation was required to
explain its poor performance in terms of precision.

– Large Scale Study - 5

th

Iteration: this iteration was driven by the low
value of precision obtained with SREE at the level of requirements, and
was oriented to have a fine-grained assessment of the performance of SREE.
Specifically, we wanted to assess the precision of SREE at the level of the
single defects in its scope. VE2 used a subset of the SREE dictionaries,
i.e., SREE-reduced (see Sect. 3.4), including solely those terms that were
specific to SREE and were not already considered in our patterns. The
Output Annotation task was performed in parallel by VE1 and VE2 on
the single defects produced by SREE-reduced, and their agreement was
assessed. Although the average p

D for the di↵erent defects resulted to be

23

only 11.29%, the Qualitative Evaluation, performed by VE2 and NLP-E,
showed that several novel classes of defects discovered were not considered
by our patterns. This confirmed the complementary role of SREE with
respect to our patterns.

In the following sections, we report how each specific iteration was exe-
cuted. The reader should refer to Table 5 and Table 6 to have a structured
summary of the information provided in each section.

5.3 Pilot Study

Fig. 2 gives an outline of the iteration. The iteration involved NLP-E and
VE1, and aimed to address RQ1 and RQ2. In this iteration, all the tasks of
the template are performed, with the exception of Output Annotation. This
iteration was exploratory, in that it aimed to assess the accuracy of NLP
patterns on a limited dataset of the company. The tasks performed are as
follows:

Research
Questions
(VE1, NLP-E)

Patterns
Definition
(VE1, NLP-E)

Dataset
Selection
(VE1)

Dataset
Annotation
(VE1)

Patterns
Application
(VE1)

Quantitative
Evaluation
(VE1)

Qualitative
Evaluation
(VE1, NLP-E)

Output
Annotation

Fig. 2: Structure of the Pilot Study.

– Research Questions: RQ1 and RQ2 were defined in collaboration be-
tween NLP-E and VE1. In this iteration, the underlying goal was to es-
tablish whether the patterns were able to achieve a recall value close to
100%. As noted by Berry et al (2012), defect detection techniques shall
favor recall over precision since the cost of undetected true defects is much
higher than the cost of manually discarding false positive cases.

– Patterns Definition: NLP-E considered that assessing the e↵ectiveness of
a domain-generic tool for defect detection (e.g., QuARS, presented by Gnesi
et al (2005)) would have required a strong expertise in the domain of the re-
quirements documents. In addition, he considered that, if the tool had pro-
vided too many false positive cases, e.g., innocuous ambiguities (Chantree

24

et al, 2006), the company would not have considered the tool as appropriate
for its needs. Hence, it was decided to let VE1 develop the tool in-house,
with the support of NLP-E.
VE1 was initially required to study the papers of Berry et al (2003), Gnesi
et al (2005), Gleich et al (2010), Tjong and Berry (2013) and Arora et al
(2015). Then, she was required to perform the tutorials provided by GATE
(General Architecture for Text Engineering, see Cunningham (2002)), which
was the generic NLP tool selected to be tailored to support defect detec-
tion. The tool was chosen since it was considered su�ciently easy to use
for an engineer, and su�ciently powerful for the task. After this training,
VE1 and NLP-E met to define the defect classes on which to focus. Pri-
ority was given to those defect classes that were considered more relevant
from the point of view of VE1 – taking into account the defect classes pro-
vided by Berry et al (2003), and by the other papers she had studied – and
whose identification was considered feasible by NLP-E. VE1 autonomously
implemented the patterns, under the supervision of NLP-E. The patterns
developed are reported in Sect. 3.2.

– Dataset Selection: D-Pilot was selected by VE1 under the guidance of
representatives of the company.

– Dataset Annotation: the dataset was manually annotated by VE1. After
this task, 120 requirements were marked as rejected, while 121 were marked
as accepted4.

– Patterns Application: the task was then carried out using the support
of GATE.

– Quantitative Evaluation: VE1 provided NLP-E with a table with the
results of the evaluation. The measures used are for defects, tpD, fpD,
fn

D, pD, rD, and for requirements, tpR, fpR, fnR, pR, rR.
– Qualitative Evaluation: VE1 evaluated false positive and false negative

cases, and provided representative examples. VE1 and NLP-E interacted
so that NLP-E could tailor the cases and examples for reporting.

5.4 Large-scale Study - 1st Iteration

Fig. 3 gives an outline of the iteration. The iteration involved NLP-E, VE1,
VE2 and VE3. This iteration is still based on RQ1 and RQ2, in that it aims
to further answer the RQs with a case modification – in terms of dataset
used and annotator –, and the nature of the iteration is still exploratory. All
the tasks, with the exception of Patterns Definition and Output Annotation
are performed. The patterns were the one used in the previous iteration. To
confirm the validity of the produced data, VE2 replicated part of the tasks.
The parts replicated by VE2 are represented in dashed line in Fig. 3. The tasks
performed are as follows.

4 The dataset appears balanced since VE1 continued to randomly select new requirements
from the original requirements considered, until a balanced number of accepted and rejected
requirements was obtained.

25

Research
Questions
(VE1, NLP-E)

Patterns
Definition

Dataset
Selection
(VE1)

Dataset
Annotation
(VE3)

Patterns
Application
(VE1/VE2)

Quantitative
Evaluation
(VE1/VE2)

Qualitative
Evaluation
(VE1, NLP-E)

Output
Annotation

Fig. 3: Structure of the Large-scale Study – 1st Iteration.

– Research Questions: the research questions RQ1 and RQ2 were kept
from the previous task. The objective of this iteration was to perform an
assessment of the patterns on a larger requirements dataset of the company,
previously validated by another VE (i.e, VE3), to understand to which
extent the approach could be applicable more widely within the company.

– Dataset Selection: D-Large was selected by VE1, under the guidance of
representatives of the company.

– Dataset Annotation: the defects of the document were previously an-
notated by VE3, following the criteria of the company already outlined in
Sect. 4.3, and employed by VE1 for the Pilot Study. Since this task was
performed before this work was conceived, the annotation of the defective
fragments was not performed by VE3, who just marked requirements as
accepted or rejected, and described the reasons for rejection in a specific
requirements validation document. From the 1866 requirements, 1733 were
marked as accepted, while 93 were marked as rejected.

– Patterns Application: the task was initially carried out using the sup-
port of a tool developed by VE1 on top of GATE to facilitate the analysis
of the results. In the replication, the task was performed by VE2, but using
solely the support of GATE.

– Quantitative Evaluation: the measures adopted to evaluate the e↵ec-
tiveness of the patterns in identifying defective requirements are tpR, fpR,
fn

R, pR and r

R. Intuitively, these measures indicate whether the appli-
cation of the di↵erent patterns simultaneously allows the identification of
requirements that were marked as rejected by VE3. Since VE3 did not an-
notate fragments, for this analysis we do not consider evaluation measures
for the single defects as in the Pilot Study.

– Qualitative Evaluation: given the poor results obtained from the Quan-
titative Evaluation (see Sect. 6.2), especially in terms of precision, this task
was performed by VE1 as a non-systematic inspection of the false negative

26

and false positive cases. The inspection of the false positive cases was ori-
ented to understand whether these cases included defective requirements
not initially annotated by VE3. This evaluation triggered the Large-scale

Study – 2

nd
Iteration, which aimed to more rigorously explain the poor

results.

5.5 Large-scale Study - 2nd Iteration

Fig. 4 gives an outline of the iteration. The iteration involved NLP-E, VE1,
VE2, and was performed to provide a more informed answer to RQ1 and
RQ2. The iteration has an explanatory nature, in that its underlying goal was
to explain whether the false positive cases identified in the previous iteration
could be considered as true positive cases, from the point of view of more strict
annotators. To confirm the validity of the produced data, VE2 replicated part
of the tasks. The parts replicated by VE2 are represented in dashed line in
Fig. 4. The tasks performed are as follows.

Research
Questions
(VE1, NLP-E)

Patterns
Definition

Dataset
Selection

Dataset
Annotation

Patterns
Application

Quantitative
Evaluation
(VE1/VE2)

Qualitative
Evaluation
(VE1/VE2,
NLP-E)

Output
Annotation
(VE1, VE2)

Fig. 4: Structure of the Large-scale Study – 2nd Iteration.

– Research Questions: RQ1 and RQ2 were considered not su�ciently an-
swered by the previous iteration, and the iteration was designed to un-
derstand to which extent the low value of precision observed was due to
inaccuracies in the annotation process performed by VE3.

– Output Annotation: a second annotation process was performed on the
requirements marked as defective by at least one of the patterns. In this
annotation process, two VEs (VE1 and VE2) independently annotated the
output of the patterns. The agreement between annotators was estimated

27

with the Cohen’s Kappa, resulting in k = 0.82, indicating an almost perfect
agreement5.

– Quantitative Evaluation: since in this analysis we focus solely on the
output produced by the patterns, we consider neither the amount of false
negative cases, nor the measure of recall. Hence, we consider tpD, fpD, pD,
for each defect class i, and tp

R, fpR, pR, as measures of the precision over
requirements.

– Qualitative Evaluation: the task was performed by VE1 first, and was
later reviewed VE2, to give a first categorisation of the false positive cases.
The categorisaiton was refined by NLP-E based on the examples given by
the VEs, with a particular focus on systematic categories of false positives,
which could be potentially discarded with additional patterns.

5.6 Large-scale Study - 3rd Iteration

Fig. 5 gives an outline of the iteration. This iteration involved NLP-E and VE2,
was aimed at answering RQ3, and had an improving nature. Indeed, the goal
of this iteration was to understand whether the performance of the patterns
in terms of precision could be improved with discard patterns. To implement
the foreseen improvement of the patterns, VE2 was actively involved in the
activity. Indeed, at this stage, VE1 was committed to a mentoring program
within the company, to disseminate the best practices for requirements quality
learned throughout the experience. The task performed in this iteration are
as follows.

