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Abstract
We are concerned with the computation of the mean-time-to-failure

(MTTF) for a large system of loosely interconnected components, mod-
eled as continuous time Markov chains. In particular, we show that split-
ting the local and synchronization transitions of the smaller subsystems
allows to formulate an algorithm for the computation of the MTTF which
is proven to be linearly convergent. Then, we show how to modify the
method to make it quadratically convergent, thus overcoming the difficul-
ties for problems with convergent rate close to 1.

In addition, it is shown that this decoupling of local and synchroniza-
tion transitions allows to easily represent all the matrices and vectors in-
volved in the method in the tensor-train (TT) format — and we provide
numerical evidence showing that this allows to treat large problems with
up to billions of states — which would otherwise be unfeasible.

1 Introduction

2 Stochastic Automata Networks
As described in [4], it is possible to address the study of large CTMC defining
symbolically the infinitesimal generator matrix Q, so that avoiding a complete
state-space exploration. In particular, the Stochastic Automata Network (SAN)
formalism [22] allows to represent the CTMC as a set of stochastic automata
M1, . . . ,Mk, each having a (small) reachable set of state RSi, where transitions
among states are of two kinds: local and of synchronization. Transitions t that
are local to Mi, written t ∈ LT i, have impact only on RSi and indicate the
switch from a state s ∈ RSi to a state s′ ∈ RSi, in the following written
s

t→ s′. Synchronization transitions t ∈ ST , instead, can appear in more
than one automaton. In particular, if t ∈ Mi1 , t ∈ Mi2 , …, and t ∈ Mih then
sij

t→ s′ij can fire only if the automaton Mi1 is in state si1 , and the automaton
Mi2 is in state si2 , …, and the automaton Mih is in state sih , at the same time.
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The overall CTMC is then the orchestration of local stochastic automata where
the director is represented by ST . The infinitesimal generator matrix Q is not
assembled, its representation is called descriptor matrix and is formally defined
by

Q = R+W +∆, (1) {{eq:descriptorQ}}{{eq:descriptorQ}}

i.e., the sum of local contributions, called R, and synchronization contributions,
called W , where

R =

k⊕
i=1

R(i), (2)

W =
∑

tj∈ST

k⊗
i=1

W (tj ,i), (3)

R(i) and W (tj ,i) are |RS(i)| × |RS(i)| matrices, and the diagonal matrix ∆ is
defined as ∆ = −diag ((R+W )e) and the operator ⊕ is the Kronecker sum, as
formally described in Section 3.1. The matrices R(i) and W (tj ,i) are assembled
exploring RS(i) and can be specified through an high level formalism such as
GSPN [11, 5] or PEPA [12]. In particular, W (tj ,i) = λtjW̃

(tj ,i) where W̃ (tj ,i) is
a {0, 1}-matrix defined as follows:

W̃
(tj ,i)

si,s′i
=

{
1 if tj is enabled in si inside Mi and si

tj→ s′i
0 otherwise

(4)

where λtj is the constant rate associated to tj , equal in every Mi. In particular,
if the transition tj has no effect on the component Mi, we have W̃ (tj ,i) = I. In
the following we will call

PS = RS(1) × · · · × RS(k)

the potential state space and the |PS|×|PS| descriptor matrix Q will be treated
implicitly.

3 Low-rank tensors
3.1 Kronecker sums
Often, high-dimensional problems are formulated as the sum of 1D (or, more
generally, low-dimensional) operators acting on a subset of the dimensions. The
most classical example For instance, one may consider the Poisson problem on
the d-dimensional box [0, 1]d defined by the PDE

∆u = f, u : [0, 1]d → R, ∆u :=

d∑
i=1

∂2u

∂x2
i

.
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If we denote by ∂2 the 1-dimensional second derivative operator on [0, 1], then
we can write

∆ = ∂2 ⊗ I ⊗ . . .⊗ I︸ ︷︷ ︸
∂2

∂x2
1

+ I ⊗ ∂2 ⊗ . . .⊗ I︸ ︷︷ ︸
∂2

∂x2
2

+ . . . I ⊗ . . .⊗ I ⊗ ∂2︸ ︷︷ ︸
∂2

∂x2
d

.

