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Abstract. Software Product Line Engineering (SPLE) promotes exten-
sive reuse of common aspects in developing new software components.
Supervisory Control Theory (SCT) is a methodology to automatically
synthesise a controller enforcing given safety requirements. The interplay
between SPLE and SCT has recently received attention in the research
community. This paper formally tackles the problem of synthesising a
most permissive controller (mpc) enforcing a given requirement for a
software product line (SPL). Generally, the number of products of an
SPL can be exponential in the number of features, and an mpc should
be synthesised for every product. To overcome this problem, the product
line structure is exploited to synthesise, in the best case, a number of
controllers that are linear in the number of features of the SPL.
The SPL is formalised as a (Priced) Featured Automaton ((P)FA), whilst
the mpc synthesis is formalised by modelling both the plant and the
requirement as Extended Finite-state Automata (EFA), where quanti-
tative aspects can be seamlessly integrated. The contributions are: (i) a
formal mapping from FA to EFA; (ii) a mapping of energy problems onto
synthesis of EFA; (iii) three-valued logic and partial-order reduction are
used to greatly reduce the number of mpc required. Contribution (iii)
holds for a wide range of other objectives, not only energy problems.
Both EFA and PFA are endowed with tools implementing algorithms
that have been studied for more than a decade and both are adopted in
industry. These results pave the way to reuse algorithms and tools that
have been separately developed in SPLE and SCT research areas.

Keywords: extended �nite automata, featured automata, featured transition
systems, priced featured automata, energy problems, controller, synthesis

1 Introduction

Variability-intensive systems have been proven to provide productivity gains,
shorter times to market, and greater market coverage [1]. However, such variabil-
ity may introduce new problems due to the increasing complexity of the system
design. Software Product Line Engineering (SPLE) [1, 2], is a well-established
paradigm where multiple software systems (called products) are developed at
once, and has been used to manage systems variability. Indeed, by systemati-
cally reusing common parts, a bene�t from economies of scale can be obtained.
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According to this paradigm, the management of single products is lifted to
the maintenance of a family or product line of related products. Each product
is characterised by a set of relevant features. A feature can be seen as a speci�c
functionality of a product, relevant to stakeholders. Feature models de�ne the
set of valid products as combinations (also called con�gurations) of features [3].

The automated analysis of feature models has a long history [3]. However,
especially for critical systems, it is not only important to demonstrate that those
products are con�gured correctly, but also that they behave safely. Recently,
behavioural variability formalisms have also been received attention [4, 5]. These
formalisms allow the speci�cation of a common behaviour that is then adapted
to each particular product con�guration. It becomes possible to verify that the
behaviour is safe.

Generally, veri�cation is carried on by techniques such as model checking or
theorem proving. In this paper, the problem of synthesising a family of product
speci�cations starting from a behavioural description of a product line is studied.
The synthesis problem is speci�ed in terms of Ramadge and Wonham's Theory
of Supervisory Control for Discrete Event Systems [6] (SCT), which is concerned
with the synthesis of a controller that drives the execution of the system while
enforcing given requirements.

It is well-known that the problems of synthesising a controller for a require-
ment and synthesising a strategy for satisfying such (game-theoretic) require-
ment share common aspects [7�9]. In particular, energy problems are present in
various areas such as autonomic systems or cyber-physical systems [10]. Energy
problems study whether a system can perform all its tasks without exceeding a
given amount of resources (called energy) that are consumed at run-time.

Featured Transition Systems (FTS) and Featured Automata (FA) (i.e. FTS
with �nal states) [11] are well-established paradigms for modelling and verifying
product-line based systems. These formalisms have been extended to consider,
among the others, energy problems, as well as real-time aspects [12, 11, 13]. Sev-
eral tools are available to automatise the veri�cation of FA [14, 15].

On the other side, Extended Finite-state Automata (EFA) are an extension
of Finite State Automata (FSA) to include data variables [16, 17]. Algorithms
for synthesising a controller have been speci�ed through EFA [18], and are im-
plemented in tools such as CIF3 [19].

We argue that both FA and EFA are widely supported formalisms for, re-
spectively, SPLE and SCT, with industrial applications. Hence, in this paper a
formal mapping from FA to EFA is provided. This result paves the way to share
results, algorithms and tools that have been separately deployed in these two
research areas in the last decades and are ready to be used o�-the-shelf.

The main contributions of this paper are:

� a formal mapping from FA (and their quantitative version called Priced
Featured Automata (PFA)) to EFA. It is proved that each product of an
FA can be mapped to a corresponding EFA by simply changing the initial
values of the data variables;
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� a mapping from energy problems in PFA to special requirements rendered
as EFA, to which SCT can be applied. It is proved that both safety and
reachability energy problems for PFA can be solved by translating both the
energy requirement and the system to two EFA and by synthesising their
controller. To do so, a revisited notion of re�nement of EFA is introduced,
with useful auxiliary results;

� the problem of synthesising a supervisor for an FA is extended to a wide
range of other requirements, not only energy problems. The product line
structure is exploited to obtain a potentially exponential gain in the number
of controllers to be synthesised.

Overview Preliminary notions on FA, PFA, energy problems and EFA are pro-
vided in Section 2. A revisited re�nement of EFA is discussed in Section 3. The
formal mapping from (P)FA to EFA is in Section 4, whilst the energy problem
requirements mapping is in Section 5. A technique for synthesising a small num-
ber of controllers from a product line is described in Section 6. Finally, related
work and conclusions are in Section 7.