Research
Questions
(VE2, NLP-E)

Patterns
Definition
(VE2, NLP-E)

Dataset
Selection

Dataset
Annotation

Patterns
Application
(VE2)

Quantitative
Evaluation
(VE2)

Qualitative
Evaluation

Output
Annotation

Fig. 5: Structure of the Large-scale Study – 3rd Iteration.

5 According to (Landis and Koch, 1977), the following qualitative measures are associated
to the di↵erent ranges of the Cohen’s Kappa: k < 0, no agreement; 0  k  0.20, slight;
0.21  k  0.40, fair; 0.41  k  0.60, moderate; 0.61  k  0.80 substantial; and
0.81  k  1 almost perfect agreement.

28

– Research Questions: the Qualitative Analysis performed in the previous
iteration allowed NLP-E, VE1 and VE2 to observe that a set of systematic
false positive cases could be addressed with specific patterns designed to
discard these cases (see Sect. 6.3.2). Therefore RQ3 was defined, and the
iteration was designed to define, apply and evaluate the discard patterns
in conjunction with the defect detection patterns.

– Patterns Definition: VE2 performed a self-training, analogous to the one
performed by VE1 (i.e., a study of the selected literature, and a tutorial
on GATE) during the Pilot Study. Afterwards, VE2 implemented the dis-
card patterns, under the supervision of NLP-E. The discard patterns are
reported in Sect. 3.3.

– Patterns Application: the patterns were applied by means of GATE.
– Quantitative Evaluation: the evaluation was performed by VE2 consid-

ering the annotations produced in the previous Output Annotation task.
As in the previous iteration, the evaluation measures used are tp

D, fpD,
p

D, for each defect class i, and tp

R, fpR, pR.

The Qualitative Evaluation was not performed, since the goal was only
to assess whether the discard patterns could improve the performance of the
overall approach in terms of precision.

5.7 Large-scale Study – 4th Iteration

Fig. 6 gives an outline of the iteration. The iteration involved NLP-E and
VE2, and aimed to give an answer to RQ4.1. In the context of the case study,
this analysis was performed to understand whether the dictionaries of SREE
could be used to identify additional requirements defects that could not be
identified with our patterns. The nature of the iteration was again improving,
and consisted of the following tasks.

Research
Questions
(VE2, NLP-E)

Patterns
Definition
(VE2, NLP-E)

Dataset
Selection

Dataset
Annotation

Patterns
Application
(VE2)

Quantitative
Evaluation
(VE1)

Qualitative
Evaluation
(VE1, NLP-E)

Output
Annotation

Fig. 6: Structure of the Large-scale Study – 4th Iteration.

29

– Research Questions: the iteration was designed to compare the defect
detection capabilities of SREE with respect to our patterns, and in par-
ticular, whether SREE actually allows to achieve higher values of recall.
Therefore, RQ4, and its first refinement, RQ4.1, were defined by NLP-E
and VE2.

– Patterns Definition: under the guidance of NLP-E, each SREE dictio-
nary, as reported in Sect. 3.4, was imported in GATE by VE2 as a separate
Gazetteer. As mentioned, in our evaluation we apply all the SREE dictio-
naries, with the exception of the dictionary of the weak class (see Sect. 3.4).

– Patterns Application: the patterns implementing the SREE dictionaries
were applied by VE2 by means of GATE.

– Quantitative Evaluation: the annotations considered for these require-
ments are those of V3 only, from Large-scale Study – 1

st
Iteration. Indeed,

in this phase, we are interested in understanding whether the dictionaries
of SREE applied altogether are able to detect defects, identified by VE3,
that our patterns were not able to detect. To this end, SREE is compared
with our patterns according to the values of tpR, fpR, fnR, pR, rR. The
patterns considered include the defect-detection patterns, plus the discard
patterns.

– Qualitative Evaluation: this task was performed by VE2 with the sup-
port of NLP-E in a non systematic way, to observe defective requirements
that could be detected by SREE.

5.8 Large-scale Study – 5th Iteration

Fig. 7 gives an outline of the iteration. The iteration involved NLP-E, VE1
and VE2, and aimed to answer RQ4.2, RQ4.3 and RQ4.4. The iteration had
an explanatory nature. Indeed, from the previous iteration, a high amount of
false positive requirements was returned by SREE with respect to our patterns.
This suggests that SREE may be less precise also at the level of defects. On the
other hand, these false positive requirements may conceal defects that were not
considered by VE3. Therefore, it was decided to evaluate the potential degree
of precision for the single defects identified by SREE. The tasks performed in
this iteration are as follows.

– Research Questions: NLP-E and VE2 considered that further investi-
gation was required to answer RQ4, and its refinement RQ4.2, 4.3 and
4.4 were defined. Specifically, with RQ4.2 we wanted to assess which was
the precision of SREE at the level of single defects, since low precision
was observed at the level of requirements, after answering RQ4.1. Further-
more, we wanted to systematically study the specific defects that could
be detected with SREE, and that could not be detected with our patterns
(RQ4.3). With RQ4.4, we wanted to provide a qualitative evaluation of the
false positive cases at the level of single defects.

– Patterns Definition: to evaluate the false positive cases issued by SREE
at the level of defects, a selection of the SREE dictionaries was adopted for

30

Research
Questions
(VE2, NLP-E)

Patterns
Definition
(VE2, NLP-E)

Dataset
Selection

Dataset
Annotation

Quantitative
Evaluation
(VE1)

Qualitative
Evaluation
(VE1, NLP-E)

Output
Annotation
(VE1, VE2)

Patterns
Application
(VE2)

Fig. 7: Structure of the Large-scale Study – 5th Iteration.

the analysis, which we call SREE-reduced (see Sect. 3.4). Indeed, we recall
that, to address RQ4, this analysis was oriented to understand to which
extent the SREE dictionaries could complement our patterns.

– Patterns Application: the patterns were applied by means of GATE.
– Output Annotation: a second annotation process was performed on the

requirements marked as defective by at least one of the patterns derived
from the dictionaries of SREE. VE1 and VE2 independently vetted the out-
put derived from the application of SREE-reduced, and decided whether
the defects issued were true positive or false positive cases. For each SREE
defect class associated to one SREE-reduced dictionary, all the require-
ments labelled as defective according to the dictionary were considered.
An exception is the plural class, for which a sample of 50 requirements
labelled as defective was randomly chosen. The annotator agreement was
estimated with the Cohen’s Kappa, resulting in k = 0.79, indicating sub-
stantial agreement.

– Quantitative Evaluation the values of tpD, fpD and p

D were used for
each single defect class of SREE considered.

– Qualitative Evaluation: true positive and false positive cases were anal-
ysed and classified by VE2, under the supervision of NLP-E, for each dic-
tionary of SREE-reduced. True positives were analysed to answer RQ4.3,
while false positives were analysed to answer RQ4.4.

31

Table 7: Results for single defects and requirements for the Pilot Study.

Defect Class tp

D
fp

D
fn

D
p

D
r

D

Anaphoric ambiguity 22 8 0 73.33% 100%
Coordination ambiguity 16 8 0 66.66% 100%
Vague terms 21 16 10 56.75% 67.74%
Modal adverbs 28 14 0 66.66% 100%
Passive voice 343 60 0 85.11% 100%
Excessive length 200 30 133 86.95% 60.06%
Missing condition 66 14 2 82.5% 97.05%
Missing unit of measurement 2 2 2 50% 50%
Missing reference 10 0 0 100% 100%
Undefined term 208 76 0 73.23% 100%

Requirements tp

R
fp

R
fn

R
p

R
r

R

106 59 14 64.24% 88.33%

6 Results

6.1 RQ1, RQ2: Pilot Study

6.1.1 RQ1: What is the accuracy of the NLP patterns for defect detection?

In Table 7 we report the results of the di↵erent evaluation measures to es-
tablish the accuracy of the patterns. We see that, although the patterns for
anaphoric ambiguity and coordination ambiguity are both based on shallow
parsing, which normally has a typical accuracy of 90-95% (Kang et al, 2011),
we achieve the objective of 100% recall. Similarly, for modal adverbs and pas-

sive voice, we achieve 100% recall, although these patterns employ POS tag-
ging, which has an accuracy around 97% (Manning, 2011). Two of the patterns
that employ only lexical-based pattern matching, namely missing reference

and undefined term, also achieve 100% recall. Lower values of recall are in-
stead achieved for the patterns associated to vague terms (67.74%), excessive
length (60.06%), missing unit of measurement (50%) and missing condition

(97.05%).

6.1.2 RQ2: Which are the cases of inaccuracy of the NLP patterns for defect

detection?

Vague terms By inspecting the ten false negative defects for vague terms, VE1
found that they were all due to the absence of the quantifier some in the list of
vague terms provided by QuARS. Hence, requirements such as the following
were not marked as defective by the pattern: In case the boolean logic evalu-

ates the permissive state, the system shall activate some redundant output –
which output shall be activated? VE1 resolved the problem by simply adding
the term some to the list of vague terms. Since also p

D was particularly low
(56.75%), VE1 inspected the false positives and saw that they were due to
domain-specific terms, namely raw data, hard disk, short-circuit, logical or,

32

logical and, green LED. These terms were used to discard false positives in
future analysis.

Excessive length By inspecting the false negative cases for excessive length,
VE1 saw that they were due to a limitation of the GATE Tokenizer. For nested
bullet point lists, the Tokenizer considers each item as a separate sentence.
Hence, very long and deeply nested bullet point lists were not considered as
sentences of excessive length. However, VE1 also argued that the length of a
sentence, and the hard readability due to complex nested lists are di↵erent
kinds of defects. Hence, she decided not to change the pattern for excessive
length, and to consider the problem of nested lists as a defect that, at the
moment, was left uncovered.

Missing unit of measurement Concerning the two false negative cases for miss-
ing unit of measurement, VE1 observed that these were due to the presence
of ranges of numerical values, e.g., [4,20], without the specification of the unit
of measurement. To address these cases, the pattern was adjusted.