We shall use a special notation to denote these operators, and we give it the
name Kronecker sum; we write A1 ⊕ . . .⊕ Ad to mean the operator defined by
the sum of A1 operating on the first dimension, A2 on the second, up to Ad on
the last dimension. In particular, we have

∆ =
∂2

∂x2
1

⊕ · · · ⊕ ∂2

∂x2
d

.

In our setting, we will not deal directly with such differential problems, yet
the same structure will appear in the definition of the infinitesimal generator
Q of the Markov chains. This is due to the modelization of large and complex
systems as a union of smaller (and simpler) subsystems, which only have “weak”
interactions. In this case, the infinitesimal generator is not exactly in the form
of a Kronecker sum, but it has a low-rank tensorial structure.

The term “tensor rank” does not have a single universally accepted meaning.
In fact, unlike in the matrix case (that is, d = 2), several different ranks can be
defined — and they have different computational properties. The most classi-
cal definition is the CPD rank, linked to the Canonical Polyadic Decomposition
(also sometimes called PARAFAC — see [14] and the references therein for more
details); this is linked to the definition of rank as sum of rank 1 terms, which
are in turn defined as outer product v1⊗ · · · ⊗ vd. However, using this low-rank
format is inherently difficult and unstable. For instance, the set of rank R ten-
sors is not closed if d > 2, and this makes the low-rank approximation problem
ill-posed [8]. Moreover, the computation of the best rank r approximation of
a tensor is a difficult problem, and the solution can only be approximated by
carefully adapted optimization algorithms, see [15] for a review.

For this reason, there has been interest in finding alternative low-rank rep-
resentation of tensors. A very robust possibility that is well-understood is the
Tucker decomposition, linked to the Higher Order SVD (HOSVD) [7]. However,
this approach requires to store a d-dimensional tensor (even though of smaller
sizes), and so is only suited for small values of d.

When one is faced with the task of working with high values of d (say, d > 5),
and a small number of entries for each mode – a natural choice are instead
tensor-train [20] or the hierarchical tucker decomposition [16].

We shall concentrate on the former choice, and in the next section we briefly
recall the main tools that we use in the rest of the paper.

3.2 Tensor-train format
When a Markov chain is modeled combining the states spaces of smaller stochas-
tic process, the set of potential states is obtaining combining the possible states
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of the smaller components; therefore, the growth in the number of states is ex-
ponential in the number of subsystems. This phenomenon is often known under
the name of “curse of dimensionality”, and several approaches have been con-
sidered in the literature to address the difficulties that arise in the analysis of
such systems.

One technology that allows to treat these problems, and has already been
applied to Markov chains (see [2, 15]), is the one of tensor trains (TT). This
tools has been used successfully to deal with high-dimensional PDEs such as
the one given as representative example in the previous section [10, 13] and
for integration in time [17]. These problems are strictly related to the setting
of Markov chain, where the probability distribution at a certain time t solves
a linear ODE described by the infinitesimal generator Q, as we now describe
more in detail.

Let us consider a large system composed by k smaller subsystems, each with
ni states, i = 1, . . . , k. The potential state space PS can then be written as

PS := {1, . . . , n1} × . . .× {1, . . . , nk}.

At each time t, the probability vector π(t)T = πT
0 e

tQ can be expressed in tensor
form, as an array with k indices π(t) = π(i1, . . . , ik). A tensor train representa-
tion of a tensor v is a collection of order 3 tensors Mi of size ri×ni× ri+1 such
that r1 = rk = 1, and

vi1,...,ik =
∑

t1,...,tk−1

M1,i1,t1Mt1,n2,t2 . . .Mtj−1,nj ,tj . . .Mtk−1,nk,1.

The core matrices Mi are called carriages, hence the name tensor train [20]. The
tuple (r2, . . . , rk−1) is called the TT-rank of the tensor v. Similarly, matrices
m×n can be represented as tensors by subdividing the row and column indices.
The TT format has been very successful in overcoming dimensionality problems
in several frameworks, such as high-dimensional PDEs []. We shall demonstrate
that their use is beneficial in the the computation of performance and reliability
measures as well.

