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AbstractThe main objective of the thesis is the development of a complete and e�cient set ofsolutions for the Scienti�c Visualization (SciViz), the computer science �eld which dealswith the study, design and implementation of algorithms and data structures for thevisualization of scienti�c data. We propose the adoption of the simplicial complexes asthe unifying geometric structure and we show how the choice of this structure as kernelgeometric primitive is e�ective both for the theoretical and practical aspects of SciViz.The contents of the thesis can be summarized as follows. We interpret the diversi�edSciViz process as a two-steps mapping problem: a modeling step, in which data aremapped into geometry with visual attributes, and a rendering step where geometry andvisual attributes are transformed into images. As unifying geometric structure for themodeling step we propose the adoption of the simplicial complexes. To validate ourapproach we de�ne new algorithms and data structures for the SciViz problems, based onthe use of the simplicial complex as basic geometric representation scheme. In particularthe thesis supplies original solutions and results to the following problems:1. Visualization of scalar volume datasets: optimizing techniques for the extraction ofisosurface and for the direct volume rendering;2. Depth sorting of simplicial complexes (a fundamental topic for the e�cient andcorrect use of direct volume rendering based on projective techniques);3. Integration of isosurface extraction techniques and direct volume rendering tech-niques. De�nition of the concept of discontinuous transfer functions;4. Simpli�cation of the geometric complexity of simplicial complexes (in order to speedup the visualization process) while minimizing the introduced error;5. Multiresolution representation schemes for simplicial complexes. These schemespermit both the visualization of complexes at di�erent levels of details and thevisualization of a single complex in which di�erent parts are at di�erent resolution.
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Chapter 1IntroductionDue to the availability of high resolution monitoring systems, complex sim-ulation models, and powerful graphics devices, the use of visualization tech-niques for the analysis and understanding of natural phenomena is becomingincreasingly important in a wide range of research and application �elds.The term Scienti�c Visualization (SciViz) describes the �eld of computerscience which deals with the study and de�nition of algorithms and datastructures for the visualization of scienti�c data. SciViz aims at helpingthe comprehension of natural phenomena, promoting the decision makingprocess and supporting a better analysis of large amounts of experimentaland simulated data.Though a lot of terms, techniques or data structures used in SciVizhave been borrowed from Computer Graphics, there is a deep conceptualdi�erence between the two disciplines: the goal of Computer Graphics is toreproduce a well-known phenomenon or scene with high realism. the goalof SciViz, is the comprehension of a phenomenon or a process through itsvisualization. Moreover, input data in Computer Graphics are well de�neddescriptions of scenes; the objects to be rendered are represented in someanalytic or geometric form. Data in SciViz do not provide for the formalspeci�cation of objects: the investigated phenomenon is described by meansof a large n-dimensional cloud of data in a scalar, vectorial or tensorial form.Unfortunately, as often occurs in new research �elds, SciViz is far frombeing a well-founded topic of computer science. Most of the existing tech-niques have been developed to solve speci�c problems and, generally, theydepend on the nature of the data they deal with; the bibliography is widebut almost unstructured.Overcoming these limitations and giving to the SciViz �eld a more con-sistent fundation are the main objectives of this thesis. To get this ambitiousresult we propose:
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� An original intepretation of the diversi�ed SciViz process as a two-step mapping problem: a modeling step in which data are mappedinto geometries with visual attributes, and a rendering step wheregeometries are transformed into images. This interpretation permits usto break up complex problems into more precisely de�nite componentsand to compare di�erent solutions in an uniform way.� The adoption of an unifying geometric structure for the SciViz prob-lems: the simplicial complex. We will show how the choice of thesimplicial complex as kernel geometric primitive is e�ective both forthe theoretical and practical aspects of SciViz.� The de�nition of new algorithms and data structures (or the re-writingof existing ones) for the SciViz, based on the use of the simplicialcomplex as a basic geometric representation scheme. Our goal is notto propose an e�cient solution for a speci�c SciViz problem: our goalis to de�ne algorithms and data structures which permit to e�cientlysolve classes of problems in the complex and multivarious visualizationprocess.Simplicial complexes do not represent a new concept in computer science:triangulations in Computational Geometry, unstructured grids in �nite el-ements, triangular irregular network in Geographical Information Systems,simplicial complexes in Algebraic Topology are just some examples of theuse of this structure in di�erent research �elds. It seems quite natural touse this geometric structure systematically in the visualization process.Moreover, simplicial complexes are dimension independent and this prop-erty makes it possible their use as a basic general tool for data modeling [79]and for the de�nition of multiresolution representation schemes [34]: algo-rithms and data structures, which adopt them as kernel geometric structure,can be easily adapted to any speci�c dimension.We will focus our attention mainly to the three-dimensional case andtherefore we will adopt the tetrahedron as basic geometric primitive. Thischoice does not represent a limitation to the applicability of the algorithmand will certainly make the exposition more clear. Moreover, most of theSciViz problems are three-dimensional problems: the de�nition of 3D algo-rithms and data structures makes them immediately usable for real appli-cations.1.1 Problem Statement and Data Classi�cationA better understanding of the SciViz can be obtained by de�ning the datait deals with. In this section we give some de�nitions and examples of the6



data sources.1.1.1 Input DataLet us consider the data to be visualized as a function f , de�ned for a�nite set V of discrete points vi over a domain 
 � IEd. (V; f) is generallyknown as a dataset. No initial assumption on the range of the function f ismade. From a mathematical point of view, we can manage all the di�erentcases by means of hypersurfaces (i.e. functions f : IRd ! IR), whereasfrom a perceptual point of view, it is di�erent to visualize d independentscalar �elds from visualizing a vectorial �eld. We classify the data in SciVizaccording to their domain, range and structure.Domain In most cases, data to be visualized are distributed in a domain
 � IEd with d � 3. The simplest case is the two-dimensional one: thedomain is a plane or a closed two-manifold [42]. Visualizing discrete three-dimensional data is generally known as volume visualization [60]; the set ofpoints and their associated values are known as a volumetric dataset. Thecases in which the examined data are de�ned in IEd spaces, with d > 3, obvi-ously require di�erent visualization technniques [10, 11, 53]. Moreover, datade�ned in IEd space and varying in time can be simply handled consideringthe data as distributed in Ed+1 space.Range For each point vi 2 
 a quantity f(vi) is given; this quantity can bescalar, vectorial or tensorial; it must be noted that visualization techniquesare chosen according to the range of data. In fact visualizing a vector �eld in3D is di�erent from visualizing three independent scalar �elds. This thesisdeals with scalar �elds.Topology and Geometric Structure Along with the data a structurecharacterizing in some way the distribution of points vi is often given. Thischaracterization can be geometrical (i.e. all the points are distributed onan deformed regular grid) and topological (i.e. there exists a structure that,given a point vi, permits to retrieve the points of V neighbor to vi.)The topological structure can be implicitly de�ned; for example, if thedata point are distributed on three-dimensional regular grid it is easy to�nd the neighbors of a given point. An other example of the topologicalstructure can be a simplicial complex having the points vi as vertices. Ifsuch a topological structure does not exist it can be created. The existenceof such a structure is exploited in the visualization process.
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In the case of a three dimensional domain, the following volumetricdataset classi�cations are common:� regular: data points are regularly distributed in E3 on a three dimen-sional rectilinear grid;� curvilinear: data points are distributed in a deformed (warped) threedimensional grid;� unstructured: data points have no \regular" geometric structure butthere is a topological structure;� scattered: data points are scattered with no correlation between them.In the case of regular and curvilinear datasets the geometric structure ofthe dataset is implicitly de�ned; scattered datasets generally imply the cre-ation of a topology by means of IEd triangulation techniques (for exampleDelaunay triangulations).The algorithms and data structures in the following chapters will addressmainly the case of three dimensional scalar data, even if most of the proposedtechniques are general and can be extended to higher dimensions.1.1.2 Data SourcesMany research �elds can create data for analysis in SciViz. In a lot ofsciences, non{invasive inspection techniques provide sources of regular volu-metric scalar datasets. Modern techniques of investigation [86] such as CAT,MRI, PET can be used to produce volumetric datasets representing partsof the human body.Computational uid dynamics, the study of ows and uids, is a commonsource of volumetric vectorial and tensorial datasets. Molecular modeling,the study of new compounds, geosciences and the study of seismic structuresare other common sources of volumetric data.Mathematics and the understanding of high dimensional relationshipsare the most important sources of datasets with domains in Ed with d > 3.Another source of data to be visualized are terrains; their e�cient visualiza-tion plays a key role in ight simulators. Although terrain visualization isnot generally included in SciViz, it can be treated as one: terrain data canbe considered as scalar �elds de�ned in a two{dimensional domain (height�elds). A typical case in which the data are distributed over a closed two{manifold is, for example, where data are distributed over a sphere (e.g.ozone distribution). Although this problem could be solved by projectingthe data over a plane, visualization of the data over a sphere improves theuser's understanding. 8



1.1.3 Data Reduction TechniquesInteractive visualization techniques greatly improve the comprehension ofthree-dimensional structures. The spatial ambiguities, that may appearfrom a single image of a three dimensional scene, immediately disappearif the user is able to interactively rotate/translate the 3D scene. The pos-sibility to interactively manage visualization is therefore a must, and thisimposes the availability of enormous computational resources. A commontechnique to speed up rendering, beside the use of parallel hardware [73], isto reduce the quantity of data to be visualized. Such a reduction process isobviously aimed to limit the error introduced by the elimination of part ofthe data. This technique is increasingly used in SciViz as well [64, 25, 19].Most of the work in this �eld covers the simpli�cation of two dimensionalsurfaces, e.g. terrains or boundary representation of 3D objects [44, 32, 89,18]. Some of the work in this �eld originated from the need of reducing thespatial complexity of isosurfaces produced in visualizing large volumetricdatasets [89, 74].Once we have models with di�erent resolutions we must face the problemof managing them. Multiresolution modeling has as objective to structuremodels at di�erent resolutions into a comprehensive framework that allowsdata to be manipulated at di�erent resolutions according to the needs of agiven application or task.Data reduction techniques for tetrahedral complexes and multiresolutionmodels for SciViz will be addressed in Chapter 5 and 6, respectively.1.2 Simplicial Complexes as a basis for Scienti�cVisualizationIn spite of a substantial progress in the last few years, the data structuresand algorithms developed for Scienti�c Visualization still su�ers for poorintegration or generality. One of the goals of this thesis in the process ofstandardization of this discipline is the proposal of adopting simplicial com-plexes as the unifying kernel structure in the representation of geometricaldata. We justify this choice in the following both in terms of generality (byshowing how a number of di�erent subproblems might be solved adopting asimplicial representation) and of e�ciency of the solutions designed.Some of the characteristics suggesting us the adoption of simplicial com-plexes as the kernel data representation structure in SciViz are briey in-troduced in the following:� they are a structure suitable to model data in any dimension;
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� it is possible to �nd simplicial decompositions of domains containingscattered data points;� they are a suitable basis for many interpolation techniques [43];� data structure design is simpli�ed;� handling degenerated cases (i.e. coincident points in 3D space) is sim-pli�ed, because a simplex degenerates to a lower-dimension simplex;� visualization algorithms are in general faster, integration of di�erenttechniques is simpler and can be accelerated by adopting a multireso-lution approach.Among the positive aspects of the simplicial complexes we must highlighttheir inherent dimensionality-independence: it allows simple interchange ofsolutions between classes of problems embedded in spaces at di�erent di-mensionality (i.e. solving problems in Ed space by extending solutions tosimilar Ed�1 problems).In the next sections we give some formal de�nitions and a more detailedjusti�cation to our assertions, by showing how simplicial complexes mightbe the unifying structure for a number of visualization problems in E2 andE3.Common techniques for terrain or surface representation and renderingadopt triangular facets as kernel elements. The graphics hardware availablenowadays on most of the workstations was designed identifying the \triangu-lar mesh" as the basic primitive. While in the 2D case the use of triangularmeshes is now well estabilished, in the visualization of 3D data there is notsuch a common approach. In the case of Volume Visualization there is a lotof good reasons to use simplicial complexes (actually tetrahedral complexes):� most cell complexes found in Volume Visualization are easily decom-posable in a simplicial complex (even implicitly, in order to avoid thegrowth of datasets);� simplicial complexes can be easily rendered using various classes ofalgorithms (e.g. ray-tracing, scan-line, or projective approaches);� isosurface extraction from simplicial complexes avoids the ambiguitiesthat occur with hexahedral complexes;� most of the rendering algorithms for irregular cell complexes are sim-pler to be described and implemented on tetrahedral complexes;� integration of di�erent techniques is simpler and it can be acceleratedby adopting a multiresolution approach.10



It should be noted that tetrahedral complexes in visualization are more andmore used; they are becoming a standard for the visualization of unstruc-tured datasets; there are, for example, e�cient and robust techniques [4] forreducing various classes of datasets into tetrahedral complexes.In this thesis we propose the tetrahedron as the volume rendering prim-itive element in the same way as the triangle is the most common primitivefor surface rendering. It must be noted that this aim is much more than thesimple use of tetrahedral complexes for solving some problems in VolumeVisualization; the �nal goal should be the fundation of a complete set ofgeneral purpose rendering techniques that are tetrahedron-centric, able tomanage all the classes of presented data and e�cient enough to make theirpractical use suitable.Our approach to Volume Visualization based on tetrahedra could re-semble the Kaufmann's proposal for Volume Graphics [61] as a sub�eld ofComputer Graphics. In Kaufmann's approach the base element is the voxeland Volume Graphics is concerned with synthesis, manipulation and ren-dering of 3D objects stored as volumes of voxels. Beside the di�erent choiceof the basic element an all the advantages of using an adaptive, all purposestructure, the strenght of our approach lies on the complete dimension inde-pendence of the structure: simplicial complexes work in any dimension andthe same holds for the associated management techniques. For example, themultiresolution techniques conceived for generic simplicial complexes (likethe ones described in Chapter 6) work for both terrains and volume data.1.3 Data modeling based on Simplicial ComplexesIn this Section, we formally introduce simplicial complexes, describing theirproperties and how they can be used to represent volumetric scalar datasets.Consider a set V = fv0; v1; : : : ; vdg of d+ 1 linearly independent pointsin the k-dimensional Euclidean space IEk, with d � k. The subset � of IEk,formed by all points which can be expressed as linear convex combination ofthe points of V , is called a d-simplex. The points of V are called vertices of�, while d is the order of �. Any s-simplex �, 0 � s � d, which is generatedby a subset of s+ 1 vertices of �, is called an s-face of �. If s < d, then � iscalled a proper face of �.A collection � of simplices is called a d-simplicial complex when thefollowing conditions hold:� for each simplex � 2 �, all the faces of � belong to �;� for each pair of simplices �; � 2 �, either �\ � = ; or �\ � is a properface of both � and � ;
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� d is the maximum of the orders of the simplices belonging to � (d iscalled the order of �).The union of all s-simplices of �, with 0 � s � d, regarded as a point set, iscalled the domain of �, and denoted 
); any proper face of a simplex of �is called a boundary face if it belongs to the boundary of 
, an internal faceotherwise.In practice, d-simplices are used as building blocks to cover the domain.Boundary faces form the boundary of the domain, while internal faces sepa-rate such blocks from one another. If general polyhedra are used as buildingblocks, instead of simplices, the previous concepts can be generalized to de-�ne a cell complex. We will not formalize this concept for the sake of brevity,since in this work we just use simplicial complexes. Nevertheless, we wish topoint out that a cell complex is a very general structure that can be used toformalize digital hypersurface models: such use will be informally discussedin Section 1.3.1.An advantage of simplicial complexes with respect to the more generalcell complexes can be found in the design of data representation schemes;this is because:� a d-simplicial complex � is fully characterized by its combinatorialdescription plus the coordinates of its vertices;� any simplex � implicitly de�nes all its faces;� the number of k faces of a d-simplex is a constant;� the combinatorial structure of � is completely characterized by the listof its top simplices; if � is regular it is characterized by the list of itsd-simplicies.A special class of d-simplicial complexes is the one of the Delaunay com-plexes. A d-simplicial complex � in IEd is called a Delaunay simplicialcomplex if and only if it covers the convex hull of its vertices and the hyper-sphere circumscribing each d-simplex of � does not contain any vertex of �in its interior. For a given set V � IE3 of n points (n � d+ 1), there existsa unique Delaunay simplicial complex having V as vertex set if and only ifthere are no d+ 2 points of V that are cospherical.A Delaunay simplicial complex can be built on any set of vertices V , andthe shape of its simplices is the most regular among all possible simplicialcomplexes built on V . Moreover, e�cient algorithms have been proposed forthe construction of the Delaunay simplicial complex, given as set of verticesV [98].
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From the visualization point of view, a number of rendering algorithmsable to handle simplicial complexes exist. The use of simplicial decompo-sitions to manipulate and render curvilinear dataset implies an increase inthe number of cells (at least 5 simplices for each hexahedral cell), but sim-pli�es problems caused by occasional degenerate cells (e.g., non-hexahedralcells due to coincident sites) and cells with non-planar faces. Handling suchcases is generally more complex if a non-simplicial cell decomposition isused. In fact, many visualization algorithms have been described with highgenerality (i.e. they have been speci�ed \on the paper" for general convexcell complexes), but they have often been implemented only on simplicialcomplexes.In the following, we deal with 3-simplicial complexes in IE3, called alsotetrahedralizations.1.3.1 Digital Hypersurface ModelsA formal approach to volume dataset modeling, in order to express bothgeometry and �eld values, is to embed the volume dataset in IE4 and toconsider it as a four-dimensional hypersurface, de�ned piecewise over a de-composition of the domain into cells.Given a domain 
 � IE3, and a function f : 
 ! IE, the hypersurfacecorresponding to f over 
 is  (
; f) = f(x; y; z; f(x; y; z)) j (x; y; z) 2 
g.We call the pairM = (
; f) amathematical hypersurface model. In practicalapplications, function f will be known only at a �nite set of points in thedomain 
. Let S = fs1; : : : ; sNg be a �nite subset of 
, at which f isknown, called a dataset. The pair MS = (S; f jS) is called a sampled model(of f). Here, we consider the problem of building a digital model on 
approximating a given sampled model MS with a certain precision.It is hardly possible to describe a hypersurface  by means of a sin-gle analytic function over the whole domain 
. A �nite description can begiven by tessellating 
 into cells, such that  can be described by a func-tion over each of such cells. To this aim, we de�ne a digital hypersurfacemodel as a special case of a mathematical hypersurface model, where func-tion f is de�ned piecewise over a cell complex �, having a set of 3-cellsf1; : : : ; mg. Thus, a digital hypersurface model is a pair � = (�; F ), whereF = ff1; f2; : : : ; fmg, withm number of cells of �, such that each function fiis de�ned over a 3-cell i of �. If f represents a continuous function, all fi'smust have the same value on the common faces of adjacent cells, otherwisesuitable extensions of the fi on the proper faces of � should be speci�ed.A simple example of digital hypersurface model is the well-known voxelmodel. In this case, the dataset S is a grid of regularly spaced points inIE3, and the cell complex is composed of cubes: each cube i is centered on
13



a datum si and the function fi is constantly equal to f(si) over i. Sucha model represents all data in MS exactly, and requires a number of cells(voxels) equal to the cardinality of S. A similar case can also occur for tetra-hedral complexes: many �nite analysis simulation algorithms operating ontetrahedral domains associate values directly to the cells, and not to theirvertices.In the rest of our thesis we will use tetrahedral complexes to representvolume data so we adopt the following hypersurface model; given a sampledmodelMS = (S; f jS), a Tetrahedral Hypersurface Model (THM) is a digitalhypersurface model � = (�; F ) having the following properties:1. the set V of vertices of � is the set of sample points S;2. � is a tetrahedralization of V ;3. all functions of F are linear interpolants of f at the vertices of V : allsuch functions are uniquely de�ned by the values of f on V , denotedby f(V ), and the hypersurface � is continuous and piecewise linear.It should be noted that the choice of linear interpolation function is moti-vated by simplicity but higher order interpolation functions can be adopted[117].1.4 Outline of the ThesisIn Chapter 2 we state our interpretation of SciViz as a two-step mappingproblem: a modeling step where data are mapped into geometries with vi-sual attributes, and a rendering step where geometries are transformed intoimages. Following this interpretation we give a general survey of the maintechniques for visualizing a three-dimensional scalar �eld described with atetrahedral complex. Then we describe the state of the art and our contri-butions in the �eld of isosurface extraction and direct volume render of atetrahedral dataset.Direct volume rendering (DVR) requires e�cient depth sorting of thegeometric primitive thus in Chapter 3 we describe in detail the problemof depth sorting a tetrahedral complex and we introduce a new techniquefor sorting complexes which belong to the class of projective complexes.The approach is based on the preliminary construction of the lifted complexcorresponding to the given one and on its representation as a power diagram.This approach exhibits a O(n logn) runtime complexity to sort a complexand require only linear storage
14



Isosurface extraction and DVR are, for many aspects complementarytechniques: they give to user di�erent kind of information. In Chapter 4,we present an original solution to correctly integrate, using projective tech-niques, isosurfaces and DVR. The proposed technique is based on a tabularon-the-y decomposition of tetrahedral cells along isosurfaces. In the sec-ond part of the Chapter we introduce the concept of Discontinuos TransferFunction: it uni�es, in a single framework, the managment of visualizationof volume data in which both isosurface extraction and DVR techniques areused.Very often datasets are so large that they cannot be rendered interac-tively, for this reason in Chapter 5 we discuss how to build smaller datasetsusing simpli�cation techniques. Two simpli�cation algorithms for tetrahe-dral meshes are proposed.A collection of simpli�ed models can be managed in a single uni�edframework by adopting a multiresolution representation; in this way we canadapt the resolution and the size of the dataset to the needs of the user. InChapter 6 we show how these methods permit the compact representation ofmany di�erent approximations of the dataset. Multiresolution techniques al-low, for example, the use of low resolution models for interactive phases andthe extraction of variable resolution representations according to viewing pa-rameters and/or to the user speci�cation of a particular region of interest.Using the existing framework of Multiresolution Simplicial Model (MSM)we introduce the original concept of Hyper Simplicial Complex (HySC) thatcodi�es a MSM in IEd as a simplicial complex in IEd+1. In particular wepropose an algorithm for the extraction of a variable resolution model withthe full face-adjacency topological relation. We also give some details on thee�ective use in volume visualization of multiresolution, and in particular, onthe use of variable resolution representations.Chapter 7 concludes the thesis and presents some open research issues.
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Chapter 2Tetrahedral VolumeVisualizationIn this Chapter we state our interpretation of SciViz as a two-step mapping problem:a modeling step where data are mapped into geometries with visual attributes, anda rendering step where geometries are transformed into images. Following thisinterpretation we give a general survey of the main techniques for visualizing ascalar �eld described with a tetrahedral complex. Then we describe the state of theart and our contributions in the �eld of extracting isosurfaces and directly render atetrahedral volume dataset.The purpose of scienti�c visualization is to help the user to understandthe structure of data under analysis through its visual representation. Ob-serving in the most general way this visualization process we can identifytwo distinct steps: in the �rst one, called the modeling step, a meaningfulgeometric structure is extracted from our data; such structure, composed forexample of triangles or lines, together with its visual properties (like colorand transparency) exhibits some relevant features of the dataset. In thesecond step of the visualization process, called the rendering step, we canexploit the algorithms, tools and techniques supplied by computer graphicsto render the previously extracted geometric structure. In other words dur-ing the �rst step we transform the data precisely into coloured geometries,then we render them into images.In the next section we will justify/verify this interpretation by surveyingthe existing techniques for the visualization of a scalar �eld and identifyingthe two steps in them. In Section 2.2 and 2.3 we will describe in detail thetwo major visualization techniques, Isosurface Extraction and Direct VolumeRendering; particular attention will be payed in section 2.2 (in which we will
16



Figure 2.1: Isosurface and direct volume rendering of the same dataset.discuss modeling and rendering problems of isosurface extraction) to ourcontribution to the optimal solution of the problem of purging non-activecells during isosurface extraction.2.1 Modeling vs. Rendering in Volume Visualiza-tionMany visualization strategies have been proposed to reveal the inner struc-ture of a three-dimensional scalar �eld. Here we shortly survey these vi-sualization techniques, describing them in terms of a modeling/renderingprocess.Slicing: Using a common visualization technique the values of the �eldare mapped with colors, so that the domain of the dataset is modeled asa solid object whose interior is colored according to the �eld (like a sort ofagate). The dataset is then sliced in order to reveal the colors in the innerparts of the domain [95]. Only a 2D subset of the information in the datasetis visualized for each slice; generalized cutting plane/surfaces can be de�nedby the user to improve the power of this technique.Isosurface �tting: In this case the objective of the modeling step is thereconstruction of polygonal surfaces representing, in most cases, an approx-imation, of an isosurface, the subset of points of the domain 
 where thevalue of the �eld is equal to a given threshold value. Another example ofthe modeling step in isosurface extraction is the work done by Interrante17



010100101
010010011
101100101
100100110
010001....

Visualization
Modeling

Data into geometries
with visual attributes

Shape

  geometry TetraSet
 coords

0.096 -0.349  0.399,
0.177 -0.397  0.556,

        ...
         coordIndex

449, 38, 157, -1,
449, 157, 189, -1,

            ...
Attributes

       colors
              0.9 0.6 0.2 0.1
              0.1 0.6 0.6 0.5
              0.9 0.3 0.8 0.3
              ...