Missing condition The two false negative cases for missing condition appeared
to be due to the presence of multiple if statements in the same sentence, with
one else statement only, as in the following case: If the initialization starts, if

the board is plugged in and if the operator has sent the running command the

system shall start, else it shall go in failure mode. For requirements as the one
presented, it is di�cult to understand which specific if is covered by the else

statement. Since the majority of missing condition defects were identified (66
out of 68), and considering that a VE has to manually review the requirements
anyway, as required by the norm (CENELEC, 2011), VE1 decided not to add
additional rules for this defect class. It could be noticed that the specific defect
could be detected also with techniques that check the readability of the text
(Collins-Thompson, 2014), an emerging topic in requirements (Ferrari et al,
2017), which is however outside of the scope of this paper.

False negative requirements It is also useful to look at the values of false neg-
ative cases fn

R and recall rR for the requirements. These 14 false negative
cases not only include those already discussed, but also cases of defective re-
quirements that could not be identified with our patterns – but which were
annotated by VE1 following the guidelines of the company. In particular, in-
teresting cases are those in which we have inconsistent requirements (e.g., 1:
The system shall accept only read access to file X ; 2: The system shall ac-

cept read and write access to file X.) that violate guideline (f), which asks
requirements to be consistent. Other cases are those for which we have prob-
lems of testability (guideline (b)), as in the case of under-specified statements

(e.g., The system shall go in error mode when an internal asynchronism has

33

been detected ; asynchronism among which components?), or incomplete state-

ments (e.g., The system shall make available its internal status ; through which
interface?). Finally, other cases are those associated to other defects of com-
pleteness of the requirements document, as in the case of requirements for
which it is expressed only the best-case scenario, and not the worst-case (e.g.,
The system shall go at runtime state from power o↵ state in 3 minutes in

the best case.; which is the requirement for the worst case?). Although some
false negative cases were found, the evaluation of the patterns was considered
successful in terms of recall by VE1. Hence, we decided to experiment the use
of the patterns on a larger requirements dataset.

6.2 RQ1, RQ2: Large-scale Study – 1st Iteration

6.2.1 RQ1: What is the accuracy of the NLP patterns for defect detection?

In Table 9 we report6 the output of the patterns on the dataset in terms of
defects identified (D), and in terms of defective requirements (R) – the other
columns of the table will be discussed in Sect. 6.3.

We see that the majority of the defects are due to passive voice. This is in
line with the results of Femmer et al (2014). The use of passive voice appears
to be a sort of writing style of these requirements, since 824 out of 1866 (44%)
include this defect. However, the most interesting – and disappointing – aspect
comes from the evaluation presented in Table 8. The number of false positive
requirements is extremely high, and the precision is only 5.81%. This value
is comparable with the precision obtained through a random predictor (for
which p

R = r

R = 93/1866% = 5%, see Alvarez (2002)). Hence, it appears not
acceptable if the tool needs to be used in a real-world setting. Furthermore, also
the value of rR (85.39%) is slightly lower if compared with the one obtained
in our preliminary study, for which r

R = 88.33%.

6.2.2 RQ2: Which are the cases of inaccuracy of the NLP patterns for defect

detection?

In this iteration, we give general observations of false negative cases, which
impact the value of rR, and false positive cases, which impact on p

R. Given
the low value of pR observed, the evaluation of false positives, and their classi-
fication was systematically performed during Large-scale Study – 2

nd
Iteration

(Sect. 6.3).

6 The results presented in Table 9 and Table 8 di↵er from those presented in our original
conference paper. When VE2 replicated the experiments performed by VE1, discrepancies
in the results emerged. These were traced back to the usage of a support tool, developed by
VE1 on top of GATE, to ease the analysis of the requirements. The tool introduced further
manipulations, which led to incorrect numerical results. The results presented in this paper
are produced based solely on the analysis of the output of GATE, and are, to the best of
our knowledge, correct.

34

Table 8: Results for the Large-scale Study – 1

st
Iteration.

tp

R
fp

R
fn

R
p

R
r

R

76 1232 13 5.81% 85.39%

False negative cases As for the preliminary analysis, the false negative cases
are due to requirements that include defects that were not considered by any
of the patterns, but that violate one or more criteria adopted by the company.
Interesting examples are requirements that do not fulfill the criterion of testa-
bility (guideline (b)), as e.g., The system shall be in continuous operation for

24 hours a day and 7 days a week ; requirements that are not feasible (guideline
(a)), e.g., The core of the system shall use TCP/IP protocol in order to com-

municate with peripheral boards – in this case, this requirement was considered
not feasible since the only communication protocol that was considered appli-
cable was UDP; requirements that include inconsistent statements (guideline
(f)), e.g., The brake symbol shall be able to show the following colors: Green

when the brake is not active, Grey when the brake is not active. Overall, these
cases show that there is a variety of defects of semantic nature that are hardly
identifiable with the applied NLP techniques – which focus on lexical and
syntactic aspects –, and hence require a human expert to accurately assess
them.

False positive cases VE1 inspected the output of the tool, and saw that part of
the false positive requirements were, in her opinion, actually defective. For ex-
ample, the following requirement marked as accepted, was evidently defective
due to several vague terms (highlighted in bold): Depending on the technical

or functional solution selected, there shall be time parameters in the control

system, that the Purchaser shall be able to adjust during operation in order

for the registration/deregistration to be made as e↵ectively as possible.

7

In other terms, her opinion was that VE3, when evaluating the requirements,
actually tolerated several linguistic defects, and marked as rejected only those
requirements that appeared to include severe conceptual defects. When con-
sulted by VE1, VE3 observed that he also had an in-depth knowledge of the
project of the requirements, which allowed him to disambiguate, or tolerate,
certain defects. To assess how many of the false positive cases could be con-
sidered as linguistic defects from the point of view of a more strict annotator
that did not have prior knowledge of the project, a second annotation process
was performed to evaluate the false positive cases (Large-scale Study – 2

nd

Iteration, Sect. 5.5).

7 The requirement was not rejected since it was clarified by other subsequent requirements.
This violates the guideline (c) that require requirements to be stand-alone, but the defect
was not considered crucial.

35

6.3 RQ1, RQ2: Large-scale Study – 2nd Iteration

6.3.1 RQ1: What is the accuracy of the NLP patterns for defect detection?

Table 9 reports the results of this phase. For each defect class, the precision
reaches an average value of 72.81% for what concerns the number of defects
(average of di↵erent pD). Overall pR resulting from the application of all the
patterns together, raises from the 5.81% of Table 8, to 77.37%.

6.3.2 RQ2: Which are the cases of inaccuracy of the NLP patterns for defect

detection?

From the results presented in the previous section, there is still a significant
amount of false positive cases that should be noticed. Part of these cases
are systematic, and they can be discarded with additional patterns. Here we
will discuss relevant examples of false positive cases for each class, specifically
focusing on the systematic cases, and mentioning non-systematic ones when
this is considered relevant.

Table 9: Results for the Large-scale Study – 2

nd
Iteration.

Defect Class D R tp

D
fp

D
p

D

Anaphoric ambiguity 391 342 198 193 50.64%
Coordination ambiguity 261 215 190 71 72.80%
Vague terms 857 580 392 465 45.74%
Modal adverbs 478 379 333 145 69.67%
Passive voice 1317 824 888 429 67.43%
Excessive length 13 13 13 0 100%
Missing condition 185 147 127 58 68.65%
Missing unit of measurement 0 0 0 0 -
Missing reference 2 1 2 0 100%
Undefined term 61 57 49 12 80.33%

Average 72.81%

Requirements
tp

R
fp

R
p

R

1012 296 77.37%

Anaphoric ambiguity The majority of the false positive cases for anaphoric
ambiguities are due to the usage of the pronoun it in its impersonal form,
especially in the expression It shall be possible [...]. This expression, and its
variants – it shall also be possible, it should be possible, etc. – is often used as
a preamble in the requirements of the company. These cases are systematic
sources of false positives, and appropriate patterns can be defined to discard
them.

The remaining, non-systematic cases, include situations in which the ref-
erent of the pronoun is disambiguated by the context, as in the following re-
quirement:Trains that arrive on the automatically controlled stretches shall

36

continue to be directed to their correct destinations. The pronoun their is
clearly referred to the trains, but the pattern PANA recognises two nouns (i.e.,
trains and stretches), to which the pronoun may refer. To detect these non-
systematic false positive cases, machine learning approaches, such as those
applied by Yang et al (2011) should be applied.

Coordination ambiguity The false positive cases for coordination ambiguity,
in line with those identifyied by Chantree et al (2006), are non-systematic
cases, in which the potentially ambiguous fragment is disambiguated by the
context. For example, consider a requirement such as: It shall be possible to

print out the whole timetable or part of it, in which the fragment in bold
is detected by means of pattern PCO2 . In this requirement, it is clear that
the adjective whole refers solely to the noun timetable. Similarly, consider the
following requirement: A train can consist of one, two or three cars for

services between Station A and Station B, in which the fragment in bold
is detected by means of pattern PCO1 . Also in this case, it is clear that the
conjunctions and and or refer to their nearby terms. However, these cases are
non-systematic, and can hardly be detected by means of rule-based patterns.
Other heuristics, such as those presented by Chantree et al (2006) should be
used.

Vague terms A large number of false positive cases (465) is identified for this
defect. These cases can be partitioned into the following typical situations:

1. Lexical Ambiguity: the vague term is lexically ambiguous (Berry et al,
2003). For example, the term light, considered as adjective, is vague, but
when playing the role of noun, as in the requirement Yellow Stop lights

do not have to be monitored, is not vague. Cases such as the one in this
example can be systematically detected by applying POS tagging, and
considering a term as vague only if it plays the role of adjective. A similar
systematic case, which can be addressed with the same approach, is the
case of the term sound, as in the requirement fragment Blue arrows, and

their associated sound, shall not be presented to the driver [...] ;
2. Domain-specific Term: a vague word is part of a domain-specific multi-

word term, as for the term distant of the following example: The operator

shall use “distant signalling distance” to apply the brake. Another inter-
esting case is the term near in the typical railway expression near miss

– indicating an unplanned event that has the potential to cause, but does
not actually result in human injury. To discard these cases, techniques for
multi-word term identification (Bonin et al, 2010) may be applied. Other-
wise, a list of stop phrases to be ignored can be defined based on the false
positives identified. In our case, this second option will be chosen.

