
Remote Sensing for Maritime Monitoring and
Vessel Characterization

Marco Reggiannini
Institute of Information Science and Technologies

National Research Council of Italy
Pisa, Italy

marco.reggiannini@isti.cnr.it

Abstract—The main objective of the work described here
concerns the development of automatic ICT procedures in charge
of processing imagery data captured by satellite-borne sensors
to assess the status of a given maritime area. The mentioned as-
sessment may refer to the detection and identification of peculiar
objects, such as oil leaks or, in case of maritime traffic control, the
recognition of navigating vessels. This paper specifically focuses
on the development of methods for estimating the kinematics of
a navigating vessel through the detection and analysis, in the
2D satellite imagery, of the corresponding wake pattern. The
proposed method differentiates from those retrieved in previous
literature for the introduction of a novel preprocessing stage,
which allows for an enhancement in the overall performance
of the wake detector. The resulting procedure represents a
key functionality to be included in platforms dedicated to sea
surveillance.

Index Terms—Maritime surveillance, SAR, Wake detector

I. INTRODUCTION

Marine surface monitoring represents a task of paramount
relevance to ensure marine traffic safety, malicious activity
counteraction and timely intervention in case of emergency
circumstances. Indeed it provides crucial information to be
exploited for decision making purposes and to deal with a
wide range of critical issues such as vessel traffic supervision
or illegal fishery and pollution monitoring. To this purposes
several joint research actions have been previously undertaken
in order to develop solutions to issues related to maritime
monitoring (see for instance [1]–[6]). Within this framework,
the present paper reports about the development of automatic
procedures for processing imagery captured by remote sensing
devices.

In particular the discussed set of procedures constitutes a
specific stage of the maritime monitoring software platform
developed in the OSIRIS1 project. The OSIRIS platform (see
section V for details) can be operated as the cascade sequence
of task-oriented stages, each involving the execution of spe-
cialized computer vision modules. The input data correspond
to Synthetic Aperture Radar (SAR) and Optical maps captured
by satellite-borne sensors (Sentinel-1A/B, Cosmo-Sky Med,
EROS-B). These data feed a pipeline of processing steps
devoted to i) the detection of targets (e.g. vessels) in the
input map, ii) the extraction of the most descriptive features
of candidate targets and finally iii) the estimation of peculiar

1http://wiki.services.eoportal.org/tiki-index.php?page=OSIRIS

properties of candidate targets, properties that may represent
crucial information to concerned operators (e.g. estimation
of the dimensions of a vessel, of its route and velocity).
The software steps that are preliminary applied concern the
enhancement of the captured data in terms of signal-to-noise
ratio. Indeed, the first goal when surveying maritime areas
through remote sensing platforms, is to reduce the noise
contaminations that typically affect the signal, such as speckle
noise in case of SAR imaging systems. Once the visual
enhancement has been carried out (see [7] for details), the
signal is processed to perform the recognition in the maps of
potential targets of interest and the analysis of their shape
properties. This stage of the pipeline is dedicated to the
extraction of visual attributes associated to the detected targets,
aiming at providing a set of quantitative descriptors to be
employed for classification purposes. In relation to this, the
author has been concerned in detail with the implementation
of an algorithm devoted to the estimation of the kinematics
of detected targets. Concerning the vessel traffic monitoring
system, this has been obtained through the automated analysis
of the wake patterns observed in the image areas surrounding
the target. In particular, the algorithm aims at i) detecting wake
patterns generated by the ship’s motion, ii) identify the wake
components and estimate the route and, finally, iii) estimate
the vessel’s velocity based on the exploitation of imaging
features related to the wake pattern components. The rest of
the paper will focus on the specification of a method for the
estimation of the vessel’s speed obtained through the analysis
of quasi-raw data, such as single-look-complex SAR maps.
The paper is arranged as follows: section II concerns a brief
State of the Art concerning previous literature approaches for
ship kinematics estimation purposes, section III describes the
author’s approach to this topic, in section IV some results are
discussed and section V is dedicated to the conclusions and
potential future prospects.