On the software side, a well-established framework [21] is available for Python
and MATLAB[19] We rely on the latter for our numerical experiments.

3.3 Exponential sums
Given a Kronecker sum A := A1 ⊕ . . . Ad, we are interested in efficiently com-
puting its inverse, or the solution of a linear system Ax = b. Given the rele-
vance of this problem in high-dimensional PDEs and various other settings of
applied mathematics, several approaches have been devised over the years. In
this section we briefly recall the one known after the name of exponential sums
[3].

For the sake of self-completeness, we briefly recall the main important facts
related to this topic. The idea behind exponential sums is to rephrase the inverse
as a combination of matrix exponentials. The latter are much easier to compute
for a Kroencker sum, as stated by the next Lemma.
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Lemma 3.1. Let A = A1 ⊕ . . . ⊕ Ad be a Kronecker sum. Then, the matrix
exponential eA is given by

eA = eA1 ⊗ eA2 ⊗ · · · ⊗ eAd .

Proof. It suffices to recall that eA+B = eAeB whenever A and B commute;
clearly, all the addends in the sum defining A commute, and the result follows
by eA⊗B = eA ⊗ eB .

In view of the previous result, assume we know an expansion of 1
x of the

following form:
1

x
=

∞∑
j=1

αje
−βjx, ∀x ∈ Λ(A),

where Λ(·) denote the spectrum of the operator. Then,

A−1 =

∞∑
j=1

αje
−βjA.

Truncating the above series yields an approximation of the inverse, and the
matrix exponential are very cheap to compute if one knows the factors Ai.
It remains to construct a method to efficiently compute αj and βj of such an
expansion. We say that an exponential sum has accuracy ε > 0 on the interval
[a, b] if, for any x ∈ [a, b], we have

∣∣∣ 1x −∑k
j=1 αje

−βjx
∣∣∣ ≤ ε.

We shall make two assumptions. First, we ask that the operator A has
only real and positive eigenvalues; then, we ask that all the matrices Ai (and
therefore A as well) are normal matrices. As we will see later, both assumption
can be relaxed, but not removed completely. However, for now they make the
analysis much easier.

Lemma 3.2 (Crouzeix–Palencia [6]). Let A be any matrix, f(z) a function,
and consider its field of values defined as W(A) := {xHAx ∈ C | ‖x‖2 = 1}.
Then,

‖f(A)‖2 ≤ (1 +
√
2) max

z∈W(A)
|f(z)|.

Moreover, if A is normal, then ‖f(A)‖ = maxz∈Λ(A) |f(z)|, where Λ(A) is the
set of eigenvalues of A.

Proof. The results for normal matrices is easily provable since A can be diag-
onalized by an orthogonal (or unitary) transformation, and then f(A) can be
recasted to computing f(D), with D diagonal containing the eigenvalues of A.

On the other hand, the result for general matrices needs to consider the field
of values, and is far from being trivial. We refer to the work of Crouzeix and
Palencia for the proof [6].

The strength of Lemma 3.2 is that it allows to relate the quality of a good
approximation of a function with its evaluation as a matrix function. In partic-
ular, we have the following.
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Lemma 3.3. Let αj , βj be the coefficients of an exponential sum with accuracy
ε over [1, R]. Then, if A is a Hermitian matrix with spectrum contained in
[1, R], we have ∥∥∥∥∥∥A−1 −

k∑
j=1

αje
−βjA

∥∥∥∥∥∥
2

≤ ε

Proof. The result is a straightforward application of Lemma 3.2 to the function
f(z) = 1

z −
∑k

j=1 αje
−βjz over the domain [1, R].

The previous result implies that, given a (normal) matrix in Kronecker sum
form A = A1 ⊕ . . . ⊕ Ak, to achieve an accuracy ε in the computation of A−1

or, equivalently, in the solution of the linear system Ax = b, we shall obtain
an exponential sum with coefficients αj , βj achieving that accuracy ε over the
eigenvalues of A. The construction of the coefficients αj , βj is beyond the scope
of this paper; our construction relies on [3].