3. Accepted Expressions: the term possible is used in the phrase It shall

be possible [...], considered an accepted requirement preamble within the
company, as previously mentioned.

37

4. Internal Clarification: the vague term is later clarified with the spec-
ification of numerical quantities, as in the following fragment: [...] for a

short stretch (maximum 3 meters) on tramcars [...]. In this case, the term
short is clarified by the phrase maximum 3 meters.

5. Domain Clarification: the vague term is clarified by the domain, as in
the case of the term adjacent in the following requirement: In the case of a

train passing adjacent to a level crossing, each train shall register its own

priority. Physical adjacency among elements in the railway line is a well
defined concept in the domain. However, we found also cases in which the
term adjacent was considered vague, as in the fragment adjacent track, in
which it is not specified whether the referenced track is on the left-hand or
on the right-hand side.

The first three cases can be systematically detected. By contrast, the last
two are hard to be detected in a systematic manner. Indeed, although for
case 4, patterns that check numerical quantities nearby the vague term can be
defined, but it is not sure how “nearby” should be intended. In addition, these
false positive cases are rather easy to discard, and, for this reason, patterns
will not be defined to address these cases.

Modal adverbs For modal adverbs the great majority of the false positive cases
are due to the usage of the terms manually and automatically. These terms
are not considered defective in the context of the requirements, since they are
used to distinguish between the duties of the system (automatically), and the
duties of the operator (manually). The remaining false positive cases are due to
the usage of the term only. Consider the following requirement: In case there

are two coupled points the system shall select only the point with identifier

equal to 1. Here, the term only is used to distinguish between multiple choices.
Since the term only, especially when misplaced, may be ambiguous, as noted
by Berry et al (2003), the usage of this term cannot be regarded as a systematic
source of false positives. An exception in this sense is the occurrence of only
in the fragment information purposes only, an expression frequently used in
the requirements. When only occurs in this fragment, it can be considered as
a systematic false positive case.

Passive voice For the false positive cases of this class, we can identify four
typical situations, listed below:

1. Irrelevant Actor: the actor performing the action is sometimes consid-
ered as not relevant, as in the requirement: Air conditioning units are

installed in some of the technical equipment areas. This sentence provides
information about a certain environment, and the reader does not need to
know who installed the air conditioning units. Similar cases are those in
which the passive voice is connected, or is disconnected are used;

2. Implicit Actor: the actor – often, the system or the operator – can be
inferred from the context, as in Error signals shall be displayed in the

MMI above the speedometer (the actor is the system), or The emergency

38

brake restore shall be performed with the green signal (the actor is the
operator).

3. Explicit Actor: the actor is actually expressed, as the passive voice is used
in conjunction with prepositions (e.g., by, from), after which the actor is
clarified, as in the following example: All views shall be developed by the

Supplier in consultation with the Purchaser.
4. Intransitive Verb: the passive voice is used with intransitive verbs, such

as the verb log-in, e.g., if a workstation fails and the operator is still logged

in [...] ;

The first two cases cannot be identified systematically. However, the latter
two can be, in principle, identified with appropriate patterns, which detect the
prepositions by and from in conjunction with passive voice (case 3), or which
identify intransitive verbs (case 4). However, since the number of these cases
was considered negligible, VE2 decided not to implement these patterns.

Missing condition False positives for this defect class occur when the term if

is not used to express a condition over the system behaviour. For example,
the requirement The system shall check if there is a train in the route does
not require an else statement. In other cases, the else condition is expressed in
another requirement, e.g., 1: If the precondition satisfies all initialization check

the system shall set its internal state to running; 2: In case an initilization

check fails, the system shall set its internal state to failure. These cases can
hardly be detected with patterns, and require the knowledge of the context to
be disambiguated.

Undefined term The entirety of the false positive cases for undefined terms are
due to the identification of units of measures, or known acronyms in their plural
forms, such as, e.g., kVA, dB, LEDs. A list of known unit of measurement and
known acronyms can easily be defined to discard these cases.

6.4 RQ3: Large-scale Study – 3rd Iteration

RQ3: What is the precision of NLP patterns for defect detection when comple-

mented with discard patterns?

Table 10 reports the results obtained when applying the discard patterns.
We notice a substantial increase, in terms of pD. In particular, compared with
the results of Table 9, pD increases by 22.69% for anaphoric ambiguity, by
24.89% for vague terms, by 11.75% for modal adverbs, and by 17.67% for
undefined term. Overall, the average pD raises to 81.36% (an increase of 8.55%
with respect to Table 9), and also p

R increases by a non negligible 5.79%. This
increase of precision saves, in principle, a considerable amount of checks to the
VE, who has to vet a lower number of requirements. More specifically, if we
look at the values of fpR in Table 10 (296) and in Table 9 (205), we see that
91 requirements do not have to be vetted after the introduction of the discard
patterns.

39

Table 10: Results for the Large-scale Study – 3

rd
Iteration.

Defect Class D R tp

D
fp

D
p

D

Anaphoric ambiguity 270 251 198 72 73.33%
Coordination ambiguity 261 215 190 71 72.80%
Vague terms 555 384 392 163 70.63%
Modal adverbs 409 330 333 76 81.42%
Passive voice 1317 824 888 429 67.43%
Excessive length 13 13 13 0 100%
Missing condition 185 147 127 58 68.65%
Missing unit of measurement 0 0 0 0 -
Missing reference 2 1 2 0 100%
Undefined term 50 47 49 1 98%

Average 81.36%

Requirements
tp

R
fp

R
p

R

1012 205 83.16%

Table 11: Results for the Large-scale Study – 4

th
Iteration, SREE vs Patterns.

Tool tp

R
fp

R
fn

R
p

R
r

R

SREE 86 1492 3 5.45% 96.63%
Patterns 76 1141 13 6.24% 85.39%

As noticed in Sect. 6.3, the majority of the remaining false positive cases
cannot be systematically detected, and require the judgment of a human asses-
sor. These types of situations can be potentially addressed through statistical
techniques, as, e.g., Chantree et al (2006) and Yang et al (2011). Typical
examples have already been reported in Sect. 6.3.

6.5 RQ4.1: Large-scale Study – 4th Iteration

RQ4.1: What is the accuracy of SREE with respect to the NLP patterns for

defect detection complemented with discard patterns?

Table 11 compares the performance of the SREE dictionaries and our pat-
terns against the annotations of VE3. From the table, we see that SREE
outperforms our patterns by 11.24% in terms of recall on the requirements
originally annotated by VE3, and its precision is 0.79% lower. Hence, SREE
dictionaries may contain terms that help to identify defective requirements
that were not detected through our patterns, and were therefore part of the
false negative cases issued. On the other hand, a 0.79% gap in terms of preci-
sion, implies that 351 additional false positive requirements (fpR) are gener-
ated by SREE with respect to our patterns.

Let us first analyse the false negative cases of our patterns that are de-
tected through the SREE dictionaries, and then we will investigate the issue
of precision.

A representative example of the requirements detected through SREE, and
not with our patterns, is the following one: Normal and abnormal changes in

40

the status of the Facility shall warrant special treatment [...]. VE3 rejected the
requirement, and stated that “Normal and abnormal changes” are not defined

and shall be agreed. SREE identifies this requirement as defective, since its
dictionary for the vague class includes the term normal. On the other hand,
it is worth noticing that SREE dictionaries do not include the term abnormal,
which is also a defective term, according to the statements of VE3. A similar
case is the following requirement: When the driver follows indications as to

the maximum speed limit the Facility shall not cause braking that produces

jolty and uneven driving. The requirement was marked as rejected by VE3,
because it does not fulfill the criterion of testability (guideline (b)). This is due
to the presence of the adjectives maximum, jolty and uneven. Here, the SREE
dictionaries correctly detects the vague term maximum, but do not detect
the defective terms jolty and uneven. Hence, although including the SREE
dictionaries in our patterns can help to increase the recall, novel terms may
be needed in the future to address other, previously unseen, defects.

Another interesting aspect concerns other requirements that (a) are marked
as defective by SREE, (b) are marked as rejected by VE3, but for which (c) the
cause of the rejection is not the defect indicated by SREE. Exemplary cases
are mostly related to the usage of plurals, which have 3377 occurrences in 1250
requirements (see Table 12, discussed in Sect. 6.6). An example is the following
requirement: It shall be possible to turn trains at the intended turning points

without restriction. SREE identifies the source of the defect in the plural term
trains. However, VE3 marked the requirements as rejected because it violates
the criterion of testability (guideline (b)). This is due to the expression without

restriction, which does not allow the definition of a finite number of tests to
verify the requirement.

Of course, there are entire defect classes considered by our patterns, which
are not detected by the dictionaries of SREE, such as passive voice, missing

condition, missing reference, missing unit of measurement, etc. Given these
observations, SREE dictionaries can be considered as complementary to our
patterns. Still, SREE and our patterns altogether are insu�cient to detect all
the potential defects, and should be complemented with additional terms, as,
e.g. jolty and uneven.

As mentioned, a high amount of false positive requirements was returned
by SREE with respect to our patterns. This suggests that SREE may be less
precise also at the level of defects. On the other hand, these false positive cases
may conceal defects that were not considered by VE3.

Therefore, it was decided to evaluate the potential degree of precision for
the single defects identified by SREE. An analysis of the false positive cases
was performed at the level of the single defects, similar to the one applied on
the output of our patterns during Large-scale Study – 2

nd
Iteration.