II. STATE OF ART

Several methods have been proposed to deal with the issue
of estimating the kinematics of ship motion captured through
SAR imaging systems. As previously mentioned the approach
adopted in this work is based on the recognition and the
analysis of the wake pattern generated by a vessel moving
on the water surface (see Figure 1). A rigorous description
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of the physics underlying the wake generation problem has
been provided by previous eminent research [8]–[10]. For our
purposes it is relevant to remark that the imaging attributes
of such pattern are essentially related to the velocity of the
vessel over the sea surface, and that these are mapped in SAR
images by features related, in turn, to the velocity vectors (over
ground) of the vessel and the satellite platform. Accordingly,
popular approaches to kinematics estimation from SAR exploit
the detection followed by the analysis of the wake.

Since wakes appear mainly as V-shaped forms, many have
proposed detectors based on the preliminary recognition of
linear segments. Zilman et al. [11] proposed a method based on
the fast discrete Radon transform to detect the linear segments
that start from the wake tip and develop along the wake shape.
A similar approach has been adopted by Eldhuset [12], who
introduced an approximation stage of the Radon transform
based on the exploitation of the Chebyshev polynomials. This
allows the author to enhance the detector performance in terms
of reliability and robustness against false alarms.

The detected linear components of the wake are later
analysed to estimate the ship’s heading and the ship’s velocity.
According to [13]–[15], this can obtained by performing
proper analysis of the signal variations within the detected
linear regions.

III. PROPOSED METHOD

The proposed method is based on a few hypothesis which
are here briefly discussed. First of all it is assumed that
each moving vessel has a velocity versor that coincides with
the principal axis of the hull, identified by the stern-bow
oriented segment. Another basic assumption concerns the
angular aperture between the wake most external arms, a
morphological parameter which is expected to have a constant
value for every observation. This hypothesis is effective for a
certain range of velocities (from a few up to tens of km/h;
see for example [16]), and for a variety of vessels’ typologies
with different hull dimensions. That said, the most relevant
discriminating factors between wakes generated by different
vessels are to be sought in the spatial frequency spectrum of
the wake oscillations.

Generally speaking, a wake pattern in a SAR map is usually
observed as the composition of three macro-structures that
develop along linear directions: (i) a central turbulent strip,
usually appearing as two collinear lines, a bright one next to
a dark one, behind the vessel, with the same orientation of
the vessel’s heading and (ii) two linear bright stripes, located
approximately at the wake boundaries, about θ± = ±19.47◦
with respect to the central turbulent wake, in the so-called cusp
wave regions of the wake. The angular aperture of the resulting
V-shaped pattern features a constant value approximating 39◦.

The key element of the proposed method is represented by
the detection of the wake linear components, but it differs
from similar classical approaches due to the integration in
the pipeline of a novel process for Signal-to-Noise Ratio
(SNR) enhancement (see section III-D). Once the wake pattern
has been recognized, its internal components are analyzed to

extract features that enable to estimate the kinematics of the
ship. To this purpose relevant features related to the motion of
the ship are (i) the displacement between the vessel target and
the wake tip, called Azimuth shift (only observed in SAR),
and (ii) the spatial wavelength of the plane wave oscillation
located at the edge sector of the wake envelope (Kelvin wake).

The processing steps that the algorithm goes through (pic-
torially illustrated in Figure 2) are discussed in the following
sections.

Fig. 1. Wake pattern detection. (COSMO-SkyMed Product—© ASI 2016
processed under license from ASI—Agenzia Spaziale Italiana, all rights re-
served, distributed by e-GEOS (City, US State abbrev. if applicable, Country).

A. Ship Masking and Data Preprocessing

Due to very low SNR values ship wakes are usually not
visible or too faint to be detected in SAR imagery. To the
purpose of limiting false positive detections, the captured
data must be preliminary processed to filter out noise or to

Fig. 2. Conceptual diagram of the vessel kinematics estimation.



neglect known spurious signals. For example pixels associated
to the main vessel’s body are excluded from the subsequent
stages of the processing pipeline by exploiting the processing
methods described in [17]. In a nutshell the ship’s footprint
is first estimated through a dedicated segmentation stage.
Then pixels belonging to the ship’s footprint (usually featuring
large backscattering signals) are substituted by properly chosen
intensity values (e.g. mean image intensity), so as to avoid
those pixels to generate biased output from the subsequent
linear detection stage.