2 Background

In this section Featured Automata (FA) (and their priced version PFA) and
Extended Finite-state Automata (EFA) are recalled. These formalisms have been
used in di�erent research areas, i.e. SPLE and SCT, and using their original
notations would result in ambiguities (e.g. state/location). Hence, in what follows
a homogeneous notation is used that is summarised in Table 1. Firstly, FSA are
recalled. A �nite state automaton A = (Q, q0, Σ, T, F ) consists of a �nite set Q
of states, an initial state q0, subset F ⊆ Q of accepting states, a set of actions
Σ and a �nite set T ⊆ Q × Σ ×Q of transitions. A step is denoted with q σ−→q′
and is such that (q, σ, q′) ∈ T . Let w−→∗ denote the transitive closure of → where
w ∈ Σ∗. The language recognised by an FSA A is L (A) = {w | q0 w−→∗q, q ∈ F}.

2.1 Featured Automata

The formalization of Featured Automata and Priced Featured Automata is now
recalled. With respect to Featured Transition Systems, Featured Automata also
allows to declare a set of �nal states.

Let N be the domain of features. A (feature) guard γ is a Boolean expression
over domain N , and B(N) denotes the set of such guards. Moreover, p |= γ
if p ∈ 2N satis�es γ ∈ B(N), and JγK = {p ∈ 2N | p |= γ} is the set of all
intepretations (called products) satisfying γ. A special feature guard ϕ called
feature constraint is such that JϕK ⊆ 2N is the set of valid products.

De�nition 1 (Featured Automaton). A featured automaton is a tuple Af =
(Q, q0, Σ, T, F, ϕ) consisting of a �nite set Q of states, an initial state q0, a subset
F ⊆ Q of accepting states, a set of actions Σ, a �nite set T ⊆ Q×B(N)×Σ×Q
of transitions and a feature constraint ϕ.
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Table 1. Table of symbols

Notation Object

A a (weighted) �nite state automaton
L (A) language of an FSA
Af a (priced) featured automaton
Ae an extended �nite automaton
Ae1 ||Ae2 parallel composition of EFA
Q set of states
q0 ∈ Q the initial state
q ∈ Q a state
F ⊆ Q accepting states
Σ alphabet of actions
σ ∈ Σ action
wA(w) weight of w ∈ L (A)
D = D1 × · · · ×Di × · · · ×Dn data variables domain
d ∈ D variable vector
d(i) ∈ Di i-th vector element
D1 ⊗D2 domain composition
f ∈ D2

D1 update function with domain D1 and co-domain D2

f |D1 projection of f on sub-domain D1

f1 ⊕ f2 function composition
T set of transitions
t ∈ T a transition
N set of features
ϕ feature constraint
JϕK ⊆ 2N valid products
p ∈ JϕK a product
projp(Af ) projection of a featured automaton on product p
B(D) set of Boolean guards over domain D
γ ∈ B(D) Boolean guard over D

The projection of a FA Af = (Q, q0, Σ, T, F, ϕ) to a product p ∈ JϕK is the
FSA projp(Af ) = (Q, q0, Σ, T

′, F ) with T ′ = {(q, σ, q′) | (q, γ, σ, q′) ∈ T, p |= γ}.
Featured automata are extended to include prices (i.e. real number) on edges,

thus yielding so-called priced featured automata (PFA) (a.k.a. real-weighted fea-
tured automata) [12].

De�nition 2 (Priced Featured Automaton). A priced featured automaton
is a tuple Af = (Q, q0, Σ, T, F, ϕ) consisting of a �nite set Q of states, an initial
state q0, subset F ⊆ Q of accepting states, a set of actions Σ, a �nite set
T ⊆ Q× B(N)×Σ × R×Q of transitions and a feature constraint ϕ.

The projection of a PFA on one of its products yields a weighted �nite state
automaton (WFSA). This formalism is equivalent to FSA but with a �nite set
T ⊆ Q×Σ×R×Q of transitions. The projection is projp(Af ) = (Q, q0, Σ, T, F )
with T ′ = {(q, σ, n, q′) ∈ T | (q, γ, σ, n, q′) ∈ T, p |= γ}.
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Given a WFSA A, its language is de�ned equivalently to FSA. Moreover,
the weight of a trace w ∈ L (A) is de�ned as wA(w) = {n1 + . . . + nm |
q0

σ1, n1−−−−→ . . . σm, nm−−−−−→q, w = σ1 . . . σm}.

Energy problems on PFA Energy problems have been introduced to solve a
variety of problems related to performance and reliability. Two types of energy
problems are traditionally considered. Given a WFSA A, a reachability energy
problem checks the existence of a trace w ∈ L (A) such that for all pre�xes w′

of w it holds w(w′) ≥ 0. On the converse, a safety energy problem checks that
there exists no trace w ∈ L (A) and pre�x w′ of w such that w(w′) < 0. Energy
problems are extended to PFA by simply considering them on all valid products.

2.2 Extended Finite-state Automata

The goal of SCT is to synthesise a controller enforcing given requirements onto
a system (called plant). In forbidden states control problems, the controller must
enforce that forbidden states cannot actually be reached while successful (called
marked) states are always reachable. The theory distinguishes between control-
lable events, that may be disabled by the controller; and uncontrollable events,
those always enabled. EFA are used to model both the plant (i.e. the system)
and the requirement. The synthesised controller is expressed as another EFA,
that is a sub-portion of the composition of the plant with the requirement.

EFA are an extension of FSA with data variables and are now recalled.
The domain of de�nition of n one-dimensional data variables is denoted with
D = D1 × · · · × Di × · · · × Dn. An n-dimensional variable (vector) of domain
D is denoted with d, i.e., d = [d(1), . . . , d(i), . . . , d(n)] , where d(i) is the ith
data variable of domain Di. The set of Boolean expressions γ over domain D is
denoted with B(D). In what follows arithmetic operators (+,−,≥,≤) will also
be considered into expressions γ, when those are de�ned over domain D (i.e.
numbers).

An EFA is an FSA incorporating data variables de�ned over �nite or in�nite
domains. The transitions of an EFA are augmented by guards over the data
variables, and data update functions, which are actions on the data variables.