Lemma 3.2 can be used instead when the matrix is non-normal and/or has
complex eigenvalues. However, one needs to rely on approximation methods and
it more difficult to provide explicit bounds. We refer to [3] and the references
therein for further information.

4 Computing the MTTF
In [18] it has been shown the computation of several perfomability measures
can be recasted as the evaluation of a matrix function. In most cases, one has
to compute wT f(Q)v for appropriate vectors v, w, and a certain function f(z).
In this work, we focus on the computation of the mean-time-to-absorption. We
assume that the Markov process has a single absorbing state, and without loss
of generality we assume it to have index N . Then, we compute the quantity

MTTA =

∫ ∞

0

P{X(τ) < N} dτ = E
[∫ ∞

0

1{1,...,N−1}(X(τ)) dτ

]
.

Often, we are interested in the case where the absorbing state corresponds to
the failure state of the system. In this case, we use the name mean-time-to-
failure and the notation MTTF. We assume that the matrix Q is partitioned
as follows:

Q =


v1

Q̂
...

vN−1

0 . . . 0 0

 ,

where the last row is forced to be zero because the state N is absorbing. Fol-
lowing [23], we know that

MTTA = −π̂T
0 Q̂

−1e = πT
0 f(Q)e, f(z) =

{
− 1

z z 6= 0

0 otherwise
(5) {{eq:mtta}}{{eq:mtta}}
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where e is the vector of all ones, and π̂0 contain the first N − 1 entries of π0. In
this work, we are interested in the case where Q can be efficiently represented
in the TT format. The TT format gives many computational advantages, but
does not provide an easy way to extract a submatrix. In fact, the matrix Q̂
might not have any particular tensor structure. To overcome this drawback, we
introduce an auxiliary matrix S which allows to rephrase the measure using the
inverse of a low-rank perturbation of Q.

Lemma 4.1. Let Q the infinitesimal generator of a continuous time Markov
chain with exponential rates with N states; assume that the state N is the only
failure state, and let S be the rank 1 matrix defined as

S = (QeN )eTN − eNeTN .

Then, if π0 has the N -th component equal to 0, we have MTTA = −πT
0 (Q −

S)−1e, where e is the vector of all ones.

Proof. By construction, we have that Q− S is block diagonal and therefore

(Q− S)−1 =

[
Q̂

1

]−1

=

[
Q̂−1

1

]
,

and −πT
0 (Q−S)−1e = −π̂T

0 Q̂
−1e− [π0]N = MTTA− [π0]N . We conclude noting

that [π0]N = 0.

Remark 4.2. Note that the TT-rank of S is (1, . . . , 1), since it is a matrix of
rank 1, and if Q has a low TT-rank the same holds for Q− S.

The important consequence of the previous Lemma is that, even though we
cannot extract a submatrix from Q to compute the MTTF, we can make a rank
1 (in the TT sense) perturbation that makes Q invertible, and still delivers the
same result.

Lemma 4.3. Let v = e + γeN , for any γ ∈ R. Then, with the notation of
Lemma 4.1, we have

MTTA = −πT
0 (Q− S)−1e = −πT

0 (Q− S)−1v.

Proof. Note that, [π0]N = 0, and therefore

−πT
0 (Q− S)−1v = −

[
π̂T
0 Q̂

−1 0
]


1
...
1

1 + γ

 = −π̂T
0 Q̂

−1e = MTTA.

We have recasted the problem in solving a linear system (Q−S)x = e, where
the matrix Q − S is expressed in TT format. Unfortunately, as we will see
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later on, a few problem of interest for us do not play very well together with the
more widespread tensor train system solvers (such as AMEN [] or DMRG []).
For this reason, we propose a different solution scheme based on the Neumann
expansion. In particular, let M be any matrix with spectral radius strictly
smaller than 1. Then,

(I −M)−1 = I +M +M2 +M3 + . . . =

∞∑
j=0

M j (6) {{eq:neumann}}{{eq:neumann}}

If we partition Q as Q = Q1 +Q2, we can write

(Q− S)−1 = (Q1 +Q2 − S)−1 = (I +Q−1
1 (Q2 − S))−1Q−1

1 .