Visualization
Rendering

Geometries with visual
attributes into imagesFigure 2.2: Separating modeling from rendering in Visualization.[55, 100] on improving the comprehension of transparent isosurfaces whereopacity textures are applied on isosurfaces as an \artistic device" for indi-cating their shapes and its essential features more explicitly.Scalar Topology Graph Another form of visualization modeling, intro-duced for the two dimensional case by Bajaj and Schikore in [8], consists inthe reconstruction of the scalar topology graph obtained by connecting allthe critical points (minima, maxima and saddles) of the �eld. This approachcan be seen as the dual of isosurface extraction: the arcs of the graph followthe gradient of the �eld and are orthogonal to the isocontours; this graphshows complementary information w.r.t. the isocontours: a quantitativeview of the general behaviour of the �eld instead of the distribuition of asingle value over the domain.Direct Volume Rendering: The idea of mapping the �eld value into col-ors is extended to include also opacity: in the modeling step we transformour dataset into a semitransparent blurry object, where the color and opac-ity of each point precisely reects, and therefore visualizes, the �eld value. Inthe case of Direct Volume Rendering the distinction between modeling andrendering is blurred by the fact that before the rise of Volume Visualization,the rendering of translucent solid objects received little attention, so thatmany of the algorithms for DVR were developed as an answer to a speci�cneed in Scienti�c Visualization, rather than in the quest for photorealism.This interpretation of Visualization enbles us to focus better betweenproblems and objectives of modeling and rendering:� modeling: discovering new signi�cant means of extracting from thedataset geometric coloured objects that convey meaningful informa-tion.� rendering: supplying all the tools for transforming the previous ob-jects into images, such tools should be general, e�cient and possiblynot too closely linked with a particular visualization technique.
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Figure 2.3: Marching Tetrahedra: vertex con�gurations and correspondingisosurface patches.Our choice of simplicial complexes as a unifying kernel for scienti�c visual-ization reects this belief; in particular we think that choosing a particularprimitive, the tetrahedron, for representing visual properties in a portion ofspace and de�ning how the color and opacity are rendered into images al-lows us to concentrate on the modeling problems of visualization. From thispoint of view it will be straightforward to propose the uni�ed view of Isosur-facing and DVR presented in Chapter 4 as a unique visualization modelingstrategy.2.2 Isosurface FittingIn this section we discuss the isosurface extraction issue for tetrahedral com-plexes. Some parts of the following description, like the three-value vertexclassi�cation with correct handling of degenerate situations and the opti-mization techniques described in section 2.2.1, are original.Given a volume dataset described by a tetrahedral complex � with a setof scalar values f(vi) associated with the vertices vi of the complex, and athreshold value �, the isosurface passing through the points of the volumedataset having a value of � can be reconstructed by using a per cell approachsimilar to the Marching Cubes algorithm [69]. It is therefore usually calledMarching Tetrahedra (MT ). Some details of the algorithm that we are nowgoing to describe will be used later in Chapter 4 when we will show how tointegrate Isosurface and DVR.The main idea behind the algorithm is to traverse all given cells andto extract for each cell � crossed by the isosurface (active cell) the isosur-face patch passing through �. Each vertex v of the dataset is classi�ed asblack, grey or white if the value associated with v is, respectively, less, equalor greater than the given threshold �. Such classi�cation of a cell verticescan generate 34 = 81 di�erent combinatorial con�gurations. By exploit-ing symmetries, the latter can be �tted into the six main classes shown inFigure 2.3.
19



Once the class for each tetrahedron has been identi�ed, the position ofthe isosurface vertices are calculated by linear interpolation on the tetrahe-dron edges. The choice of which edges must be used and how to connectthe vertices found is made using a table accessed through the tetrahedronclass. A surface normal should also be calculated for each isosurface vertex,to improve the smoothness of the resulting isosurface.Our three{value classi�cation and the consequent six classes of �gure2.3 are necessary to correctly handle the degenerate situation of verticeswith �eld value wi equal to the isosurface threshold �. The usual two-valueclassi�cation generates only the �rst three classes of �gure 2.3 (the ones withno grey vertices): �tting the situation of class 3, 4 or 5 into class 1 or 2 cangenerate a null triangle that should be purged in a postprocessing phase.Particular attention must be payed to the management of class 5, since,when an isosurface facet coincides with a face of the tetrahedron, we couldgenerate the same facet twice. To get round this problem, we modify the81-entry table of the MT in order to generate isosurface facets of class 5 cellsonly if the vertex of the tetrahedron not on the isosurface is greater that thethreshold value. This solution represents a compromise and its shortcomingsreect the fact that it is not possible to solve all the ambiguities looking onlyat the vertices con�gurations. In fact, this trick correctly solves the problemfor all cases except two: isosurfaces passing exactly through the boundaryof the domain of the dataset, and the non-2-manifold situation of isosurfacespassing exactly through a face that is an area of local minimum/maximumof the �eld. A more correct solution can be found only by exploiting thetopology of the cell complex marking the adjacent class 5 cell in order toprevent a redundant generation of this facet.Moreover, it should be noted that an isosurface, de�ned as the set ofpoints where the family of linear interpolating functions has a given value,is not necessarily a 2-manifold surface with boundary. For example, if threecell vertices with the same value de�ne an area of local maximum � (orminimum), then the isosurface with threshold � is the one shown in Figure2.4: the edges of the central triangular face are not a 2-manifold set.2.2.1 Purging non{active cellsA drawback of the isosurface visualization is that only a small subset of thedataset, and therefore of the information contained in it, is represented inthe �nal image; in most cases the ability to modify interactively the thresh-old value while viewing the resulting isosurface permits us to infer the globalstructure of the scalar �eld. For this reason e�ciency issues are very impor-tant when visualizing isosurfaces. The isosurface extraction can be mademore e�cient by introducing some optimizations; this subsection describe
20



Figure 2.4: Non-manifold situation in isosurface �tting: the central trian-gular face is a local minimum area passing exactly through a face of thedataset.our contribution to the optimal solution to the problem of the identi�cationof the set of cells crossed by the isosurface; infact the determination of thisset usually needs the traversal of the whole dataset, even if the searchedisosurface crosses few cells. The time spent in the exhaustive search of thecrossed cells is, in many cases, the dominant part of the whole isosurfaceextraction process. Speedup techniques were proposed in order to avoidthe analysis of non-active cells, and can be classi�ed according to two maincriteria:� search modality: active cells can be searched either in the geometricspace (geometric approach) or, alternatively in interval space (intervalapproach), de�ned as the set of the min-max data value intervals ofeach cell. In the former case a data structure is built over the domainof the dataset in order to �nd the parts of the domains containing cellstraversed by the isosurface, in the latter case the intervals containingthe given threshold are searched for and then the corresponding activecells recovered. The selection of the search modality is often subjectto the geometric structure of the underlying dataset: the geometricapproach is generally well suited for regular datasets, the interval ap-proach is independent of the geometric strucute of the dataset, thoughit generally implies higher costs in terms of memory requirements.� locality exploitation: if an isosurface crosses a given cell it certainlycrosses also some of the adjacent cells. This coherency informationcan be exploited both to �nd e�ciently the cells intersected by theisosurface and to reduce redundancy in geometric computations (iso-surface vertices are shared by adjacent cells, so their position can becalculated just once). This approach is particularly well suited to thecase of regular or curvilinear dataset where the adjacency informationis implicitly maintained.
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Figure 2.5: The span space. Each interval I = [a; b] is represented as a pointof coordinates (a; b). To detect the intervals that contain the query valueq we have to �nd the points which lie to the left of the line min = q andabove the line max = q.Before presenting our solution we review some of the results in the localiza-tion of the active cells. Wilhelms and Van Gelder [111] use a branch-on-needoctree to purge sub-volumes while �tting isosurfaces, based on the range in-terval spanned by each sub-volume. This method achieves a worst case timee�ciency O(k + k log(n=k)) (where n is the total number of cells, and k isthe number of active cells) [68], with small overhead (the octree increasesstorage occupancy only for about 16%).Gallagher [47] proposes a method based on a subdivision of the rangedomain into buckets, and on a classi�cation of intervals based on the bucketsthey intersect. The tradeo� between e�ciency and memory requirements ishighly dependent on the resolution of the bucketing structure. Giles andHaimes [50] report an approach in which two sorted lists of intervals areconstructed in a pre-processing phase by sorting the cells according to theirminimum and maximum values, respectively.In a recent paper, Shen and Johnson [90] try to overcome some limita-tions of [47], and [50], however, a worst-case computational complexity ofO(n) was estimated for all three methods outlined above [68].Livnat et al. [68] introduce the span space (see Figure 2.5), which is a two-dimensional space where each point corresponds to an interval in the rangedomain. The span space is very useful for understanding range-based meth-ods geometrically, therefore we will refer to this representation also in thenext sections. A kd-tree is used to locate the active intervals in this space,22



achieving an O(pn + k) time complexity in the worst case. In a more re-cent paper, Shen et al. [68] propose the use of a uniform grid to locate theactive intervals in the span space. Such an approach is suitable for parallelimplementation.Approaches that exploit the locality rely essentially on two requirements:the ability to �nd an active cell (seed) for each connected component ofthe isosurface and the ability to propagate the surface by traversing themesh from cell to cell through adjacencies [95]. Adjacencies are implicit instructured datasets, while they need to be stored explicitly in unstructureddatasets. Storing adjacencies explicitly roughly doubles the memory require-ment of the dataset, hence making the overhead of surface-based methodsin the unstructured case either comparable to, or even higher than the over-head of range-based methods. Moreover, further auxiliary structures areneeded in order to �nd seeds.Itoh et al. [56] base the search for seeds on a graph, whose nodes are thecells holding local minimum or maximum data values: therefore, an arc ofthe graph spans an interval in the range domain. Each arc supports a list ofcells connecting its two end nodes. Given an isovalue, the graph is searchedfor an active arc, and the cells connected to this arc are sequentially scanneduntil a seed is found. A propagation method is activated on this seed. Sincethe isosurface can be made of many connected components, seed search mustbe repeated until all active arcs have been visited. This can take O(n) timein the worst case [68].A more e�cient method of �nding seed sets is proposed by Bajaj etal. [7, 103]; they show the relation between the seed sets selection and thecontour tree problem, a tree that captures the contour of the topology of thefunction represented by the mesh; this structure has been studied before inimage processing and GIS research. From the contour tree it is possible to�nd the minimum size seed set in polynomial time (reduciing the problemto a min-cost ow in a DAG), or �nd a good approximation of this optimumin O(n2). The seed set can be encoded in a range-based search structure,in order to locate e�ciently active seeds for a given isovalue: optimal timee�ciency can be achieved by using an interval tree. The seed set is verysmall on average, hence causing a small overhead, but it can be as big asO(n) in the worst case (e.g., if the underlying �eld has a sinusoidal shapeor it is simply a�ected by noise).2.2.2 Selecting Cells by Using Interval TreesThe technique we have proposed in [20, 22] for active cell selection is in theclass of range-based methods, and therefore it can be used both for regularand unstructured datasets. Let � be the input mesh. Each cell �j 2 � is
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associated with an interval Ij , whose extremes aj and bj are the minimumand maximum �eld values at the vertices of �j, respectively. Since �j isactive for an isovalue q if and only if its corresponding interval Ij containsq, the following general query problem is resolved:\given a set I = fI1; : : : ; Img of intervals of the form [ai; bi], withai � bi on the real line, and a query value q, report all intervals of Ithat contain q".The problem is e�ectively visualized using the span space introduced byLivnat et al. [68] (see Figure 2.5): each interval Ii = [ai; bi] is represented asa point in a 2D Cartesian space using the extremes ai and bi as the x and ycoordinates of the point, respectively. From a geometrical point of view, theproblem of reporting all intervals that contain the query value q is reducedto collecting the points in the span space lying in the intersection of the twohalf{spaces min � q and max � q.An optimally e�cient solution for the query problem above can be ob-tained by organising the intervals of I into an interval tree, a data structureoriginally proposed by Edelsbrunner [38] (see also [83]), which is reviewed inthe following. For each i = 1; : : : ;m, let us consider the sorted sequence ofvalues X = (x1; : : : ; xh) corresponding to distinct extremes of intervals (i.e.,each extreme ai, bi is equal to some xj). The interval tree for I consists of abalanced binary search tree T whose nodes correspond to values of X, plusa structure of lists of intervals appended to non-leaf nodes of T . The inter-val tree is de�ned recursively as follows. The root of T has a discriminant�r = xr = xdh2 e, and I is partitioned into three subsets as follows:� Il = fIi 2 I j bi < �rg;� Ir = fIi 2 I j ai > �rg;� I�r = fIi 2 I j ai � �r � big.The intervals of I�r are arranged into two sorted lists AL and DR as follows:� AL contains all elements of I�r sorted in Ascending order accordingto their Left extremes ai;� DR contains all elements of I�r sorted in Descending order accordingto their Right extremes bi.The left and the right subtrees are de�ned recursively by considering inter-val sets Il and Ir, and extreme sets (x1; : : : ; xdh2 e�1) and (xdh2 e+1; : : : ; xh),respectively. The interval tree can be constructed in O(m logm) time by adirect implementation of its recursive de�nition. The resulting structure is a24



binary balanced tree with h nodes, and a height of dlog he, plus a collectionof lists of type AL and DR, each attached to a node of the tree, for a totalof 2m list elements.Given a query value q, tree T is visited recursively starting at its root:� if q < �r then list AL is scanned until an interval Ii is found such thatai > q; all scanned intervals are reported; the left subtree is visitedrecursively;� if q > �r then list DR is scanned until an interval Ii is found such thatbi < q; all scanned intervals are reported; the right subtree is visitedrecursively;� if q = �r then the whole list AL is reported.The geometric interpretation of the search in the span space is also givenin Figure 2.6. The regions containing the active intervals are those to theleft of and above the dotted lines from q. Each sector of space (node ofthe tree) which contains the horizontal dotted line (i.e., such that �r � q)is visited top-down (scanning the AL list) until such a line is reached; eachsector containing the vertical dotted line is visited left to right (scanningthe DR list) until such a line is reached. Therefore, dlog he nodes of thetree are visited, and for each node only the intervals reported in output,plus one, are visited. Hence, if k is the output size, then the computationalcomplexity of the search is O(k+log h). Since log h is the minimum numberof bits needed to discriminate between two di�erent extreme values, no querytechnique could have a computational complexity smaller than 
(log h),hence the computational complexity of querying with the interval tree isoutput-sensitive optimal. It is interesting to note that the time complexityis independent of the total number m of intervals, i.e., of the input size:indeed it only depends on the output size, and on the number of distinctextremes.It is worth mentioning that, although our proposal is the �rst applicationof the interval trees to speedup isosurface extraction, other authors haveused it to address related problems: Laszlo [63] considers the extractionof wireframes from a grid of generic polyhedra, by using an interval tree,where each interval corresponds to an edge of the input grid; van Kreveld[102] extracts isolines from triangulated terrain data, by associating eachtriangle with the interval of altitudes it spans.Moreover is should be noted the existence of another data structure, thesegment tree [83], that achieves the same worst case complexity O(k+log h)for queries. The segment tree has a O(m log h) asymptotic space complexitywhile the interval tree isO(m), however for small values of h (i.e. for datasets
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Figure 2.6: A graphical representation of the interval tree for the exampleof Figure 2.5. By de�nition, the intervals lying on subdivision lines belongto the upper level of the tree. The tree search for a value q: sectors with�r < q (intersected by the horizontal line max = q) are visited top-down;sectors with �r > q (intersected by the vertical line min = q) are visited leftto right.where the �eld assumes a small number of di�erent values) the segment treeshows an e�ective lower space complexity.Recently other authors [17] have extended our idea, proposing the cre-ation of the interval tree in a preprocessing phase, and its storage on sec-ondary memory; this structure is then accessed with an I/O optimal algo-rithm without loading either the interval tree or the whole dataset in mainmemory, thus making the interval tree suitable also for very large datasets.Some further optimizations can be introduced to improve the e�ciency ofisosurface extraction: when calculating the isosurface normals and to reduceredundant computations. Gradients of the scalar �eld at the vertices of themesh can be computed in a preprocessing step, as the weighted average ofnormalized gradients on all tetrahedra sharing the vertex v, where the weightfor the contribution of a tetrahedron t is given by the solid angle1 of t atv. The normal at a vertex of the isosurface I is computed during isosurfaceextraction by the linear interpolation of gradients at the endpoints of thecell edge where I lies. The redundant computation of both coordinates andnormals on common vertices of the isosurface may be avoided either byexploiting the adjacency information to recover already computed values in1The solid angle of a triedral angle is A = �+ � +  � � where �; �;  are the diedralangles between the tetrahedron facets. 26



Dataset Interval Treenodes intervals nodes creationName (n) (m) depth (h) timeFighter 13,832 70,125 15 12,538 1.50Blunt�n 40,960 224,874 16 28,022 5.34Table 2.1: Data on the interval trees for the test datasets (times are CPUseconds).near cells or, when the topology of the complex is not available, through ahash indexing [111, 22].Experimental Results Our proposals, based on the interval tree datastructure, were tested on a number of di�erent datasets. We report here theresults for two datasets:Fighter, an dataset built on the Langley Fighter, reporting a wind tunnelmodel simulation performed at NASA Langley Research Center. Thedataset was represented by adopting a 3D Delaunay triangulation;Blunt�n, originally de�ned as a curvilinear dataset, it has been representedhere by adopting a tetrahedral decomposition; Blunt�n represents theair ow over a at plate with a blunt �n rising from the plate. Courtesyof NASA Ames Research Center;The results refer to the use of the interval tree data structure, the hashindexing technique and the pre-computation of the gradients of the �eldin the vertices of the cells in the case of unstructured datasets, IT On,compared with a standard Marching Tetrahedra implementation, IT O� (seeTable 2.2). Numeric results have been obtained on an SGI Indigo2 (200MHzR4400 CPU, 16K instruction and 16K data caches, 1MB secondary cache,32MB RAM, IRIX 5.3).Table 2.1 reports numeric values on the datasets used and on the associ-ated interval trees: the number m of intervals, which is equal to the numberof tetrahedral cells, the interval tree depth, the number h of nodes of theinterval tree and the time (in seconds) required to build the interval treedata structures.2.2.3 Rendering Transparent IsosurfacesAfter an analysis of the modeling aspects of the isosurface technique of vi-sualization we can now deal with a rendering problem that is commonly
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Threshold Facets IT On IT O�NASA Fighter - 70125 Tetrahedral cells2.6534 386 3 1422.4420 1754 13 1542.2007 5545 41 1852.0221 9735 78 2200.5599 20560 164 312Blunt�n - 224874 Tetrahedral cells4.8722 444 3 2550.3409 1184 7 2384.2741 2100 12 2633.2071 5171 33 2792.1305 10384 72 3040.5371 20663 154 357Table 2.2: Isosurface extraction times on tetrahedralized datasets, in mil-liseconds.ignored: the correct and e�cent rendering of many transparent isosurfacessimultaneously. When rendering more than one single isosurface, to obtainthe best comprehension of inner structures of the dataset it is necessary touse transparency. An easy/low quality solution is to render them using acommon graphics library like OpenGL and adopting the screen door trans-parency, [41]; to obtain better quality without using high-quality and slowalgorithms like scanline or ray-tracing techniques, it is necessary to drawand blend directly the isosurface facets in depth order onto the screen. Thisproblem is strictly related to the problem of sorting the tetrahedral complexitself addressed in Chapter 3: each isosurface facet is entirely contained in-side a tetrahedron, so the occlusion relation between two isosurface facetsin di�erent cells agrees with the relation between the tetrahedra themselves;for this reason, if a depth ordering for the whole complex is available, it issu�cient to sort the isosurface facets separately inside each tetrahedron andcollect these orderings following the tetrahedra depth order for the complex.This in-tetrahedron ordering can be easily achieved in linear time in the fol-lowing way: we assume we maintain inside each tetrahedron t the isosurfacefacets contained in it sorted according to increasing values of their thresh-old, and we assume that the facet normals agree with the �eld gradient. Foreach facet fi, we check if the viewpoint lies on the same side of the normalof fi, marking fi with a '+' or a '-'; all the isosurface facets in t are parallel,so that to obtain a correct back to front ordering it is su�cient to draw �rstall the facets with a '+' sign, in the �eld value order and then the ones with'-' in reversed �eld value order.
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2.3 Direct Volume RenderingDirect volume rendering techniques are the visualization approach that aimsat producing a projected image directly from the volume data, withoutintermediate representation as isosurfaces. These techniques rely on themapping of the �eld value into the color/opacity of the 3D domain itself;they require some model of how the volume generates, reects, scatters orocclude light. In the next Sections we will describe the optical models usedin DVR and we review direct volume rendering solutions, with emphasis onthe ones working on simplicial decompositions; the presentation will followthe classical image-order vs object-order classi�cation:� ray tracing methods process the dataset in image-order, and accumu-late color and opacities interpolated while tracing each ray;� scan line methods can be considered an evolution of ray tracing meth-ods, because they adopt an image-order but exploit the coherencybetween rays to reduce visualization times;� projective methods are based on an object-order visit of the dataset:cell are processed in depth order, and each cell is projected and com-posed onto the current image in a single pass; they therefore exploitcoherence at the object level.Figure 7 on page 134 gives an high level view of these approaches.2.3.1 Volume shading modelsMany models for simulating propagation, scattering and shadowing throughsemi-transparent media have been proposed in literature. The �rst modelsaimed to simulate natural phenomena, like dust [15] or clouds [58]. Lateron these models were extended or modi�ed [37, 88, 65] to ful�ll scienti�cvisualization needs. This distinction still remains, and it is therefore usefulto clarify the two di�erent objectives in modeling semi-transparent media:� photo-realism: we want to model real semitransparent media, likeclouds, fog, dust, to reproduce their aspect with the utmost visual�delity;� comprehension: in the visualization of a 3D structure, we want toexploit the hints that shading can add to obtain easier comprehensionof the information we are visualizing.
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Figure 2.7: An in�nitesimally thin cylindrical slab �lled with spherical par-ticles.In the �rst case, an accurate model of the medium should take into accountphenomena like self-shadowing and second and higher order scattering oflight inside the medium; while the realism of the images computed in thisway is often stunning, the computational times involved are so large thatinteractivity, a requirement in Visualization, is prevented.In the following, we sketch the basis of the most common model in sci-enti�c visualization, known as the density emitter model, following the pre-sentation given in [71].State of the art of volume density optical modelsA volume dataset lighting model can be approximated by a number of in-�nitely small spherical particles of radius r and projected area A = �r2(Figure 2.7). Consider a small cylindrical slab with a base of area E, athickness of �s and a volume of E�s. This slab is �lled with particles with agiven density � (number of particles per unit volumes). The slab thereforecontains N = �E �s particles. We now consider three di�erent classes ofbehaviour of the particles: perfectly black particles, perfectly transparentparticles glowing, and glowing and absorbing particles.Absorbing Medium In this case we assume that particles are perfectlyblack, i.e. they absorb all the light that they occlude without any scattering(reective) e�ects. If the thickness of the slab �s is small enough, we canassume that there is no overlap between particles along the height of thecylinder, so the total occlusion area is NA = �E �sA and the fraction oflight blocked by the particles is �A�s. With �(s) = �(s)A we denote theextinction coe�cient that de�nes the rate of light that is occluded at distance
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s. We can write the di�erential expression showing the fraction of absorbedlight when the slab thickness reaches zero as:dIds = ��(s)I(s)where s is a length parameter and I(s) is the light intensity at distance s.The negative sign in this di�erential equation is because we are calculatingthe light that is subtracted when traversing the volume. Remember that theextinction coe�cient (also referred to in literature with a misleading termas opacity) range from zero (no particles) to in�nity (opaque medium). Thesolution of the above equation gives us the light intensity I(s) that reachesposition s along a ray traversing a volume.I(s) = I0e� R s0 �(t)dtwhere I0 is the starting light intensity when the ray enter in the volume. Thefollowing quantity is the cumulative transparency of the medium between 0and s, that is the fraction of light that is absorbed between 0 and s:T (s) = eR s0 �(t)dt (2.1)If the extinction coe�cient � varies linearly, as in the case of the linearinterpolation of the visual parameters inside a tetrahedron, �(s) = �0 + �s,the previous equation becomes:T (s) = e� s(2 �0+� s)2EmittingMedium Proceeding in a similar way, we assume that the parti-cles are perfectly transparent (no absorption) and glowing di�usely (isotrop-ically), with an intensity g(s) = C(s)�(s) proportional to their density. Theequation that describes the light intensity emitted by this type of media, inthe case where the glowing factor is a linear function g(s) = g0 + g s, is:I(s) = I0 + Z s0 g(t)dt = I0 + g0 s+ g s22Absorbing and emitting medium (density emitter model) In thiscase the light emitted by the volume is partially occluded by the opacity ofthe volume itself. The di�erential equation becomes:dIds = g(s)� �(s)I(s)31