B. Azimuth Line Scan

As previously mentioned, in case of SAR remote sensing the
tip of the wake generated by a moving object is represented in
the map as displaced with respect to the object centroid by an
amount of pixels, along the Azimuth direction and proportional
to the object’s velocity. This information is exploited to limit
the domain for the wake tip search to the Azimuth line only
(Figure 3).

Fig. 3. Wake Pattern formation and representation in SAR remote sensing
and punctual radon transform.

For each point pj in image I such that it lies on the Azimuth
line (j = 1, ..., np, with np being the total number of points
on the Azimuth line), consider the family of straight lines
having pj as the origin. Each line is univocally defined by
an orientation angle φi and has ni pixels. Then the average
image intensity along each line is computed. In case a 1◦

angular pace is set, we will have 360 lines starting from each
pj , and accordingly np angular histograms hpj

(φi) defined in
1◦ ≤ φi ≤ 360◦:

hpj
(φi) =

1

ni

ni∑
k=1

I(pk)

pk ∈ I : arctan

[
(pk − pj)y
(pk − pj)x

]
= φi (1)

If a linear segment has its origin located in one of the np
points, the sum procedure generates a peak in the correspond-
ing hp function, for the particular orientation φi related to
that segment. The same is expected to be observed in case a
point pj coincides with the tip pt of a wake. In the latter case
hpj

(φi) will exhibit a number of peaks as large as the number
of observed wake arms. Hence, a criterion to select the most
probable wake tip candidate, consists of selecting the point pj
on the Azimuth line (Figure 3) such that the corresponding
angular histogram hpj

(φi) features the largest peak intensity
value:

pt : max
j
hpj

(φi). (2)

Performing this operation on the data represented in Figure
1, left side, returns the histogram function in Figure 4.

C. Wake Detection

In order to decide whether an angular histogram is related
to a meaningful portion of a wake pattern arm or it is
due to noise/spurious signals, the histogram hpt(φi), selected
through equation (2), undergoes a dedicated refinement stage,
following the ideas described in [12].

Fig. 4. Example of wake linear components detection resulting from the
identification of the histogram with larger peak response. (COSMO-SkyMed
Product—© ASI 2016 processed under license from ASI—Agenzia Spaziale
Italiana, all rights reserved, distributed by e-GEOS.).

More in detail, the function hpt(φi) is approximated, ac-
cording to [18], by a linear combination g(φi) of n Chebyshev
polynomials, where n is the fit order and φi ∈ [1◦, 360◦]. If
n is chosen sufficiently small with respect to the number of
histogram bins, e.g. selecting only the first few terms in the g
series, the resulting fit will be a continuous curve that smoothly
follows the input signal (see the example in Figure 5, where
the approximated function, corresponding to the hpt

function
for this candidate, is identified by the red dotted curve).

Each point in the fit curve has an associated uncertainty
which depends on the statistical hypothesis adopted to model
the signal. According to the related literature (see for example
[19]), SAR imagery capture is modeled as a speckle process
and the corresponding pixel values are samples drawn from
a Gamma distribution. Every point in the fit curve has a
statistical deviation from the mean value, σi, that depends on



the number of samples ni used to compute hpt
(φi) (see section

III-B). Eventually, a candidate histogram hpt(φi) is labeled as
a wake positive detection in case one, or more, of its points,
meaningfully overshoots a tolerance range defined by

hpt
(φi)±mσi (3)

where m is an integer whose value is set according to the
desired significance level of the detection. Since the tolerance
range depends on σi, which varies from point to point, also
the tolerance range has a varying width. To obtain the purple
and yellow curves in Figure 5, m has been set to 3.5.

Fig. 5. Results of the Chebyshev polynomial fitting applied to the histogram
obtained by processing the wake candidate in the top right corner. The fit
order n has been set empirically to 30.

D. Gradient Based Wake Detection

This section concerns the description of a procedure for the
image derivative estimation. This procedure is integrated in the
wake detector processing pipeline aiming at the improvement
of the detection robustness. The presented method for signal
gradient computation turns out to be particularly suitable for
speckle-affected signals.