Setting M = −Q−1
1 (Q2 − S), assuming that ρ(M) < 1 and using the Neumann

expansion (6) we obtain

(Q− S)−1 =

∞∑
j=0

(−1)j(Q−1
1 (Q2 − S))jQ−1

1 . (7)

The above formula can be used to approximate x = (Q − S)−1e as needed for
(5) by truncating the infinite sum to k terms:

xk =

k∑
j=0

(−1)j(Q−1
1 (Q2 − S))jQ−1

1 e, ‖x− xk‖∞ ≈ O(ρ(M)k+1).

Our main contribution is to give an explicit method to construct the additive
splitting Q = Q1 + Q2 so that M is guaranteed to have spectral radius less
than 1. This will be achieved in Theorem 4.7. The pseudocode describing the
resulting method is presented in Algorithm 1.

Algorithm 1 Neumann series (6) to approximate x = (Q− S)−1e

1: procedure NeumanSeries(Q1, Q2, k)
2: y ← Q−1

1 e
3: x← y
4: for j = 1, . . . , k do
5: y ← −Q−1

1 (Q2 − S)y
6: x← x+ y
7: end for
8: return x
9: end procedure

This method has a linear convergence rate [9], which is given by ρ(M).
However, it can be accelerated to obtain a quadratically convergent method by
a simple modification. Note that we can refactor (6) as follows:

(I −M)−1 = (I +M)(I +M2)(I +M4) · · · (I +M2j ) · · · (8) {{eq:neumann2}}{{eq:neumann2}}

8



Truncating the above equation and permuting the factors (I + M2j ) yields
another method to approximate x = (Q − S)−1e, which has a much faster
convergence, and is described by the equation:

(I −M)−1Q−1
1 e = (I +M2k)(I +M2k−1

) · · · (I +M2)(I +M)Q−1
1 e

The pseudocode for this approach is given in Algorithm 2. As visible on line 5,
this method required to store the repeated squares of the matrix M .

Algorithm 2 Neumann series (8) to approximate x = (Q− S)−1e

1: procedure NeumanSeries(Q1, Q2, k)
2: M ← −Q−1

1 (Q2 − S)
3: x← Q−1

1 e+MQ−1
1 e

4: for j = 2, . . . , k do
5: M ←M2

6: x← x+Mx
7: end for
8: return x
9: end procedure

Remark 4.4. A favorable property of both approaches is that the convergence of
xk to x is monothonically decreasing and non-positive. That is, for each k′ ≤ k
we have xk′ ≥ xk. Since the MTTA is equal to −πT

0 x, the estimates −πT
0 xk of

the MTTA obtained in the intermediate steps are guaranteed lower bounds.
We note that Algorithm 1 can be slightly modified to compute πT

0 (Q−S)−1

instead of (Q − S)−1e. Both vectors can then be used to compute the MTTF
through a dot product. However, the former choice has the advantage that
π0(s) = 0 implies that x(s) = 0 throughout the iterations for every s ∈ PS\RS.
In particular, the non-reachable part of the chain has no effect on the computed
tensor, and this helps to keep the TT-rank low during the iterations. The
modified algorithm is reported for completeness in Algorithm 3, where now x, y
are row vectors.

Algorithm 3 Neumann series (6) to approximate πT = πT
0 (Q− S)−1

1: procedure NeumanSeries(Q1, Q2, k)
2: y ← πT

0

3: x← y
4: for j = 1, . . . , k do
5: y ← −yQ−1

1 (Q2 − S)
6: x← x+ y
7: end for
8: x← xQ−1

1

9: return x
10: end procedure
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Lemma 4.5. Let A ≥ 0 be a non-negative N ×N matrix, and e the vector of
all ones. Then,

ρ(A) ≤ ‖A‖∞ = max
1≤i≤N

(Ae)

Moreover, if there is at least one component of Ae strictly smaller than ‖A‖∞,
then ρ(A) < ‖A‖∞.

Proof. The first statement is the definition of infinity norm, whereas the second
follows directly by the first Gerschgorin theorem.