If we consider the general case where the glowing and absorbing function,�(s) and g(s) are two linear equations the solution of the above di�erentialequation is: I(s) = I0T (s) + Z s0 g(t)T 0(t)dtwhere T 0(k) = exp�� Z sk �(x)dx�but there is no simple closed form for the equation above, even if simplenumerical techniques for approximating it can be devised [113].A simplifying assumption is that the glowing factor of the volume g(s) =G0�(s) depends on the density of the volume. While keeping these two valuesseparate permits a larger exibility, this assumption allows us to write theclose form of the integral:I(s) = I0eR s0 �(t)dt +G0 �1� eR s0 �(t)dt� (2.2)recalling the de�nition of transparency in equation 2.1, the equation 2.2 canbe written as: I(s) = T (s)I0 + (1� T (s))G0 (2.3)It is interesting to note that this result can be interpreted as the classicalcompositing formula [82] of a color G0 atop a background I0 with an opacity� = 1� T (s).2.3.2 Ray TracingThe �rst techniques developed for rendering volumetric data directly werebased on the ray tracing approach [58, 65]. For each pixel of the image, aray is cast and intersected with the cells of the volume data. The trans-fer function, which transforms the data values into opacities and colors, isthen discretely sampled and integrated along the ray. The result of thisintegration determines the color of the pixel. Such techniques were initiallydescribed for regular volume dataset only (regular volumes can be ray-tracedin a rather e�cient way by exploiting the regular structure of the data).Garrity presented a technique to perform ray-tracing on irregular datasetsexploiting the topological relationships between cells to perform e�cientlythe color and opacity integration along the ray [48]. Although the techniquedescribed works on volumetric datasets composed of convex cells, the authoruses only tetrahedral volume datasets to avoid handling hexahedral datasetsdegeneracies explicitely.
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This approach works in two steps. In a preprocessing phase, the cellfaces which are on the boundary of the dataset are detected and insertedin a bucketing structure (based on a regular space subdivision). In the sec-ond phase, for each ray, the nearest intersected face is searched among theboundary ones, and cell tracing starts from the associated cell. Then, jump-ing from cell to cell by exploiting the connectivity of the dataset, all the cellsintersected by the ray are detected. When the ray exits the dataset, the listof boundary faces is browsed again to see if the ray enters the dataset again(e.g. in the case of non{convex or multi{component datasets). Particularattention must be payed to degenerate cases (ray passing through faces,edges or vertices). The restriction to tetrahedral cells simpli�es handling ofdegenerate cases.Once the intersected tetrahedra are found, the integration of the transferfunction along the ray spans contained inside each tetrahedron can be carriedout as explained in Section 2.3.1.2.3.3 Scan LineThe ray-tracing approach fails to exploit the fact that adjacent rays probablyintersect the same cells, and its computational cost is therefore excessivelyhigh. Scanline algorithms try to exploit this coherence. The �rst scanlinealgorithm to render volume dataset described by arbitrary cell complexeswas proposed by Giertsen [49]. The algorithm uses a scan plane bu�er, adata structure associated with a plane (xz) perpendicular to the viewplane(xy) and passing through a line of the viewplane. Volume cells are progres-sively sliced by the scan plane; each slice is then triangulated in order tointerpolate linearly the values inside each cell slice2.The volume cells are maintained y-ordered and the set of cells intersected bythe scan plane is updated following the Y-sweeping of the plane. The scanplane bu�er (spb) is a structure that maintains discretely (a two-dimensionalarray) the intersections between the cells and the scan plane. Cell slicesare scan-converted in random order into z segments orthogonal to the view-plane, and the length and the opacity/color contribution of each segment arestored into the spb structure. Once all cell slices have been scan{converted,the colors of the pixels on the current scan line are calculated by traversingin the z direction the spb and accumulating the opacity/color contributionscontained in them.Another algorithm based on the scanline approach was the Lazy SweepRay Casting (LSRC) proposed in [94, 93]. Its main contribution is to avoid2It must be noted that this kind of interpolation is not rotational invariant and thattherefore it creates aliasing e�ects when rotating the volume. A more correct solution, assuggested by the same Giertsen [49], is to decompose each cell into tetrahedral elements.33



the use of a discrete scanplane, to prevent the possible aliasing e�ects thatcan derive from datasets having high variations in cell size (di�erences of theorder of 1:100,000 can occur). The LSRC algorithm works on two phases:a space sweep with a sweep plane like the Giertsen one, orthogonal to theviewing (XY) plane, and a sweep of that plane with a sweep line parallel tothe Z axis.The space sweep proceeds (like any algorithm based on the sweep paradigm[83]) by maintaining a sweep structure which monitors discrete sweep events.In our case events occur when the sweep plane hits vertices of the mesh.The sweep plane structure maintains the subdivision S resulting from theintersection between the plane and the mesh.For each scanline, we process S sweeping it with a line. The sweep linestatus this time is a Z-ordered set of intervals (the intersection betweenthe sweep line and S). For each pixel coordinate x, we can easily calculatethe resulting pixel color/opacity by compositing the contribution of eachsegment in the sweepline status structure.Another scanline algorithm that exploits a spatial hierarchical organiza-tion of the dataset has been described by Wilhelms et al. in [110]. The maindi�erence with this approach (that like the previous algorithms uses both ascan plane orthogonal to the view plane and a scan line lying on that plane)is that it renders semi-transparents regions of space between polygons as wellas opaque polygonal surfaces immersed in the dataset. The method builds ak-d tree over the polygons (either cell faces or immersed object faces) to im-prove e�ciency. The hierarchy is also used to render approximate images ofthe dataset. The method has been parallelized on a shared memory MIMDmachine. The problem of a rotationally invariant �eld interpolation insideeach cell still holds, unless a tetrahedral decomposition is adopted.In [105] Westermann and Ertl present a di�erent approach to the scanlineparadigm in order to exploit common graphics hardware, during the sortingof cells crossing the scanplane. The key idea lies in a two-pass approach:�rst the vsbu�er, a discrete representation of the scanplane, is �lled with theintersection of the cells that it crosses, then this bu�er is traversed in front toback order to perform the volume integration. The vsbu�er approach can beseen an extension of the original scan plane bu�er proposed by Giertsen [49];in this case the discrete scan plane is �lled by looking the scanplane from thetop and rendering all the cells crossing it twice: in the �rst rendering passobjects above the screenplane are clipped and their backfacets drawn, in thesecond one objects below the scan plane are clipped and front facets drawn.The RGB color of each cell is chosen to unambiguously code the cell index.The result of the two rendering are compared and if two corresponding pixelsshare the same color/index then that pixel is covered by that cell. At theend of this process each pixel of the vsbu�er contains the index of the cell34
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Figure 2.8: Classi�cation and decomposition into triangles of the projectionof a tetrahedron.(coded with color) that covers it.2.3.4 Tetrahedra ProjectionThe problem of rendering directly a volume dataset can be solved using aobject order approach: the visual contribution of each tetrahedron is com-puted and accumulated onto the screen bu�er. To obtain a correct resultthe compositing must be done in depth order (back to front or viceversa)so a correct ordering must be calculated. This particular problem of depthsorting a tetrahedral complex will be dealt with greater detail in the nextChapter.Once the complex has been sorted, various techniques are available tocalculate and compose the contribution of each tetrahedron to the interme-diate image.A �rst approach is to scan-convert each tetrahedral cell, adopting a puresoftware threedimensional scan-conversion process [72]. For each pixel, thecontribution in color and opacity can be directly calculated during the 3Dsampling, according to the shading model chosen.A faster approach renders tetrahedral cells by approximating each cellwith semi-transparent triangles, and compositing such triangles using stan-dard graphics libraries/hardware [92]. The main idea is to classify the shaperesulting from the projection of a tetrahedron (see Figure 2.8) in a limitednumber of classes which can be easily decomposed into triangles. Then,the correct opacity/color of the thickest point of the projected tetrahedron(indicated with a small circle in Figure 2.8) is computed, and the cells con-tribution to the current frame is obtained by gouraud{interpolating the pro-
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jected shape.The same idea of rendering the silhouette of the projected cell as a bunchof semi{transparent triangles was applied by Wilhelms and Van Gelder torectilinear hexahedral (coherent projection) cells [108] and to slightly moregeneric convex hexahedral cell (incoherent projection) in [101].The classi�cation of the projected silhouette and the identi�cation of thethickest point can be done in, at least, two di�erent ways, according to thesorting algorithm used:� Cell classi�cation after a topological sort. In this case the transfor-mation of the adjacency graph into a direct one gives, for each tetra-hedron, the number of faces which are oriented toward the observer.Starting from this number, together with the number of facets or-thogonal to the viewplane, we can automatically deduce the class ofprojection. The equations of the planes passing through the facets canalso be used to calculate the coordinates of the thickest point.� Cell classi�cation after a numerical or an NNS sort. In this case, eachtetrahedron must be classi�ed independently. The easiest techniqueis to test the clockwise ordering of vertices of each tetrahedron facetsaccording to the viewpoint. This can be done by a simple cross productbetween two edges of each face.Aliasing One of the drawbacks of using graphics hardware to render theprojected silhouette of tetrahedral cells with transparent triangles is thealiasing introduced, as pointed out by Wilhelms and Van Gelder [101] andSteiner et al. [97]. There are two main reasons for these errors in rendering:� limited numerical precision of rendering subsystems to compute thergb� compositing,� linear interpolation of the opacities, while an exponential interpolationshould be used to approximate opacity contribution correctly.To reduce the latter problem, the multipass blending approach [101] rendersand composes each triangle three times to give a quadratic interpolation.With the �rst two passes the quadratic interpolation of opacity is obtainedby a double linear interpolation and composition of opacity; the third passapplies the color contribution. In a more e�cient solution [97], color andopacity are correctly interpolated between vertices using hardware assistedtexture mapping (the texture map is, in this case, a two dimensional tablewith the values of the correct exponential opacity).
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Approximated Projection TechniqueAn example of an approximate rendering technique is the Incremental Slic-ing method proposed by Yagel et [116]. Given the current view direction,the volume is transformed into viewing space and then the 2D polygonalsubdivisions resulting from the slicing of that volume with a set of planesparallel to the view plane are calculated and stored. Such polygonal meshesare then rendered and composed in visibility order using graphics hardware.The number of slices is chosen adaptively to reduce the number of cells notintersected by any slicing plane.Splatting techniquesA di�erent image/order approach for DVR, based on samples rather than oncells, is the splatting technique. This approach was developed by Westoverin [106] to accelerate the rendering of regular datasets. The �rst step of thevolume rendering process is to de�ne the �eld value over the whole domain ofthe dataset, that is, using Westover terms, to reconstruct a continuous signalfrom discrete samples. Instead of using the common trilinear approach,Westover reconstructs the sampled signal by convolving the reconstructionkernel with the sampled data. The volume rendering process is regarded asa integration along the viewing direction: the contribution of each sampleto the �nal image can be obtained by the integration of the kernel functionused in the interpolation process. Choosing a rotational invariant kernelfunction it is possible to precompute the footprint of such an integral. Inthis way the contribution of each sample to the �nal image, called splat, canbe composed onto the screen in the usual back-to-front way. This approachcan be implemented very e�ciently by using various approximations of thekernel function, usually a simple 2D elliptical Gaussian sampled and storedin a table [107] or directly drawn with a small collection of Gouraud shadedpolygons [64].The direct extension of Westover's splatting algorithm to tetrahedralcomplexes or curvilinar grids is di�cult because, in many cases, it is almostimpossible to select a simple splatting kernel for each grid point. In [70]Mao propose an algorithm to resample the curvilinear grid with a set of newpoints so that it is possible to reconstruct the original signal using commonellipsoidal kernel function around these new points. Using these points thevolume is then rendered with the usual splatting approach.One of the main disadvantages of this class of algorithms is the lowquality of rendering when the sample points are not uniformly distributedin the image space.
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2.3.5 ConclusionsSummarizing the various key aspects of techniques presented above we canmention some pros and cons:� Ray Tracing:Pros: High quality, general technique; it can integrate volume mod-els with surface geometry, photorealistic e�ects like refractions or selfshadowing, and it can use oversampling techniques to generate highquality images with no aliasing problems.Cons: Very slow; acceleration techniques work but they present lowexibility and rendering capabilities; it cannot be used interactively.� Scan LinePros: High quality, it can integrate volume models with standard sur-face geometry, much faster than ray tracing but less general.Cons: Still too slow, and not very exible.� ProjectivePros: Fast, it can exploit graphics hardware, it shares the same exi-bilty of the triangle-based graphics library.Cons: the rendering quality can rely on the graphics hardware capa-bilities.Given the importance of the interactivity issue in visualization we havechosen to investigate some of the problems that the projective approachesstill present. In the next chapter we will face the problem of depth sortinga tetrahedral complex, a step needed for projective algorithms to correctlycompose tetrahedron contributions on the screen. Later in Chapter 4 wewill discuss how to correctly mix isosurfaces and DVR through projectivealgorithms.Recalling our distinction between modeling and rendering in Visualiza-tion, we can add that we can base our work on what we call tetrahedralgraphics: our guess is that it could be possible face most of the renderingproblems in tetrahedral visualization if we assume that we have a simpleand robust primitive for the correct rendering and composition of a singletetrahedron on the screen. Given such a primitive, i.e. the thetrahedralanalogous of the triangle based primitives present in most graphics library,the main problem of the user is to sort them in the correct order. Otherproblems, like the problem of correctly manage non linear transfer functionsand integrating isosurfaces with DVR using a projective approace, becomemodeling problems rather than rendering ones, and within this approach,they will be faced in Chapter 4.
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Chapter 3Depth sorting a TetrahedralComplexIn this Chapter we describe in detail the problem of depth sorting a tetrahedral com-plexe, reviewing known results and algorithms and their e�ective usability or robust-ness. Then we introduce a new technique for sorting complexes which belong to theclass of projective complexes. The approach is based on the preliminary construc-tion of the lifted complex corresponding to the given one and on its representationas a power diagram. This approach exhibits a O(n logn) runtime complexity to sorta complex and require only linear storage.Projective algorithms render a tetrahedral mesh through direct projec-tion and composition of tetrahedra [72, 92, 112]. They are generally basedon a two-phases process: �rst, cells are sorted in depth; second, depth-ordered cells are projected onto the view plane and rgb�{composed on theframe bu�er. To compose rgb� contributions correctly, cells have to bedepth{ordered with respect to the given viewpoint.In this Chapter we address the problem of depth sorting a given complex.In Section 3.1 we give some de�nitions that will be used throughout thechapter, then in Section 3.2 we review the current solutions to this problemon the basis of their theoretical and practical interest. In Section 3.3.3 weintroduce a new technique for sorting that is based on a preprocessing stepin which the original complex � is lifted in the convex polyhedron in IEd+1�� whose projection in IEd gives �. �� can be stored as a power diagramand e�cently used to depth sort � along any view direction. This approachmakes it possible also to establish if � is a projective complex and thereforecan be depth ordered from any viewpoint.
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3.1 De�nitionsIn this section we give some de�nitions regarding depth ordering, acyclicity,projective complexes and power diagrams that will be used in sections 3.3to present our results.Obstruction Relation The obstruction relation �p (usually called in-front/behind relation) for a pair of non self-intersecting cells 1, 2 withrespect to a viewpoint p can be formally expressed as follows:1 �p 2 i� 9 a ray r emanating from p and intersecting both1 and 2, such that all points in r \ 1 are closer to p than anypoint in r \ 2.A visibility order of a set of objects, with respect to a viewpoint p, is asequence of such objects such that, if object A obstructs object B whenseen from p, then A preceeds B in the sequence.Acyclicity A cell complex � is called acyclic with respect to a given view-point p if and only if relation �p de�nes a partial order on the cells of �.In this case, it is possible to order the cells of � either front-to-back orback-to-front with respect to the viewpoint.In the following a cell complex that is acyclic w.r.t. any viewpoint willbe denoted, for sake of conciseness, as an acyclic cell complex.3.1.1 Projective ComplexesCell complexes in IEd that can be obtained as the orthogonal projection ofthe lower part of the boundary of a convex polytope in IEd+1 are called pro-jective complexes. These complexes are also known as regular cell complexes[39].An important result relative to projective complexes is that they areacyclic:Theorem 1. (Edelsbrunner [39]) The in-front/behind relation de�ned forthe faces of any projective complex and for any �xed viewpoint in IEd isacyclic.The proof of this theorem is based on the construction, given a viewpointp, of a function � : � 2 �! IR that agrees with the occlusion relation, thatis: �p(�) is such that �p(�) < �p(�) if � �p �. Clearly, if such a functionexists for a given viewpoint then �p is acyclic indeed it is impossible to havea set of cells �1; : : : ; �k that forms an occlusion cycle:�1 �p � � � �p �k �p �140



because the corresponding function � should hold:�p(�1) < �p(�2) < � � � < �p(�k) < �p(�1)The construction of the function � used by Edelsbrunner is rather com-plicated and not reported here for brevity. In Section 3.3 we will show asimpler way to build this function.It should be noted that this theorem has been stated only in one direc-tion: if a complex is projective then it is acyclic; we know nothing aboutthe reverse of this theorem, if any acyiclic complex is also a projective one.In other words we do not know if the projective and acyclic complexes rep-resent the same class: it is an open problem to show the existence of anacyclic complex in IEd. that is not obtainable as the orthogonal projectionof a convex complex in IEd+1.Delaunay simplicial complexes (see de�nition in Section 1.3) are acyclicwith respect to any viewpoint [39]. This is an important property, becauseit assures that a volume dataset represented by a Delaunay complex canalways be sorted and correctly visualized.3.1.2 Power diagramsNow, we recall some de�nitions and results regarding power diagrams; acomplete introduction about power diagrams can be found in [6].The power of a point p with respect to a sphere s � IEd with center zand radius r, is de�ned as pow(p; s) = d(p; z)2 � r2. Thus pow(p; s) < 0 ifp belongs to the ball bounded by s, pow(p; s) = 0 if p lies on the surface ofs and is greater than zero otherwise; in the last case it easy to show thatpow(p; s) is equal to the squared distance of p from the touching point of aline tangent to s through p.Let s and t be two spheres in IEd with centers zs 6= zt and radii rs; rt.The points x satisfying pow(x; s) = pow(x; t) describe a hyperplane h thatis perpendicular to the line joining zs and zt, known as the chordale of s andt, or chor(s; t) for short. A nice property of chordales is that if s \ t 6= ;then s \ t � chor(s; t); otherwise s and t are contained in the same openhalfspace bounded by chor(s; t) if and only if s encloses (or it is enclosed in)t. Let S denote a �nite set of spheres in IEd, for s 2 S we call the setcell(s) = fx 2 IEdjpow(x; s) > pow(x; t)8t 2 S� fsggas power cell of s and the collection of all cell(s), for s 2 S, the powerdiagram of S, or PD(S) for short. 41



s4

s6

s5

s3

s1

s2

cell(s4)

cell(s1)

cell(s6)

cell(s3) cell(s2)

Figure 3.1: A power diagram in two dimensions.Let S denote a �nite set of spheres in IEd, by de�nition the power cellcell(s) is the intersection of n � 1 halfspaces bounded by chordales, andtherefore is a d�polyhedron with at most n � 1 facets. This implies thatPD(S) is a cell complex in IEd.Figure 3.1 shows a PD of six circles in IE2; note the possible occurrenceof empty cells, like cell(s5) and the fact that cells may be separated fromtheir generating spheres, cell(s4) is distinct from s4.Power Diagrams and Voronoi Diagrams The following relations ex-ists between power diagrams, Voronoi diagrams and Delaunay triangulations[6]. Given a �nite set of points P in IEd the Voronoi diagrams of P corre-spond to the PD of the set of spheres S with centers in P and radii equalto zero. It should be noted that power diagrams are considered one of thegeneralization of Voronoi diagrams that have the strongest similarities tothe original diagrams. These relations, together with our practical expe-rience in using the numerical sorting for Delaunay triangulations, the dualstructure w.r.t. Voronoi Diagrams, led us to the use of PD's as the basis forthe design of a new depth sorting algorithm.
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3.2 Related WorkThe problem of depth sorting has received considerable attention in theliterature: a lot of research deals with the two dimensional version of theproblem, but here we survey some of the most important, sometimes mainlytheoretical, results concerning the three dimensional depth-sorting problem.It should be noted that in the most general case, a non convex, possiblyunconnected arbitrary tetrahedral complex, the problem of calculating adepth ordering (when it exists), w.r.t. a given viewpoint, has a lower boundof O(n logn) [94], and none of the proposed algorithms still matches thisbound.In [78] Nurmi gave an algorithm for computing three-dimensional depthorders of a set of n line segment in IE3 with a worst case complexity ofO(n logn + i) where i is the number of intersections of the segments whenthe segments are projected on the xy plane. Note that i can be O(n2); Nurmiextended his algorithm to 3D polyhedra with a complexity of O((n+i) log n).Chazelle et al. in [16] studied the problem of ordering lines in the spaceand noted that, in absence of cycles, a depth order can be obtained by astandard sorting algorithm, because any two lines can be always compared;in other words if there are no cyclic overlaps between lines, the � relation isa total order. Unfortunately, this is not true for a set of segments in space,because not all the pairs can be compared, so this problem can be reducedto the extension of the � relation from being a partial order (in the case ofabsence of cycles) to a total ordering.This approach to the problem has been adopted by de Berg in [29];he observes that the depth sorting problem is the same as computing alinear extension of the � relation; he describes an algorithm that solves thisproblem in a general way for a given relation � and its transitive closure ��on a set S of n objects; the complexity of the de Berg's algorithm relies onthe e�ciency of a data structure for storing a subset S0 that can return apredecessor (successor) in S0 of a query object o 2 S, if it exists. The datastructure should also support e�cient deletion of objects from a subset S0.The basic strategy of this algorithm is divide and conquer: choose apivot object op 2 S, partition the remaining objects into subsets S�(S�)of objects that must come before (after) op and recursively sort these sets.Note that not every pair of objects is comparable with op under��, thereforethere is a third subset S� that contains such objects; this subset should besorted recursively as well. Using a result obtained by Agarwal and Matousekin [2] for solving ray-shooting queries, de Berg is able to build e�cientlythe needed data structure for predecessor/successor queries. The resultingalgorithm can compute a depth order for a set of segments, or decide thatthere is a cyclic overlap among the segments, with a worst case complexity43



of O(n4=3+�). This result is then extended to triangles instead of segmentswith the same complexity.An interesting related problem is that one of verifying the correctnessof a given depth order; Chazelle et al. in [16] give a O(n3=4+�) algorithmto solve this problem; a solution with the same complexity is also given byde Berg in [29]. Another contribution to lowering the complexity of thisproblem has been given in [1] by Agarwal et al.; their approach solves thelinear extension problem, when the relation � is not cyclic, and for triangleswhose xy projections are fat enough in O(n log6 n).The above results assume that there is no preprocessing of the set ofobjects to be sorted. If this assumption is relaxed, di�erent approaches canbe chosen.A popular technique for the preprocessing of a set of 3D objects is theBinary Space Partition tree (BSP), proposed by Fuchs et al. [45]. Thisstructure, makes it possible to recover a depth order of a set of objects intime that is linear with the size of the BSP tree. The BSP tree is basedon the recursive bi-partitioning of the space with planes, all the objectscrossed by these partitioning planes are subdivided. This strategy has thedrawback that the best bound of the size of a BSP tree of n objects in athree dimensional space is O(n2) [80]: that is the polygon subdivision alongplanes can generate a quadratic number of polygons. Moreover, while thisbound is far from reality in common three dimensional scenes, where it ispossible to choose space-partition planes such that they subdivide a verysmall number of objects, for our purposes this bound becomes much morerealistic. In a generic tetrahedral mesh, any partitioning plane crosses (andtherefore subdivides) a considerable fraction of the dataset creating a largenumber of new tetrahedra.3.2.1 Depth Sorting AlgorithmsSome practical algorithms for depth sorting a tetrahedral complex have beenproposed and used on real problems; in this subsection we give a shortoverview of them and evaluate their complexities and the main drawbacksof each approach.Topological sort The cells of an acyclic convex complex can be sorted byexploiting the face-adjacency relation between tetrahedra and face orienta-tion. An algorithm, called Meshed Polyhedra Visibility Ordering (MPVO),based on this approach was proposed by Williams [112, 114].In a preprocessing phase, the MPVO algorithm constructs the adjacencygraph for the given mesh and calculates the plane equation coe�cients foreach face. At rendering time, the algorithm works in two steps. Given the44
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Figure 3.2: Topological sorting fails in the case of cycles created by wrongDAG orientation due to approximation error.current viewpoint, �rst, exploiting the stored plane equation, it computesthe occlusion relation for all pairs of adjacent cells, and converts the ad-jacency graph into a direct acyclic graph (DAG). Second, a total orderingof the cells is obtained in linear time by a topological visit of the DAG. Ifthe topological sort is obtained by a depth{�rst visit of the DAG the pres-ence of cycles can be detected and a partially correct mesh ordering can becalculated.The author proposes an extension of this algorithm to manage non-convex meshes by sorting all the cells with boundary faces according to theircentroid, and then selecting them in the DFS visit of the DAG accordingto that ordering. It should be noted that this extension can produce anincorrect sort, because the occlusion relation does not always agree withthe centroid distance. Another possible extension to managing non-convexmeshes is the �lling of non-convex parts with new cells, in order to obtaina convex complex. This �lling operation can be very di�cult, like anyconstrained threedimensional triangulation, and it can create a quadraticnumber of cells; this will increase the �nal time and space complexity of thisapproach.The robustness of this approach depends on the accuracy of the computa-tion of the occlusion relation between adjacent tetrahedra when consideringfaces almost perpendicular to the viewpoint; an error in the orientation ofa link in the DAG may result in the creation of cycles and therefore sortingerrors; the solution proposed by Williams [114] of considering almost per-pendicular faces as not related may still introduce visible errors in sorting.The use of geometric primitives [91] that guarantee an error bounded bythe machine precision, can solve most of these problems in most cases byintroducing a small degradation of performance.
45