De�nition 3 (Extended Finite Automaton). An Extended Finite Automa-
ton is a tuple Ae = (Q, q0, Σ, T, F, d0, D) consisting of a �nite set Q of states, an
initial state q0, a subset F ⊆ Q of accepting states, a set of actions Σ, a �nite set
T ⊆ Q×B(D)×Σ×DD×Q of transitions, a domain of n one-dimensional data
variables D = D1× · · ·×Dn and vector of initial data values d0 = d10× · · ·× dn0 .

Given an EFA Ae, subscripts may be used to refer to one of its components,
e.g. QAe

is the set of states of Ae. The semantics of an EFA Ae is de�ned on its
con�gurations (q, d) ∈ QAe

×DAe
that are pairs of states and data evaluations.

The initial con�guration is (q0, d0). A transition t = (qs, γ, σ, f, qt) is composed
of source state qs, enabling guard γ , action σ, update function f and target state
qt. A step is denoted by (q, d) σ−→(q′, d′) for a transition t = (q, γt, σ, ft, q

′) ∈ TAe
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such that γt(d) = true, ft(d) = d′. Let w−→∗ denotes the transitive closure of −→
with w ∈ Σ∗. The language of an EFA Ae is L (Ae) = {w | (q0, d0) w−→∗(q, d), q ∈
FAe
}. States q or q′ as well data vectors d or d′ and action σ may be omitted

from (q, d) σ−→(q′, d′) when those are immaterial. From now on only reachable
con�gurations (q, d) such that (q0, d0)−→∗(q, d) will be considered.

In the following, A′e is a subautomaton of Ae (A′e � Ae), if A′e is obtained
from Ae by removing some states of Ae and their incident transitions, by re-
moving some transitions of Ae and by possibly strengthening the guards of the
transitions of Ae.

EFA can be composed in parallel, provided that they have the same initial
data values for all shared variables.

The composition of domains ⊗ is speci�ed in such a way that the shared
sub-domains are not replicated, i.e. D1 ⊗D2 = D′1 ×Ds ×D′2 where Ds is the
shared sub-domain between D1 = D′1 ×Ds and D2 = Ds ×D′2 .

The projection of an update function f on one of its sub-domainDs is denoted
with f |Ds

∈ Ds
Ds . Given two update functions fi ∈ Di

Di , i ∈ {1, 2}, their
composition is f1 ⊕ f2 ∈ D1 ⊗D2

D1⊗D2 , f1 ⊕ f2 = f1 × f2|D′2 = f1|D′1 × f2.
Basically the composed function requires both operands to behave equivalently
on the shared domain.

Intuitively, the composition interleaves all non-shared actions whilst com-
ponents synchronize on the shared actions. Let Aek , k = 1, 2 be two EFA.
The parallel composition of Ae1 and Ae2 is Ae1‖Ae2 = (QAe1

× QAe2
, q0Ae1

-

× q0Ae2
, ΣAe1

∪ ΣAe2
, T, FAe1

× FAe2
, d0Ae1

⊗ d0Ae2
, DAe1

⊗ DAe2
) where the

set of transitions T is de�ned such that interleavings happen on actions σ ∈
(ΣAe1

\ΣAe2
) ∪ (ΣAe2

\ΣAe1
) whilst for synchronizations:

∀σ ∈ ΣAe1
∩ΣAe2

,∀(q1, γ1, σ, f1, q′1) ∈ TAe1
,∀(q2, γ2, σ, f2, q′2) ∈ TAe2

:

((q1, q2), γ1 ∧ γ2 ∧ (f1|Ds = f2|Ds), σ, f1 ⊕ f2, (q′1, q′2)) ∈ T

Supervisory Control of EFA In SCT of EFA the behaviour of the uncon-
trolled system is speci�ed by a plant EFA Aep and the requirement the controller
must enforce by another EFA Aer . By re�ning Aep with respect to Aer , a re�ned
plant model Aeg can be obtained with the same behavior as Aep such that the
executions violating (i.e. not allowed) Aer leads to forbidden states in Aeg . The
re�ned EFA Aeg is such that: q0Aeg

= q0Ap
× q0Ar

; QAeg
= QAp × (QAr ∪ {qf})

(qf forbidden state); FAeg
= FAp

×FAr
; and TAeg

is de�ned such that only syn-
chronous transitions in Aep ||Aer are kept whilst interleavings lead to forbidden
(i.e. deadlocked) con�gurations.

It is then possible to provide the plant and requirement models as a given EFA
Aeg such that the requirement is given as a set of forbidden states Qf ⊆ QAeg

,
and Qs = QAeg

−Qf is the set of safe states of Aeg . A con�guration (q, d) is a
forbidden con�guration i� q ∈ Qf , otherwise, (q, d) is a safe con�guration. InAeg
by construction it is impossible to reach a safe con�guration from a forbidden
con�guration, and no forbidden state is accepting. In the sequel Asafe

eg denotes
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the EFA obtained from Aeg by assigning false to the guard of each transition t
for which qtt ∈ Qf , i.e., the target state of t is a forbidden state. Following the
way Asafe

eg is constructed, it holds that Asafe

eg � Aeg . The safe subautomaton of
Aeg is denoted with Asafe

eg .
Let Σc ⊆ Σ and Σu = Σ −Σc be the set of controllable and uncontrollable

events of Aeg , respectively. The objective of control is to satisfy nonblockingness
and safety while satisfying controllability requirements.

In particular, a con�guration (q, d) of Aeg is: (a) nonblocking if q−→∗q′ and
q′ ∈ FAeg

; (b) safe if (q, d) is also a con�guration of Asafe

eg ; and (c) controllable
if (q, d) is safe and ∀σ ∈ Σu.q

σ−→q′, q′ is safe. The EFA Asafe

eg is, respectively,
nonblocking, safe, and controllable if all its reachable states are such.