The next result provides a technique for splitting an infinitesimal general Q
(i.e., up to a change of sign, any M -matrix with zero row sums) in a way that
allow to perform the Neumann expansion. Let us first recall a few properties of
diagonally dominant matrices.

Lemma 4.6. Let A = D−B, with D < 0 and diagonal, B ≥ 0, and Be < −De,
where e is the vector with all components equal to 1. Then, A is invertible and
A−1 ≤ 0.

Proof. This fact can be easily prove using the tools from theory of nonnegative
matrices, see for instance [1]. Since D < 0, the condition A−1 ≤ 0 is equivalent
to (D−1A)−1 ≥ 0. Moreover, the strict row diagonal dominance implies that
‖D−1A‖∞ < 1, so we have

(D−1A)−1 = (I − (−D−1A))−1 =
∑
j≥0

(−D−1A)j ≥ 0,

where we have used that (−D−1A) ≥ 0. This concludes the proof.

Theorem 4.7. Let A = D+A1 +A2 any N ×N matrix such as D is diagonal
and non-positive, A1, A2 are non negative, eTN (D + A1 + A2) = eTNA1 = 0,
and (D +A1 +A2)e = 0. Then, if we define S = (A1 +A2)eNeTN , (D +A1) is
invertible and mini=1,...,N−1 AiN > 0, we have that ‖(D+A1)

−1(A2−S)‖∞ < 1.

Proof. Let us denote with M := (D + A1)
−1(A2 − S). All the columns of this

matrix are non-positive (see Lemma 4.6), with the only exception of the last
one, which is non-negative. This is a consequence of the fact that (D + A1)

−1

is non-positive, and (A2 − S) has the first N − 1 columns with positive entries,
and the last one with negative ones.

Therefore, it is clear that we have ‖M‖∞ = ‖M(e− 2eN )‖∞, and the vector
M(e− 2eN ) is element-wise non-positive by construction. We have

M(e− 2eN ) = (D +A1)
−1(A2 − S)(e− 2eN ).

Using the relations (D+A1)
−1A2e = (D+A1)

−1(D+A1 +A2)e− e = −e and
Se = SeN = (A1 +A2)eN we get

M(e− 2eN ) = −e− 2(D +A1)
−1A2eN + (D +A1)

−1(A1 +A2)eN

= −e+ (D +A1)
−1(A1 −A2)eN

= −e+ eN − (D +A1)
−1(D +A2)eN .
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By construction, we know that the last row of D + A2 is equal to −eTNA1

and is therefore zero. The first N − 1 entries in (D + A2)eN are taken from
A2 and therefore they are (strictly) positive. Since (D + A1)

−1 is entry-wise
strictly negative, we have that v = −(D + A1)

−1(D + A2)eN has the first
N − 1 components strictly positive. Therefore, we have that M(e− 2eN ) > −1
element-wise, and on the other hand we knew that M(e− 2eN ) is non-positive.
This implies that ‖M‖∞ < 1, as claimed.

Lemma 4.8. Let y be any vector. Then, using the notation of Theorem 4.7,
(D+A1)

−1(A2 − S)y has the last component equal to zero. Moreover, let y0 be
any vector, and define

yk+1 = −(D +A1)
−1(A2 − S)yk, k ≥ 1.

Then, if yk for k > 0 is non-negative we have yk′ ≥ 0 for any k′ ≥ k.

Proof. We start showing that eTN (D+A1)
−1(A2−S) = 0, which proves the first

claim. We have

eTN (D +A1)
−1(A2 − S) = D−1

NNeTN (A2 − S) = eTNA2 − eTNA1eNeTN − eTNA2eNeTN

= eTNA2 − eTNA2eNeTN = eTNA2(I − eNeTN )

= −eTND(I − eNeTN ) = 0,

where we have used the properties eTN (D + A1 + A2) = eTN + A1 = 0, and the
definition of S = (A1 +A2)eNeTN .