41

Table 12: Results of the Large-scale Study – 5

th
Iteration. False positive eval-

uation for SREE-reduced dictionaries.

Defect Class D R tp

D
fp

D
p

D

Continuance 181 155 41 140 22.65%
Directive 123 102 0 123 0%
Optional 102 92 26 76 25.49%
Incomplete 32 31 2 30 6.25%
Plural 3377 1250 6 125 4.58%
Quantifier 308 264 25 283 8.11%
Vague 931 665 111 820 11.92%

Average 11.29%

6.6 RQ4.2, RQ4.3, RQ4.4: Large-scale Study – 5th Iteration

6.6.1 RQ4.2: What is the precision of SREE for the defects in its scope?

Table 12 reports the results of the analysis of the false positive defects. The
average value of pD is 11.29%, which indicates that a large amount of false
positive cases are issued, which is much lower, compared with the 81.36%
obtained through our patterns (Sect. 6.5)8.

6.6.2 RQ4.3, RQ4.4: Which additional defects can be identified with SREE,

and which are the false positive cases?

Below, we provide an analysis of the true positive and false positive cases.

Continuance The continuance class includes terms that, when present, indi-
cate a reference between a statement and a previous one (e.g., in addition, in
particular), or a subsequent one (e.g., following, below). True positive cases
occur when the referred statement is absent, and, therefore, the requirement
is incomplete. The number of these cases is not negligible, and are all asso-
ciated to the terms as follows and below. False negative cases occur anytime
the referred statement appear in the requirement. These cases occur especially
when the referent is a previous statement, and the terms in addition and in

particular are used.

Directive The directive class includes terms that indicate the presence of a
reference to an element in the requirement (e.g., e.g., i.e.) or in the document
(e.g., figure, table). As for the continuance class, true positives may occur when
the referred element is absent, while false positive occur when the referred
element is present. In the considered requirements, no true positive case was
identified.

8 The value of p

R that considers the analysis of the false positive cases for the SREE
dictionaries cannot be provided, since we analysed only a subset of the defects for the
plurals class. However, the average value of pD gives a clear indication of the precision of
SREE at the level of defects.

42

Incomplete The incomplete class includes terms that may indicate a form of
internal incompleteness of the requirement (e.g., TBD, to be defined). The
dictionary of this class raises a limited number of defects (32). Indeed, ex-
pressions as, e.g., TBA, TBD do not occur in the requirements, and the great
majority of the false positive cases occur when the term in addition is used
– a term that is included also in the continuance class. Another typical case
of false positive is the following requirement fragment: [...] functions shall be

performed in a secure way, as defined in the CTC security requirements.
Here, the requirement is not incomplete, since it refers to another document
in which the required information is available. Instead, the cases evaluated as
true positives are similar to the following one: All alarms [...] shall be shown

in track plan views as specified above. Here, the problem is with the term
above, rather than with the term as specified, since the VEs could not find the
referred information in the document. However, the defect was considered a
true positive by the VEs, since the tagging of the term as specified allowed the
identification of the defect.

Optional The optional class includes terms that indicate subjective option-
ality. Anytime an expression such as if needed, if necessary, if appropriate

occurred, this was marked as a true positive case. Similarly, many true posi-
tive cases occur with the term either, as in the requirement: A cable run shall

be laid on either side of the track.
False positive cases occur when terms such as either, or neither, are used in

the expressions either [...] or , or neither [...] nor. Another typical, systematic
false positive case occurs with the usage of the term in case of, when this
expresses a condition that depends on actions that are external to the system,
as in: In case of a restart of the system [...].

Plurals Plurals are ambiguous when they are used to describe a property of
a set or sets, and it is not clear if the property is that of each element or
of the whole set (Berry and Kamsties, 2005), as in the requirement fragment
[...] printers shall have a sound [...]. In the considered sample of 50 defective
requirements for the plurals class, cases such as this one were extremely rare.
A large amount of false positive cases was instead observed.

Typical false positive cases belong to two classes. The first class includes
lexically ambiguous verbs used in third person singular form, as, e.g., means,
passes, leaves. The second class includes cases in which the plural term indi-
cates a set of objects or subjects, such as trains, boards, tracks, operators, etc.,
and it is clear from the context that the requirement refer to all the elements
in the set, as in the following fragment: Control orders that are executed by

operators shall be registered [...]. Since the requirements are high-level system
requirements, the use of plurals in the form exemplified is rather common, and
accepted by the VEs.

Quantifier Quantifiers that express quantities in a vague form such as few,
little, many, are included in the quantifier class. The occurrence in the re-

43

quirements of these vague terms was always considered by the VEs as a true
positive defect. False positive cases are due to universal quantifiers, such as all
or any. Indeed, although, as noted by Berry and Kamsties (2005), these terms
may be source of ambiguity (e.g., All lights have a switch – one switch for each
light, or a common switch?), in the considered requirements these terms are
not used in ambiguous forms. Instead, non ambiguous requirements fragments
such as the following are common: [...] all equipped tramcars [...] shall be able

to operate on all track networks [...].

Vague The vague class includes additional terms with respect to the Vague

dictionary of our patterns. Part of these terms appear to be useful to identify
extremely vague requirements that were not identified through our patterns. A
representative example is the following requirement, which includes two vague
expressions: Communication shall as far as possible be redundant, with sepa-

rate cable runs, for the various communication links. False positive cases are
mainly due to the usage of terms such as also, and but, which are rather fre-
quent in the requirements, but are not considered sources of vagueness by the
VEs. Indeed, the presence of these terms sometimes indicates that a require-
ment includes more than one statement, as in the fragment: the [...] system

shall not be reused but shall be dismantled [...]. However, since the consid-
ered requirements are high-level system requirements, the VEs accepted these
situations.

6.6.3 General Observations

From this analysis, we see that additional defects, which were not previously
considered by our VEs, are actually detected thanks to SREE. This confirms
that SREE may play a complementary role with respect to our patterns. On
the other hand, the value of precision of SREE, at the level of defects, is poorer
than the precision of our patterns, i.e., a larger number of false positive cases
is issued. However, this numerical di↵erence should be considered with care.
Indeed, there are two main reasons that explain and justify this result:

1. SREE Philosophy: the philosophy of SREE, as we interpret it through
its usage, is to identify terms that, when present, may indicate that also a
defect may be present. If the defect is not present, it is easy for the analyst
to vet the requirement. Representative examples in this sense are the terms
in the continuance class: terms such as as follows and below were judged as
particularly useful by the VEs to detect incomplete requirements, although
their occurrence was not always associated to a defect. The VEs said that
vetting the false positive cases was straightforward for this class. Hence, the
low value of precision was su�ciently counter-balanced by the usefulness
of the terms included in the defect class.

2. Subset of SREE: a subset of SREE dictionaries was used, instead of
the whole SREE. Hence, the comparison cannot be considered complete.
However, our goal in this case study was not to identify the best tool for

44

defect detection, but rather to investigate whether additional defects could
be found by means of the SREE dictionaries. This goal also mitigates a
potential annotators’ bias that may have occurred in the evaluation of the
false positives of SREE dictionaries. Although this bias cannot be totally
eliminated in the context of our case study, our patterns, as well as the
SREE dictionaries, are available for the research community, who can in-
dependently compare the di↵erent strategies.

7 Threats to Validity

In this section, we discuss threats to validity according to the structure rec-
ommended by Runeson et al (2012).

Construct Validity Objective and widely used metrics, i.e., precision and re-
call, were used in this work to assess the accuracy of the adopted NLP technolo-
gies. To derive measures of precision and recall, subjective evaluations were
performed by VE1, VE2, and VE3 during the Dataset Annotation and Output
Annotation tasks. In the Pilot Study, only VE1 annotated the dataset, and
no countermeasure was taken to assess the validity of the annotation, given
the preliminary nature of the study. Similarly, in the Large-scale Study – 1

st

Iteration, only VE3 annotated D-Large, and the same annotation was used for
the Large-scale Study – 4

th
Iteration. On the one hand, also in the real-world

context of the company, requirements review is performed by one subject, and
the subjectivity threat can be considered as partially mitigated by the realism
of this annotation. On the other hand, the Output Annotation on D-Large,
was independently performed by VE1 and VE2, and the inter-rater agreement
was computed by means of the Cohen’s Kappa. The agreement resulted in
k = 0.82 (almost perfect) for Large-scale Study – 2

nd
Iteration, and k = 0.79

for Large-scale Study – 5

th
Iteration (substantial). Therefore, we believe that

the threat is further mitigated by these measures of agreement, at least for
those requirements that were produced as output by the NLP patterns. There-
fore, construct validity threats are mitigated for Large-scale Study – 2

nd
, 3

rd

and 5

th
Iteration, while they are only partially mitigated for Pilot Study, and

Large-scale Study – 1

st
and 4

th
Iteration, in which only one subject was in-

volved in the annotation process.

Internal Validity The main threats to the internal validity of the study are
due to the personal objectives of the involved subjects, which may have had
an impact on the results. Indeed, the annotations performed by VE1 and VE2
in the tasks in which they were involved may be biased by their need to show
that the implemented patterns were successful, hence annotating as defective
also requirements that were not. In the case of the Pilot Study, this threat is
mitigated by the fact that the annotation was performed before applying the
patterns, and hence without exactly knowing their output. In the Large-scale

Study iterations, the threat is mitigated by (a) by the pragmatics of the case

45

study, and (b) the independent Output Annotation process performed. Indeed,
since VE1 works as VE in the company, she is also interested on improving her
job, besides showing that the implemented technology is e↵ective. VE2 may be
less keen to this type of integrity, since she is not part of the company anymore.
However, since the Output Annotation task was always performed indepen-
dently by the two VEs, we argue that this threat is su�ciently controlled.
Furthermore, as noticed in Sect. 6.6.3, since this threat cannot be totally miti-
gated, we share our patterns so that other researchers can apply them to their
contexts, and check their e↵ectiveness. It should be noted that the annotations
of VE3 are not subject to this threat, since they were performed before this
work was conceived. Validity issues related to the discrepancies between the
annotations performed by VE3 compared to the ones of VE1 and V2, are dis-
cussed in the External Validity paragraph, since we argue that the annotations
represent di↵erent contexts, from which di↵erent generalisation criteria may
apply.