A controller assigns a (possibly) stronger guard to each controllable transi-
tions, whilst guards on uncontrollable transitions are kept.

Let ASeg denote the subautomaton obtained from Aeg by replacing its guards

by those provided by its controller S, which is said to be nonblocking if ASeg
is nonblocking and safe if ASeg is safe. The existence of a nonblocking and safe
controller S for a given plant Aeg and (safe) speci�cation Asafe

eg such that Asafe

eg �
Aeg are known: the speci�cation must be nonblocking and controllable [18].

In case such conditions are not satis�ed, it is possible to compute a safe and
nonblocking controller S such that ASeg � A

safe

eg .
The supremal controllable and nonblocking subautomaton of Asafe

eg , called

most permissive controller (mpc), is denoted with AKeg , and is such that for

any other controller S it holds ASeg � A
K
eg . An algorithm for computing AKeg is

presented in [18].

3 Re�nement of EFA

In this section, a revisited notion of re�nement of EFA is introduced. It is a
conservative extension of the notion of sub-automaton in Section 2.2. Moreover,
some auxiliary results are discussed.

Firstly, the notion of sub-automaton introduced in Section 2.2 will be (con-
servatively) extended.

De�nition 4 (Re�nement of EFA). Let Ae1 and Ae2 be two EFA, then Ae1
re�nes Ae2 (denoted Ae1 � Ae2) i� QAe1

⊆ QAe2
, q0Ae1

= q0Ae2
, ΣAe1

⊆ ΣAe2
,

FAe1
⊆ FAe2

, DAe2
sub-domain of DAe1

; ∃tr : TAe1
7→ TAe2

injective where
tr(t1) = t2 such that gt1 implies gt2 , ft1 |DAe2

= ft2 , and t1 and t2 are equal on

all other components. Moreover, d0Ae1
= d0Ae2

×d′0 for some d′0 on DAe1
\DAe2

and no dangling nodes and transitions are left in Ae1 .

In the following sections a mapping from FA and energy problems to EFA will
be provided. This mapping exploits the fact that in FA all actions are control-
lable. Moreover, the requirement EFA for the energy problem will be a re�nement
of the plant EFA. The additional results of this section are used for proving the
following main results.
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With respect to the sub-automaton relation, the re�nement additionally al-
lows to introduce new variables if they do not a�ect the behaviour of the re�ned
EFA. It is easy to see that a sub-automaton is also a re�nement.

Proposition 1. Let Ae1 and Ae2 be two EFA, then:

Ae1sub-automaton of Ae2 implies Ae1 � Ae2
Proof. From the fact that a sub-automaton is obtained by removing states and
their incident transitions, by strengthening guards; and by De�nition 4 the thesis
follows. ut

The following lemma states that if the requirement is a re�nement of the
plant, then the corresponding safe sub-automaton Asafe

eg de�ned in Section 2.2 is
trace-equivalent to the re�nement EFA.

Lemma 1. Let Ae1 and Ae2 be two EFA such that Ae1 � Ae2 . Let Asafe

eg be the
safe sub-automaton obtained from Ae2 ||Ae1 with the procedure in Section 2.2.
Then

L (Asafe

eg ) = L (Ae1)

Proof. From the de�nition of the operator ||, the set of transitions of Asafe

eg con-
tains the set of transitions T such that : ∀σ ∈ ΣAe1

∩ΣAe2
,∀(q1, γ1, σ, f1, q′1) ∈

TAe1
,∀(q2, γ2, σ, f2, q′2) ∈ TAe2

: ((q1, q2), γ1 ∧ γ2 ∧ (f1|Ds
= f2|Ds

), σ, f1 ⊕
f2, (q

′
1, q
′
2)) ∈ T . By de�nition of function composition ⊕ and restriction |, and

by De�nition 4 it follows that for each transition (q1, q1)
σ−→(q2, q2) ∈ T there ex-

ists one and only one transition q1
σ−→q2 ∈ TAe1

, equivalent on guard and update
function. Moreover, by de�nition of Aeg each interleaved transition in Ae2 ||Ae1
lead to a forbidden state and thus the guard of such transition is set to false in
Asafe

eg . Hence each transition in Asafe

eg either belongs to T or it is never enabled,
and the thesis follows. ut

If all actions in Asafe

eg are controllable, then Asafe

eg is trace equivalent to AKeg .

Lemma 2. Let Asafe

eg be a safe automaton and AKeg be its corresponding mpc. If
all actions of Asafe

eg are controllable then

L (Asafe

eg ) = L (AKeg )

Proof. The thesis follows trivially by the fact that Asafe

eg is safe and controllable
by de�nition and hypothesis, and because the trace language only considers non-
blocking con�gurations and AKeg is supremal. ut

The following corollary can now be stated.

Corollary 1. Let Ae1 and Ae2 be two EFA such that Ae1 � Ae2 . Let Asafe

eg be
the safe sub-automaton obtained from Ae2 ||Ae1 with the procedure in Section 2.2.
Let AKeg be its corresponding mpc. If all actions of Ae1 are controllable then

L (Ae1) = L (AKeg )

Proof. By Lemma 1 and Lemma 2. ut
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4 From FA to EFA

The formal mapping J−K from FA to EFA is now presented. The mapping is
almost straightforward. Indeed, it su�ces to use the domain of features N as
domain of variables D, where each feature is a boolean variable, and ignore the
update function on transitions of the EFA. Finally, each valid product p of a FA
will be in correspondence to an EFA by simply mapping the boolean assignment
of p to the initial vector of variables d0. In the following, abusing notation, d0(f)
denotes the element of vector d0 corresponding to feature f , whilst p(f) is the
boolean value assigned by p to f , i.e., the result of applying the interpretation
function p.

