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Abstract

The main objective of the thesis is the development of a complete and efficient set of
solutions for the Scientific Visualization (SciViz), the computer science field which deals
with the study, design and implementation of algorithms and data structures for the
visualization of scientific data. We propose the adoption of the simplicial complexes as
the unifying geometric structure and we show how the choice of this structure as kernel
geometric primitive is effective both for the theoretical and practical aspects of SciViz.

The contents of the thesis can be summarized as follows. We interpret the diversified
SciViz process as a two-steps mapping problem: a modeling step, in which data are
mapped into geometry with visual attributes, and a rendering step where geometry and
visual attributes are transformed into images. As unifying geometric structure for the
modeling step we propose the adoption of the simplicial complexes. To validate our
approach we define new algorithms and data structures for the SciViz problems, based on
the use of the simplicial complex as basic geometric representation scheme. In particular
the thesis supplies original solutions and results to the following problems:

1. Visualization of scalar volume datasets: optimizing techniques for the extraction of
isosurface and for the direct volume rendering;

2. Depth sorting of simplicial complexes (a fundamental topic for the efficient and
correct use of direct volume rendering based on projective techniques);

3. Integration of isosurface extraction techniques and direct volume rendering tech-
niques. Definition of the concept of discontinuous transfer functions;

4. Simplification of the geometric complexity of simplicial complexes (in order to speed
up the visualization process) while minimizing the introduced error;

5. Multiresolution representation schemes for simplicial complexes. These schemes
permit both the visualization of complexes at different levels of details and the
visualization of a single complex in which different parts are at different resolution.



Contents

1 Introduction
1.1 Problem Statement and Data Classification . . . . ... ...
1.1.1 Imput Data . . .. ... .. ... ... ... ...
1.1.2 Data Sources . . . ... . .. . ... ...
1.1.3 Data Reduction Techniques . . . . . . ... ... ...
1.2 Simplicial Complexes as a basis for Scientific Visualization . .
1.3 Data modeling based on Simplicial Complexes . . . . . ...
1.3.1 Digital Hypersurface Models . . . . . ... ... ...
1.4 Outline of the Thesis . . . . . . ... .. ... ... ......

2 Tetrahedral Volume Visualization

2.1 Modeling vs. Rendering in Volume Visualization . . . .. ..
2.2 Isosurface Fitting . . . . . .. .. ... L 0oL
2.2.1 Purging non-activecells . . . . . ... ... ... ...
2.2.2  Selecting Cells by Using Interval Trees . . . . . . . ..
2.2.3 Rendering Transparent Isosurfaces . . ... ... ...

2.3 Direct Volume Rendering . . . . . ... ... ... ......
2.3.1 Volume shading models . . . . . ... ... ......
State of the art of volume density optical models . . .

232 RayTracing . . . . .. . ... ... ... oL,
233 ScanlLine . . . .. .. ... Lo
2.3.4 Tetrahedra Projection . . . ... ... ... ......
Approximated Projection Technique . . . . .. .. ..

Splatting techniques . . . . . . ... ... L.

23,5 Conclusions . . . . .. ..o

3 Depth sorting a Tetrahedral Complex
3.1 Definitions . . . . . . . ..o
3.1.1 Projective Complexes . . . . ... .. ... ......
3.1.2 Power diagrams . . . . . . .. ...
3.2 Related Work . . . . . .. ... .o oo

16
17
19
20
23
27
29
29
30
32
33
35
37
37
38



3.2.1 Depth Sorting Algorithms . . . . . . . ... ... ...
3.2.2 Final considerations on sorting tetrahedral complexes
3.3 Power Diagram Sorting . . . ... ... ... ... ...
3.3.1 Power diagrams and convex polyhedra . . . . . . . ..
3.3.2 Bounded and Unbounded Convex Polyhedra . . . . .
3.3.3 Sorting a simplicial complex . . . . . . ... ... ...
3.3.4 Lifting a tetrahedral complex . . . . . ... ... ...
3.4 Conclusions . . . . ... ...

Integrating DVR and Isosurfaces

4.1 Integrating a Single Isosurface with DVR . . . .. ... ...
4.1.1 Splitting a Tetrahedron . . . . . . ... ... ... ..
4.1.2  Sorting the decomposition . . . . . . . ... ... ...

4.2 Multiple Isosurfaces . . . . . ... .. ...
421 Depthsorting . . . ... ... ... ... ... ...
4.2.2 Building the table . . . . . . ... ..o
4.2.3 Experimental Results . . . . ... ... ... .....

4.3 Discontinuous Transfer Functions . . . . . .. ... ... ...
43.1 DTF Rendering . . . . .. ... ... ... .......
4.3.2 Experimental Results . . . ... ... ... ......

44 Conclusions . . . . . .. .. L L

Size Reduction of Tetrahedral Meshes

5.1 Related Work . . . . . . . ... ... ...

5.2 Approximated meshes . . . . .. ... ... ... ... . ...
5.2.1 Building an approximated model . . . . . . ... ...

5.3 A method based on refinement . . . ... ... ... .....
5.3.1 Refinement of large datasets by block-decomposition .

5.4 A method based on decimation . . . ... ... ........
5.4.1 Selecting a vertex to be removed . . . .. . ... ...
5.4.2 Removingavertex . . .. .. ... ... .. ... ..

5.5 Experimental Results. . . . . . ... ... ... ........
5.5.1 Rendering features evaluation . . . . . ... ... ...

Tetrahedral Multiresolution Models

6.1 Related Work . . . . . . . .. . ... ... .

6.2 The Historical Model for Multiresolution . . . . . . .. . ...
6.2.1 Transmitting the model through the network . . . . .

