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What is this talk about?

e Multilingual text classification
e (Classifier ensembles

e Vector spaces
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o Classification scheme (“codeframe”) C = {cy, ..., cn}

e We learn, by observing labelled (English) documents, a classifier (e.g., a
SVM) for unlabelled (English) documents.
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Multilingual Text Classification
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Each document d written in one of a finite set £ = {A1,,..., Am}

Classification scheme (“codeframe”) C = {cy, ..., ¢y} is the same for all
languages

e Scenario common in many multinational organizations (e.g., European
Union) / companies (e.g., Vodafone)

e How can we learn from heterogeneous data?
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The Naive Solution
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e MLC solved as m independent monolingual classification tasks
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The Naive Solution
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e MLC solved as m independent monolingual classification tasks
e Suboptimal!
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The Machine Translation approach
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e Use MT to transform all documents into a single language.
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The Machine Translation approach
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e Use MT to transform all documents into a single language.
e Problems:
e MT tools may not be available for certain language pairs,
e may not be free
e may work suboptimally
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Poly-lingual Text Classification
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e Attempts to exploit synergies among languages

e = Improve on monolingual classifiers (naive)
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Poly-lingual Text Classification

« And we want to avoid the use of any:
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Poly-lingual Text Classification

« And we want to avoid the use of any:

o MT tools

« Bi-lingual dictionaries

« Multilingual Thesaurus (e.g., BabelNet)
o External resources (e.g., Wikipedia)

« Is that possible?
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Funnelling!
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e Funnelling maps different
non-overlapping feature
spaces into a common
vector space

e All documents get
represented in the common
space irrespectively of their
provenance
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Funnelling: PLC made easy

e Two-level classification

architecture
base classifiers ’ ‘

? @ |L| language-dependent base
cattrted [ ] classifiers
probabiltes D ‘I ® One language-independent
metaclassifier

o e For the metaclassifier, document
P d represented as vector of |C|
classification scores

e Metaclassifier outputs a vector of
|C| classification scores

|
|
o

meta classifier
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Funnelling: PLC made easy

1: o All documents from any language
contribute to the other languages

base classifiers ’ ’ 0

~g=

e |earner-independent

o . —
probabilities i
e Independent from representation

model used in base classifiers

e No requirement that training set
should be parallel or comparable

e No requirement for ML
dictionaries, ML datasets, MT
services

meta classifier ’
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Training a funnelling system

Fun(TAT): " Funnelling Training and Test”

e Train base classifiers using monolingual training sets
e Classify training examples via trained classifiers

e Uses classification scores of training examples for training metaclassifiers
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Training a funnelling system

Fun(TAT): " Funnelling Training and Test”

e Train base classifiers using monolingual training sets
e Classify training examples via trained classifiers
e Uses classification scores of training examples for training metaclassifiers

e Problem: base classifiers generate higher-quality representations for training
data than for test data (iid assumption)
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Training a funnelling system

Fun(TAT): "Funnelling Training and Test”
e Train base classifiers using monolingual training sets
e Classify training examples via trained classifiers
e Uses classification scores of training examples for training metaclassifiers

e Problem: base classifiers generate higher-quality representations for training
data than for test data (iid assumption)

Fun(kFCV): "Funnelling k-Fold Cross-Validation”
@ Train base classifiers using monolingual training sets (same)
® Classify training examples via k-fold cross-validation

© Use classification scores of training examples for training (same)
metaclassifiers
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Probability calibration

e Problem: metaclassifier receives as
input vectors coming from
different, incomparable sources

e Solution: make them comparable!,
by converting classification scores
S(c, d) into well calibrated
posterior probabilities Pr(c|d)

e Calibration: “90% of items whose
Pr(c|d) is 0.9 should belong to ¢”

e To be performed independently for
each base classifier
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|
Training a funnelling system: Fun(TAT)

Fun(TAT) :
@ Train base classifiers using monolingual training sets
® Classify training examples via trained classifiers
©® Map classification scores into well-calibrated posterior probabilities

@ Use posterior probabilities of training examples for training metaclassifiers

Fun(kFCV) :
@ Train base classifiers using monolingual training sets
® Classify training examples via k-fold cross-validation
©® Map classification scores into well-calibrated posterior probabilities

@ Use posterior probabilities of training examples for training metaclassifiers
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How well does funnelling work?
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Datasets and learners

e Datasets:

e RCV1/RCV2: comparable corpus, 9 languages, 10 samples x ((1000 training
+ 1000 test) per language), 73 classes

e JRC-Acquis: parallel corpus, 11 languages, 10 samples x ((1155 training +
4242 test) per language), 300 classes

e |earners:

e SVMs w/ linear kernel (base classifiers)
e SVMs w/ RBF kernel (metaclassifier)
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Baselines and evaluation measures

e Baselines:

e Naive (i.e., monolingual classification)

e Cross-Lingual Explicit Semantic Analysis
(CLESA - Song & Cimiano, CLEF 2008)

e Distributional Correspondence Indexing
(DCI = Moreo et al., JAIR 2016a)

o Lightweight Random Indexing
(LRI = Moreo et al., JAIR 2016b)

e Polylingual Embeddings
(PLE = Conneau et al., ICLR 2018)

e Measures (both in micro- and macro-averaged versions):

e [
e K (= "balanced accuracy”)
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Multi-label PLC results
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Some results

e More consistent improvements over naive baseline

20

% of improvement in Macro-F1

-10

Danish Dutch English French German Italian Portuguese  Spanish Swedish

B LRI W CLESA DCI [ PLE [ FUN(KFCV) [ FUN(TAT)
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How efficient is funnelling?

5 | 2

2 < N

2 = L - L Z. Z.

z o w 8 = 2 2
537 | 5,506 | 28,508 | 344 | 954 | 1,041 | 215
ReVI/RCvz || 37| 5200 | 28508 AR i1 s
JRC.Acauis || 6:005 | 67,571 [ 63497 [ 4,888 | 2,232 | 13,127 | 4,987
a 39| 52| 719 8| 870 54 | 45

1 @ -

ch Council of ltaly




Conclusions

e PLC: an important task for many
multinational organizations /
v companies
e Approach: mapping different
language-dependent feature spaces
into a language-independent
vector space

o exploiting the information from
all languages
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Conclusions

e PLC: an important task for many
multinational organizations /
companies

e Approach: mapping different
language-dependent feature spaces
into a language-independent
vector space:

o exploiting the information from
all languages
@ o very effectively
o very efficiently

e using no external knowledge!
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Where can we go from here?

e Different codeframes

e Other classification scenarios (e.g.,
“multimodal” classification)

e Adopt a deep learning end-to-end

‘ @ architecture
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Questions?
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Thank you!

For any question, email me at
alejandro.moreo@isti.cnr.it
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Which languages benefit / contribute most?
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How does this contribution evolve?

Cross-lingual relative improvement (Fun(TAT) vs. Naive) in RCV1/2
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