vp
σ1

σ2Figure 3.3: Numerical sorting fails on degenerate Delaunay meshes.Numerical Sort A di�erent technique working only on tetrahedral com-plexes was proposed in [72]; this technique does not need to store the adja-cency relation between tetraehedra and is based on the following propertyof Delaunay tetrahedral complexes:the length of the tangent from the viewpoint to the sphere cir-cumscribed to a tetrahedron reect the depth ordering of thecomplex.A detailed discussion of this property and its relation with power diagramsis presented in Section 3.3. To use this technique the centers ci and radii riof all the tetrahedra �i of the complex must be precomputed once and storedtogether with the dataset. Then, in order to sort the tetrahedral complex itis su�cient to calculate for each tetrahedron �i the square of the distancefrom the current viewpoint to centers ci, subtract from it the squared radiusri, and sort the resulting values numerically.The worst case complexity of this technique is O(n logn) with n thenumber of tetrahedral cells. The main drawback of this technique is itsapplicability only to Delaunay complexes and its sensitivity to Delaunaydegeneracies. This sort can fail on many common datasets, such as thoseobtained by regularly decomposing hexahedral cells in 5/6 tetrahedra: allthese 5/6 tetrahedra shares the same circumsphere, so the ordering betweenthem is not calculated at all.Numerical sorting can be considered, in some aspects, more robust thantopological sorting; its weakness is due to the shape of the dataset itselfrather than on the particular viewpoint chosen. Moreover, despite its higherworst-case complexity, running times of the two techniques are comparable[24].This technique can be succesfully applied also to simplicial complexesthat are subsets of Delaunay complexes such as the alpha shapes [40]; there-fore, as explained in Corollary 1, this technique of sorting is not inherentlylimited to convex and/or connected domains.
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Newell, Newell and Sancha's Sort Acyclic tetrahedral meshes canalso be sorted using an extension of the Newell, Newell and Sancha (NNS)sort algorithm [97]. In the same way as the original sorting algorithm [76]for polygons, the sorting process is organized into two phases. In the �rstphase the vertices are view transformed and a preliminary approximate sortof the polyhedra is calculated according to the rearmost z component ofeach polyhedron. The second step is a �ne tuning of the sort, organized intochecks of increasing computational complexity, similarly to the original NSSalgorithm.The goal of �ne tuning is to �nd a separating plane between two polyhe-dral cells which permits us to deceive the correct cell drawing order easily.Given a cell � on the top of the z rearmost ordered list (result of the �rstphase) it can be safely rendered only if it does not overlap any cell in thelist with a rearmost z less then the nearmost z of �. If an overlapping cell isfound, then it is put on the top of the list and the process is started again.The existence of cycles can be detected by tagging every overlapping cell andtesting if a cell is involved in an overlapping more than once. No solutionsfor breaking the cycles are presented.The worst case complexity of this approach is O(n2), and the runningtimes presented in [97] are much higher than the ones of the two previousalgorithms. On the other hand, this algorithm is the only one which correctlyhandles any class of acyclic polyhedral complexes.3.2.2 Final considerations on sorting tetrahedral complexesIn table 3.1 we summarize the main characteristics of algorithms for sortingthree-dimensional cell complexes. It is worth noting that the de Berg'salgorithm has never been practically adopted for visualization purposes: itspresence in this table denotes the best theoretical result for sorting a genericcell complex. Topological Numerical de Berg NNSClass convex Delaunay any anyof complexes complexes (subset of) complex complexWorst CaseComplexity O(n) O(n log n) O(n4=3+�) O(n2)StorageOverHead O(n) O(n) O(1) O(1)Table 3.1: Results on computing depth orders for tetrahedral complexes.It should be noted that the above algorithms can generate a correct depth47



ordering only if the starting complex is acyclic with respect to the speci�edviewpoint. Practical algorithms for testing the acyclicity of a simplicialcomplex for any viewpoint are not known. A brute-force algorithm, based onthe idea of depth-sorting the complex from all signi�cant possible viewpoints,was sketched as a personal communication between H. Edelsbrunner and P.Williams [114]. The idea is to place all the signi�cant viewpoints in allthe cells  of the plane arrangement H generated by the partition of thespace with planes passing through all the faces of the cells. All the pointsp in the same cell  of H certainly share the same depth ordering of theoriginal complex � w.r.t. p, because the occlusion relation between twocells can change only when crossing the plane a�ne to one of the facesof the two cells. The main drawback of this approach is its complexity,since the arrangement of the planes a�ne to facets of a simplicial complexwith n vertices can contain O(n3) cells, therefore if we sort the complexforeach reasonable direction using a topological approach we obtain a O(n4)complexity that limits the algorithm usability.3.3 Power Diagram SortingIn this section we describe the links between acyclic complexes in IEd withconvex polyhedra in IEd+1 and power diagrams, and how to exploit theserelations to depth sorting a projective complex.3.3.1 Power diagrams and convex polyhedraIn this subsection we explore some of the connections between convex poly-topes and power diagrams, giving a simple proof of the acyclicity of a pro-jective simplicial complex.Let IEd+1 be spanned by the coordinate axes x1; � � � ; xd+1 and let h0denote the hyperplane xd+1 = 0. The following result, that relates PD andconvex polyhedra, is presented in [6]:Theorem 2. (Aurenhammer [6]) For any (d+1)-polyhedron P, which canbe expressed as the intersection of upper halfspaces, there exists an a�nelyequivalent power diagram in h0, and viceversa.It is assumed, without loss of generality, that all the upper halfspaces gen-erating the polyhedron P cross the unitary paraboloid U : xd+1 =Pdi=1 x2i .This theorem is based on the following transform � that maps a spheres � h0 with center z and radius r in the hyperplane:�(s) : xd+1 = 2x � z � z � z + r2 (3.1)
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Figure 3.4: A 2D simplicial complex � (top left), and the correspondingPower Diagram (top right). Below a 3D representation of the complex � onthe plane h0, the lifted complex �� and the resulting power circles on h0.The hyperplane �(s) crosses the unitary paraboloid U , such that the pro-jection of U \ �(s) onto h0 is equal to s. Conversely, the mapping fromplanes crossing U back to spheres in h0 can be de�ned.An interesting property of this transform is that, if s and t are twonon-concentric spheres in h0, then chor(s; t) is the vertical projection of�(s) \ �(t) onto h0. Therefore, given a polyhedron P , it is possibile toobtain a set of spheres S whose PD is equal to the projection of P onto h0.3.3.2 Bounded and Unbounded Convex PolyhedraIn theorem 2 we referred to polyhedra formed by the intersection of non-vertical upper halfspaces, therefore unbounded in�nite polyhedra whose pro-jection onto h0 is a partition of the whole plane. With the following theoremwe extend this relation in order to be able to manage bounded polyhedrasuch as the lower part of a convex hull.Theorem 3. Let P be the lower part of a convex polyedron bounded by49



simplicial facets; there exists a power diagrams PD(S) of a set of spheres Swhose cells are superset of the projection of the facets of P onto h0.Proof As in the previous case we assume, without loss of generality, thatthe hyperplanes a�ne to all the facets of P cross the unitary paraboloid U .Let P0 be the projection of P onto h0. Consider the halfspaces passingthrough the d-facets of P and let P 0 be the (d+1)-polyhedron which isobtained by the intersection of these upper halfspaces. The internal facetsof P (the ones not having a d � 1 facet on the boundary of P ) have adirect correspondence in P 0. Conversely the d-facets having one or mored� 1 facets on the boundary of P lose these (d-1)-facets and become larger,possibly unbounded, d facets.For theorem 2 we can build the PD that is a�ne to the projection P 00of P 0 onto h0. It is easy to see that each d-facet � of P0 corresponds to ad-facet �0 of P 00 such that � = �0 if � is an internal d-facet, or � � �0 if � isa boundary d-facet.In Figure 3.4 we show a 2D simplicial complex P0 (top left) and thecorresponding lower part of a convex polyhedron P in 3D (bottom); in thetop right part of the �gure we show the power diagrams resulting from theapplication of theorem 3.3.2 to P .Acyclicity of projected convex polyhedra From the relations recalledin the previous paragraphs we can devise a new proof for the acyclicity ofa simplicial complex that is the projection of the lower part of a convexpolyedron in IEd+1; we think that this proof is considerably simpler thanthe one presented in [39].Given a viewpoint p, we introduce a numerical function � that agreeswith the occlusion relation that is: �p(�) such that �p(�) < �p(�) if � �p �.Clearly if such a numerical function exists for a given viewpoint then �p isacyclic since it is impossible to have a set of cells �1; : : : ; �k that forms anocclusion cycle: �1 �p � � � �p �k �p �1because the corresponding numerical function � should give:�p(�1) < �p(�2) < � � � < �p(�k) < �p(�1)It easy to show that, if � �p � and � and � are not adjacent, we can�nd a chain � �p �1 �p � � � �p �k �p � such that all these simplexes areconsecutively adjacent; for example such a chain can be built by choosingthe d-simplices crossed by a line segment starting from p and crossing both� and � . For this reason we can simplify our proof and reduce it to the caseof two (d-1)-adjacent simplexes. 50



Let �� be the convex polyhedron whose projection onto h0 is a�ne to�; for theorem 2 using the transform � we can build the set of spheres S�such that the power diagram PD(S�) is a�ne to �.Let � and � be two (d-1)-adjacent simplexes of �, �� and �� be the twocorresponding (d-1)-adjacent simplexes of ��, s� and s� be the two spheresof S�, such that cell(s�) = � and cell(s� ) = � ; the hyperplane �(s�) contains�� and �(s� ) contains ��.The (d-1)-face f common to � and � lies on the chordale chor(s�; s� ), be-cause, as observed in previous section, chor(s�; t� ) is the vertical projectionof �(s�) \�(s� ) onto h0.Now consider the obstruction relation between the two simplexes, forthe convexity of � and � , it holds � �p � if and only if the viewpoint pbelongs to the halfspace bounded by the hyperplane passing through the(d-1)-face f , that is chor(s�; s� ); but chor(s�; s� ) partition IEd in the re-gion where pow(x; s�) < pow(x; s� ) and viceversa. Therefore � �p � !pow(p; s�) < pow(p; s� ), so the pow(p; s�) can be considered the searchednumerical function �.3.3.3 Sorting a simplicial complexThe most interesting aspect of the results in the previous section is that theysuggest a technique for depth sorting a simplicial complex in IEd that is theprojection of the lower part of a convex polyhedron in IEd+1. Infact given theviewpoint p it is su�cient to sort the d-cells �i of the complex according topow(p; s�i), where s�i is the sphere obtained by the transformation � fromthe plane hi a�ne to the facet ��i . Hereafter we will refer this approach todepth sorting as Power Diagram Sorting or PD sorting.The main problem of this approach is that in the common cases we havejust a simplicial complex � in IEd and not ��. In some special cases it is sim-ple to �nd the convex polyhedron, for example if � is a Delaunay simplicialcomplex we can exploit the well known correspondence with convex hull inIEd+1 to �nd ��. In this section, given a generic complex � we address thefollowing problem, hereafter denoted as the lifting problem: �nding a convexpolyhedron ��, if there exists one, such that � is the vertical projection of��. Finding an e�cient and usable solution to this problem means �nding anew approach to the depth sorting problem. The most interesting aspect ofthis approach is the clearness of the structure needed for the sorting oncethe corresponding polyhedron has been found: for each simplex it is onlynecessary to store the power circle. Apart from the intrinsic simplicity ofthis approach, its atness can be useful in the creation of data structuresfor secondary memory: any subset of the complex can be independently
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recovered and sorted using just the stored power circles.Useful corollaries So far we have dealt with the lifting and projection ofconvex complexes, here we add two corollaries that extend the applicabilityof this technique of sorting.Corollary 1. The acyclicity theorem, and therefore the agreement between�p and �p holds also for a complex �0 that is a subset of a complex � thatis obtainable as a projection of a convex polyhedron ��.The proof of this corollary immediately derives from the fact that thesort is based only on the numerical value of the � function; once this functionhas been calculated we can discard part of the complex � without any risk.This remark permits us to use the PD sorting also for non-convex com-plexes which are subsets (maybe carved out) of large convex complexes.An important class of such complexes is, for example, Edelsbrunner alphashapes [40].Corollary 2. Given a complex � obtainable as a projection of a convexpolyhedron ��, the acyclicity theorem, and therefore the agreement between�p and �p, holds also for a complex �0 having the following property: foreach d-cell �0 2 �0 it is possible to �nd a d-cell � 2 � such that �0 � � andif �0; � 0 2 �0, �; � 2 �, �0 � �, � 0 � � then �0 6= � 0 ! � 6= � .Proof The agreement of �p function with �p relation depends on the in-tepretation of chordales as separating planes. Obviously these separationworks also if the cells are smaller and totally included in the larger powercells of the power diagram. Finally the last condition of this corollary (�0 6= � 0 ! � 6= �) requires that for each cell of the PD there is at most onesmaller cell.This means, in other words, that we can use the PD sorting for com-plexes whose d-cells can be seen as shrinking of larger cells, therefore therequirements for the d + 1 convex polyhedron that we search are that itsorthogonal projection be a complex whose d cells cover all the cells of ourd-complex.A consequence of these corollaries is that this approach can also be usedto sort scattered triangles in space: in this case, for each triangle f , it isnecessary to �nd a supporting tetrahedron � such that f belongs to thefacets of � and � does not intersect any other triangle. This can be doneby adding a vertex su�ciently close to the face f . Using this approach wecould sort a set of triangles with a complexity of O(n logn), with just alinear storage overhead (the center and radius for each sphere).
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Figure 3.5: A lifted complex of � 1000 facets in IE2.3.3.4 Lifting a tetrahedral complexThe lifting problem consists in lifting each vertex v of a complex � in IEdalong the d + 1 axis in order to obtain a convex polyhedron in IEd+1. The�rst observation is that such a problem does not have a single solution:there exists an in�nite number of di�erent convex polyhedra having thesame projection onto h0, and therefore there are in�nite sets of spheres thatcan be used to sort our complex.Now we will formulate the lifting problem as a linear programming prob-lem. The lifted complex is convex if and only if the dihedral angle betweenany two lifted (d � 1)-adjacent simplex is convex. This condition can beexpressed in the following way: let � and � be two simplexes that are (d-1)-adjacent through the common (d-1)-face f ; let v� and v� be the two nonshared vertices of � and � ,h� : xd+1 = ��;1x1 + ��;2x2 + � � �+ ��;dxd + k�be the equation of the non vertical hyperplane in IEd+1 passing through �.The convexity of the dihedral angle between � and � , is guaranteed ifthe projection of v� onto h� is strictly higher than the d + 1 coordinate ofv� : v�;d+1 > ��;1v�;1 + ��;2v�;2 + � � �+ ��;dv�;d�1 + k�It can be observed that the coe�cients ��;i linearly depend only on thevertices of �, so we can express such linear inequalities having as unknownvariables the d+ 1 coordinates of vertices of � and v� .53



In this way we can express the lifting problem as a set of m linear in-equalities, with n unknowns, where n is the number of vertices, and m isthe number of internal (d-1)-facets of �.A solution of this system can be easily found used the simplex algorithm;this requires to transform all the strict inequalities by adding a slack constant� in order to �x the minimum distance between v� and h� :v�;d+1 � ��;1v�;1 � ��;2v�;2 � � � � � ��;dv�;d�1 � k� � �and to set as objective function the minimization of the complessive sum ofthe new (d+1) coordinates of vertices. It should be noted that the coe�cientmatrix of this LP problem is very large, but fortunately it is very sparse:each line of the system has at most d+2 non zero elements.If the simplex algorithm does not �nd a solution we have demonstratedthat the given complex � is not a projective one. It is still an open problemwhether this fact implies the existence of a viewpoint p such that the �prelation for � is cyclic.Some experiments in two dimensions showed that the solution of thelinear programming problem generated by a complex of one thousand tri-angles (Figure 3.5) can be found in less than a minute on a small personalcomputer using a public domain LP solver. This preliminary result appearsto be a reasonable preprocessing step, and it allows us to claim the practicalrelevance of the proposed solution.Non Convex Simplicial Complexes The technique presented worksonly if the complex to be lifted is convex; for corollaries 1 and 2 we knowthat if we consider a non-convex complex �0 as a subset of a larger convexpolyhedron �, that is projection of the lower part of a convex polyhedron�� in IEd+1, our sorting method is still applicable, but the lifting techniquepreviously proposed does not work.We can solve this problem including for each (d-1)-face f on the bound-ary, with f belonging to a simplex �, the constraint that the halfspace h�in IEd+1 passing through the lifting of �, does not contain any other liftedvertex. It should be noted that this approach can increase the number ofconstraints of the linear programming problem from O(m) to O(m2). Anapplication of this techinque to the lifting of a non convex two dimensionalcomplex is shown in Figure 3.6.3.4 ConclusionsIn this chapter we have presented a new approach to the problem of depthsorting a complex. The approach is based on the connection between power54



Figure 3.6: A the lifting of a 2D non-convex 2D complex.diagrams and the class of projective complexes. Given a simplicial complex� = f�0; : : : ; �ng in IEd this approach has two steps:� Preprocessing: lift the complex in IEd+1 obtaining a complex ��that is the lower part of a convex polyhedron in IEd+1. From ��,using the � transformation de�ned in (3.1), build the set of spheresx� = fs�0 ; : : : ; s�ng, one sphere foreach simplex of �, such that PD(S)is a�ne to �.� Depth-Sort: Given a viewpoint p, calculate, for each simplex �i,pow(p; s�i) and sort the simplices according these numerical values.Summarizing, we can briey describe some pros and cons of the proposeddepth sorting technique:Pros:� run-time e�ciency: the depth sorting consists in the calculation ofpower distance for each cell and the simple sorting of these values;� data structure simplicity: for each cell we need to store just acenter of a sphere and a radius, there is no need for face-adjacencyinformation;Cons:� time consuming preprocessing: the lifting in IEd+1 of the originalcomplex can be a very long process for large non convex datasets, this55



fact also implies that the visualized dataset cannot be interactivelymodi�ed; the de�nition of better algorithms for the lifting problem isa critical issue;� universality: we do not know if any acyclic complex can be liftedand then depth sorted using our technique;Besides this innovative sorting approach, this chapter provided also a con-structive solution (the lifting technique) to the problem of testing if a givencomplex is projective (and therefore acyclic). It should be noted that if wefail to lift the complex we have a proof that the given complex is not aprojective one.As a �nal note, we want to remember that it is still an open problemthe exact relation between the class of acyclic complexes and the class ofprojective complexes. We do not know if a complex � that is not projective isnecessarily a cyclic complex, that is, if � not projective implies the existenceof a viewpoint p such that the �p for � is cyclic.
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Chapter 4Integrating DVR andIsosurfacesIn this Chapter we present an original projective technique which is able to correctlyintegrate isosurfaces and direct volume rendering. The proposed technique is basedon a tabular on-the-y decomposition of the tetrahedral cells crossed by isosurfaces.In the second part of this Chapter we introduce the concept of Discontinuos TransferFunctions; this concept uni�es, in a single framework, the management of visual-ization of isosurfaces and direct volume rendering in the visualization of volumedata.The two most commonly used techniques to inspect volume data, isosur-face extraction and direct volume rendering, cannot be easily integrated ifwe use a projective approach. The intersection of isosurfaces with tetrahe-dral volume elements can generate rendering artifacts due to the incorrectdepth ordering of isosurface facets and tetrahedra. No trivial solution (e.g.drawing the isosurface facet f before/after the tetrahedron containing f)can give a correct solution to this problem.The main idea of our approach is to split each tetrahedron along theinternal isosurface patches and project in the correct order all the result-ing parts; we will show that such cutting can be implicitly done during therendering process using a tabular approach driven by the class of the iso-surfaces crossing the tetrahedron. In Section 4.1 we show the basic splittingtechnique in the simple case of a single isosurface; in the next section weextend this approach to manage the case of multiple isosurfaces crossing asingle tetrahedron. In Section 4.3 we apply the developed techniques forintegrating DVR and isosurfaces in order to solve the problem of the correctrendering of discontinuous transfer functions, and we introduce the Discon-
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tinuos Transfer Function unifying in a single framework the visualization ofvolume data with isosurface and direct volume rendering.4.1 Integrating a Single Isosurface with DVRA tetrahedron � crossed by a facet f of an isosurface can be correctly ren-dered if we cut it along the isosurface, decompose the two resulting blocksinto smaller tetrahedra and project, in the correct order, these tetrahedraand the isosurface f . In this chapter we show that this process can bedone automatically and e�ciently at rendering time using a table-drivenapproach. A sketch of this process is shown in Figure 4.1. It can be imme-diately seen that this splitting process does not involve the creation (andtherefore the computation) of any new vertex, all the resulting tetrahedrahave vertices that belong either to � or to f . How to build the �nal tetra-hedra starting from vertices of � and f depends only on how the isosurfacecrosses �, i.e. it depends on the class of the isosurface.All of these decomposition and splitting could be obviously done in apreprocessing phase (immediately after the extraction of the isosurface) andthe resulting mesh could be stored and managed as usual, but such a naiveapproach has two main negative aspects:� storage overhead: the splitting and decompositions can generate alarge number of tetrahedra, that must be deleted and recreated everytime the user changes the isosurface threshold.� increasing in the time for the isosurface extraction: when creating theisosurface all the new tetrahedra must be created and convenientlyinserted in the data structure storing the tetrahedral complex; thisoperation can be time consuming (e.g. updating all the adjacencyinformation).Fortunately there is no need to explicitly store the splitted parts of eachtetrahedron, but they can simply be built on-the-y with a table drivenprocess during the tetrahedra projection starting from the isosurface class.Moreover we observe that the depth ordering of the tetrahedra resultingfrom the splitting is independent w.r.t. the global depth ordering of theoriginal tetrahedral mesh, and therefore can be computated on the y foreach splitted tetrahedron during the rendering phase. Such local sort (localto each splitted tetrahedron) can be accomplished in two steps: �rst, de-termine the depth ordering between the two block, then sort the tetrahedraderived from the decomposition of each block. This process will be describedlater in section 4.1.2.
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Figure 4.1: Splitting a tetrahedron with an isosurface into blocks and blocksinto tetrahedra: all the con�guration can be combinatorially determinedstarting from the Marching Tetrahedra vertex con�gurations.4.1.1 Splitting a TetrahedronTo e�ciently decompose a tetrahedron during the rendering process we mustcarefully code all the needed information into a table. We assume that, foreach tetrahedron �, we can retrieve the isosurface facet crossing it, andthe class c the tetrahedron belongs to (determined during the isosurfaceextraction). As explained in Section 2.2 the class number, in the range0::34, classi�es the tetrahedron vertices according to their �eld value w.r.t.the threshold � of the isosurface and unambiguously determines the shapeof the isosurface facet crossing �.Our table has one entry for each c value and describes the resultingblocks in terms of vertices and tetrahedra composing them. These blockshave vertices in both the sets of vertices of dataset � and of the isosurfaceitself and these two sets are commonly distinct, so an adequate address-ing/referring technique must be used. For each of the 81 entries of the tablewe store two block descriptions: the �rst one is relative to the block below59



the isosurface threshold and the second one to the above. One or both ofthese block descriptions can be empty if, respectively, the isosurface crossesone of the facets of � or if the tetrahedron is not crossed by the isosurface.Each block description contains the following information:� the number of the tetrahedra in which the block has to be decomposed;� the indexes of the vertices of each tetrahedron composing the block.The following simple mapping strategy can be used to address the verticesof the block using the tetrahedron and isosurface vertices: the indexes of thevertices of the block are denoted with integers in the range [0::7], indexesin the range [0::3] refer to the tetrahedron vertices and indexes in the range[4::7] refer to the isosurface vertices.It should be noted that, by exploiting the symmetry of the isosurface con-�gurations, the crossing of an isosurface can decompose a tetrahedron onlyin �ve di�erent ways corresponding to the �ve isosurface classes. There-fore the size of the table describing the decomposition of the blocks intotetrahedra could be reduced to only �ve entries. However the mapping ofisosurface and tetrahedron vertices into block vertices must always be doneon the basis of a larger 81-entry table, therefore we decided for the simplerapproach of using a unique, although larger, table.4.1.2 Sorting the decompositionOnce the decomposition of the original tetrahedron � has been determined,the resulting smaller tetrahedra have to be correctly depth ordered. Weexecute this depth sort in two step: �rst we sort the two blocks and thenwe separately sort the tetrahedra of each block.To depth sort the two blocks it is su�cient to look at the orientation ofthe isosurface plane w.r.t. the point of view. Similarly the correct depthordering of tetrahedra composing each block depends only on the orientationof the facets internal to the block, as in the case of topological sort. Forexample, if we have an isosurface of class 1+ (like the one in Figure 4.1)tetrahedra forming the triangular prism block are sorted on the base of theorientation of the two internal facets with respect to the viewpoint. Thechoice of the internal facets to be used to sort each block is table drivenfor e�ciency reasons. Moreover we can exploit the smallness of our blocks(they are composed of at most three tetrahedra) to code in the table also therelation between the internal face orientation and the resulting depth order.Infact we have at most two internal facets so the possible orderings are1 at1We can consider all the internal facets that are perpendicular to the observer asdirected in an arbitrary way without losing the resulting depth order correctness.60