Assume now that eTNy = 0. Then, z := (A2 − S)y = A2y ≥ 0, since Sy = 0.
Moreover, (D + A1)

−1 is non-positive in view of Lemma 4.6, and therefore
−(D +A1)

−1z ≥ 0, concluding the proof.

Remark 4.9. Note that choosing γ = −1 in the notation of Lemma 4.3 provides
a starting vector for the Neumann iteration Equation (6) that satisfies the hy-
potheses of Lemma 4.8. Therefore, in this case the iteration to approximate the
MTTA is monothonically increasing, and at the step k gives a lower bound for
the final value of the MTTA.

Theorem 4.10. Let Q = ∆+R+W be an infinitesimal generator of a Markov
chain as described in (1), with

R = R(1) ⊕ . . .⊕R(k), ∆ = −diag((W +R)e),

and γ ≥ ‖∆‖∞. Then, if we define D := −γI,A1 = R, and A2 = W +(∆−γI),
these matrices satisfy the hypotheses of Theorem 4.7 and there exists αj , βj such
that

D +A1 =
(
R(1) − γ

k
I
)
⊕
(
R(2) − γ

k
I
)
⊕ · · · ⊕

(
R(k) − γ

k
I
)
,

and therefore

(D +A1)
−1(A2 − S) ≈

∑̀
j=1

αj

(
eβj(R1− γ

k I) ⊗ . . .⊗ eβj(Rk− γ
k I)

)
(A2 − S).
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Remark 4.11. We note that the choice of γ allows to control the condition
number of the matrix D + A1; our experience shows that larger values for
γ (which give lower condition numbers), provide slower convergence, but also
lower TT-ranks during the Neumann iteration.

5 Computational remarks
In this section we report a few computational remarks concerning our imple-
mentation. We have written a function computeMTTF that, given a collection of
R and W matrices describing the probability transition inside the small sub-
systems and their interaction, constructs the matrices Q1 and Q2 in order to
perform the Neumann iteration.

Then, we have implemented the linearly convergent (6) and the quadratically
convergence (8) iterations. A few considerations can be helpful in trying to
obtain maximum performances from the implementation.

5.1 Ordering of the subsystems
Since the TT representation represents the interaction between between the
subsystem i and i + 1 in each carriage, we have found that it is beneficial to
reorder the topology so that few nodes are linked to far ones.

In particular, given the adjacency matrix T that represents the connection
graph (i.e., Tij) = 1 if and only if there is an edge in graph from the node i to
the node j), it can be helpful to reorder the subsystems to make this matrix as
banded as possible. To this end, we have employed the reverse Cuthill-McKee
ordering implemented in MATLAB in the function symrcm.

5.2 The choice of γ

The choice of the parameter γ in Theorem 4.10 can have important effects on
the performance of the algorithm. We have verified that choosing γ relatively
large, for instance γ = 2‖∆‖∞, can be helpful. This reduces the conditioning of
the matrix to invert to a small number (smaller than 2, in fact), and thus very
few exponential sums are needed to achieve a very high accuracy. This helps
to keep the TT-ranks low during the iteration, especially when applying (8),
which in turn suffers very mildly from having the spectral radius close to 1. On
the other hand, when applying the linearly convergence iteration (6), a choice
closer to zero can be more convenient.

We do not have a “universal recipe” for these choices, so it might be helpful
to do some preliminary parameter tuning on small problems of a given class
before tackling the large scale cases.
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Figure 1: Example SAN for the case study where there are 4 components.
Dotted arrows are synchronization transitions.

6 Case study
Consider a cyber-physical system comprising k components, consisting each of a
mechanical object and a Monitoring and Control Unit (MCU). The mechanical
objects are independent one from the other whereas the working status of the
MCU software on component j depends on data produced by local sensors and
can depend also on data coming from the MCU of component i. Thus, it is
possible to define a topology of interactions among component MCUs: define T
the k×k matrix as T (i, j) = 1 if i = j or the j-th MCU consumes data produced
by the i-th MCU. At every time instant, the MCU and the mechanical object on
each component can be working or failed. If the mechanical object on component
i fails then instantaneously also the MCU on component i fails. If T (i, j) = 1
then the failure of the i-th MCU implies an instantaneous failure of the j-th
MCU. The failure time of the software running on the i-th MCU is assumed to
be exponentially distributed with rate λs