Another internal validity threat is associated to the tool-suite initially used
by VE1 in the Large-scale Study – 1

st
and 2

nd
Iterations, to compute the data

for the case. Indeed, she used an internally developed tool on top of GATE to
produce the results. To mitigate potentially unsound manipulation of the data
by this prototype tool, part of Large-scale Study – 1

st
and 2

nd
Iterations, were

replicated by VE2, with the support of GATE only. Discrepancies in the results
were observed, and root causes were analysed. The rest of the analysis were
performed by means of GATE only. Since GATE is a widely used tool – see the
list of companies using GATE9 and, e.g., Arora et al (2015) and Derczynski
et al (2015), for relevant scientific works in which GATE was employed –, we
believe that the results produced with its support are correct.

External Validity Our discussion on the external validity of the study is loosely
based on the principles of case-based generalisation proposed by Wieringa and
Daneva (2015), and of similarity-based generalisation proposed by Ghaisas
et al (2013). Specifically, we describe the main architectural aspects of our
study, i.e., domain, requirements, subjects, that can be considered as a term of
comparison for other studies. In this way, other researchers and practitioners
can reason by analogy, and possibly profit from our results (Ghaisas et al,
2013).

– Domain: our study covers a company of a specific domain, i.e., the railway
domain. In Europe, railway companies have to follow the general guide-
lines of the CENELEC norms (CENELEC, 2011), and their work practices
at process level can be considered comparable. Furthermore, the railway
domain is characterised by a limited number of suppliers, who often deal
with the same customers – i.e., the national or private railway companies,
who provide infrastructure, and services to passengers. This increases the
homogenisation of processes and, in part, requirements documents. While
we cannot generalise our results for any type of domain, we argue that

9
https://gate.ac.uk/commercial.html

https://gate.ac.uk/commercial.html

46

similar results may be obtained in other railway companies. On the other
hand, the following limitations to the external validity of our results shall
be considered.

– Requirements: the requirements considered in the study have been selected
by VE1, with the support of the company, as benchmarks to represent
typically defective requirements of the firm. VE1 and VE2 admits that,
depending on the subjects involved in the production of requirements, the
documents may have di↵erent degrees of quality, and the documents be-
longing to the study are requirements of lower quality than average. Fur-
thermore, along the process, system requirements such as those analysed
are normally refined into lower level requirements. Hence, the results pro-
duced shall be considered representative for (a) system requirements, (b)
requirements with a poor degree of quality. Since the requirements concerns
several types of railway signalling systems, they are su�ciently represen-
tative of the types of product developed in railways.

– Subjects: Overall, three VEs were involved in this study. The sample is
limited, but it shall be considered that all the VEs are normally subject to
the same company practices and process, and can therefore be considered
representative VEs for the company. Considering the characteristics of the
railway domain mentioned above, they can be considered, to a certain ex-
tent, also representative of VEs in railways. Discrepancies were observed
between the annotations performed by VE3 on D-Large during Large-scale

Study – 1

st
Iteration, and the annotations on the output of the patterns

performed by VE1 and VE2, during Large-scale Study – 2

nd
Iteration. In

principle, the discrepancies may be associated to the di↵erent degree of
experience of the subjects. VE1 and VE2 had 3 and 2 years experience,
respectively, while VE3 had 10 years of experience. We believe that the
discrepancies observed are only partially associated to the experience. In-
stead, we believe that the discrepancies are due to the di↵erences in terms
of contextual knowledge, and goals. VE3 had in in-depth knowledge of the
project that allowed him to disambiguate, or tolerate, certain defects, and
focused on severe conceptual problems. Instead, VE1 and VE2 did not
have any prior knowledge on the project, and focused on linguistic aspects,
given the research-based, exploratory nature of their work.
For these reasons, the di↵erent iterations have di↵erent degrees of external
validity – notwithstanding the construct validity threats already discussed.
Specifically, Pilot Study, and Large-scale Study – 2

nd
, 3

rd
, and 5

th
Iterations

can be considered representative for those cases in which the annotation is
performed by VEs who do not have prior knowledge of the project of the
requirements, and focus on linguistics defects. Instead, Large-scale Study

– 2

nd
and 4

th
Iterations are representative for those cases in which the

annotation is performed by a VE who has an in-depth knowledge of the
project, and focuses on conceptual defects.

As mentioned, our results can be generalised to other domains only to a
limited extent. Our work focusses on a single railway company, and railway

47

companies have a well-defined processes to follow, that is not shared by other
context. The degree of rigour of the railway process is comparable to the one
employed in the avionic sector, in which the DO-178C norm applies for soft-
ware development (RTCA Inc. and EUROCAE, 2012). However, the products
developed in railways and avionics are highly di↵erent, and use domain spe-
cific terminology. Many of our patterns are domain independent, but, given
the large variability of NL, and of domain specific NLs, the generalisation of
our results to other domains requires further research.

Reliability The results provided are mainly quantitative, and we argue that
a common understanding on their meaning was achieved when the values of
precision and recall had to be computed. Concerning the qualitative data,
these were provided by the VEs and were refined with the support of NLP-
E. We argue that this interaction increased the reliability of the qualitative
results.

8 Lessons Learned

From the experience presented in this paper, a set of lessons learned were
discussed among the authors, and are reported below.

Domain-customisable NLP Tools Our experience shows that NLP technologies
are available for requirements analysts with limited NLP training, and that
these technologies can be proficiently used for the detection of several typical
requirements defects. Rule-based NLP patterns tend to generate large numbers
of false positives (Chantree et al, 2006; Yang et al, 2011). If the results come
from a tool that the requirements analyst cannot control, the analyst is likely
to distrust the tool. Instead, if the analyst understands the inherent principles
of the tool – and implementing the tool is a proper way for understanding
its principles –, they can understand its weaknesses and use it at its best.
Furthermore, it is also important that domain experts develop the tools, since,
to reduce the amount of false positive cases, tailoring the patterns for the
specific needs of the domain is required. If the VEs implement the patterns,
they can customise them according to the language used in the domain, as,
e.g., to account for terms such as raw data, hard disk (Sect. 6.1), and phrases
such as it shall be possible (Sect 6.3). The introduction of the discard patterns,
to remove systematic false positive cases, allowed an increase of the average
p

D from 72.81% to 81.36% (Sect. 6.3). It should be noticed that, if a company
defines a set of patterns to be applied for defect detection, a maintenance cost
should be taken into account, since, as any software tool, patterns may need
to evolve. While for COTS tools the software house who develops them takes
care of their evolution, and maintenance costs, the railway company has to
take the burden of maintenance in case of internally developed tools.

48

Requirements Language Counts Looking at the large number of passive voice
defects in Large-scale Study – 2

nd
Iteration, it appeared that the use of passive

voice was a form of writing style. As a consequence, the patterns generated a
large number of detected defects (i.e., 1317). This tells us that, to e↵ectively
use NLP, one cannot simply implement appropriate defect detection patterns:
one should change also the language adopted in the requirements, to make
it more error free, so that the VE can focus on a smaller amount of defects.
For this reason, we argue that NLP tools should be first used by the require-
ments editors, to limit the amount of poor writing style, and only afterwards

by a VE. However, this is not always practicable, especially in those cases in
which requirements are produced by the customer, and assessed by the com-
pany who has to develop the product. As acknowledged by the company, the
requirements considered in this study are particularly rich in defects, also with
respect to other requirements of the company. However, it is worth noting that,
upon suggestion of NLP-E, and taking inspiration from the work of Terzakis
and Gregory (2016), VE1 is currently involved in a mentoring program within
the company, to educate the requirements authors towards the production of
higher quality requirements.

Requirements Level Counts During the analysis of the false positive cases of
SREE, a large number of plurals (3377) was identified, which were tolerated
in most of the cases. Furthermore, also the presence of conjunctions such as
also and but, which indicate non-atomic requirements, was tolerated in these
requirements. This was motivated by the level of the requirements. The con-
sidered dataset was composed of high-level system requirements, for which,
according to the VEs, a certain degree of generality can be accepted. These
requirements will be refined into lower-level technical requirements, for which
a greater degree of precision is expected. As we notice in a recent work (Ferrari
et al, 2017), this suggests that requirements at di↵erent degrees of abstractions
may need di↵erent treatments. More specifically, patterns to check presence
of plurals, as well as also and but conjunctions, may need to be applied for
low-level requirements, while they do not need to be used for high-level ones.

Validation Criteria Count Considering the Large-scale Study – 1

st
and 2

nd

Iterations, we saw that a large part of the false positive cases encountered
in the Large-scale Study – 1

st
Iteration could be associated with a weaker

validation performed by VE3, who did not focus on linguistic defects, but more
on severe conceptual defects, also given his in-depth knowledge of the project.
For this reason, the results obtained in terms of precision were extremely poor.
When changing criteria, pR varied from 5.81% to 77.37% (Sect. 6.3). Hence, to
perform an appropriate validation of rule-based NLP patterns, it is advisable
to start from an annotated dataset that has been defined knowing the classes
of defects that will be checked by the patterns, and specifically stating that the
focus is on linguistic defects. Otherwise, the results might be misleading. This
observation might appear counter-intuitive, since we suggest to adapt human

49

operators to tools. However, when dealing with the complexity of NL, we argue
that the adaptation between humans and NLP tools should be bi-directional.