most 22, and it is reasonable to code these orderings into each row of thetable. At rendering time we will check the internal facets orientation w.r.t.the viewpoint and we can immediately retrieve the corresponding orderingwithout storing or needing adjacency information between the tetrahedrainside each block.For sake of completeness we should note that also the adjacency informa-tion could be stored into the table and convenientely exploited by a standardtopological sor; the setup time to convert these information from the tablecoding format to the one necessary for the topological sorting is too high foran operation that should be done for each tetrahedron during the projection.Therefore we choose to add the following information to each block entry ofour table:� the number fi of internal facets of the block;� the indexes of the vertices of each internal facet;� the 2fi depth orderings of the tetrahedra of the block.The �nal table is composed of 81 entries and, by storing all the indexes inone byte, its size is less than two kilobytes. We can now summarize thewhole splitting process executed at projection time for each tetrahedron �that is crossed by an isosurface f :� using the isosurface facet orientation, decide the depth ordering be-tween the two blocks and the isosurface facet;� following this order we process and render the two blocks and theisosurface facet. For each block:{ recover from the table the internal facets, compute their orienta-tion w.r.t. the viewpoint;{ use the result to locate in the table the depth order of the tetra-hedra composing each block;{ following this order draw the tetrahedra out of the table andproject them.4.2 Multiple IsosurfacesThe technique proposed in the previous section works only if we have to ren-der a single isosurface. If we need to extract and visualize many isosurfacessimultaneously, a tetrahedron can be cutted by more than one isosurface.
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Figure 4.2: A tetrahedron crossed by multiple isosurfaces is splitted intoconvex blocks.Fortunately, all the isosurface crossing the same tetrahedron are parallel (be-cause of the linearity of the interpolation function inside the tetrahedron),therefore the possible di�erent decompositions, resulting from multiple iso-surface cuts, are simple enough to be classi�ed and managed using a tabularapproach as in the previous case.To determine all the possible shapes of the resulting blocks we considera tetrahedron cutted by k parallel planes (the isosurfaces) into k+1 convexblocks. The shape of each block depends only on the class ci; cj of the twocutting isosurfaces that bound it. Let's denote with i:j the block betweentwo isosurfaces of class i and j. We consider the isosurfaces in order ofincreasing threshold value, in other words we step from vertices below thethreshold � to vertices above �. The �rst and last block are usually denotedwith 0:i and i:0, but we can focus our attention on the shape of the genericinner blocks i:j because, for the blocks of class 0:i and i:0, bounded by asingle isosurface, the table described in the previous section can be used. Inthe case of multiple isosurfaces our table should also give all the informationabout a generic i:j block.It is immediate to see that most of the 81 � 81 cases are not possible,infact if we consider two threshold �1 < �2 the vertices of the tetrahedroncan be classi�ed only in �ve di�erent ways according their �eld value w.r.t.�1; �2. Therefore we use a �ve values2 classi�cation of the vertices of thetetrahedron that can give 54 = 625 di�erent classi�cations of � w.r.t. two2We adopt the following classi�cation convention: '0' if the vertex �eld valued � is lessthan �1; �2, '1' if � = �1, '2' if �1 < � < �1, '3' if � = �2 and '4' if � > �2.62



isosurfaces. Most3 of these 625 con�gurations correspond to tetrahedra thatare crossed by none or just a single isosurface, in this cases there are noinner blocks, so we leave the corresponding rows of the table empty.The resulting table is therefore organized to manage the decompositionof the inner block only, and contains the following information:� the number of the tetrahedra in which the block has to be decomposed;� the indexes of the vertices of each tetrahedron composing the block.The following simple mapping strategy can be used to address the verticesof the block using tetrahedron and isosurface vertices: the indexes of thevertices of the block are denoted with integers in the range [0::11] , indexesin the range [0::3] refer to the tetrahedron vertices, indexes in the range [4::7]refer to the �rst isosurface vertices and indexes in the range [8::11] refer tothe second isosurface vertices.4.2.1 Depth sortingIn this section we show how to sort simplicial complex generated by splittinga single tetrahedron with many isosurfaces. First of all we must be surethat such sorting always exists; for this reason we introduce the followingtheorem:Theorem 4. The simplicial complex generated by splitting a single tetrahe-dron with many isosurfaces is always acyclic.Proof. We prove this statement in two steps. As �rst step we note thatthe cell complex formed by the convex blocks i:j is acyclic, because thereexists a set of distinct parallel planes separating the blocks, so it is impos-sible to �nd a cyclic ordering without crossing twice one of these separatingplane. The second step of this proof is that the tetrahedral complex ob-tained subdividing a block is still acyclic. This decomposition is generated,as explained in section 4.2.2, as the Delaunay triangulation of the block ver-tices calculated on a reference equilateral thetrahedron. If we consider thea�ne transformation that maps the reference equilateral tetrahedron into ageneric one, we can easily see that it preserves the acyclicity property of thecomplex.To e�ectively calculate the depth ordering of the decomposition of atetrahedron crossed by k isosurfaces, we propose the following two-stepsalgorithm: �rst we sort the convex blocks i:j, then we sort the tetrahedra3Only 198 con�gurations give blocks bounded by two isosurfaces
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Figure 4.3: The blocks of a tetrahedron crossed by multiple isosurfaces aresorted using the orientations of isosurface facets.composing each block independently. We assume that, for each tetrahedron�, we can immediately retrieve the list of k isosurface facets fi crossing �,together with their classes ci, ordered by increasing threshold and that theisosurface facets have the normal agreeing the �eld growing direction.To �nd the correct depth ordering of the blocks a topological sort canbe applied. In this case the topological relation between blocks is trivial (allthe blocks are along a row) so this procedure can be furtherly simpli�ed.As already stated we assume that the isosurface are sorted w.r.t. increasingthreshold values and their normals agree with the �eld gradient inside thetetrahedron. To sort the blocks we classify isosurface facets fi w.r.t. theviewpoint ('+' if they see the viewpoint, '-' otherwise) and store in an arraythe result. Then get all the blocks with agreeing '+' according to the orderof the array, followed by the ones with agreeing '-' in inverse order and as lastblock (if it exists) the one with disagreeing signs. In �gure 4.3 we show anexample of this technique of sorting; the tetrahedron in �gure, seen from theviewpoint, is crossed by four isosurfaces and splitted into �ve blocks, undereach isosurface facets the result of the classi�cation is shown; the resultingdepth order of the blocks (back-to-front) is 0:f0, f0:f1, f3:0, f2:f3, f1:f2.Once the blocks are ordered we can independently depth sort the tetra-hedra forming each block i:j using the orientation of facets internal to i:jand exploiting the same approach proposed for the single isosurface case:we store in each row of the table all the orderings resulting from all the 2qpossible orientations of the q internal facets of the block. Even if the num-ber of tehtrahedra composing a block is larger than in the single isosurface64



Figure 4.4: A row of the table indicating how to decompose and sort a blockbounded by two isosurfaces.case (a block can be composed up to six tetrahedra), this approach remainsconvenient and the table size is still manageable.At the end of this ordering process we have a sorted list of tetrahe-dra, whose vertices are chosen between the ones of the original tetrahe-dron and the vertices of the isourface facets inside it, that can be classi-�ed and rendered using projective techniques. Figure 4.4 shows a row ofour table. The �rst number (500) denote the con�guration of the block,as resulting from our �ve values vertex classi�cation. The tetrahedron in�gure has vertices v�0 ; v�1 ; v�2 under the �rst isosurface threshold and v�3above both isosurface thresholds, giving a block con�guration number of0 � 50 + 0 � 51 + 0 � 52 + 4 � 53 = 500. The second and third number denotethe number of tetrahedra and internal facets resulting from the decompo-sition of the block. The following three quadruples indicate how to buildthe three tetrahedra �0; �1; �2 of the decomposition; similarly the next twotriplets give the indexes of the two internal facets fi0; fi1. These indexesare given using the mapping strategy presented above; near to each vertexv�0 ::: is shown the corresponding table index. The last four triples codify thepossible depth sorting of the tetrahedra w.r.t. the orientation of the internalfacets fi0; fi1.4.2.2 Building the tableManually coding large tables, involving geometric properties, is a tediousand error prone process and its debugging is di�cult. The choice of not65



BuckyBall Dataset (176687 Tetrahedra)thr Isosurf. Total Splitted Overhead Trivial Correct Trivialsize Tetra Tetra Factor Hybrid Hybrid Times �Overhead Times Times Overhead0.15 25,517 268,410 91,723 1.52 14.77 21.95 22.450.27 10,811 214,128 37,441 1.21 11.40 14.19 13.790.30 5,476 194,161 17,474 1.10 10.59 11.07 11.64Table 4.1: Result of the integrating of isosurfaces and DVR using the split-ting approach.exploiting all the possible simmetries kept the table structure simple enoughto permit the automatic �lling of the table. To calculate the characteristicsof each block we used an equilateral tetrahedron and generated on it all the625 possible con�gurations of vertices values for two isosurface.For each con�guration we extracted the vertices of the correspondingblock and built the Delaunay triangulation of them. For the convexity ofthe blocks, we obtained a decomposition of each block. Particular attentionhad to be payed to the geometric robustness of the Delaunay triangulationcode adopted because most of the blocks presents degeneracies (5 or morecospherical points).4.2.3 Experimental ResultsThe technique proposed has been implemented and tested; here we presentsome results of the �rst, rather unoptimized, implementation. The timingsand the images refer to the integration of a the single isosurface with DVRand were executed on a SGI Indigo2 workstation (mips4400 200MHz). Thecase of multiple isosurfaces presents similar timings because in most casesthe cells crossed by many isosurfaces are a very small portion of the dataset.Table 4.1 reports results on the integration of three di�erent isosurfaceswith DVR. The experiment was run on a 323 subsampling of the Buckyballdataset (see chapter 5 for a more detailed description). The table reportsthe isosurface threshold, the number of facets of the extracted isosurface,the total number of the tetrahedra projected using the splitting procedure,the number of tetrahedra of overhead w.r.t. the original dataset, and therelative overhead. The last three columns reports respectively the renderingtime for the trivial integration of isosurfaces and DVR (the isosurface facet isdrawn before its tetrahedron), for the proposed approach, and the productbetween the relative overhead factor and the trivial integration renderingtime.It can be noted that the rendering time of our approach is very similaror lower than the time for a naive approach multiplicated for the relative
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increase of tetrahedra, therefore the time for splitting on-the-y the tetra-hedra crossed by the isosurface is a negligible portion of the total time ofrendering.4.3 Discontinuous Transfer FunctionsIn the framework presented in 2.1 both isosurface extraction and transferfunction mapping belong the modeling part of the volume visualization pro-cess, the part in which a dataset becomes a geometric entity with well de�nedvisual attributes. Here we try to unify these two visualization techniquesby introducing a new single concept: the Discontinuous Transfer Functions(DTF). The main idea is to permit to the transfer function to have a num-ber of discontinuity points where the mapping of �eld values into colors cansharply change.We denote with C the color/opacity space; given a color c 2 C we denotewith cr; cg; cb; c� the red, green, blue and opacity components of c. A DTF Tis a piecewise linear function T : IR! C with a �nite set of C0 discontinuityvalues D = d1; � � � ; dk in which for each di 2 D, we can have:limv!d�i T (v) = c�iT (di) = cilimv!d+i T (v) = c+iwhere c�i ; ci; c+i 2 C are, possibly di�erent, color/opacity values. This classof functions permits the de�nition of TF's that are able to combine boththe bene�ts of DVR and isosurface extraction in a single image:� sharp discontinuities give, just like isosurfaces, a quantitative informa-tion permitting the exact localization of the regions in which the �eldassumes a given value;� smooth color variations give a qualitative information about the �eldvariations in space and the direction and intensity of the �eld gradient.It is obvious that a DTF must be correctly rendered in order to be usefuland, while this can be e�ectively done for some rendering approach (e.g. raytracing) it can be di�cult when projecting tetrahedral meshes; in Section4.3.1 we deal with this problem.It could be objected that DVR techniques based on ray-tracing of regu-lar datasets have always been able to display both semi-transparent mediumand isosurfaces [37, 66] and so the innovative contribution of our proposalcould seem vague. Beside our original technique for table driven tetrahedra
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decomposition which permits, as shown in Section 4.3.1, the correct ren-dering of DTF to projective solutions, our main contribution is that we donot simply mix isosurface and DVR but we propose a single visualizationmodeling tool, the DTF's, that allow us to map the dataset into a geometricobject with well de�ned visual attributes in such a way that the bene�ts ofboth DVR and isosurfaces can be exploited.Other works have faced problems that are somewhat related with ourapproach, either in the direction of extending the isosurface technique to-wards DVR or, viceversa, using trying DVR to rendering not sharply de�nedsurfaces. Here we briey summarize present these related works, markinghow DTF's cover all the presented solutions.Shell Rendering Udupa and Odhner presented a data structure modelfor volume rendering called shells [99]; it roughly consists of a set of vox-els in the vicinity of a surface structure that is not very sharply de�ned,and therefore it is di�cult to extract with a classic isosurface algorithm.Using our DTF model case the corresponding DTF is the one completelytransparent except for an opacity spike around the interesting value. Whilein regular datasets the uniform smallness of the cells permits us to ignorethe problem of rendering voxels that are partially covered by the interest-ing fuzzy region, on tetrahedral domains we must resort to the techniquepresented in previous sections. This approach was also aimed to reduce therendering time by proposing a data structure for traversing only the opaquepart of a regular dataset. We will show how the opacity information of theDTF can be used to reduce the size of the rendered dataset by means ofmultiresolution techniques in Chapter 6.Interval Volume A step in the direction of extending the isosurface con-cept was given by Fujishiro et al. [46]. Instead of a single isosurface, theypropose to extract an Interval Volume IV (�; �), that is the polyhedral rep-resentation of the portion of the dataset with �eld values in the interval[�; �]. The algorithm proposed is based on the extension of the MarchingCube algorithm [69]. For each cell, they separately retrieve the polyhedralrepresentation of the portion of the cell below � and above � by means of anextended MC look-up table. These polyhedral blocks, one for each cell, arethen merged togheter in a postprocessing phase and the face shared betweenblocks deleted.Interval Set Another step in the search of an uni�ed approach betweenDVR and isosurface rendering was the Interval Set concept proposed by
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Guo [51]. His approach is to segment the volume into interval sets, similarto the interval volumes cited above, and render them as surfaces or directlyas semitransparent clouds. The technique proposed to e�ectively extractan interval set from a regular dataset is based on the construction of thealpha shapes [40]. An �-shape complex is built over a point set which isthe union of the dataset points with �eld value belonging to the intervaland the isosurface vertices, and with a radius � equal to one half of thediagonal of a cubic cell. It should be noted that this approach, beside itshigh computational cost4, does not ensure that the boundary of the intervalset matches the original isosurfaces (it is possible to construct examples inwhich the isosurfaces has small features that cannot be captured by the�-shapes, so the reconstructed volume is an approximation of the desiredinterval set).A third contribution has recentely be added by Nielson and Sung [77].They propose an algorithm for computing a tetrahedralization of intervalvolume that it better than the one of Fujishiro et al.; their approach isbased, similarly to our, on the use of the isosurface class to subdivide thethe tetrahedron along the isosurface, but their approach is oriented to a pre-processing phase rather than an on the y decomposition, does not handledegenerate situations, and it is designed for surface rendering rather DVR,so the sorting problem is not taken into account.These two last approaches, Interval Volumes and Interval Sets, can becorrectly and e�ciently modeled by using DTF's. However their limit isthat they focus their interest on a single interval of the �eld domain, tryingto extract information about this set. The DTF model manages all thesesituations in a broader way, permitting the precise coloring of the intervalsof the: infact it is easy to think of DTF's not manageable with previousapproaches (like sawtooth transfer functions). See the �gure 7.4 on page136 for an example of a DTF that is not an interval volume.A very recent technical report of Max et al. [115] describes a techniqueto accurately render unstructured volume data that is very similar to the onepresented here: decompose cells crossed by isosurfaces and discontinuitiesinto smaller tetrahedra after the sorting phase. The high level objectives oftheir work is to obtain the highest accuracy in rendering (infact they relyon a very accurate software scan conversion of each projected cell), whileour aim is to obtain the best quality with the smallest overhead. One ofthe main di�erences between our approach and the one presented in [115] isthat we exploit precomputed tables to recover both the decomposition and4The Delaunay triangulation and �-shape generation can cost O(n2), with n numberof vertex complex contained in the speci�ed interval.
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Figure 4.5: Aliasing due to the application the transfer function only to thevertex of a triangle.depth ordering of the splitted cells in order to reduce the computation atprojection time.DTF and Optical Models In order to better exploit the possibility ofDTF's, the volume shading model commmonly used, the density emittermodel, must be enhanced. In particular, a non-realistic shading e�ect canbe added to improve the shape comprehension of fuzzy surfaces de�ned byspike opacity in the DTF. To reach this result we follow the approach usedin ray tracing DVR [66, 37] to add a di�use shading contribution on theregions with high opacity variations, or proportional to the gradient of theopacity.4.3.1 DTF RenderingTransfer function transforms the dataset in a colored transparent geometricobject and is part of the modeling part of the volume visualization process.This process is done with di�erent accuracy depending on the DVR tech-nique used: in ray tracing the TF is applied to all the points collected by thetraversing ray in the volume, in projective and most of scan-line approachesthe TF is applied only to the vertices of the dataset and then the result-70
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Figure 4.6: Aliasing due to the application of a transfer function with twoC0 discontinuity points d0 and d1 to the vertex of a triangle.ing visual parameters are linearly interpolated across the space spanned byeach tetrahedron. This linear interpolation of the visual attributes insidea tetrahedron can create some aliasing e�ects when the TF is not linear inthe �eld range spanned by the tetrahedron. In �gure 4.5 we show an ex-ample of this problem in the two-dimensional case. This aliasing problem israrely considered in current rendering solutions. We propose the use of thesplitting techniques developed in Section 4.2 to correctly render a DTF.Ina DTF T the C0 and C1 discontinuities, can managed in the following way.C0 discontinuities are managed just like classical isosurfaces: we �rstextract the isosurface with threshold � equal to the discontinuity value di;during the rendering we process each tetrahedron with the split-by-isosurfaceprocedure explained in Section 4.2; when rendering each block b, boundedby two isosurfaces Ii; Ij generated by two discontinuity points di < dj of T ,we assign to the vertices of b belonging to Ii the color c+i and to the onebelonging to Ij the color c�j . The isosurface Ii is colored with ci.C1 discontinuities appears where the DTF change its linear behaviourand can be managed in various ways. The simplest and most common ap-proach is to ignore them with the possible aliasing e�ects shown in �gure4.5. A more sophisticated approach, presented by Max et al. [97], propose,
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during the rendering to calculate exactly the color integration only on thethickest point of the projected tetrahedron and linearly interpolate elsewere.Our splitting technique could be used to decompose each tetrahedron alongthe isosurfaces corresponding to the �eld values where T present C1 discon-tinuity. While this approach guarantees the correctness of the rendering,an excessive number of tetrahedra could result from the splitting, and thiscould slow down the rendering process.It is important to estimate and manage the error, hereafter named colorerror that we introduce calculating the DFT values only on the vertices andlinearly interpolating these color values inside each tetrahedron �. Considera tetrahedron �i with vertices v0; v1; v2; v3, and let fi be the linear functionintepolating the �eld value inside �i. If we compute the colors of TF onlyonto the vertices of �i and we interpolate the result inside �i, we can de�ne:fTi : IR3 ! Cas the function interpolating inside each tetrahedron the colors T (fi(v0))T (fi(v1)) T (fi(v2)) T (fi(v3)) calculated on the �eld values on the verticesof �i.Let jj � jjC be a suitable norm on the rgb� space, then the color errorcommitted on point v can be denoted by the function:Q(v) = jjT (fi(v))� fCi (v)jjCObviously, Q is always null on the vertices of tetrahedra. For each tetrahe-dron � it is easy to �nd, in a preprocessing step, the maximum error inside �,hereafter denoted with a little abuse of notation with Q(�). If a tetrahedron� is not crossed by any C1 discontinuity of T then Q(�) is null; otherwiseQ(v) takes its maximum value on one of the C1 discontinuities crossing �.To take into account the fact that errors on opaque points are more visiblethan errors on transparent ones, the resulting error can be weighted withthe maximum � value of T (fi(v)) and fCi (v).Once we are able to measure the committed color error for each tetra-hedron we can �x a threshold � and, for each tetrahedron � with Q(�) > �,extract and store the isosurface passing through the C1 discontinuity valuethat generate the maximum error inside �, so that at rendering time we candecompose, and therefore correctly render, only the tetrahedra with greatererror. Such an approach permits also to estabilish an a priori maximumpercentage/number of tetrahedra that can be correctly rendered throug de-composition, in order to precisely bound the overhead due to the splittingin rendering time.
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4.3.2 Experimental ResultsIn �gure 7.4 and 7.5 on page 136 we show two examples of the wrong andcorrect rendering of a DTF for the buckyball dataset. In the lower part ofFigure 7.4 the DTF applied is shown. On the left we show the result ofa simple projective rendering with the DTF applied only to the vertices ofthe tetrahedra. On the right we show the result of splitting the tetrahedraalong the C0. The buckyball dataset, shown in these �gures, is composedof 176,687 tetrahedra. The tetrahedra containing C0 discontinuities, andtherefore incorrectly rendered, were 48,439. The splitting of these tetrahe-dra along the disconituities has brought the total number of tetrahedra to360,200. The rendering time, like the case of correct rendering of isosurfacesand DVR, depends only on the total number or tetrahedra and is thereforeroughly doubled.4.4 ConclusionsIn this chapter we have presented two main results. The �rst one is thesplitting technique, that allows to integrate correctly and in a e�cient man-ner isosurfaces with the direct volume rendering through tetrahedra projec-tion. The second contribution is the new concept of Discountinuous TransferFunction, that allows the uni�ed management of isosurface, interval volumesand direct volume rendering in a unique framework. The splitting techniquepresented in the �rst part of this chapter is then used to correctly render aDTF.It should be remarked that the modeling/rendering framework, intro-duced in Chapter 2 for Visualization, led us to a better focusing of the prob-lem faced in this Chapter: we have assumed the tetrahedron with linearinterpolation of per-vertex color attributes as the basic rendering primitivefor volume visualization. Then the problem of correctly render a DTF is amodeling one: we don't need new rendering primitives for each new visual-ization technique, but we should �nd visualization modeling strategies suchthat we can correctly transform the dataset in, for example, tetrahedra withlinear interpolation of per-vertex color attributes.
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Chapter 5Size Reduction ofTetrahedral MeshesVery often datasets are so large that they cannot be rendered interactively. Simpli�-cation techniques can build smaller datasets ensuring a limited/controlled degrada-tion in the represented data. Two original simpli�cation algorithms for tetrahedralmeshes are described in detail.The real usability of a system for the visualization of volume data isstrictly connected to the level of interactivity the system performs. Thisis because the user{system interaction is enhanced and the understandingof the results is improved through motion and interactive modifying of thevisualization parameters (e.g. transfer function, isosurface threshold). Thee�ciency of the visualization algorithm is therefore crucial.Direct projection of tetrahedral cells, using the hardware capabilities ofcurrent state-of-the-art graphics workstations, is an e�cient process (nearlyof the order of 10K � 100K tetrahedral cells per second). Nevertheless,the performance required for the interactive use of these techniques is stillfar beyond current speeds, especially in the case of low or medium powerworkstations.A data simpli�cation approach can be applied to produce signi�cantspeedups while maintaining good approximations in the images produced.Therefore, we prove William's intuition [112] that real-time interactive pro-jection can be only obtained through data reduction.The Chapter has the following structure: in section 5.1 we survey tech-niques to perform data simpli�cation of tetrahedral volume datasets, in Sec-tion 5.2 we introduce the notation used in Section 5.3 and 5.4 to describetwo original simpli�cation algorithms; �nally in Section 5.5 the empirical
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results of the application of the �rst algorithm are presented .5.1 Related WorkThe main approach to build an approximate representation of a tetrahedraldataset is choosing a subset of the original vertices and building a newtriangulation of (almost) the same domain.Many di�erent adaptive methods, which try to select the smallest set ofpoints approximating a dataset within a given error, have been developedin 2D for the simpli�cation of irregular meshes and topographic surfaces; adetailed review of these algorithm is beyond the scope of this chapter, for acomplete survey on this subject see [26].Very concisely we can summarize by saying that e�ective solutions to thesimpli�cation problem have been obtained through incremental techniques,based on what we can call either re�nement (re�ne a coarse representationby adding points [44, 32]) or decimation (simplify the dataset by removingpoints [89, 18, 9]) strategies. Most of these techniques can be extended tothe 3D case to simplify volume data, but only few experiments have beencarried out [21, 52]. In the following we review the speci�c results regardingtetrahedral meshes.A �rst attempt in this direction was proposed by Williams in [114]; hesuggest to choose a random subset of the vertices of the mesh and retriangu-late them using a Delaunay triangulation conformed in order to approximatethe original domain. This proposal was neither implemented nor speci�edin details and presents two serious drawbacks: there is no control on theaccuracy of the simpli�ed mesh and the technique is not adaptive, i.e. thedensity of the data cannot vary over di�erent regions of the domain.A more detailed description of a very similar approach is given by Renzeand Oliver in [85]; they propose a volume decimation algorithm in which,given a volume dataset described by a tetrahedral complex �, they try toremove, without any speci�ed order, the internal vertices of the mesh; theretriangulation of the hole left by the removal of a vertex v is done bybuilding the Delaunay triangulation �v of the vertices adjacent to v, andsearching, if it exists, a subset of the tetrahedra of �v whose (d-1)-facesmatch with the faces of �. If such a subset does not exists the vertex is notremoved; it should be noted that such condition may very ofter occur if theoriginal complex is not a Delaunay one. The Renze and Oliver's approach,as the idea sketched by Williams, neither measures the approximation errorintroduced in the reduced dataset, nor tries to select the vertex subset inorder to minimize this error.In [52], Hamann and Chen introduce a re�nement strategy for the sim-
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pli�cation of tetrahedral convex complexes. Their method is based on theselection of most important points and Their insertion into the convex hullof the domain of the dataset. Signi�cant data are identi�ed by large absolutecurvatures obtained by a local least square approximation method. Whena point is inserted into the triangulation, local modi�cations (by face/edgeswapping) are performed in order to minimize a local approximation error.This process leads to a data dependent triangulation.In a recent paper Popovic and Hoppe [81] have extended the Progres-sive Meshes algorithm [54], a simpli�cation strategy for three-dimensionalsurfaces based on edge-collapse operations, to generic simplicial complexes.However their approach is more oriented towards the simpli�cation and man-agement of surfaces in the most comprehensive way, than towards the topol-ogy preserving simpli�cation of tetrahedral complexes for scienti�c visual-ization.5.2 Approximated meshesLet V be a volume dataset, and let � be a given mesh over V , covering adomain 
, and having all points of V as vertices. The pair (V;�) is calleda reference model for the volume dataset. An approximated model of suchvolume data is given by a pair (V 0;�), with � a tetrahedral mesh having asvertices the points in V 0 � V , and covering a domain ~
 that approximates
. A linear function is given for each tetrahedron of � to interpolate the�eld inside sigma. The accuracy of approximation is given by the di�erencebetween the reference model and the approximated model, and it dependsessentially on:� the warping of the domain, i.e., the di�erence between 
 and its ap-proximation ~
;� the error made in approximating values at the points of V throughthe piecewise-linear function de�ned on �.Hereafter we will denote the accuracy of an approximation with the pair � =(�; ") where � and � denote the warping and the error of the approximateddataset, respectively.Some considerations on the computation of warping and error can bemade for the following classes of volume datasets.Convex Datasets. This is the simplest case: we can assume that ~
 � 
,i.e., there is no warping error because convex datasets usually have a smallnumber of vertices on their convex hull; in particular, regular datasets have
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Figure 5.1: Lifting and warping for curvilinear datasets (example in 2D):(a) the lifting maps a regular mesh �c into a curvilinear mesh �; (b) thetriangular mesh � approximating � is back-projected in computational spaceinto mesh �c; (c) the warping at a point v is equal to the distance from vto the warped point ~v.
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a convex hexahedral domain that can be de�ned with just six vertices. In aconvex dataset, the error on a point v contained in a tetrahedron � is givenby the absolute value of the di�erence between the �eld value at v, and thevalue of the linear function associated to � computed at v.Non-convex curvilinear datasets. This class of datasets is a commonresult of simulations: the domain is represented by a deformed hexahedrallattice. We consider a parallelepiped 
c, that we call the computationaldomain, and a regular hexahedral mesh �c covering 
c, and isomorphic to�. The one-to-one correspondence (isomorphism) between vertices of �cand � will be called a lifting from computational to physical domain (seeFigure 5.1a). Since � has vertices on a subset of vertices of �, we canuse lifting to back-project � into a corresponding tetrahedral mesh �c incomputational domain (see Figure 5.1b). Meshes �c and �c both cover 
c,provided that �c has at least the eight corners of 
c as vertices. Therefore,each vertex vc of �c is contained into some tetrahedron �c of �c. We expressthe position of vc in baricentric coordinates with respect to �c, and we con-sider the point ~v in physical space having the same baricentric coordinatesas vc with respect to the tetrahedron �, image of �c in the physical space.Point ~v is called the warped image of v (where v is the image of vc throughlifting). The warping at v is the distance between v and ~v (see Figure 5.1c).The maximum distance over all the vertices of � whose back-projection liesinside �c provides an estimation of the warping of its lifted image �; themaximum warping over all tetrahedra of � de�nes the warping of the wholeapproximated model.The �eld value error E is measured by computing the di�erence betweenthe �eld value at v, and the value of the linear function in the computationaldomain: this is equivalent to measure the di�erence between the �eld at adatum v and the estimated value at its corresponding warped point ~v de�nedabove.Non-convex irregular datasets. This is the most general case; for theestimation of the warping errors we follow the approach used in the �eldof the simpli�cation of 3D surfaces and we estimate the actual di�erencebetween the boundaries of 
 and ~
. Such a di�erence is measured by com-puting the Hausdor� distance between the two domains, de�ned as follows:the Euclidean distance between a point p and a set P � IEd is de�ned byd(p; P ) = minx2P d(p; x)where d() is the Euclidean distance between two points in IEd. The one-sidedHausdor� distance dE(P;Q) from a set P � IEd to a set Q � IEd is de�ned78
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Figure 5.2: For non-convex irregular datasets, we estimate the actual di�er-ence between the boundaries by computing at each boundary vertex of � itsminimum distance from the boundary of �.by d(P;Q) = maxx2P d(p;Q)An approximation of this distance can be computed as follows.The warpingof a boundary face � of � is the maximum among all the distances cor-responding to the boundary vertices of � that are projected onto �; thewarping of � is the maximum warping of all its boundary faces [18].To estimate the error in approximating the �eld on a non-convex irregulardatasets we need to consider two possible cases: if v is inside ~
, then wecompute the �eld di�erence as in the convex case; if v lies outside ~
, wecompute �rst the projection vp of v on the boundary of ~
, then we measurethe di�erence between the �eld at v and the linear interpolation at vp. Inthis case, v is said related to the tetrahedron � having vp on its boundary(see Figure 5.2).The error of a tetrahedron � is the maximum error of all the vertices vi suchthat: for the convex case, vi lies inside �; for the non-convex curvilinearcase, the point corresponding to vi in computational space lies inside �c; viis either inside �, or related to �. The error of the mesh � is the maximumamong all errors of its tetrahedra.Hereafter, warping and error will be denoted by functions W () and E(),respectively; they can be evaluated at a point v, at a tetrahedron �, or at a79