De�nition 5 (Translation from FA to EFA). Let Af be an FA and p ∈
JϕAf

K one of its valid products, then the corresponding EFA JAf Kp = Aep is
such that

QAep
= QAf

, q0Aep
= q0Af

, ΣAep
= ΣAf

, FAep
= FAf

, D = N,

∀f ∈ N.d0(f) = p(f)

TAep
= {(qs, γ, σ, ∅, qf ) | (qs, γ, σ, qf ) ∈ TAf

}

The following proposition states that the translation of De�nition 5 for any
two valid products yields the same EFA, except for the initial data vector d0.

Proposition 2. Let Af be an FA and JϕAf
K its set of valid products. Then

∀p, p′ ∈ JϕAf
K, p 6= p′ where JAf Kp = Aep and JAf Kp′ = Aep′ it holds that

QAep
= QAe

p′
, q0Aep

= q0Ae
p′
, ΣAep

= ΣAe
p′
, FAep

= FAe
p′
, TAep

= TAe
p′

Proof. The proof is immediate by De�nition 5. ut

An immediate consequence of Proposition 2 is that the translation from FA
to EFA can be performed only once for all valid products. Then it su�ces to
initialise d0 with the corresponding valid product p to obtain the corresponding
EFA of valid product p.

The following theorem states that the translation from FA to EFA for product
p is trace-equivalent to the projection of FA on p.

Theorem 1. Let Af be an FA and p be one of its valid products, then:

L (JAf Kp) = L (projp(Af ))

Proof. Firstly we prove L (JAf Kp) ⊆ L (projp(Af )). By contradiction, assume
there exists w ∈ L (JAf Kp) such that w 6∈ L (projp(Af )). This means that
there exists a transition t = (q, γ, σ, ∅, qf ) ∈ TAep

used for recognising w such
that (q, σ, qf ) 6∈ Tprojp(Af ). By de�nition of projp, this is the case only if for
(q, γ, σ, qf ) ∈ TAf

, p 6|= γ. By De�nition 5 for all transitions t ∈ TAep
the update

function is empty, hence t can only be �red from the con�guration (q, d0) of Aep ,
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and this is possible only if d0 |= γ. Again, by De�nition 5 ∀f ∈ N.d(f) = p(f),
and since p 6|= γ it follows d0 6|= γ and the transition t is not enabled in (q, d0),
a contradiction.

The proof for L (projp(Af )) ⊆ L (JAf Kp) is similar. By contradiction, as-
sume there exists w ∈ L (projp(Af )) such that w 6∈ L (JAf Kp). This means that
there exists a transition (q, σ, qf ) ∈ Tprojp(Af )used for recognising w such that
t = (q, γ, σ, ∅, qf ) ∈ TAep

is never enabled in state q. Let (q, γ, σ, qf ) ∈ TAf
be the

corresponding transition in the FA. By de�nition of projp it holds that p |= γ.
By De�nition 5 for all transitions t ∈ TAep

the update function is empty, hence t
can only be �red from the con�guration (q, d0) of Aep , and this is possible only
if d0 |= γ. Again, by De�nition 5 ∀f ∈ N.d(f) = p(f), and p |= γ implies d0 |= γ
and the transition t is enabled in (q, d0), a contradiction. ut

Remark. The most permissive controller synthesis has not been applied in De�-
nition 5 because transitions of FA are always controllable, and non-blockingness
is trivially enforced by considering the language of the automaton (cf. Lemma 2).
However, through De�nition 5 it would be possible to seamlessly introduce un-
controllable transitions in an FA so to apply the mpc synthesis.

5 Mapping Energy Problems on EFA

An important outcome of the translation in De�nition 5 is that the mpc synthesis
for a generic requirement (rendered as an EFA) can be applied to any FA. Indeed,
it su�ces to synthesise the mpc of each valid product.

As an example, in this section both energy problems (reachability and safety,
cf. Section 2.1) will be mapped into a single mpc synthesis problem. This map-
ping is almost straightforward: it su�ces to add a new variable to the domain
of features that acts as a counter c: initially c is set to zero, each transition t
requires c+n ≥ 0 for being enabled (where n is the weight of t) and c is updated
by f(c) = c+ n.

De�nition 6 (Energy problem mapping to EFA). Let Aep = JAf Kp be
an EFA obtained from De�nition 5. The corresponding requirement Aer for the
energy problem on Af and product p is:

QAer
= QAep

, q0Aer
= q0Aep

, ΣAer
= ΣAep

, FAer
= FAep

, DAer
= DAep

× R

d0Aer
= [d0Aep

(0), . . . , d0Aep
(m− 1), 0] where m is the length of d0

TAer
= {(qs, γ ∧ (d(m) + n ≥ 0), σ, n, f(d(m)) = d(m) + n, qt) |

(qs, γ, σ, n, qt) ∈ TAf
}

Some auxiliary results are now discussed, useful for proving the main result
of this section. Firstly, the (energy) requirement computed through De�nition 6
is a re�nement of the corresponding plant EFA.
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Lemma 3. Let Af be an FA and p one of its valid products, Aep be the plant
EFA and Aer be the requirement EFA obtained respectively from De�nition 5
and De�nition 6. Then it holds

∀p ∈ JϕAf
K.Aer � Aep

Proof. By De�nition 4; condition on the set of states, initial state, alphabet and
�nal states hold. Moreover, DAer

= DAep
× R hence DAep

is a sub-domain of
DAer

. Finally, TAer
= {(qs, γ ∧ (d(m) + n ≥ 0), σ, n, f(d(m)) = d(m) + n, qt) |

(qs, γ, σ, n, qt) ∈ TAf
} hence γ ∧ (d(m) + n ≥ 0) implies γ and f is only de�ned

for d(m). ut

The following result ensures that the requirement EFA Aer of De�nition 6
only enforces con�gurations reachable through traces with non-negative sum of
weights.