Focusing on the wake central turbulent band, it is expected
that the local gradient exhibits relevant variations moving
along the direction orthogonal to the wake center axis (Figure
6). However, it is a proven fact (see [20]) that estimating the
gradient through differences of standard masks (e.g., [−1, 0, 1]
or [−1, 0, 1]T ) results in low performances on speckle-affected
data.

In order to robustly estimate the signal gradient, the au-
thor adopted the approach described in [21], i.e. the signal
derivative at a given point (x, y) has been computed through
the ratio of average (roa) estimator (see Figure 7), which is
defined, for the vertical and horizontal cases, as

roav(x, y) =
< IU >

< ID >
, roah(x, y) =

< IL >

< IR >
(4)

with < ... > representing the average operator. The vertical
and horizontal roa correspond to the vertical and horizontal
gradient components, obtained as:

GV (x, y) = log(roav(x, y)),

GH(x, y) = log(roah(x, y)) (5)

Fig. 6. SAR signal sampled along a direction orthogonal to the turbulent
component of the wake, faintly visible in the small crop. The original signal
is represented in blue color (sampled along the dotted line in the upper right
patch) while the red curve represents the result of a Gaussian lowpass filtering,
applied to reduce speckle noise. The turbulent wake corresponds to the bell-
shaped signal in the range [80÷ 100].

and the related magnitude and phase values

MG(x, y) =
√
GV (x, y)2 +GH(x, y)2,

θG(x, y) = arctan{GV (x, y)/GH(x, y)} (6)

Hence, gradient phase and amplitude are estimated, for ev-
ery pixel in the image, by means of Equations (5). Eventually,
in order to capture and isolate the maximum variation of the
signal in the wake neighborhood, the estimated gradient is
projected onto the direction orthogonal to the previously esti-
mated main axis of the ship. The robustly estimated gradient
is later processed by the wake detection procedures discussed
in sections III-B and III-C.

Fig. 7. Ratio of average computation along the vertical and horizontal
directions.

E. Wake Analysis

In case a crop candidate passes the detection stage, it is
further processed to extract the information that is considered
of interest for the kinematics estimation. First of all, the peaks
that overshoot the mσi threshold are identified as related to
wake components. As already stated in [22], in the most
favourable case, the observable wake components are the
central turbulent band, coinciding with the vessel route, and
two external envelopes placed symmetrically at ± 19.47◦ w.r.t.
the wake center axis.



Fig. 8. Dataset employed to test the turbulent wake detector (contains
modified Copernicus Sentinel data [2018]).

Since the vessel route coincides with the center band of the
wake pattern, recognizing the turbulent component represents
a crucial goal for the wake analysis task. In case the number
of observed components is at a maximum, the route is defined
as the bisector between the most external components, while,
in case a single line is detected, this will be automatically
identified as the turbulent component. In the most ambiguous
circumstance, i.e., when the algorithm detects two different
lines, the adopted approach consists of labeling the component
that exhibits the largest mean value as the turbulent band. The
choice for this criterion stems from the observation that the
central turbulent band of a wake usually features the largest
backscattering signal, hence the largest peak in the angular
histogram can be linked to the wake central orientation.

After the vessel route estimation, the wake pattern is consid-
ered for estimating the ship’s speed. The velocity estimation
stage is carried out following approaches that have been
already presented in previous literature and that make use of
the ship motion’s related features introduced in section III-A.
For further details the reader is invited to refer to [7].

IV. RESULTS

The proposed turbulent wake detector has been applied to
the dataset in Figure 8.

Fig. 9. Standard method error diagram.

Fig. 10. Proposed method error diagram.

The corresponding error plots are represented in Figures
9 and 10, where the estimated Azimuth displacement and
turbulent wake orientation have been plotted versus the cor-
responding true values. In particular, the first set of diagrams
represents the comparison between true and estimated data,
where the latter have been obtained by applying the proposed
pipeline directly on the intensity maps (standard approach
following [12], Figure 9), while the second set (Figure 10)
accounts for the results obtained by preprocessing the intensity
map by the method described in section III-D. It is relevant
to consider the data dispersion around the red line (the y = x
line) in Figure 10, and observe the higher performance of the
proposed method w.r.t. the standard method (Figure 9).