mesh �. Warping and error at data points can also be weighted by suitablefunctions that may vary over 
. Weights can be useful to obtain a space-based measure of accuracy. For example, if we assume that for applicativeneeds accuracy is important in the proximity of a selected point p, then wecan select weights decreasing with distance from p. Similarly, range-basederror can be used to require more accuracy where data assume a given valueq: in this case, a weight for error can be obtained by composing the valuefunction  with a real univariate function decreasing with distance from q.5.2.1 Building an approximated modelGiven a reference model (V;�), and a threshold pair � = (�; "), we deal withthe problem of building an approximated model (V 0;�) that represents thevolume dataset with accuracy �, i.e. with a warping smaller than � and anerror smaller than ". A key issue is that the size of � should be as smallas possible. A result in 2D [3] suggests that the problem of minimising thesize of the mesh for a given accuracy is intractable (NP-hard); moreover,approximated algorithms that guarantee a bound on the size of the solutionwith respect to the optimal one are di�cult to �nd, and hardly applicable inpractice [3]. Hence, heuristics can be adopted to obtain a mesh of reducedsize by following data simpli�cation strategies. There are two basic classesof strategies for simplifying a mesh:� Re�nement strategies start from a mesh whose vertices are a very smallsubset of vertices of �. The mesh is iteratively re�ned by insertingother vertices of � into it. Re�nement continues until the accuracy ofthe mesh satis�es the required threshold. The vertex to be inserted canbe selected on the basis of the best improvement of the mesh accuracy.� Decimation strategies start from the reference model � and iterativelymodify it by eliminating vertices. As many vertices as possible arediscarded, while maintaining the required accuracy. Also in this case,points are selected at each iteration in order to cause the least possibleincrease in warping and error.In the following Sections, we present two algorithms for the simpli�cation ofa tetrahedral mesh: the �rst method is based on re�nement and Delaunaytetrahedralization; it can be applied to convex datasets, and to non-convexcurvilinear datasets; the second method is based on decimation, and it canbe applied to any dataset, provided that the reference mesh � is a tetrahedralmesh, but it is especially well suited to non-convex irregular meshes.
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5.3 A method based on re�nementIn [19] we have proposed the extension of an existing re�nement for convexdatasets and we have further extended it in [21] to deal also with non-convexcurvilinear datasets. In this section we describe the basic technique and ourproposed extention. The basic idea comes from an early technique developedin the two-dimensional case and widely used for approximating natural ter-rains [44, 33]. An on-line algorithm for Delaunay tetrahedralization is usedtogether with a selection criterion to re�ne an existing Delaunay mesh byinserting one vertex at a time. In the case of curvilinear datasets, a Delau-nay tetrahedralization is computed in the computational domain, while itsimage through lifting gives the corresponding mesh in the physical domain.In both cases, the selection strategy at each iteration is aimed to re�ne thetetrahedron that causes the maximum warping/error in the current approx-imation: this is obtained by selecting the datum vmax corresponding to themaximum warping/error as a new vertex. The description of the algorithmis general, while speci�c aspects of either the convex or the curvilinear caseare explained when necessary.Given a dataset V , an initial mesh � is created. If V is a convex dataset,then � is a tetrahedralization of the convex hull of V . If V is a non-convexcurvilinear dataset, then a tetrahedralization �c of the computational do-main 
c is considered: since 
c is a block, �c has only the eight corners of
c as vertices, and it subdivides 
c into �ve tetrahedra; � is obtained bylifting �c into the physical domain. Given a threshold � for the accuracy,the usual re�nement strategy [33] is applied:procedure REFINEMENT(V;�; �);while not (� satis�es �) dovmax  SELECT POINT(V;�; �);� ADD VERTEX(�; vmax)end while ;return (�)end ;This re�nement procedure always converges since the number of pointsin V is �nite; total accuracy is warranted when all of them are inserted asvertices of �. In summary, three tasks are accomplished at each iteration ofthe re�nement procedure:1. test the accuracy of � against �: this requires evaluating E(�) and,in the curvilinear case, W (�), and comparing them with " and �,respectively;2. select a new vertex vmax from the points of V by means of the pro-cedure SELECT POINT: for the convex case, the point of V that81



maximises E() is selected; for the curvilinear case, the point of Vthat either maximisesW () or maximises E() is selected, depending onwhether W (�)=E(�) is larger or smaller than �=".3. update � by inserting vmax by ADD VERTEX: this is done by usingan algorithm for on-line Delaunay triangulation that was proposed in[57]: in the curvilinear case, update is always made on the tetrahedralmesh in computational domain, and � is obtained through lifting.In order to implement the algorithm, we have used a data structure thatcan achieve e�ciency, while remaining as simple as possible. A tetrahedralmesh is encoded as a set of vertices plus a set of tetrahedra. For each vertexv, only its coordinates and its �eld value are stored; in the case of curvilineardatasets, the coordinates of v are maintained both in computational and inphysical domain. For each tetrahedron �, four pointers to its vertices, andfour pointers to its adjacent tetrahedra are maintained.The relations among tetrahedra and points of V that are not vertices of �are maintained by means of a bucketing technique similar to that proposed in[59, 33] for dynamic triangulation in 2D: for each tetrahedron � we maintaina list of data points of V it contains; for the curvilinear case, containment isintended in computational domain. For every such point, also its accuracyvalues (error and warping) are stored; the vertices with the maximum errorand maximum warping are stored at the head of the list. This data structureis initialised by locating each point of V with respect to the tetrahedra of theinitial mesh �. Then, each time � is updated, all points that lie within themodi�ed volume are relocated with respect to the new tetrahedra generatedduring updating.Tetrahedra of � are stored in a priority queue that supports e�cientretrieval of tetrahedra maximising error and warping, hence evaluation ofE(�) and W (�), respectively. Such a query actually provides also the pointvmax corresponding to the maximum error or warping: therefore, point se-lection is obtained as a side e�ect of the test of accuracy.The procedure add vertex updates the tetrahedral mesh, while main-taining the whole data structure consistent. The on-line algorithm proposedin [57] updates the mesh at each vertex insertion by using a sequence of ac-tions called face ips. A face ip modi�es the mesh only locally: eachface ip replaces one, two, or three tetrahedra with four, three, or two newtetrahedra, respectively (see Figure 5.3).Beside modifying the mesh, we must also update the bucketing structure,and the priority queue after each face ip. The following operations mustbe performed:� eliminate from the priority queue all tetrahedra replaced by face ips;82



Figure 5.3: A tetrahedra split, due to a new vertex selection and insertionin the mesh (top image); the two classes of tetrahedra ip actions: the2 to 3 ip, which produces three cells out of two (center image); the 3 to 2ip, needed when the two tetrahedra present a non convex union (a), and athird cell (b) has to be included in the ip action.� relocate all data points that were contained inside such tetrahedrawith respect to the new tetrahedra;� insert the new tetrahedra into the priority queue.Relocation of points is simply done by scanning the lists of points at-tached to the \old" tetrahedra, and, for each point v in a list, deciding whichof the \new" tetrahedra contains v. Dynamic update of the priority queueis performed e�ciently by standard methods.A further remark is necessary, though, about the case of curvilineardatasets. During the initial stages of re�nement, mesh � might result ge-ometrically inconsistent because of the warping caused by lifting. Indeed,while mesh �c is a Delaunay tetrahedralization of the computational do-main, hence consistent, some tetrahedra might \ip over" during lifting,hence changing their orientation and causing geometric inconsistencies in �.See Figure 5.4 for a two-dimensional example. Consistency can be tested byverifying whether each tetrahedron maintains its orientation both in com-putational and in physical domain.We assign in�nite warping to each tetrahedron presenting an inconsistentlifting. In this way, inconsistent tetrahedra are re�ned �rst, and the meshrapidly converges to a consistent one.83
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cFigure 5.4: Inconsistency in curvilinear mesh (2D example): mesh �c isgeometrically consistent, while its lifted image � is not.Complexity The time complexity of the re�nement procedure is notcrucial to our application, as long as it remains within reasonable bounds,because the algorithm is applied o�-line to the volume dataset in order tobuild a multiresolution model (see Chapter 6). However, time analysis whenall the n points of V have to be inserted into � shows a bound of O(n3)in the worst case [19], while experiments show a subquadratic behaviour inpractice. On the other hand, the space occupancy of this algorithm is quitehigh, due to the need to maintain both a bucketing structure and a priorityqueue (see empirical evaluations in Section 5.5, Tables 5.1 and 5.2).5.3.1 Re�nement of large datasets by block-decompositionFor datasets having a regular structure (either in physical or in computa-tional domain) it is possible to bring the size of the structure into moremanageable bounds, by splitting the dataset into blocks, and running thealgorithm separately on each block. Assume, for instance, that a regular84



T1 T2Figure 5.5: Two adjacent blocks �1 and �2, and the coincident triangula-tions T1 and T2 of their common face.dataset of size m� n� p is given: we can subdivide it, e.g., into k3 blocksof size (m=k+1)� (n=k+1)� (p=k+1) and process them separately, withthe same threshold � in all cases. Then, the resulting meshes are joined toform a mesh of the whole domain.In order to warrant the correctness of such a procedure, we must be surethat the structure obtained by joining all results is a tetrahedralization ofthe whole domain. A similar approach is presented in the two dimensionalcase in [33]. This can be proved by showing that given two blocks sharinga common face, the re�nement algorithm will triangulate such a face in thesame way while re�ning each block (see Figure 5.5). Let �1 and �2 be themeshes of the two blocks, and let T1 and T2 be the triangulations of the facer common to both blocks in �1 and �2, respectively. We may assume that,upon suitable initialization of the meshes, T1 and T2 are initially coincident.Let us consider a generic step of the algorithm that re�nes �1: if the insertedvertex does not lie on r, the update change will not change either T1 or theerror/warping of data points lying on r; on the contrary, if the vertex insertedlies on r, it must be the point which maximizes error/warping among all datapoints lying on r. This means that the sequence of vertices re�ning T1 isindependent of the re�nement that occurs in the rest of �1. Since the samesituation occurs for the re�nement of �2, we can conclude that the samesequence of vertices will be selected for T2, hence the two triangulations fora given accuracy will be coincident. However it should be noted that theresult will not be the same that we would obtain by running the re�nementalgorithm on the whole dataset, since the resulting tetrahedralization mightnot be globally Delaunay: the Delaunay property is veri�ed only locally toeach block.
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5.4 A method based on decimationThe re�nement method described above is di�cult to adapt to the case ofnon-convex irregular datasets. Major di�culties arise in �nding an initialcoarse mesh to approximate the domain 
 and in the estimation of warping.Delaunay triangulation is not applicable to non-convex polyhedra; moreovereven if we have an approximation of the boundary of the starting domain�nding a tetrahedralization of this polyhedron, without adding new points,is an NP-complete problem [87].Experience in the approximation of non-convex surfaces through 2D tri-angular meshes suggests that a decimation technique might be more ap-propriate to the case of non-convex irregular datasets (see, for example,[89, 54, 18]). In the following, we describe an algorithm that extends suchheuristics to volume data: starting from the reference mesh �, vertices areiteratively discarded as long as it is possible. Given a threshold � for theaccuracy, the following decimation procedure is applied:procedure DECIMATION(V;�; �);� �;while � satis�es � dovmin  SELECT MIN VERTEX(V;�; �);� REMOVE VERTEX(�; vmin)end while ;return (�)end ;The two procedures select min vertex and remove vertex selectthe vertex to be removed and e�ectively remove it, respectively. They aresomehow more delicate than their respective counterparts in the re�nementapproach select max point and add vertex. In the following subsectionwe give some details about them.5.4.1 Selecting a vertex to be removedSelecting a vertex to be removed involves an estimation of the amount oferror and warping due to the removal: the criterion adopted is that thevertex causing the smallest increase in error/warping should be selected ateach iteration. An exact estimation of the change in error and warpingcan be obtained by simulating deletion of all vertices in the current mesh.This would be computationally expensive, since each vertex has 24 incidenttetrahedra on average. This may involve relocating many points lying insidesuch tetrahedra. We prefer to use heuristics to estimate apriori how a vertexremoval a�ects error and warping. Such an estimation is computed for allvertices before decimation starts, and it is updated for a vertex each time86
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Figure 5.6: Estimating the error due to the collapsing of v on w.one or more of its incident tetrahedra change.In order to estimate error increase, we pre-compute the �eld gradient rvat each vertex v of the reference model: this can be done by calculating theweighted average of gradients in all tetrahedra incident at v. The weightfor the contribution of a tetrahedron � is given by the solid angle of � atv. Then, for each vertex v in the mesh, we search the vertex w, amongthose adjacent to v, such that the di�erence �rv;w between rv and rw isminimum. Value �rv;w gives a rough estimate of how far from linear is the�eld in the neighbourhood of v: the smaller �rv;w, the smaller the expectederror increase if v is removed. Value �rv;w, and a pointer to w are storedtogether with v.Another estimation can be given by the local error introduced with thecollapsing of v on w. Let �w be the tetrahedron containing the removed ver-tex v after the collapsing. We note that �w is tetrahedron incident on v andcontaining the extension of the edge (v; w) on the v side. Once determined�w we evaluate the error as the di�erence between the �eld value on v andthe �eld obtained by interpolating inside �w on v position. Figure 5.6 showsthe tetrahedron �w before and after the edge collapsing operation and, as adashed line, the extension of the edge (v; w).Warping changes only if a vertex lying on the boundary of � is removed.Therefore, for each boundary vertex v, we estimate apriori warping increasecaused by removing v on the basis of the local geometry of the boundary of� in the neighbourhood of v. We adopt a criterion proposed in [89]; it isessentially based on the distance dv between v and a plane that best �ts allvertices lying around v on the boundary of � (see Figure 5.7): the smallerdv, the smaller the expected warping increase if v is removed. Therefore, dvis stored together with v.Vertices of � are maintained in a priority queue supporting e�cient se-lection. In this framework, the selection criterion adopted in procedureselect min vertex is symmetrical to the one used in the re�nement algo-rithm: we select the vertex of � which is expected to produce the smallest87



Figure 5.7: An apriori estimate of warping increase caused by removinga boundary vertex v is obtained by measuring the distance of v from anaverage plane �tting its adjacent vertices on the boundary of �.increase in either warping or error, depending on whether W (�)=E(�) islarger or smaller than �=".5.4.2 Removing a vertexOnce a vertex v has been selected, we need to tetrahedralize the polyhedronresulting from the elimination of all the tetrahedra incident on v. Unfortu-nately the removal of this vertex from the mesh is not always possible: thisdi�culty is related to the fact that it may be not possible to tetrahedralizea non-convex polyhedron. Since deciding whether this is possible or notis NP-complete, we use heuristics to try to remove a vertex by collapsingone of its incident edges to its other endpoint. Given a vertex v, we tryto remove it by collapsing the edge e that joins v to vertex w having thesmallest di�erence �rv;w from v in its surface normal; recall that w hadbeen selected while estimating the cost of removing v in terms of error.Edge collapse is a simple operation: all tetrahedra incident at e are deleted,while all other tetrahedra that have a vertex at v are modi�ed by movingsuch a vertex at w. All adjacencies are updated accordingly: if two tetrahe-dra �1 and �2 were both adjacent to a tetrahedron �0 that is deleted, then�1 and �2 become mutually adjacent (see Figure 5.8a for an example in 2D).In order to be correct a collapse must pass some topological and geo-metric consistency tests. We desire that the edge collapse operation doesnot topologically modify our complex, that is that it neither it change itsgenus neither it introduce some not 3-manifold. A collapse is topologicallyconsistent if the following conditions are satis�ed:
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baFigure 5.8: Edge collapse in 2D: (a) a valid collapse; (b) an inconsistentcollapse.� if v and w are boundary vertices then the edge (v; w) is a boundaryedge;� if v and w are boundary vertices then for each boundary vertex iadjacent to both v and w, the face (w; v; i) exists and is a boundaryfacet.� if v and w are boundary vertices then the complex formed by all theboundary facets reachable through adjacency from v and w has atleast 5 vertices.Geometric consistency of the mesh may be violated if some tetrahedron\ips over", i.e., it changes its orientation, because of edge collapsing (seeFigure 5.8b for an example in 2D). Consistency can be tested simply bychecking the orientation of each tetrahedron incident at v before and aftercollapse. If collapse is impossible, then no mesh update occurs and v is tem-porary tagged as non-removable, by setting its error and warping estimateat in�nity. In this way, a di�erent vertex will be selected at the next cycle.After a successful edge collapse, a precise evaluation of the current accu-racy must be obtained. As in the re�nement method, we adopt a bucketingstructure to maintain the relations between tetrahedra and data points theycontain. Updating this structure involves only the portion of mesh coveredby the \old" tetrahedra that were adjacent to v. All removed points (in-cluding v) that belong to such a volume are relocated with respect to the\new" tetrahedra. Note that, if v is a boundary vertex, some points mayfall outside the mesh: such points (including v) are assigned to tetrahedraby considering their projections on the \new" boundary faces of the mesh(see Figure 5.9). Changes in accuracy are computed for each point on thebasis of its new location. Finally, the apriori estimate of error and warp-ing increase is recomputed for each vertex that was adjacent to v, and thepriority queue is updated accordingly.
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ΣFigure 5.9: Points that fall outside the mesh are assigned to tetrahedra byprojecting them on the boundary faces.Complexity. The complexity of this algorithm can be calculated as fol-lows. The vertex collapse operation has a cost depending on the number ofincident tetrahedra on v, that can be, in the worst case, O(n) where n is thenumber of vertices of the mesh. Similarly, the vertex relocation operationin the bucketing structure, needed for the error evaluation, can cost O(n).The resulting overall worst case complexity of the decimation algorithm istherefore O(n2).5.5 Experimental ResultsThe performance of the re�nement based simpli�cation algorithm were eval-uated on four datasets, representative of the two classes of regular and non-convex curvilinear datasets. The implementation of the decimation basedalgorithm was still under development at the time of writing. Datasets com-monly used in the volume rendering �eld were chosen in order to facilitatecomparisons with other proposals:� BluntFin, a 40� 32� 32 curvilinear dataset, was built by running auid-ow simulation of an air ow over a blunt �n and a plate1;� Post, a 38� 76� 38 curvilinear dataset which represents the result ofa numerical study of a 3D incompressible ow around multiple posts;1Both BluntFin and Post are produced and distributed by NASA{Ames Research Cen-ter.
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� SOD, a subset 32�32�32 (not a subsampling) of a regular rectilineardataset which represents the electron density map of an enzyme2;� BuckyBall, a 128�128�128 regular rectilinear dataset which repre-sents the electron density around a molecule of C60. Some experimentsare presented on either 32 � 32 � 32 or 64 � 64 � 64 subsampling ofsuch a dataset3.Tables 5.1 and 5.2 shows results of the simpli�cation of curvilinear and regu-lar datasets, respectively. Each table reports: computation times required tore�ne the whole model, maximal RAM space occupancy during constructionand some information on a number of approximated meshes extracted fromit. The accuracy of each approximation is measured as follows: warping is apercentage of the length of the diagonal of a minimum axis-aligned boundingbox containing the dataset, while error is a percentage of the range spannedby data values. Times are CPU seconds on a SGI Indigo workstation (MIPSR4000).The graph of Figure 5.10 shows the number of vertices of the meshthrough re�nement, depicted as a function of approximation error. Notehow rapidly the size of the mesh decreases when the error increase. Theseresults give a quantitative estimate of the advantage of using approximatedrepresentation of volume datasets.Figure 5.11 shows the spatial distribution of sites of the BluntFin dataset,compared with the spatial distribution of vertices of an approximated modelat accuracy � = (2:%; 2:%)As it can be noted the experiments presented in Table 5.2 for the Buck-yBall dataset were run on a subsampling, because of limitations in theavailable RAM. A multiresolution model of the whole dataset, and of twosubsampled datasets, were also obtained by using the block-decompositionre�nement described in Section 5.3.1. Results are presented in Table 5.3.By adopting this method we can overcome the intrinsic RAM limitations ofa speci�c platform, because for any dataset we can always have a partitionsuch that the re�nement of each block becomes a tractable problem withthe available resources.In particular, we can compare the results obtained for the 323 subsam-pled dataset re�ned as a whole (lower part of Table 5.2) and re�ned as 64independent blocks (upper part of Table 5.3). Note that, with the blockdecomposition re�nement, total computation time decreases from 1,318 sec.to 532 sec., while we have only a small increase in the number of vertices2SOD was produced by D. McRee, Scripps Clinic, La Jolla (CA), and kindly distributedby the University of North Carolina at Chapel Hill.3BuckyBall is available courtesy of AVS International Center.
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Curvilinear Datasets no. tetra. no. vertices % of verticesBluntFin (40x32x32) 40,960Construction Time: 1,704 sec. RAM = 35,300 Kb� �4.0%, " �4.0% 20,324 3,612 8 %� �3.0%, " �3.0% 30,116 5,296 12 %� �2.0%, " �2.0% 47,189 8,263 20 %� �1.0%, " �1.0% 80,883 14,162 34 %� �0.5%, " �0.5% 111,251 19,620 47 %� �0.2%, " �0.2% 152,927 27,351 66 %� �0.1%, " �0.1% 182,660 32,945 80 %� �0.0%, " �0.0% 222,528 40,960 100 %Post (38x76x38) 109,744Construction Time: 7,794 sec. RAM = 95,240 Kb� �4.0%, " �4.0% 47,691 8,282 7 %� �3.0%, " �3.0% 76,893 13,177 12 %� �2.0%, " �2.0% 121,181 20,773 18 %� �1.0%, " �1.0% 193,971 33,681 30 %� �0.5%, " �0.5% 277,822 48,418 44 %� �0.2%, " �0.2% 395,299 69,568 63 %� �0.1%, " �0.1% 490,337 87,085 79 %� �0.0%, " �0.0% 609,245 109,744 100%Table 5.1: Measures on multiresolution models built from curvilineardatasets
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Figure 5.10: Number of points in the simplicialmodel expressed as a functionof the approximation error.
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Regular Datasets no. tetra. no. vertices % of verticesSOD (32x32x32) 32,768Construction Time: 1,491 sec. RAM = 45,134 KbLevels of Detail:" =4.0 (%) 11,485 2,094 6 %" =3.0 (%) 17,178 3,082 9 %" =2.0 (%) 28,521 5,026 15 %" =1.0 (%) 59,718 10,443 31 %" =0.5 (%) 91,963 16,269 49 %" =0.2 (%) 95,314 16,825 51 %" =0.1 (%) 95,349 16,831 51 %" =0. (%) 95,349 16,831 51 %BuckyBall (32x32x32) 32,768Construction Time: 1,318 sec. RAM = 25,860 Kb" =4.0 (%) 42,468 7,125 21 %" =3.0 (%) 51,490 8,680 26 %" =2.0 (%) 63,649 10,808 32 %" =1.0 (%) 83,667 14,372 48 %" =0.5 (%) 104,113 18,090 55 %" =0.2 (%) 130,152 22,982 70 %" =0.1 (%) 150,249 26,854 81 %" =0. (%) 176,687 32,768 100 %Table 5.2: Measures on multiresolution models built on two regular datasets.