NLP is Only a Part of the Answer In our large-scale study, several false neg-
ative cases occurred, which can hardly be detected with NLP. These are ex-
amples of conceptual defects that require a human with knowledge of the
domain and of the specific project. In recent years, NLP technologies have
seen radical progress (Goth, 2016). Linguistic tasks at the semantic level, such
as, e.g., question-answering, became possible. However, the pragmatic nature
of ambiguity (Ferrari et al, 2016), and the contextual knowledge needed to
understand a requirements document, make the problem of automatic defect
detection in requirements hardly solvable with current technologies. There-
fore, NLP represents only a part of the answer to defect detection, while the
other part is represented by human analysts with domain expertise. It should
also be considered that relying on a tool for defect detection may also change
company practices, in that a VE may rely too faithfully on the tool’s output.
This reasonable hypothesis requires further empirical investigation, but its po-
tential implications should be considered when introducing an automated tool
to support practices that are normally manually conducted.

Statistical NLP vs Lexical Techniques Our patterns make use of POS tagging
and shallow parsing, which are statistical techniques that can hamper the
objective of 100% recall (Berry et al, 2012). However, in Sect. 6.1, we showed
that 100% recall was achieved for those patterns that used these techniques,
while it was not achieved for the pattern adopted for vague terms, which uses
a lexical based approach. Hence, we argue that the argument in favour of
a“dumb” lexical-based defect detection approach instead of an approach that
leverages statistics-based techniques (Berry et al, 2012) should be partially
revised. If one wants to use lexical-based detection approaches, then one should
use only defect indicators belonging to closed word classes (e.g., pronouns,
conjunctions). Instead, if one uses open word classes (e.g., adjective, adverbs),
the problems are not di↵erent from those that might emerge with statistical
techniques. As statistical techniques may fail, also lists of dangerous adjectives
and adverbs may fail, because they might not include words that were not
considered until they appear in the requirements (as e.g., the word some, as
noted in Sect. 6.1, or the words jolty and uneven, as noted in Sect. 6.5).

9 Conclusion, Implications for Practice and Future Research

This paper presents the experience of a railway signalling manufacturer in im-
plementing a set of NLP patterns to detect defects in NL requirements. A pilot
study on 241 requirements is presented, as well as a large-scale study on 1866
requirements. After a refinement of the patterns, a precision of 83.16% and
a recall of 85.39% are obtained. Recall can be increased by using term-based
defect detection tools such as SREE (Tjong and Berry, 2013), although at the

50

cost of a lower precision. From this experience, we can derive a set of impli-
cations for practice and directions for future research, which are summarised
below.

Implication for Practice Overall, the experience was considered extremely use-
ful by the company. In particular, VE1 says that, after studying the literature
on defect identification, and implementing the patterns, also her way of judg-
ing requirements defects became stricter. This is also one of the reasons why
requirements marked as accepted by VE3, were afterwards rejected by VE1
and VE2. This implies that, while on the one hand tools have to be adapted
to company practices, also company practices can be modified by tools. In our
study, we also observed that an increase in the performance can be obtained
by incrementally tuning the patterns based both on the defects encountered
in practice, and through the inclusion of other defect-detection criteria from
the research literature – in particular, the SREE dictionaries. Therefore, re-
gardless of the NLP technologies used to detect defects, technologies need to
be adapted to the specific language of the company, to be fruitfully used.

It should also be observed that, based on the lessons learned from the cur-
rent study, VE1 is now involved in a mentoring program within the company,
oriented to teach requirements authors how to write linguistically clear require-
ments. The idea is that editors should be aware of linguistic defects, so that
the work of VEs can focus on conceptual ones. In this sense, we argue that, by
working with NLP techniques for defect detection, one can have an e↵ect also
in terms of organisational learning. Another relevant implication for practice
concerns the complementary role of NLP techniques, and human analysis. We
observed that part of the conceptual defects present in the requirements could
not be detected with the patterns, but some ignored linguistic defects could
be identified by the patterns. This suggests that, although human analysts
cannot be replaced, tools can help them to perform a better job.

Future Research Within the context of the industrial collaboration that made
this paper possible, our future work will go towards four main directions. (1)
The first direction is to understand to which extent the NLP patterns have
to be tuned to analyse requirements at di↵erent levels of abstractions, and
to understand which patterns are appropriate for which level. (2) The second
direction is studying to which extent language errors – a defect not considered
here, but mentioned by Berry et al (2003) – may impact on the quality of the
requirements. The VEs noticed that large part of the requirements considered
were not expressed in correct English, since they were written by Italian edi-
tors, who tended to use Italian syntactic constructions. However, apparently,
these language errors did not have an impact on the subsequent phases of the
process, since the readers of the requirements were also Italian. (3) The third
direction is to evaluate the cost of using NLP techniques for defect detection,
compared to the cost of manual review. Cost-based evaluation approaches suit-
able for our context have been recently discussed by Berry et al (2017). (4)
The fourth direction is to leverage NLP technologies also for other tasks of

51

the company, which are dominated by NL. One particular task of interest is
the support towards the automated generation of summary documents from
multiple sources. Indeed, the railway process produces a large amount of docu-
ments, which are often hard to navigate, and summary documents can provide
a substantial help in controlling the process itself.

The directions outlined come from the needs of the company, and from
the interests of the researchers involved in this case study. However, they
can be considered by the research community also as inspiration for future
investigation in the field of applications of NLP to requirements and technical
documentation in general. An additional direction for future research triggered
by the current work, but that go beyond the collaboration with the considered
company, includes the extension of our results to domains that are di↵erent
from railways, to assess to which extent the adaptation of NLP patterns to
the language of a company can lead to improved results in terms of defect
detection accuracy.

References

Alvarez SA (2002) An exact analytical relation among recall, precision, and
classification accuracy in information retrieval. Tech. Rep. BCCS-02-01,
Computer Science Department, Boston College

Ambriola V, Gervasi V (2006) On the systematic analysis of natural language
requirements with Circe. Automated Software Engineering 13(1):107–167

Anda B, Sjøberg DI (2002) Towards an inspection technique for use case mod-
els. In: Proceedings of the 14th International Conference on Software Engi-
neering and Knowledge Engineering (SEKE’02), ACM, pp 127–134

Arora C, Sabetzadeh M, Briand L, Zimmer F (2015) Automated checking of
conformance to requirements templates using natural language processing.
IEEE Transactions on Software Engineering 41(10):944–968

Aurum A, Petersson H, Wohlin C (2002) State-of-the-art: software inspections
after 25 years. Software Testing, Verification and Reliability 12(3):133–154

Baskerville RL, Wood-Harper AT (1996) A critical perspective on action re-
search as a method for information systems research. Journal of information
Technology 11(3):235–246

Berry D, Gacitua R, Sawyer P, Tjong SF (2012) The case for dumb require-
ments engineering tools. In: Proceedings of the 18th International Working
Conference on Requirements Engineering: Foundation for Software Quality
(REFSQ’12), Springer, LNCS, vol 7195, pp 211–217

Berry DM, Kamsties E (2005) The syntactically dangerous all and plural in
specifications. IEEE Software 22(1):55–57

Berry DM, Kamsties E, Krieger MM (2003) From contract drafting to
software specification: Linguistic sources of ambiguity. URL https://cs.

uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf

Berry DM, Cleland-Huang J, Ferrari A, Maalej W, Mylopoulos J, Zowghi D
(2017) Panel: Context-dependent evaluation of tools for nl re tasks: Recall

https://cs.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf
https://cs.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf

52

vs. precision, and beyond. In: 2017 IEEE 25th International Requirements
Engineering Conference (RE), pp 570–573, DOI 10.1109/RE.2017.64

Bonin F, DellOrletta F, Venturi G, Montemagni S (2010) A contrastive ap-
proach to multi-word term extraction from domain corpora. In: Proceedings
of the 7th International Conference on Language Resources and Evaluation
(LREC’10), pp 19–21

Casamayor A, Godoy D, Campo M (2012) Functional grouping of natural
language requirements for assistance in architectural software design. KBS
30:78–86

CENELEC (2011) EN 50128:2011: Railway applications - Communication, sig-
nalling and processing systems - Software for railway control and protection
systems. Tech. rep.

Chantree F, Nuseibeh B, Roeck AND, Willis A (2006) Identifying nocuous
ambiguities in natural language requirements. In: Proceedings of the 14th
IEEE International Requirements Engineering Conference (RE’06), IEEE,
pp 56–65

Cleland-Huang J, Czauderna A, Gibiec M, Emenecker J (2010) A machine
learning approach for tracing regulatory codes to product specific require-
ments. In: ICSE (1), ACM, pp 155–164

Collins-Thompson K (2014) Computational assessment of text readability: A
survey of current and future research. ITL-International Journal of Applied
Linguistics 165(2):97–135

Cunningham H (2002) GATE, a general architecture for text engineering.
Computers and the Humanities 36(2):223–254

Cutts M (1996) The plain English guide. Oxford University Press
Derczynski L, Maynard D, Rizzo G, van Erp M, Gorrell G, Troncy R, Petrak
J, Bontcheva K (2015) Analysis of named entity recognition and linking for
tweets. Information Processing & Management 51(2):32–49

Fabbrini F, Fusani M, Gnesi S, Lami G (2001) The linguistic approach to
the natural language requirements quality: benefit of the use of an auto-
matic tool. In: Proceedings of the 26th Annual NASA Goddard Software
Engineering Workshop, IEEE, pp 97–105

Fagan ME (1976) Design and code inspections to reduce errors in program
development. IBM Systems Journal 15(3):182–211

Falessi D, Cantone G, Canfora G (2013) Empirical principles and an industrial
case study in retrieving equivalent requirements via natural language pro-
cessing techniques. IEEE Transactions on Software Engineering 39(1):18–44

Femmer H, Kučera J, Vetrò A (2014) On the impact of passive voice require-
ments on domain modelling. In: Proceedings of the 8th ACM / IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement
(ESEM’14), Art. 21, ACM

Femmer H, Fernández DM, Wagner S, Eder S (2017) Rapid quality assurance
with requirements smells. Journal of Systems and Software 123:190–213