Concerning the estimation of the target velocity the analysis
of the wake pattern has been performed on the ship target
represented in Figure 11. In this case, it has been possible to
get reliable ground truth data from a commercial Automatic
Identification System (AIS, [23]) provider. Velocity estimates
are provided according to the methods described in [7], i.e.,
the method exploiting the Azimuth shift and the one exploiting
the Fourier analysis performed on the external Kelvin wake.
Concerning the latter method, the Fourier analysis has been
performed on the main wake components, i.e. three lines
starting from the wake tip (see Figure 12). The performed
analysis provided the results in Table I where AIS R and
Est. R stand for AIS Route and Estimated Route respectively,
while AIS V stands for AIS Velocity. The presented velocity
estimates correspond to the Azimuth Shift (ASV) method and
to the Fourier Analysis method (FAV).

TABLE I
KINEMATICS ESTIMATION OUTPUT

AIS R Est. R AIS V ASV FAV
290◦ 285◦ 6 m/s 5.89 m/s 6.22 m/s



Fig. 11. Sample crop exploited for the kinematics estimation test reported in
table I

Fig. 12. Linear sampling on the wake signal presented in Figure 11. (COSMO-
SkyMed Product—© ASI 2016 processed under license from ASI—Agenzia
Spaziale Italiana, all rights reserved, distributed by e-GEOS.)

V. CONCLUSIONS

This document presents the implementation and the results
related to an image processing pipeline dedicated to the ship
kinematics estimation task. This procedure takes as input
remote sensing imagery and returns the estimated values of the
vessel route and the vessel speed. This is primarily conceived
to process radar imagery but can also be applied to optical
data, provided some proper preliminary processing stages are
introduced in order to enhance the wake pattern traces.

A novel method for the detection of the wake has been intro-
duced. Promising results obtained by processing the dataset in
Figure 8 suggest that employing the proposed gradient-based
approach may enhance the accuracy concerning the estimation
of the ship motion’s related features (see charts in Figures 9
and 10).

Concerning future prospects, the author envisages develop-
ing novel procedures for wake detection, taking inspiration
from cutting edge literature of machine learning. To this
purpose particular interest will be devoted to the usage of
deep convolutional networks, employed as a powerful tool for
the extraction of discriminating features from large amounts
of open access data (e.g., the ESA Copernicus Open Access
Hub). Wake patterns are hardly detectable in SAR maps, hence

future developments will also be devoted to the refinement
of the wake recognition process, based on the exploitation
of additional information, such as the fine estimate of the
vessel position as well as the constraints of this peculiar
hydrodynamics problem, e.g. the theoretically expected wake
angular aperture. For what concerns the estimation of the
vessel’s speed, novel methods are currently being investigated
to evaluate their potential in terms of kinematics information
extraction. In particular, along-track-interferometry techniques
represent interesting tools for the purpose of estimating the
line-of-sight velocity value through the analysis of single-
look-complex SAR data. Moreover, the Doppler centroid of
the SAR signal varies according to the kinematics of the
backscatterer. Estimating the variation between the Doppler
centroid of a moving object w.r.t. a stationary one provides an
additional velocity estimation method, which sounds worthy
of being further studied.

The presented platform has been tested within the frame-
work of OSIRIS (Optical/SAR data and system Integration for
Rush Identification of Ship models), a European Space Agency
project with the main goal of developing a platform dedicated
to sea surveillance, capable of detecting and identifying illegal
maritime traffic. The main goal of this platform is to detect and
identify target vessels within a given sea surface area, which
is remotely supervised by orbiting satellites such as Sentinel
1/2, Cosmo-Sky Med and EROS missions. The most relevant
goals that are addressed by this platform concern (i) the
estimation of the ship positioning within the inspected area, (ii)
the estimation of the main ship geometrical attributes (length
overall, beam overall and heading) and (iii) the ship kinematics
status represented by its velocity vector. OSIRIS will represent
a new tool to counteract unauthorized fishing and tackle
irregular migration and the related smuggling activities.
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