Lemma 4. Let Af be an FA and p one of its valid products, Aep be the plant
EFA and Aer be the requirement EFA obtained respectively from De�nition 5
and De�nition 6. Moreover, let AKeg be the mpc of Aep ||Aer ; and let |d0| = r be

the cardinality of the data vector of AKeg . Then, for every trace ww′ ∈ L (AKeg )
such that (q0, d0)

w−→(q, d) it holds that d(r − 1) ≥ 0.

Proof. From Corollary 1 and Lemma 3 it su�ces to consider ww′ ∈ L (Aer ).
By De�nition 5 and De�nition 6, it holds that for every data vector d of Aer ,

the elements d(0), . . . , d(r− 2) correspond to features of the corresponding valid
product p, whilst d(r−1) is a real-valued variable. By De�nition 6, for any trace
π = (q0, d0)

σ1, n1−−−−→ . . . σm, nm−−−−−→(q, d) it holds that d(r − 1) = 0 + n1 + . . .+ nm.
We proceed by induction on the lenght of the trace π. In the base case

π = (q0, d0)
σ1, n1−−−−→(q, d′) and d′(r − 1) = 0 + n1. Let t = (q0, γ ∧ (d(r − 1) +

n1 ≥ 0), σ, f(d(r − 1)) = d(r − 1) + n1, q) be the transition �red in π. The
fact that t is enabled (and �red) in π implies n1 ≥ 0, which in turns implies
d′(r − 1) = d(r − 1) + n1 ≥ 0.

The path π = (q0, d0)
σ1, n1−−−−→ . . . σm−1, nm−1−−−−−−−−→(q, d) σm, nm−−−−−→(q′, d′) is considered

for the inductive case, and by inductive hypothesis d(r − 1) ≥ 0. Let t = (q, γ ∧
(d(r−1)+nm ≥ 0), σ, f(d(r−1)) = d(r−1)+nm, q

′) be the last transition �red
in π. Again, the fact that t is enabled (and �red) in π implies nm ≥ −d(r − 1),
which implies d′(r − 1) = d(r − 1) + nm ≥ 0. ut

The following theorem states a correspondence between solving an energy
problem (safety or reachability) for an FA and computing the mpc for the cor-
responding EFA translation (of plant and requirement).

Theorem 2 (Energy Games and mpc). Let Af be an FA and p one of its
valid products, Aep be the plant EFA and Aer be the requirement EFA obtained
respectively from De�nition 5 and De�nition 6. Moreover, let AKeg be the mpc of
Aep ||Aer . The following hold:

1. the reachability energy problem on projp(Af ) has a solution i� L (AKeg ) 6= ∅;
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2. the safety energy problem on projp(Af ) has a solution i� it holds that
L (AKeg ) = L (projp(Af ));

3. the safety energy problem on AKeg has a solution.

Proof. Firstly, for each w ∈ L (AKeg ) such that (q0, d0)
w−→∗(q, d), it holds that

d(r − 1) = w(w).

1. Recall that a reachability energy problem checks the existence of a trace
w ∈ L (projp(Af )) such that for all pre�xes w′ of w it holds w(w′) ≥ 0. By
Theorem 1, Lemma 4 and the hypothesis L (AKeg ) 6= ∅ the thesis follows.

2. Recall that a safety energy problem checks that there exists no trace w ∈
L (projp(Af )) and pre�x w′ of w such that w(w′) < 0.
For the if case, assume L (AKeg ) = L (projp(Af )); the thesis follows directly
by Lemma 4.
For the only if case, assume that the safety energy problem has a solution on
projp(Af ). By Corollary 1 it su�ces to prove that L (Aer ) = L (projp(Af ))
holds. By Theorem 1, it su�ces to prove that L (Aer ) = L (Aep) holds. This
equivalence follows directly from the hypothesis and De�nition 6.

3. It follows directly by Lemma 4. ut

The mpc synthesis produces more information than the one obtained by sep-
arately solving both reachability and safety energy problem. Indeed, if only the
reachability energy problem has a solution, but not the safety one, then the
mpc synthesis computes the largest safe sub-automaton of projp(Af ). Finally,
the synthesised mpc can be easily turned into a winning strategy for the corre-
sponding energy problem.

Remark As noticed in the previous section, uncontrollable actions can be seam-
lessly introduced and the results presented in this section can be extended also
to energy games.

6 Partial Order Reduction

A drawback of product line modelling is that generally valid products are expo-
nential in the number of features. For example, consider the feature constraint
ϕ =

∨
i∈1...20 fi. The cardinality of JϕK is of 220 − 1, i.e. one million of valid

products. The techniques described in the previous sections should then com-
pute one million controllers, without exploiting any of the common parts these
di�erent products share. Indeed, all valid products are interpretations satisfying
the same propositional formula. The plant automaton (or the FA) is the same
for all valid products. Finally, the requirement to be enforced by the mpc is the
same for all valid products.

The following section will discuss the relations between the di�erent con-
trollers of valid products and how this information can be exploited for veri�ca-
tion or synthesis purposes.
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Three-valued logic for valid products The main intuition behind the partial order
reduction is now sketched. Generally, for a product line modelled as a proposi-
tional logic formula ϕ, the set of valid products is represented by the set of total
interpretation functions satisfying ϕ. Those functions assign a truth value to
each feature in ϕ. In a three-valued logic, atoms can be evaluated either to true,
false, or �don't care� (denoted by •). By switching from propositional logic to a
three-valued logic it is possible to drastically reduce the number of (augmented)
valid products to check.

For example, given ϕ = a∨b, the interpretation functions such that a = true
and b = •, and vice versa, are both satisfying ϕ. Hence, in this case three
(augmented) valid products are considered. The projection on a valid product
p simply ignores those features f such that p(f) = •. From now on, the set of
valid products JϕK is intended to consider also such augmented valid products.