i .
The MCU on component i can modify the behaviour of the mechanical object

on component i, so the failure time of the mechanical object on component i is
exponentially distributed with rate •λh

i if the MCU on component i is working,
and ◦λh

i if the MPC is already failed. No repair is considered.
We are interested in evaluating the Mean Time to System Failure, where the

system is considered failed when all the mechanical objects are failed. Figure 1
depicts the SAN model for a simple case where there are 4 components. In
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particular, the state of component i, represented with a circle, is defined by
software status (si is w if working, f if failed) and the hardware status (hi is
w if working, f if failed). Transitions can be local or synchronized, represented
as arrows and dotted arrows, respectively, and labelled by their rate. Each
component model has 3 states, so that |PS| = 3k, and the cardinality of RS
depends on T : to a large number on non-zeros entries in T corresponds a small
RS. Notice that, if T = I then RS = PS. The local and synchronization
contribution matrices are then obtained as in Equation (9) and Equation (10),
respectively.

R(i) =

0 0 •λh
i

0 0 ◦λh
i

0 0 0

 (9) {{eq:R}}{{eq:R}}

W (j,i) =



0 λs
i 0

0 0 0

0 0 0

 if j = i

0 1 0

0 1 0

0 0 1

 if j 6= i and T (i, j) = 1

1 0 0

0 1 0

0 0 1

 otherwise

(10) {{eq:W}}{{eq:W}}

7 Experimental results
The case study model presented in Section 6 has been implemented in MAT-
LAB [19] and studied applying the method discussed so far. In particular, we
consider the following set of parameters:

•λh
i =

i

10
, ◦λh

i = i, λs
i = i,

and the topology T has been chosen at random with the following constraints:

• each component has impact on itself, i.e., T (i, i) = 1,

• the sparsity of T is about 1
2k ,

Table 1 collects, for both Algorithms 2 and 3, the time spent by the presented
method in computing the MTTF and the maximum amount of memory it has
consumed. We can notice that, at increasing of k, both time and memory do
not follow a regular pattern, due to the randomly generated T . In all the
considered experiments, Algorithm 3 is slower than Algorithm 2 but it has a
reduced memory footprint, confirming the theoretical prediction.
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time(s) mem (Gb) time (s) mem (Gb)
k |RS| |PS| Alg 3 Alg 3 Alg 2 Alg 2
10 2400 59049 57.12 6.25 · 10−1 28.18 2.23
12 9760 531441 87.95 0.66 37.87 3.01
14 4.78 · 106 145.74 0.68 39.97 2.42
16 4.3 · 107 193.16 0.64 26.48 2.78
18 3.87 · 108 288.49 0.64 117.2 7.33
20 3.49 · 109 423.07 0.8 128.28 6.19
22 3.14 · 1010 524.83 0.69 101.02 6.82
24 2.82 · 1011 787.72 0.89 275.34 14.2
26 2.54 · 1012 885.34 0.68 75.95 2.64
28 2.29 · 1013 1095.48 0.88 48.94 2.87
30 2.06 · 1014 1337.4 0.85 54.64 3.15
32 1.85 · 1015 1547.46 0.88 59.16 3.41

Table 1: Reachable and potential spaces dimensions, time and memory con-
sumption for Algorithms 2 and 3.
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8 Conclusions
We have shown that tensor trains are a powerful tool for the analysis of perfor-
mance and reliability measures (in this case, the mean time to failure) of large
systems, when the interconnection between the smaller subsystems that com-
pose them is sufficiently weak.

We have presented a theoretical analysis of an iteration that is easily appli-
cable in the tensorized format, and with guaranteed convergence. A quadrati-
cally convergent variation has been shown as well, and the performances have
been tested on a representative set of examples.

Several lines of research remain open: the connection between the weak con-
nections and the TT-rank in the iteration needs to be studied further, in order
to understand the relation more in depth. Moreover, several more measures are
of interest in this context, and the application of tensor techniques for this task
could lead to faster and reliable methods for their computation.
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