Figure 5.11: Distribution of vertices of the BluntFin dataset: originaldataset (40,960 sites) on the left, approximated mesh with � � 2% and" � 2% (8,263 sites) on the right.
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necessary to achieve a given accuracy. Such an increase is due to the spatialconstraints introduced by the block boundaries.Note also how the performance of data simpli�cation, in terms of dataneeded to achieve a given accuracy, improves with the resolution of the inputdataset. If we consider, for example, the LoD meshes at accuracy 1.0 % fromthe 323, 643 and 1283 multiresolution models of BuckyBall, the percentageof sites needed to build each approximated mesh decreases respectively from45.2% to 22.1% down to 6.8% of the total number of sites of the dataset. Inabsolute values, the ratio between the 1283 and the 323 datasets is 64:1 atfull resolution, while it decreases to 10:1 at accuracy 1.0%.5.5.1 Rendering features evaluationFigure 7.6 on page 137 presents visual results related to isosurface and directvolume rendering of three representations of the BluntFin dataset. Theimages at the top refer to the mesh at full resolution, the images in themiddle refer to an approximated mesh at accuracy � = (1:0%; 1:0%), whilethe images at the bottom refer to an approximated mesh at accuracy � =(4:0%; 4:0%).Numerical results regarding the size of the meshes of the extracted iso-surfaces, as well as times for Direct Volume Rendering, are summarized inTable 5.4. The images provide evidence that the image degradation is al-most inperceptable when passing from full accuracy to � = (1:0%; 1:0%)accuracy, while it is still small at � = (4:0%; 4:0%). On the contrary theoutput sizes (and times) are considerably reduced.The visualization results obtained, which are essentially based on theconcept of data simpli�cation, can be also compared with results obtainedwith approximation methods based on graphics output simpli�cation. In thecase of isosurface rendering, the size and number of the facets extractedfrom a simpli�ed mesh depend essentially on the variation of the �eld func-tion (namely, few large facets are �tted on subvolumes where the gradient isconstant or nearly constant). On the other hand, a geometry-based simpli-�cation of an isosurface extracted from the mesh at full resolution wouldbe driven by isosurface curvature ([89, 54]). An obvious computationaladvantage of the approach based on data simpli�cation is that the moststrenuous part is made in a preprocessing stage (i.e., when the simpli�edor multiresolution model is built), while standard simpli�cation approachesare implemented as a post-processing phase, therefore reducing throughputin interactive applications.Moreover, standard geometry-based methods may produce anomalies ifthe surface has variations in curvature which are small in size, but reectsigni�cant variations of the �eld (e.g., a sinusoidal function, having ampli-
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no. tetra. no. sites % of sitesBuckyBall (32x32x32) 32,768Levels of Detail:" =4.0 (%) 43.929 7,426 22.6 %" =3.0 (%) 53,025 8,974 27.3 %" =2.0 (%) 65,409 11,133 33.9 %" =1.0 (%) 86,130 14,839 45.2 %" =0.5 (%) 106,695 18,584 56.7 %" =0.2 (%) 131,967 23,340 71.2 %" =0.1 (%) 151,345 27,073 86.6 %" =0.0 (%) 176,641 32,768 100 %BuckyBall (64x64x64) 262,144Levels of Detail:" =4.0 (%) 105,422 17,164 6.5 %" =3.0 (%) 140,183 22,833 8.7 %" =2.0 (%) 203,885 33,202 12.6 %" =1.0 (%) 353,652 58,014 22.1 %" =0.5 (%) 522,764 86,633 33.0 %" =0.2 (%) 749,259 125,711 47.9 %" =0.1 (%) 954,551 161,378 61.5 %" =0.0 (%) 1,483,742 262,144 100 %BuckyBall (128x128x128) 2,097,152Levels of Detail:" =4.0 (%) 178,138 28,272 1.3 %" =3.0 (%) 257,390 41,262 1.9 %" =2.0 (%) 424,283 67,878 3.2 %" =1.0 (%) 897,994 143,936 6.8 %" =0.5 (%) 1,672,207 269,195 12.8 %" =0.2 (%) 3,301,742 537,843 25.6 %" =0.1 (%) 4,748,306 780,509 37.2 %" =0.0 (%) 12,152,055 2,097,151 100 %Table 5.3: Tetrahedralization of the BuckyBall dataset using the block-decomposition re�nement: 1283 dataset is the original one, while 643 and323 datasets are obtained by subsampling. Decompositions: 323 dividedinto 64 blocks of size 83; 643 divided into 64 blocks of size 163; 1283 isdivided into 512 blocks of size 163.Accuracy no. vertices no. tetra no. iso. triangles DVR time(0.0%,0.0%) 40,960 222,528 19,499 44.1(1.0%,1.0%) 14,162 80,883 9,143 16.1(4.0%,4.0%) 3,612 20,324 3,442 3.9Table 5.4: Isosurface rendering (with threshold value 1.244), and directvolume rendering of the Blunt�n dataset at di�erent accuracies shown inFigure 7.6 on page 137. Times are in seconds on an SGI Indigo XS24 R4000.
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tude lower than the simpli�cation threshold), and, even worse than this,intersections between surfaces at di�erent isovalues may occur because ofsimpli�cation. These problems do not arise with methods based on datasimpli�cation.In a recent paper [24], we have extensively compared the performanceof the standard projected tetrahedra (PT) algorithm applied to a simpli�edmesh, to the performance of approximated versions of the PT algorithm[112] applied to a mesh at full resolution. Experiments provided evidencethat images with visual degradations similar to those obtained using the ap-proximated PT are produced using highly simpli�ed datasets, thus achievingmuch shorter processing times (about �ve times shorter).The large di�erence in speedups is due to the fact that standard approx-imated PT techniques only act on the pure rendering phase, thus achievinga reduction in overall time of up to a maximum of 50%. On the contrary,the speedup in overall time achieved by using a data simpli�cation approachis linearly proportional to the simpli�cation operated on data (this meansthat not only pure rendering is a�ected, but depth sorting, cell classi�cationand splitting as well).
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Chapter 6Tetrahedral MultiresolutionModelsA collection of simpli�ed models can be managed in a single uni�ed frameworkadopting a multiresolution representation; in this way the resolution and the sizeof the dataset can be adapted to the user's need. We show how these methodspermit the compact representation of many di�erent approximations of the dataset.Multiresolution allows, for example, the use of low resolution models for interactivephases or the extraction of variable resolution representations according to viewingparameters and/or to the user speci�cation of a particular region of interest.The iterative application of a simpli�cation technique with di�erent ap-proximation parameters produces a collection of representations at di�erentaccuracies. A data structure that holds a constant (and usually small) num-ber of di�erent representations of the dataset, with various accuracies, iscalled a representation at di�erent levels of detail (LoD). LoD representa-tions of surfaces are widely used in a number of important applications(e.g., virtual reality based on VRML). An evolution of a LoD representationis a multiresolution representation, which supports (with the greatest exi-biltity) the compact storage of a numberm (usually large) of representationsat di�erent levels of detail, where m is a monotonic function of the size ofthe input dataset (i.e., the more data, the more representations). Multires-olution or LoD can greatly improve the e�ciency of data rendering, e.g.,through suitable progressive visualization algorithms. The multiresolutionapproach improves over the LoD one with valuable characteristics:� The user or the application have much more exibility in selecting the\best" level of detail, depending on their speci�c needs in terms ofaccuracy, memory, and time performance: in many cases, it is better97



to leave that choice at run time, instead to force it in the preprocessing.� Multiresolution schemes may be more compact in space than an LoDone, since they encode in a single structure a large number of di�erentrepresentations.� Multiresolution representations can permit extracting models in whichthe resolution varies over the domain of the dataset; in this way theuser, or the visualization system itself, may choose to render/managewith the highest detail only some parts of the dataset, for example theones chosen by the user or the most important ones.The chapter is organized as follows: in Section 6.1 we survey other approachto the multiresolution management of tetrahedral datasets; then in Section6.2 we introduce a simple technique oriented towards the management of alarge collection of levels of detail with a compact data structure; in Section6.3 we adopt the Multiresolution Simplicial Model (MSM), introduced byDe Floriani et al [34], as a uni�ed framework to model multiresolution. InSection 6.3.3 we specialize this model for the handling of volume datasetsdescribing how to extract variable resolution models. In Section 6.4 weface the problem of extracting a variable resolution model together with theface-adjacency topology and we propose an original data structure for themanagement of a MSM based on the concept of a MSM as a complex in ahigher dimension.6.1 Related WorkWhile many di�erent approaches have been proposed for the multiresolu-tion management of surfaces, (see, e.g., [32] for a survey), the multiresolu-tion volume data management is still in a developing stage. Some of theproposed multiresolution models, like methods based on wavelets [104, 75]or on Multi-Dimensional Trees [109], work only on regular volume datasets.Following our tetrahedral framework we focus our interest on techniques formultiresolution management of tetrahedral meshes.In [12] De Floriani et al. proposes the use of hierarchical simplicial com-plexes as a model for the multiresolution representation of a volume scalar�eld. This model is based on the recursive re�nement of a tetrahedral com-plex: a tetrahedron � of the complex can be re�ned by replacing it withtetrahedralization �� whose domain cover �. The recursive application ofthis re�nement process results in a hierarchy of tetrahedralizations. Algo-rithms for extracting models with a given accuracy or directly extractingisosurfaces from a hierarchical tetrahedral complex are presented.
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Zhou, Chen and Kaufman have recently presented a multiresolutionframework, called MultiTetra [118] for regular datasets based on tetrahedralsubdivision. This is a 3D extension of the Lindstrom's subdivision strategy[67] for regular two-dimensional grids. The MultiTetra model is built bythe recursive subdivision of tetrahedra along an edge; the starting model isa tetrahedralized cube. The subdivision process follows a regular patternso the authors can represent all the resulting multiresolution model as abinary tree (each tetrahedron is always subdivided in two along an edge)whose leaves represents the tetrahedral cells at a given resolution. Usingthis approach the authors are able to support e�cent extraction of variableresolution models and store the multiresolution model in a very compactway.A multiresolutionmodel for simplicial complexes, called Progressive Sim-plicial Complex (PSC) has been proposed by Popovic and Hoppe [81], asan extension of the Progressive Meshes (PM) model [54]. The PM modelsare based on the simpli�cation of a mesh with a sequence of edge-collapsetransformations, this sequence of operations is encoded in the PM structure.Given a PM, a mesh can be reconstructed by applying, in the right order,a series of vertex-split transformations (the reverse of edge-collapse). ThePSC codi�es in a similar manner the sequence of more general edge-collapsetransformations. It should be noted that while the PSC are quite general,they has been conceived for the management of 2D surfaces rather than sim-plicial complexes, so the conditions of legality of a sequence of vertex-splitoperation of a generic complex are not speci�ed.A comprehensive multiresolutionmodel for simplicial complexes has beenintroduced in [34]. This framework is the one we have chosen and is describedin detail in Section 6.3.6.2 The Historical Model for MultiresolutionEach one of the algorithms described in the Chapter 5 can be regarded asproducing an \historical" sequence of tetrahedra, namely all the tetrahedrathat appear in the current mesh � during its construction. Based on suchan observation, we have extended in [21] to the three-dimensional case asimple idea to manage multiresolution, which we proposed in [27] in thetwo-dimensional case, for the multiresolution representation of terrains. Avery similar approach has been independently described in [13] for the man-agement of pyramidal simplicial complexes and called Sequence of List ofSimplices (SLS). This structure encodes a simplicial complex represented bya collection (a pyramid) of complexes with di�erent accuracies and coveringthe same domain. The main idea of the SLS is the same of the historical
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model (giving to each cell a accuracy interval), but the objectives are di�er-ent: we need just a compact way of storing and retrieving a large number ofLOD's, while SLS's are a powerful tool that permits also to solve interferencequeries.The structure presented here, though it does not support sophisticatedfeatures like variable resolution extraction, it is well suitable to store, in acompact way, a large number of di�erent levels of details. It can be e�ectivelyused, for example, in visualization systems where the choice of the size ofthe level of detail depends both on user needs and hardware characteristicsand therefore it cannot be de�ned apriori.The main idea of the historical approach is that each tetrahedron ofthe sequence is marked with two accuracies �b and �d, called birth anddeath accuracy, and corresponding to the worst and best accuracy of a meshcontaining it, respectively. The intuitive meaning of the names refers tothe fact that, adopting a re�nement strategy of simpli�cation �b and �dare the accuracies of the mesh when � appears and disappears respectively.Tetrahedra belonging to the �nal mesh are assigned a death of (0; 0). Thetwo birth/death values are swapped in case the historical sequence is builtby a decimation strategy.For each site in the dataset, we store its coordinates and �eld value, whilefor each tetrahedron in the historical sequence, we store its vertex indexesand the birth and death accuracies. Space occupancy obviously depends onlyon the number of sites and on the number of tetrahedra in the historicalsequence.Querying the model Given a query accuracy �, the mesh at accuracy� will be formed by all the tetrahedra that are �-alive, i.e., such that �d �� � �b. Based on this fact, we use �b and �d as �lters to retrieve tetrahedrathat either form a given mesh, or cover a given range of accuracies, from thehistorical sequence. Such a �lter can also be combined with a spatial �lterto perform windowing operations, i.e., to retrieve only tetrahedra belongingto a given query region.The query time can be optimalized by using an interval tree [38, 83]. Inour case, the interval tree consists of a binary search tree with O(h) nodes,where h is the total number of accuracies spanned by the multiresolutionmodel: each leaf corresponds to an accuracy, and leaves are sorted in orderof increasing accuracy. Each internal node n has a discriminant value �nassociated with, and two sorted lists of tetrahedra �n-alive are appended ton, sorted according to their birth and death accuracies, respectively. Withsuch a data structure, a mesh of k tetrahedra can be retrieved in optimaltime �(log h+ k). Note that this data structure is more expensive than the
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previous one, since every tetrahedron appears in two lists, and the wholestructure must be maintained in the main memory, in order to achieve atrue speedup with respect to the data structure described in the previousparagraph.A data structure for sequential �les. If the multiresolution modelmust be maintained in a sequential �le, tetrahedra forming the historicalsequence can be simply saved into the �le in the order they appear duringthe re�nement (in the inverse order if the model is built through decimation).In this case, the sequence of tetrahedra belonging to a model at a givenresolution � is obtained by sequentially scanning the �le, and selecting tetra-hedra according to their birth and death accuracies: only tetrahedra thatare �-alive are accepted, and the search stops as soon as a tetrahedron hav-ing a birth accuracy better than � is found. This search may take a timelinear in the total number of tetrahedra of the model in the worst case.6.2.1 Transmitting the model through the networkIf a multiresolution model must be transferred from a server to a client overthe network, it is important to compress information further.Conciseness can be achieved by avoiding the explicit transmission of tetra-hedra forming the historical sequence, but providing an implicit encodingthat allows the client to make the structure explicit e�ciently. To this aim,we directly extend techniques recently proposed for surface simpli�cation[62, 54].If the model is built through a re�nement strategy, by exploiting theproperties of Delaunay tetrahedralizations, we can transmit only the ver-tices of the �nal mesh � in the order they were inserted during re�nement(i.e., in the order we store them on �le). For each vertex, we send to theclient its coordinates, its �eld value, and the accuracy of the mesh just af-ter its insertion. This allows the client to reconstruct the whole historicalsequence in the right order, by applying a procedure for on-line Delaunaytetrahedralization [57] while vertices are received. Note that this is a taskmuch cheaper than rebuilding the model from the initial dataset, since theselection of vertices now comes free from the sequence. Moreover, the on-lineconstruction performed by the client directly results in a progressive repre-sentation (and, possibly, rendering) of the mesh at the highest resolution.If the model is built adopting a decimation strategy, a similar techniquemay be adopted, following Hoppe [54]. In this case, the coarsest mesh istransmitted explicitly, while the remaining vertices are listed in inverse or-der of decimation (i.e., in the order we store them in the �le). For eachvertex, we send to the client its coordinates, its �eld value, the accuracy of101



the mesh just before its deletion, and the vertex it was collapsed on. Thislast information permits us to perform a vertex-split operation that invertsthe edge-collapse performed by the decimation algorithm [54]. Therefore,the client can generate the whole historical sequence in the right order, byusing a sequence of vertex splits. Similarly to the previous case, mesh recon-struction is performed by the client e�ciently, and progressive transmissionand rendering are supported. Note that, in this case, operations performedby the client at each vertex split are much simpler than those required bya Delaunay procedure, but, on the other hand, the amount of informationtransmitted is slightly larger.In both cases, we transmit only the list of vertices (with for each vertexits coordinates, �eld value, and birth accuracy). The size of data transmittedcan be further reduced by using geometric compression [35].6.3 A Framework for MultiresolutionThe multiresolution model presented in the previous section presents somelimitations, the most important one is its inability of extracting models withvarying resolution. In this section we introduce the framework of multires-olution simplicial models (MSM) introduced by De Floriani, Puppo andMagillo [34] as a multidimensional extension of the two dimensional struc-ture described by Puppo in [84].In this framework we will propose in Section 6.4 an original data struc-ture to manage a MSM together with all the face-adjacency topologicalinformation. This structure, called Hyper Simplicial Complex (HySC), cod-i�es a MSM in IEd through its embedding as complex in IEd+1.6.3.1 De�nitionsLet S be a �nite set. A partial order on S is a antisymmetric and transitiverelation < on its elements. A pair (S;<) is called a partially ordered set(poset). For every s; s0 2 S with s <0 s we mean that s < s0 and 6 9s00 suchthat s < s00 < s0. A subset S0 � S is called a lower set if 8s0 2 S0; s <s0 ) s 2 S0. Intuitively S0 is a lower set if it contains all the elementsthat precede each of its elements. The algebraic structure of a poset (S;<)can be described by a DAG, where nodes represent elements of S and arcsencode the <0 relation. For any s 2 S the set Ss = fs0 2 Sjs0 � sg is thesmallest lower set containing s and it is called the down-closure of s. Thesub-closure of s is de�ned as S�s = Ssnfsg.We call any �nite set of d-simplexes in IEn a d-set; a regular d-simplicialcomplex � is completely characterized by the collection of its d-simplexesi.e. by the d-set associated with �. 102