Ferrari A, Gnesi S (2012) Using collective intelligence to detect pragmatic
ambiguities. In: Proceedings of the 20th IEEE International Requirements
Engineering Conference (RE’12), IEEE, pp 191–200

53

Ferrari A, dellOrletta F, Spagnolo GO, Gnesi S (2014) Measuring and improv-
ing the completeness of natural language requirements. In: Proceedings of
the 20th International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ’14), Springer, pp 23–38

Ferrari A, Spoletini P, Gnesi S (2016) Ambiguity and tacit knowledge in re-
quirements elicitation interviews. Requirements Engineering 21(3):333–355

Ferrari A, Dell’Orletta F, Esuli A, Gervasi V, Gnesi S (2017) Natural Language
Requirements Processing: a 4D Vision. IEEE Software (to appear)

Gacitua R, Sawyer P, Gervasi V (2010) On the e↵ectiveness of abstraction
identification in requirements engineering. In: Proceedings of the 18th IEEE
International Requirements Engineering Conference (RE’10), IEEE, pp 5–14

Gervasi V, Zowghi D (2005) Reasoning about inconsistencies in natural
language requirements. ACM Transactions on Software Engineering and
Methodology 14(3):277–330

Ghaisas S, Rose P, Daneva M, Sikkel K, Wieringa RJ (2013) Generalizing by
similarity: Lessons learnt from industrial case studies. In: Proceedings of
the 1st international workshop on conducting empirical studies in industry,
IEEE Press, pp 37–42

Gleich B, Creighton O, Kof L (2010) Ambiguity detection: Towards a tool ex-
plaining ambiguity sources. In: Proceedings of the 16th International Work-
ing Conference on Requirements Engineering: Foundation for Software Qual-
ity (REFSQ’10), Springer, LNCS, vol 6182, pp 218–232

Gnesi S, Lami G, Trentanni G (2005) An automatic tool for the analysis of
natural language requirements. International Journal of Computer Systems
Science and Engineering 20(1):53–62

Gorschek T, Garre P, Larsson S, Wohlin C (2006) A model for technology
transfer in practice. IEEE software 23(6):88–95

Goth G (2016) Deep or shallow, nlp is breaking out. Communications of the
ACM 59(3):13–16

IEEE (1998) IEEE Guide for Developing System Requirements Specifications.
IEEE Std 1233, 1998 Edition pp 1–36, DOI 10.1109/IEEESTD.1998.88826

ISO, IEC, IEEE (2011) ISO/IEC/IEEE International Standard - Systems
and software engineering – Life cycle processes –Requirements engineer-
ing. ISO/IEC/IEEE 29148:2011(E) pp 1–94, DOI 10.1109/IEEESTD.2011.
6146379

Kamsties E (2005) Understanding ambiguity in requirements engineering. In:
Engineering and Managing Software Requirements, Springer Berlin Heidel-
berg, pp 245–266

Kamsties E, Berry DM, Paech B (2001) Detecting ambiguities in require-
ments documents using inspections. In: Proceedings of the 1st Workshop on
Inspection in Software Engineering (WISE01), pp 68–80

Kang N, van Mulligen EM, Kors JA (2011) Comparing and combining chun-
kers of biomedical text. Journal of biomedical informatics 44(2):354–360

Kassab M, Neill C, Laplante P (2014) State of practice in requirements en-
gineering: contemporary data. Innovations in Systems and Software Engi-
neering 10(4):235–241

54

Kiyavitskaya N, Zeni N, Mich L, Berry DM (2008) Requirements for tools for
ambiguity identification and measurement in natural language requirements
specifications. Requirements Engineering 13(3):207–239

Kof L (2008) From textual scenarios to message sequence charts: Inclusion
of condition generation and actor extraction. In: Proceedings of the 16th
IEEE International Requirements Engineering Conference, (RE’08), IEEE,
pp 331–332

Kof L (2009) Translation of textual specifications to automata by means of dis-
course context modeling. In: Proceedings of the 15th International Working
Conference on Requirements Engineering: Foundation for Software Quality
(REFSQ’09), Springer, LNCS, vol 5512, pp 197–211

Kof L (2010) From requirements documents to system models: A tool for
interactive semi-automatic translation. In: Proceedings of the 18th IEEE
International Requirements Engineering Conference (RE’10), IEEE, pp 391–
392

Landis JR, Koch GG (1977) The measurement of observer agreement for cat-
egorical data. Biometrics pp 159–174

Lian X, Rahimi M, Cleland-Huang J, Zhang L, Ferrari R, Smith M (2016)
Mining requirements knowledge from collections of domain documents. In:
Proceedings of the 24th IEEE International Requirements Engineering Con-
ference (RE’16), IEEE, pp 156–165

Maalej W, Nabil H (2015) Bug report, feature request, or simply praise? on
automatically classifying app reviews. In: Proceedings of the 23rd IEEE In-
ternational Requirements Engineering Conference, (RE’15), IEEE, pp 116–
125

Manning CD (2011) Part-of-speech tagging from 97% to 100%: is it time for
some linguistics? In: Proceedings of the 12th International Conference on
Intelligent Text Processing and Computational Linguistics (CICLing’11),
LNCS, vol 6608, Springer, pp 171–189

Mavin A, Wilkinson P, Harwood A, Novak M (2009) Easy approach to re-
quirements syntax (ears). In: Proceedings of the 17th IEEE International
Requirements Engineering Conference (RE’09), IEEE, pp 317–322

Mavin A, Wilksinson P, Gregory S, Uusitalo E (2016) Listens learned (8 lessons
learned applying EARS). In: Proceedings of the 24th IEEE International
Requirements Engineering Conference (RE’16), IEEE, pp 276–282

Mich L (1996) NL-OOPS: from natural language to object oriented re-
quirements using the natural language processing system LOLITA. NLE
2(2):161–187

Mich L, Franch M, Inverardi PN (2004) Market research for requirements
analysis using linguistic tools. Requirements Engineering 9(1):40–56

Pohl K, Rupp C (2011) Requirements engineering fundamentals. Rocky Nook,
Inc.

Quirchmayr T, Paech B, Kohl R, Karey H (2017) Semi-automatic software
feature-relevant information extraction from natural language user manuals.
In: Proceedings of the 23rd International Working Conference on Require-
ments Engineering: Foundation for Software Quality (REFSQ’17), Springer,

55

pp 255–272
Robeer M, Lucassen G, van der Werf JME, Dalpiaz F, Brinkkemper S (2016)
Automated extraction of conceptual models from user stories via nlp. In:
Proceedings of the 24th IEEE International Requirements Engineering Con-
ference (RE’16), IEEE, pp 196–205

Rosadini B, Ferrari A, Gori G, Fantechi A, Gnesi S, Trotta I, Bacherini S
(2017) Using NLP to detect requirements defects: An industrial experience
in the railway domain. In: Proceedings of the 23rd International Working
Conference on Requirements Engineering: Foundation for Software Quality
(REFSQ’17), LNCS, vol 10153, pp 344–360

Rosenberg LH, Hammer F, Hu↵man LL (1998) Requirements, testing and
metrics. In: In 15th Annual Pacific Northwest Software Quality Conference

RTCA Inc, EUROCAE (2012) DO-178C: Software Considerations in Airborne
Systems and Equipment Certification. Tech. rep.

Runeson P, Host M, Rainer A, Regnell B (2012) Case study research in soft-
ware engineering: Guidelines and examples. John Wiley & Sons

Shull F, Rus I, Basili V (2000) How perspective-based reading can improve
requirements inspections. IEEE Computer 33(7):73–79

Sultanov H, Hayes JH (2013) Application of reinforcement learning to require-
ments engineering: requirements tracing. In: Proceedings of the 21st IEEE
International Requirements Engineering Conference (RE’13), IEEE, pp 52–
61

Terzakis J, Gregory S (2016) Ramp: requirements authors mentoring program.
In: Proceedings of the 24th IEEE International Requirements Engineering
Conference (RE’16), IEEE, pp 323–328

Tjong SF, Berry DM (2013) The design of SREE: A prototype potential ambi-
guity finder for requirements specifications and lessons learned. In: Proceed-
ings of the 19th International Working Conference on Requirements Engi-
neering: Foundation for Software Quality (REFSQ’13), Springer, LNCS, vol
7830, pp 80–95

Wieringa R, Daneva M (2015) Six strategies for generalizing software engi-
neering theories. Science of computer programming 101:136–152

Wilmink M, Bockisch C (2017) On the ability of lightweight checks to de-
tect ambiguity in requirements documentation. In: Proceedings of the 23rd
International Working Conference on Requirements Engineering: Founda-
tion for Software Quality (REFSQ’17), Springer International Publishing,
LNCS, vol 10153, pp 327–343

Wilson WM, Rosenberg LH, Hyatt LE (1997) Automated analysis of require-
ment specifications. In: Proceedings of the 19th international conference on
Software engineering, ACM, pp 161–171

Yang H, Roeck AND, Gervasi V, Willis A, Nuseibeh B (2011) Analysing
anaphoric ambiguity in natural language requirements. Requirements Engi-
neering 16(3):163–189

Yin RK (2013) Case study research: Design and methods. Sage publications
Yue T, Briand LC, Labiche Y (2015) atoucan: an automated framework to
derive uml analysis models from use case models. ACM Transactions on

56

Software Engineering and Methodology (TOSEM) 24(3):13
Zhang H, Yue T, Ali S, Liu C (2016) Towards mutation analysis for use cases.
In: Proceedings of the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, ACM, pp 363–373

Zowghi D, Gervasi V, McRae A (2001) Using default reasoning to discover
inconsistencies in natural language requirements. In: Proceedings of the 8th
Asia-Pacific Software Engineering Conference (APSEC’01), pp 133–140

	Introduction
	Related Works
	A Rule-based Approach to Predict Defects
	Research Methodology and Case Study Design
	Case Study Execution
	Results
	Threats to Validity
	Lessons Learned
	Conclusion, Implications for Practice and Future Research