All valid products JϕK of a product line can be partially ordered by set
inclusion. Given a valid product p, let Forbidden(p) = { f ∈ N | p(f) = false }.

De�nition 7 (Partially ordering JϕK). Let JϕK be the set of valid products.
Then (JϕK,�) is a partially ordered set, where

p � p′ i� Forbidden(p′) ⊆ Forbidden(p)

Note that the relation � is overloaded for both valid products and EFA: the
operands of � are used for identifying which relation is used. Before providing
the main results of this section, by Theorem 8 in [11] without loss of generality
it is assumed that each guard of an FA or PFA is composed of only one feature.
Hence, if for a given product p such feature has value • , the corresponding
transition will be maintained in projp. The following results hold for every mpc
AKeg of a given requirement Aer .

Lemma 5 shows that, intuitively, the partial order on valid products induces
a re�nement of (mapped) EFA.

Lemma 5. Let p, p′ ∈ JϕAK be two valid products of an (P)FA Af , and let
Aep ,Aep′ be the corresponding EFA computed in De�nition 5. Then:

p � p′ implies L (Aep) ⊆ L (Aep′ )

Proof. Since Tprojp(Af ) ⊆ Tprojp′ (Af ) holds because p � p′ (recall that each

feature guard is composed of only one feature), by De�nition 5 the thesis holds.
ut

Lemma 5 is extended in Corollary 2 to also consider the mpc of a given
requirement. In particular, the mpc AKeg for a valid product p is a re�nement of

the mpc AKeg′ of a product p′ such that p � p′.

Corollary 2. Let p, p′ ∈ JϕAK be two valid products of an (P)FA Af , and let
Aep ,Aep′ be the corresponding EFA computed in De�nition 5. Moreover, let Aer
be an EFA requirement and AKeg ,A

K
eg′

their corresponding mpc. Then:

p � p′ implies L (AKeg ) ⊆ L (AKeg′ )
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Proof. By contradiction, let w ∈ L (AKeg ) \ L (AKeg′ ), and let t = (q, γ, σ, f, q′)

be the �rst transition in the path recognizing w that is not enabled in AKeg′ . By
Lemma 2 it holds that L (Asafe

eg ) = L (AKeg ) and L (Asafe

eg′
) = L (AKeg′ ), hence σ

is a synchronization action (otherwise t would not be enabled). By de�nition of
composition ‖, the guard of t is γAep

∧ γAer
(there are no update functions by

De�nition 5). By De�nition 5 it holds t ∈ TAKe
g′
. By Lemma 5 transition t is

not enabled in AKeg′ because γAer
evaluates to false under the boolean assign-

ment d0p′ (i.e. d0p′ 6|= γAer
), whilst it evaluates to true or unknown under the

boolean assignment d0p (i.e. d0p |= γAer
). A contradiction is reached because by

hypothesis p � p′; i.e. p′ is obtained from p by switching some feature from false
to • while retaining satis�ability of ϕ (recall that in case of unknown value the
transition is by default permitted by the mpc). ut

An important consequence of Corollary 2 is that generally, for safety require-
ments (e.g. energy problems), given an FA, it is not necessary to compute the
mpc for each of its valid products. Indeed, it su�ces to compute some mpc of
certain valid products de�ned below. The relation � introduced below is trivially
an equivalence relation.

De�nition 8 (Representative products). Let Af be an FA, let p, p′ ∈ JϕAf
K,

let ME (Af ) be the set of maximal elements of (JϕK,�), let

p � p′ i� Forbidden(p) = Forbidden(p′)

and let the representative products pc ∈ RP(Af ) be the representatives of the
equivalence classes of ME (Af )/�.

Intuitively, a representative product represents all the maximal elements in
� that have the same set of forbidden features.

Example 1. Consider the feature constraint ϕAf
= (

∨
i∈1...20 fi)∧((f21∧¬f22)∨

(f22 ∧ ¬f21)), and its set of over one million products JϕAf
K. The maximal

elements of (JϕAf
K,�) are 40. Formally, ME (Af ) = {p | p(f22) = true, p(f21) =

false, ∃i ∈ 1 . . . 20.p(fi) = true and ∀j 6= i.p(fj) = •} ∪ {p | p(f22) = false,
p(f21) = true,∃i ∈ 1 . . . 20.p(fi) = true and ∀j 6= i.p(fj) = •}. There are
two representative products: pc1 and pc2 such that Forbidden(pc1) = {f21} and
Forbidden(pc2) = {f22}.

A special automaton K is now de�ned as the union of the mpc of the repre-
sentative products, where union is the standard operation on automata.

De�nition 9. Le Af be a (P)FA, let Aer be an EFA requirement, for each
p ∈ JϕAf

K let Aep be the corresponding EFA computed in De�nition 5 and AKeg(p)
the corresponding mpc for requirement Aer . The special automaton K is de�ned
as:

K =
⋃

p∈RP(Af )

AKeg(p)
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The representative products fully characterise the mpc of each valid product
of Af as re�nement of K, as guaranteed by the following theorem.

Theorem 3 (Re�nement of product line). Given K from De�nition 9, it
holds that:

∀ p ∈ JϕAf
K : L (AKeg(p)) ⊆ L (K)

Proof. The statement follows from De�nition 9 and Corollary 2. ut

An immediate application of Theorem 3 to the energy problem is stated in
the following corollary.

Corollary 3. Given K from De�nition 9 and Aer from De�nition 6. The fol-
lowing hold

1. if the safety energy problem has a solution on K then it has solution on all
projp(Af ), p ∈ JϕAf

K.
2. if the reachability energy problem has a solution for a given projp(Af ), p ∈

JϕAf
K, then it has a solution for all projp′(Af ), p′ ∈ JϕAf

K, p � p′.