When managing a collection of representation of the same complex atdi�erent resolutions, as done in the previous section, we need a measureof the error we commit. With �(�) we denote a function � : � ! [0; 1]measuring this error, �(0) means exact representation. With �(�) we denotethe maximum error among all the tetrahedra of �: max�2� �(�).Operators: interference and combination We de�ne two operatorson d-sets: the interference operator 
 and the combination operator �.Both operators take two d-sets as arguments and produce a d-set. Theinterference operator of two d-sets is de�ned as:�i 
 �j = f� 2 �ij9�0 2 �j; i(�) \ �0 6= ;gIn other words, the interfernce of two d-sets �i;�j is the set of the simplexesof �i that have a proper intersection with some simplexes of �j.The combination operator of two d-set is de�ned as:�i � �j = �in(�i 
 �j) [�jIn other words, the combination of two d sets �i;�j is the set of the simplexesof that can be obtained by adding to �j the simplexes of �i not inteferingwith �j.If �i � �j is a d-simplicial complex and �(�i � �j) = �(�i) [�(�j),then the complex �j it is said to be compatible over �i.Let [�0; : : : ;�k] be a sequence of d-complexes. the combination �ki=0�kis de�ned as:� if k = 0 then �0i=0�k = �0� if k > 1 then �ki=0�k = (�k�1i=0�k)� �k6.3.2 Multiresolution Simplicial ModelA Multiresolution Simplicial Model (MSM) on 
 is a poset (S; <), whereS = f�0; : : : ;�hg is a set of d-complexes and < is a partial order on Ssatisfying the following conditions:1. �(�0) = 
,2. 8i; j = 0::h; i 6= j;,(a) �i <0 �j ) �i 
 �j 6= ;(b) �i 
 �j 6= ; ) �i is in relation with �j
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Figure 6.1: The DAG describing a simple two-dimensional MSM.3. the sequence [�0; : : : ;�h] of all complexes of S de�nes a consistentorder w.r.t. relation < and [�0; : : : ;�h] is a compatible sequence.The meaning of the second condition becomes clearer if we consider theDAG encoding relation <0 for the set S:� if two complexes �i and �j are connected by an arc, they are interfer-ing;� if two complexes �i and �j interfere then they are connected througa path.The elements of S are called components or fragments; intuitively the frag-ments describe a portion of the domain 
 at a certain resolution. For exam-ple, if we think to an iterative re�nement procedure on a simplicial mesh,the set of simplexes, derived from the substitution of a complex with a morere�ned one, can be considered as a fragment that is combined over the ex-isting complex. Combining a lower set of S give us a complete descriptionof 
 at various resolutions.The following properties holds for MSM's:Lemma 1. �0 is unique minimum element of (S; <).
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In other words �0 is the starting coarsest complex. Given any sub-set S 0 � S the total order of its elements consistent with the sequence[�0; : : : ;�h] is called the default order of S 0.Lemma 2. The default order of any lower set S 0 � S is a consistent order.Lemma 3. In a MSM (S; <), the combination of a lower set S 0 � S isindependent of the speci�c consistent order.Since the combination obtained from any consistent order is unique, itwill simply called the combination of S 0 and denoted with �S. Let �i bea component of (S; <); the combination of the subclosure S�� is called thesupport of �i; the set of the simplices of the support that are interferingwith �i, (�S�� )
 �iis called the oor of �i.The following de�nitions permit us to consider a particular class ofMSM's where the order relations provide control over the size in terms ofnumber of simplexes. A MSM (S; <) is increasing if and only if for everypair of lower sets S 0;S 00 holds: (S 0 � S 00 ) j � S 0j < j � S 00j. Similarly isde�ned the concept of decreasing MSM; an increasing or decreasing MSM issaid monotone. In other words a MSM is increasing (decreasing) if and onlyif the size of each fragment is larger (smaller) than the size of its oor.In Figure 6.1 is shown a simple multiresolution simplicial model for thetwo dimensional case; the arrows in the �gure correspond to the relation<0. The fragments of a MSM can be used to build di�erent triangulationsof the domain 
 through the paste operator. The intuitive meaning of the< relation is of dependence between the pasting of the fragments: if we usea fragment �i in a triangulation then all the fragments �j < �i must alsobe used.In Figure 6.2 is shown the triangulation resulting from the pasting/combi-nation of a subset S 0 of fragments in a consistent order �0;�2;�3;�4;�7;note that any other consistent order of pasting of S 0 (like �0;�3;�2;�4;�7)builds the same triangulations.Topological Information The topological information of a MSM, whichencodes the adjacency, boundary and coboundary relations among the sim-plexes of the model, can be distincted in local topology and global topology;local topology is concerned with topological relations between simplexeswithin the same component, while global topology considers relations be-tween simplexes not necessarily belonging to the same component. In thenext subsections we will describe the standard data structure for MSM thatdoes not codify any topological information and in section 6.4 we will intro-duce the Hyper Simplicial Complexes, an original data structure for man-taining the global topology in a MSM.105
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Figure 6.2: A subset S 0 � S combined in a consistent order builds a trian-gulation6.3.3 MSM for Volume VisualizationEach algorithm described in Chapter 5 can be used to build a MSM. Both adecimation or a re�nement algorithm for simplifying a tetrahedral complexcan be regarded as producing an \historical" sequence of tetrahedra, namelyall tetrahedra that appear in the current mesh � during its construction.An historical sequence can be also viewed as the sequence of all subdivisionsof the whole domain that are obtained through changes, or as an initial sub-division plus a sequence of fragments reecting the local changes iterativelydone to the mesh, i.e. subdivisions of portions of the domain, which canbe partially overlapping and are pasted one above the other to update theexisting structure.For example, if we follow the re�nement heuristics, the minimum of theposet is the starting coarse triangulation; when we insert a new point vi inthe complex the new tetrahedra that are built form a new fragment �i; theoor of this fragment is constituted by the tetrahedra that were destroyedby the insertion of vi.Following the MSM all these fragments, represented by a 3-simplicialcomplex covering a small part of the whole domain 
, are arranged in aposet where the order relation between fragments is dependent on their
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interferences in 3D space. The minimum fragment �0, the coarsest repre-sentation of our mesh, has an empty oor. Similarly all the triangles onthe top of S, representing the dataset at its full resolution, have no upperfragments.In the next subsections we will describe how to e�ectively manage aMSM for tetrahedral complexes, describing the data structure that we needand an algorithm for the extraction of a variable resolution model. The algo-rithms and data structures here presented are a straightforward extension totetrahedral complexes of the one presented in [30, 84]. They are needed foran easier introduction and for a comparision with our structure, the hypersimplicial complexes, that we present in Section 6.4.6.3.4 A data structure for encoding a tetrahedral MSMIn this section we describe the data stuctures presented in [30] to encode aMSM for the speci�c case of tetrahedral complexes. We need to maintainthe set of all the vertices of S, the set of all tetrahedra �S , the set of allfragments S, and for each tetrahedron, the reference to the vertices formingit and its accuracy. To codify the <0 relation we note that each tetrahedron� is referenced by two fragments:� the fragment �i containing � and called lower fragment;� the fragment containing � in its oor, called upper fragment.We also note that, for each fragment, we need to recover the tetrahedracomposing �i and the oor of �i. Expliciting all these needs, our datastructure will contain:� a vector V containing the coordinates of all the vertices in S;� a vector T containing all the tetrahedra description;� a vector F containing the description of all the fragments;Each element of vector T describes a single tetrahedron � and contains theindexes of the vertices of � in V, the accuracy �(�) and two pointers tothe lower and upper fragments. Each element of vector F describes a singlefragment �i and contains a vector with the pointers to the tetrahedra com-posing �i and another vector with the pointers to tetrahedra composing theoor of �i.With this data structure it is possible to implement the following oper-ations with a complexity that is linear in the size of the output:� Floor(�i): returns the tetrahedra forming the oor of �i,107



� Lower(�),Upper(�): return the lower and upper fragment of �, respec-tively.6.3.5 Extracting a variable resolution modelWe suppose that our MSM is monotone, to extract a variable resolutionmodel we need a boolean acceptance function c(�) in order to decide, for agiven tetrahedron, if its accuracy is su�cient or if we need to further re�nethat part of the domain. The choice of an acceptance function suitable forVolume Visualization will be the topic of Section 6.5. The algorithm to builda variable resolution model is shown in �gure 6.3; it tries to incrementallybuild the desired solution by adding new fragments to the current solution.The algorithm is based on a breadth-�rst traversal of the DAG representingthe MSM. The traversal starts from the coarsest fragment �0, root of theDAG, and fragments above the current solution are progressively traversedand marked. The current solution is maintained as a list of tetrahedra�Out. For each fragment � that we encounter in the traversal of the tree,the following two loops are executed:� we search for fragments before �, still not visited and, if found, theyare added to the traversal queue Q. All the fragments before � can befound by checking, for each tetrahedron � 2 �, if the correspondinglower fragment Lower(�), has been marked.� for each tetrahedron � 2 �, if it satis�es the acceptance functionc(�) then � is added to the current solution, else we add the upperfragment of � to the traversal queue Q and mark it to be removedfrom the solution.The correctness of this algorithm has been proved in [31].6.4 Hyper Simplicial ComplexThough the MSM represents a valid framework for the modeling of multires-olution, the data structure presented in the previous Section cannot manageglobal topology, that is the (d-1)-face adjacency relation between simplexes.In other words the extracted models are just a collection of simplexes, inour case tetrahedra, without explicit representation of adjacency betweentetrahedra. The adjacency relations can be very useful in many situationsin Volume Visualization, for example to exploit locality in isosurface ex-traction (cfr. Section 2.2.1) or to use a topological sort for Direct VolumeRendering (cfr. Section 3.2).
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procedure EXTRACT(S; c();�Out);local var Q: queue;local var �, �2 : Fragment;local var � : tetrahedron;� = Least(S)Mark(�)Add(Q,�)while Q 6= ;� = First(Q)foreach � 2 Floor(�) check if we have visited all fragments before �Mark(�)�2=Lower(�);if �2 6= ; and not Marked(�2)Mark(�2)Add(Q,�2)foreach � 2 �if c(�)thenAdd(sigma;�Out)else�2=upper(�);Mark(�); tetrahedron t is not goodMark(�2);Add(�2; Q)foreach � 2 �Out Remove marked tetrahedra from solutionif Marked(�) then Remove(�;�Out)end ;Figure 6.3: The algorithm for extracting a variable resolution tetrahedralcomplex in the MSM framework.
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In this Section we will follow the Hypertriangulation (HyT) approach tointerpret a MSM with all the face-adjacency information as a complex inIEd+1. We proposed this approach in two dimension [27, 28] to manage therepresentation of discrete topographic surfaces at variable resolution. Themain idea of HyT consists in the interpretation the model containing allthe triangles of a historical sequence of a simpli�cation as a cell complexembedded in 3D space. Intuitively, we look at the simpli�cation process asa sequence of local modi�cations in which we substitute a subset of triangleswith a (possibly) larger one covering the same domain and sharing the sameboundary: we store all these modi�cations by sewing the patch formed bythe new triangles over the old ones.In Figure 6.4 we show this process for a pair of re�nement operations:by sewing the patch of new triangles over the existing mesh we codify themultiresolution model as a cell complex in 3D.Following the terminology introduced in Sections 6.3 and 6.3.3 for MSM's,we can give the following interpretation of a hypertriangulation:� the upper part of each patch encodes a fragment �i of a MSM;� the lower part of each patch, formed by the triangles covered by thepatch, is the oor of �i.� the <0 relation of MSM corresponds to the concept of above betweena patch/fragment �i and the patches under �i.The main idea of the HyT is that the < relation can be encoded by the topol-ogy itself. It can be showed that, if we do not permit unconnected fragments,i.e. each fragment is a single connected component, any two-dimensionalMSM can be codi�ed by a hypertriangulations: the third condition of thede�nition of MSM guarantees that the sewing is always possible, infact theexistence of a compatible sequence [�0; : : : ;�k] means that all the partialpastings of a fragment over the previous ones gives a simplicial complex, sothe boundary of a fragment and its oor must coincide.In the case of the fragments made by more than one single connectedcomponent the case MSM express stronger constraint for dependences be-tween fragments. Let �i1;�i2 be the two connected components of a singlefragment, with oor �Fi1;�Fi2; in HySC we model this situation as the sewingof �i1 and �i2 over �Fi1 and �Fi2, respectively. The < relation is implicitlystored in the topology of the HySC, so we have codi�ed �Fi1 < �i1 and�Fi2 < �i2 but not, for example, �Fi1 < �i2. We think that such constraintsare not very frequent or useful.
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yFigure 6.4: We can codify a fragment �i and its oor �j as the sewing ofthe patch made with triangles of �i over its oor �j .6.4.1 Managing HyT and HySCThe HyperTriangulation approach can be extended to the most general ofmultiresolution simplicial complexes in IEd building what we call a HyperSimplicial Complex (HySC). For sake of clarity we will continue to showexamples only in two dimensions. When managing a HyT we are interestedin e�ciently traverseing the two-dimensional skeleton of a particular classof a complex. Here we de�ne some traversal operation to navigate a HyTand their direct extention to HySC. In the next subsection we will show howto e�ciently implement the operations for extracting a variable resolutionmodel from a MSM using the HySC as underlying structure. In this way wewill be able to extract also all the face-adjacency topologic information forthe variable resolution model.As shown in �gure 6.4, when sewing a fragment over an existing meshthe sewed edges share more than two facets; in the general case it means thatthe (d-1)-facets on the boundary of the new fragment are shared by morethan two d-simplexes. Given the structure of the complex representing aHyT we can imagine to subdivide all the facets incident on a single edgein two groups, namely those formed by the faces whose projection on theoriginal space of the complex (the xy plane of �gure 6.4) lie on the left or onthe right of the projection of the edge. The same subdivision can be done inhigher dimensions, partitioning the d-simplexes using the hyperplane passingthrough the common (d-1)-face. After this partitioning all the facets lyingon one side of a given edge can be linked and ordered together accordingtheir accuracy. 111
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Figure 6.6: The result of the Other function.struct SimplexFace{Vertex *v;SimplexFace *Other;SimplexFace *Next;SimplexFace *Up;SimplexFace *Down;} This structure can be codi�ed in a more compact manner using the datastructure called Packed Facet-Edge (PFE) that we have proposed in [23] forthe two dimensional case of HyT: instead of having a single facet-edge foreach edge-face pair, the PFE representation encodes into a single record allthe facet-edges incident on a given oriented edge from one of its sides. Thispacking strategy can be applied also to our SimplexFace structure.6.4.2 MSM operation with HySCThe �rst observation is that in HySC there is not an explicit representation offragments, but all the information that we need can be easily reconstructedfrom any simplex belonging to it, so we can use one of the simplexes thatbelong to Lower(�) to represent the fragment �. The functions Lower,Upper and Floor presented in previous sections must be adapted as followsin order to manage simplexes in HySC, instead of fragments.� Lower(�): we can retrieve all the simplexes belonging to the samefragment of � by visiting, through face adjacencies, all the simplexesthat can be reached through faces f such that Down(�; f) = ;;� Upper(�): we move, through adjacencies, until a simplex with Up(�; f) 6=; is found, and then we move up.
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� F loor(�): we can retrieve all the simplices belonging to the oor, byreaching the boundary of our patch, moving down and visiting all thesimplexes Up(�; f) = ;;The �rst and last functions return a set of simplexes, the second one returnsa simplex representant of a fragment. The algorithm presented in �gure 6.3can therefore be modi�ed as shown in Figure 6.7 in order to extract froma HySC H a variable resolution model. The main idea is to represent eachfragment � with one of the simplexes that belong to Lower(�). For thisreason we keep in our stack just a set of simplexes, when we extract one ofthem we can think we have extracted the fragment having it in Lower(�).We must pay a little of attention with the marking strategy: we distinguishtwo kind of marking for simplexes: the �rst, called MarkV, to denote that wehave already visited the fragment represented by �, the second one, calledMarkE, to denote that � cannot be part of the solution. This distinctionbetween marks is due to the fact that we have no way of explicitly markinga fragment. In the presented code we denote with �f ; �0f the simplexes thatare interpeted as representant of fragments. When marking a simplex �frepresentant of fragment � we must pay attention to mark all the simplexesin Lower(�).The correctness of this algorithm strictly depends on the correctness ofthe Lower, Upper and Floor functions, because the main structure of thisalgorithm is the one for general MSM.It can be noted that the cumulative time spent in traversing the HySCfor executing the Floor, Lower, Upper functions during a variable resolutionextraction is linear with the number of simplexes of the visited fragments.Infact the Floor operation, whose cost is linear in the number of returnedsimplexes, is applied at most once for each fragment, similarly the Loweroperation, is executed at most twice for each simplex. The most complicatedpart of the analysis regards the Upper function. It could seem that the searchfor the boundary of the oor, needed to retrieve a representant of the upperfragment, could be done once for each simplex belonging to the oor of theupper fragment; this can be simply avoided by marking (with a third mark!)the simplexes traversed in this search and abort the search returning nothingwhen we encounter a marked simplex. Infact if we found a marked simplexit means that we have already executed an Upper operation on the simplexbeloging to that oor of a fragment � and therefore we have already insertedthat fragment into Q.Once we have collected all the simplexes of our variable resolution com-plex, it is easy to reconstruct the face-adjacency topology using the HySC;for each simplex �, if simplex �0 such that (�0; f) = Other(�; f) belongs tothe solution (i.e. is not marked) we can link � and �0 together through face
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procedure EXTRACT(HySC H; c();�Out);local var Q: queue;local var �; �0; �f ; �0f ; : tetrahedron;� = Least(H)foreach � 2 �MarkV(�)choose a tetrahedron � 2 �Add(Q,�)while Q 6= ;�f = First(Q)foreach � 2 Floor(�f ) check if we have visited all fragments before �MarkE(�)if not MarkedV(�)Add(Q, �)foreach �0 2 Lower(�)MarkV(�0)foreach � 2 Lower(�f )if c(�)thenAdd(�;�Out)else�0f=Upper(�);MarkE(�); tetrahedron t is not goodMarkV(�0f );Add(�0f ; Q)foreach � 2 �Out Remove marked tetrahedra from solutionif MarkedE(�) then Remove(�;�Out)end ;Figure 6.7: The algorithm for extracting a variable resolution tetrahedralcomplex in the HySC framework.
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f ; otherwise we search for the �rst simplex �00 such that (�00; f) = Up�(�0; f),where Up�() is the iterative application of the Up operator.In [23] we have also described an algorithm for extracting a variableresolution model form a 2D HySC that works with a completely di�erentstrategy: instead of traversing bottom-up the MSM we walk orthogonalyover the domain of the complex incrementally building the variable reso-lution model. Although its worst case computational complexity is higherthan the algorithms here presented, it shows good empirical perfomances.6.5 Acceptance Functions for Variable ResolutionIn the previous section we have shown how to manage multiresolution tetra-hedral models and discussed how to extract models where the representationerror is not constant. In this section we show how e�ectively use multiresolu-tion in Volume Visualization, why variable resolution models are importantand what kind of acceptance function we can use to de�ne our variableresolution model.The de�nition of an acceptance function implies the de�nition of whatshould be considered important. We can identify two di�erent strategies forconsidering a portion of the domain more or less important:� range based: the user, or the system itself, considers more importanta particular range of the domain of the �eld value;� space based: the user, or the system itself, consider more importanta particular portion of the spatial domain of the dataset.Range Based Acceptance Function In this case the user speci�es avalue or a range of values and the dataset is extracted with varying res-olution: the highest resolution is reserved to the portions of the domaincontaining the desired values. In the case of volume rendering if the Discon-tinuous Transfer Functions (DTF) introduced in section 4.3 are used, thisde�nition can be implicitly done by the user; the important values are theones where DTF has a C0 discontinuity; moreover we can assign the lowestimportance to the values of the �eld that are mapped by the DTF in colorswith a high transparency. These regions have a minimal contribution to the�nal image.If we link the acceptance function to the DTF, the varying resolutionmodel of the dataset must be modi�ed each time we change the DTF, so amultiresolution model that suppors e�cient updating of the current model-
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Figure 6.8: The MagicSphere tool used to specify a high resolution area onan isosurface on the SOD dataset.has to be used. The MSM and their implementations based on the HySCsupport this feature.Space Based Acceptance Functions In addition to the range basedmethods, we should also allow the user to specify a region of interest wherehe want the higher resolution. To perform this kind of speci�cation inter-actively we have proposed 3D widget called MagicSphere [25]. This tool,that is an extension of the ToolGlassTM paradigm [14] is presented as atransparent or wireframe sphere whose position and size in 3D space areinteractively controlled by the user. The center of the MagicSphere speci-�es the center of the region of interest where the user want the dataset atthe highest resolution, and the its radius specify how quickly the resolutionmust decrease. The MagicSphere tool is shown in Figure 6.8; the isosurfaceinside the MagicSphere has a higher resolution. Note that the cracks on theboundary of the MagicSphere are due to the lackness, at implementationtime (1994) of a multiresolution model able to extract a variable resolutionrepresentation of the dataset.
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6.6 ConclusionsIn this chapter we discussed the use of multiresolution models in tetrahedralvolume visualization. In the framework of the Multiresolution SimplicialModel we have introduced the original concept of Hyper Simplicial Com-plex (HySC) that codi�es a MSM in IEd as a simplicial complex in IEd+1.This approach permits us to de�ne data structures and algorithm for themanagement of the global topology of a MSM. In particular we have pro-posed an algorithm for the extraction of a variable resolution model froma HySC with the full face-adjacency topological relations. We think thatthe HySC interpretation still needs further work, in particular we think togive better proofs of correctness and worst-case complexity analysis of thepresented algorithms; we will also investigate on the de�nition of algorithmsfor answering spatial interference queries using HySC.In the last section we have given some details on the e�ective use of mul-tiresolution, and in particular on the use of variable resolution representationin volume visualization.The implementation of the presented Multiresolution techniques is stillin an early stage of development. We think to complete this work andcompare the implementation with other multiresolution techniques.
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Chapter 7Concluding RemarksIn this Thesis we have proposed the use of simplicial complexes as a frame-work for representing the geometric structure generated by the modelingstep of the visualization process (cfr. Chapter 2). In particular we have fo-cused our attention on the three-dimensional case by providing techniques,strategies and algorithms for the visualization modeling and rendering of vol-umetric scalar datasets represented by tetrahedral complexes. In summary,we can outline the main contributions of this work as follows:� An original intepretation of the SciViz process as a two-step mappingproblem: a modeling step in which data are mapped into geometrieswith visual attributes, and a rendering step where geometries are trans-formed into images (Section 2.1).� The optimal solution to problem of the search of the cells crossed by anisosurface by the use of the interval tree data structure (Section 2.2.1).� A new technique for sorting a complex belonging to the projectiveclass. The approach is based on the preprocessing construction of thelifted complex and on its representation as a power diagram (Chap-ter 3).� A run-time splitting technique for the decomposition of projectedtetrahedra along isosurfaces; this technique is based on a tabular ap-proach, is very e�cient and allows the correct integration of DVR andisosurface (Section 4.2).� The introduction of the concept of Discontinuous Transfer Function(DTF) which uni�es the management of isosurfaces, interval volumesand direct volme rendering (Section 4.3). The problem of correctlyrendering a DTF has been also addressed, by exploiting the splittingtechnique descrbed in Section 4.2.119



� Two algorithms for the simpli�cation of volume datasets representedby tetrahedral meshes with accurate control of the introduced error(Chapter 5). The two algorithm are based on the re�nement anddecimation strategies, respectively.� Hyper Simplicial Complexes (HySC), an original interpretation of aMultiresolution Simplicial Complex in IEd as a complex in IEd+1 (Sec-tion 6.4); a data structure for HySC and an algorithm for extractinga variable resolution representation from a HySC have been also pre-sented.Some of the ideas here presented were integrated into a tetrahedral volumevisualization system called TAn (TetrahedraAnalyzer) available in the pub-lic domain1. We are now developing the 2.0 version of our system that willinclude all the solution here presented.In spite of the intensive research done on volume visualization and, inparticular, on simplicial volume visualization, some issues still need furtherinvestigation. Now we sketch some of the areas in which we want to continueour work.Power Diagram Sorting We think that the sorting approach proposed inChapter 3 needs some more work in order to improve its practical relevance.In particular the lifting problem should have a solution better than the onewe presented in order to be applied on common datasets. We are workingin two directions to solve this problem. There is some evidence that wecan substitute the Simplex algorithm with a specialized algorithm like thenetwork simplex. The pivot operations of the simplex algorithm can beinterpreted in terms of geometric modi�cations on the original simplicialcomplex. Another approach can be the de�nition of heuristic algorithmsthat build a lifted complex by lifting one vertex after the other, by checkingthe convexity of the resulting complex only locally.Moreover the Power Diagram sorting approach also suggest a strategyfor the management of non-projective, and perhaps cyclic, complexes. Weplan to investigate into heuristics which transform a partially-convex liftedcomplex, resulting for example by the failure of the simplex algorithm, intoa convex one. Such a process can be performed by adding new points ontothe non-convex (d-1)-facets of the partially lifted complex, splitting themand trying again to lift the new complex.1SGI executables of the TAn system are freely downloadable on our websitehttp://miles.cnuce.cnr.it/cg/swOnTheWeb.html.
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Tetrahedral Mesh Simpli�cation The implementation of the decima-tion algorithm, proposed in Chapter 5, is still under developement at writingtime. We think that better strategies for evaluating the future error resultingfrom a vertex removal could be suggested from the result of this implemen-tation.The memory requirements of these algorithms can be very high, so weare planning to design a decimation algorithm working on very large meshesby applying windowing strategies to advance (and decimate) only a portionof the dataset at a time, while mantaining the mesh correctness.Multiresolution Models We plan to implement and compare the twomultiresolution models for tetrahedral complexes described in Chapter 6.One of the two multiresolution models will be integrated in the new releaseof the TAn visualization system. We will use the MagicSphere tool forspecifying space-based focus areas and Discontinuous Transfer Functionsfor range-based focus vaules in order to extract variable-resolution modelswhich �t the user needs.The memory requirements for multiresolution models are generally veryhigh, therefore we are also interested in studying the use of I/O optimaltechniques and data structures (like the Bu�er Tree [5]) for the managementof the multiresolution model on secondary memory.Using these techniques we hope to succeed in e�ciently mantaining onlythe low resolution part of the multiresolution model in main memory, andaccessing to multiresolution model stored on the secondary memory only forthe high resolution parts of the speci�ed by the focus area.Flow Visualization Our thesis dealt only with scalar �eld visualization,but many applications manage and require the visualization of vectorialdata. The inclusion of this kind of data in simpli�cation algorithms andmultiresolution model is straightforward: it is su�cient to change the errorevaluation functions.An interesting problem is the de�nition of algorithms for the constructionof streamlines working on multiresolution models, using for example variableresolution models where the resolution follows the turbolence of the ow.We are also investigating the possibility of including some visualizationtechnique, like illuminated �eld lines [96] in the next release of TAn.Tetrahedron as a Graphics Primitive Finally, we wonder if the stateof Volume Visualization is stable enough to include volume primitives intographics systems, either software libraries and toolkits or hardware subsys-tems. In the case of regular volume datasets, this has been recently made
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possible by a slight modi�cation of the graphics subsystems. The adoptionof new rendering approaches, based on hardware texture mapping and trilin-ear interpolation, produced impressive speedups to voxel-based applications(e.g. medical imaging). Will it be possible in the near future to have a hard-ware support for the e�cient rendering of tetrahedral volume primitives andits inclusion in standard graphics library?
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Figure 7.1: Tetrahedral direct volume rendering approaches (Section 2.3).
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Figure 7.2: Trivial Integration of DVR and Isosurfaces (left) and the correctone (right). See Chapter 4.

Figure 7.3: A zoomed in portion of the comparision between trivial integra-tion of DVR and Isosurfaces (left) and the correct one (right)
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Figure 7.4: DTF rendering: without splitting on C0 discontinuities (left)and using our approach (right). The DTF is shown in the lower part of the�gure. See Section 4.3.

Figure 7.5: A zoomed in portion of the DTF rendering of �gure 7.4. On theleft the approximate rendering and on the right the correct one.
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Figure 7.6: Isosurface visualization and direct volume rendering of theBluntFin dataset simpli�ed with the re�nement approach. The datasetis shown at three di�erent resolutions, from top to bottom: (�; ") =(0; 0),(�; ") = (1:0%; 1:0%) and (�; ") = (4:0%; 4:0%). See Section 5.Accuracy no. vertices no. tetra no. iso. triangles DVR time(0.0%,0.0%) 40,960 222,528 19,499 44.1(1.0%,1.0%) 14,162 80,883 9,143 16.1(4.0%,4.0%) 3,612 20,324 3,442 3.9Figure 7.7: Numerical values for isosurface (thr.= 1.244), and direct volumerenderings of Figure 7.6. Times are in seconds on an SGI Indigo R4000.
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