Proof. First point follows from Theorem 3 and Theorem 2, whilst the second
follows from Theorem 2 and Lemma 5. ut

Example 2. Continuing Example 1, if the safety energy problem has a solution
on the corresponding K, then it will have a solution for all valid products. Hence,
to decide if the whole product line is safe it su�ces to synthesise the mpc for
only two representative products, instead of synthesising the mpc of all ≈ 106

valid products.

Note that Corollary 3 can be applied to other safety or reachability prob-
lems, provided they can be converted into an equivalent mpc synthesis problem.
Moreover, in case Corollary 3.1 is not satis�ed, it is still possible to check which
products are safe without computing all products' controllers. Indeed, a simple
algorithm that exploits the partial order is sketched. The algorithm visits itera-
tively in a top-down fashion the DAG induced by the partial order of products,
starting from the maximal elements. In case the mpc of a product (i.e. a node
of the DAG) is safe, then all its sub-products are detected to be safe, without
computing their controllers. Thus this node can be pruned by the algorithm.

7 Related Work and Conclusion

Some recent work in the application of SCT to SPLE is discussed below and
compared to the results presented in this paper. Final remarks and future work
follow.
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7.1 Related Work

SCT and SPLE have been applied to Contract automata (CA) [20]. CA are a for-
malism for specifying, composing and synthesising a safe orchestration of service
contracts. Safety is guaranteed for speci�c properties of contract agreement. The
orchestration synthesis of CA is rendered as the synthesis of the mpc in SCT.
Contracts can declare both optional and necessary requirements, interpreted as
controllable and uncontrollable actions from SCT [21], thus adding a �rst layer
of behavioural variability.

Featured Modal Contract Automata (FMCA) add an additional layer of
structural variability to CA. The associated toolkit FMCAT is used for modelling
and analysing contract-based dynamic service product lines [22�24]. FMCAT im-
ports feature models and their valid products from FeatureIDE [25]. An FMCA
de�nes a feature constraint (cf. [26, 27]) over service actions, and declares ur-
gent, greedy and lazy necessary service requests, re�ecting a decreasing level of
criticality. Features are identi�ed as service actions and each FMCA represents
a behavioural product line of services equipped with feature constraints. The
mpc synthesis deals with both feature constraints and the di�erent necessary
requests.

In this paper, such results are more general and consider any possible quan-
titative requirement expressed as EFA whilst the product line is described as
a PFA. FA and EFA are widely adopted formalisms endowed with o�-the-shelf
tools that have been applied to industrial case studies.

Timed Service Contract Automata (TSCA) have been studied in [28], and
are an extension of CA with real-time constraints. Similarly to this paper, the
mpc (orchestration) synthesis has been rendered as a strategy synthesis on a
timed game solving both reachability and safety problems. However, only the
orchestration can be synthesised while here the synthesis problem is considered
more generally.

SCT has been applied to SPLE in [29] through an implementation in the tool
CIF3 [19]. The CIF3 toolset is used to synthesise all the valid products of a family
composed of behavioural components and behavioural requirements rendered as
FSA. Additional constraints are generated from an attributed feature model and
other behavioural requirements (e.g. guards on events, state invariants). Product
line aspects are expressed as behavioural requirements. Whilst [29] focusses on
aspects of implementation, in this paper a rigorous approach has been proposed
and the translation from FA to EFA has been proved to be correct. Moreover,
instead of synthesising the mpc for each product separately, a technique has been
proposed for exploiting common aspects di�erent products share, leading to a
potential improvement in veri�cation performance.

A product line is expressed through a set of Modal Sequence Diagrams (MSD)
endowed with a feature model in [30], in the so-called Scenario-based Product
Line Speci�cation. The absence of inconsistencies in the di�erent variants is
checked by expressing the MSD as a featured game, similar to FA. An algorithm
to synthesise a winning strategy is proposed, by exploiting commonalities be-
tween the di�erent variants. Instead of checking inconsistencies in games, this
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paper formally proves an encoding such that it is possible to synthesise an mpc
for a generic requirement. Moreover, it has been showed how the controller syn-
thesis solves both reachability and safety games.

Similarly to the results presented in this paper, in [31, 32] quantitative prop-
erties of product lines are studied. In particular, in [31] the algorithm for com-
puting limit average cost of Weighted Transition Systems (WTS) is adapted to
a product line framework, whilst in [32] the problem of a dynamically changing
product line with quantitative requirements is studied using statistical model
checking techniques. However, SCT has not been considered, which is one of the
main aspects addressed in this paper.

7.2 Conclusion

In this paper a formal mapping from (P)FA to EFA has been proved. The main
outcome of this translation is the synthesis of an mpc enforcing a generic require-
ment on an SPL. It has been proved that both reachability and safety energy
problems can be solved at once with one mpc synthesis. The synthesis is not
computed for all products, potentially exponential in number. Instead, a partial
order relation among products and automata is exploited. A potentially expo-
nential gain in performance can thus be obtained. Indeed, an example shows
how to check such safety requirements by only considering a small fraction of
products (i.e. 2 in the best case) instead of the initial ≈ 106 products.

Future work concerns implementing the proposed translation as a plugin to
allow tools for (P)FA and FTS to interact with tools for SCT of EFA, as for
example CIF3.

Previously, in the CA framework [20] the mpc synthesis enforcing a spe-
ci�c quantitative requirement (called weak agreement) has been formalised as
a network �ow problem, to which optimisation algorithms have been applied.
Moreover, semi-controllable transitions have been introduced in [22] to de�ne
particular transitions controllable under speci�c global conditions. Such semi-
controllable transitions are useful when the plant represents a set of entities
exchanging resources, as for the case of CA. Further research needs to be pur-
sued to generalise both results on network �ow problems and semi-controllable
transitions to synthesise an mpc for a generic requirement.
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