6.3 A Framework for Multiresolution . . . . . . . ... ... ...
6.3.1 Definitions . . . . .. ... . oo
6.3.2 Multiresolution Simplicial Model . . . . . . .. . ...
6.3.3 MSM for Volume Visualization . . . ... .. ... ..

47
48
48
49
ol
53
o4

57
58
99
60
61
63
65
66
67
70
73
73

74
75
76
80
81
84
86
86
88
90
94



6.3.4 A data structure for encoding a tetrahedral MSM . . . 107

6.3.5 Extracting a variable resolution model . . . . . . . .. 108

6.4 Hyper Simplicial Complex . . . . . . . .. .. ... ... ... 108
6.4.1 Managing HyT and HySC . . . . . .. ... ... ... 111

6.4.2 MSM operation with HySC . . . . .. ... ... ... 113

6.5 Acceptance Functions for Variable Resolution . . . . . . . .. 116
6.6 Conclusions . . . . . ... Lo 118

7 Concluding Remarks 119



Aknowledgements

I wish to thank my advisors Leila De Floriani and Claudio Montani for
their invaluable help. Moreover, a special thank to Roberto Scopigno for the
many productive suggestions and discussions. I wish also to thank Enrico
Puppo for the collaboration in the development of the multiresolution mod-
els. A particular word of aknowledgment goes to the many students that
contributed to the coding of the ideas here presented: Giuseppe Lai, Clau-
dio Rocchini, Raffaele Dell’ Aversana, Andrea Ciampalini, Davide Costanza,
Paola Marino, Pierluigi Sbaiz, Marco Servettini, Donatella Sarti.

My final thanks go to my wife Gabriella, whose patience and encourage-
ment in preparing this thesis made it possible for me to finish the task.



Chapter 1

Introduction

Due to the availability of high resolution monitoring systems, complex sim-
ulation models, and powerful graphics devices, the use of visualization tech-
niques for the analysis and understanding of natural phenomena is becoming
increasingly important in a wide range of research and application fields.
The term Scientific Visualization (SciViz) describes the field of computer
science which deals with the study and definition of algorithms and data
structures for the visualization of scientific data. SciViz aims at helping
the comprehension of natural phenomena, promoting the decision making
process and supporting a better analysis of large amounts of experimental
and simulated data.

Though a lot of terms, techniques or data structures used in SciViz
have been borrowed from Computer Graphics, there is a deep conceptual
difference between the two disciplines: the goal of Computer Graphics is to
reproduce a well-known phenomenon or scene with high realism. the goal
of SciViz, is the comprehension of a phenomenon or a process through its
visualization. Moreover, input data in Computer Graphics are well defined
descriptions of scenes; the objects to be rendered are represented in some
analytic or geometric form. Data in SciViz do not provide for the formal
specification of objects: the investigated phenomenon is described by means
of a large n-dimensional cloud of data in a scalar, vectorial or tensorial form.

Unfortunately, as often occurs in new research fields, SciViz is far from
being a well-founded topic of computer science. Most of the existing tech-
niques have been developed to solve specific problems and, generally, they
depend on the nature of the data they deal with; the bibliography is wide
but almost unstructured.

Overcoming these limitations and giving to the SciViz field a more con-
sistent fundation are the main objectives of this thesis. To get this ambitious
result we propose:



e An original intepretation of the diversified SciViz process as a two-
step mapping problem: a modeling step in which data are mapped
into geometries with visual attributes, and a rendering step where
geometries are transformed into images. This interpretation permits us
to break up complex problems into more precisely definite components
and to compare different solutions in an uniform way.

e The adoption of an unifying geometric structure for the SciViz prob-
lems: the simplicial complex. We will show how the choice of the
simplicial complex as kernel geometric primitive is effective both for
the theoretical and practical aspects of SciViz.

e The definition of new algorithms and data structures (or the re-writing
of existing ones) for the SciViz, based on the use of the simplicial
complex as a basic geometric representation scheme. Our goal is not
to propose an efficient solution for a specific SciViz problem: our goal
is to define algorithms and data structures which permit to efficiently
solve classes of problems in the complex and multivarious visualization
process.

Simplicial complexes do not represent a new concept in computer science:
triangulations in Computational Geometry, unstructured grids in finite el-
ements, triangular irregular network in Geographical Information Systems,
simplicial complexes in Algebraic Topology are just some examples of the
use of this structure in different research fields. It seems quite natural to
use this geometric structure systematically in the visualization process.

Moreover, simplicial complexes are dimension independent and this prop-
erty makes it possible their use as a basic general tool for data modeling [79]
and for the definition of multiresolution representation schemes [34]: algo-
rithms and data structures, which adopt them as kernel geometric structure,
can be easily adapted to any specific dimension.

We will focus our attention mainly to the three-dimensional case and
therefore we will adopt the tetrahedron as basic geometric primitive. This
choice does not represent a limitation to the applicability of the algorithm
and will certainly make the exposition more clear. Moreover, most of the
SciViz problems are three-dimensional problems: the definition of 3D algo-
rithms and data structures makes them immediately usable for real appli-
cations.

1.1 Problem Statement and Data Classification

A better understanding of the SciViz can be obtained by defining the data
it deals with. In this section we give some definitions and examples of the



data sources.

1.1.1 Input Data

Let us consider the data to be visualized as a function f, defined for a
finite set V of discrete points v; over a domain Q@ C I, (V, f) is generally
known as a dataset. No initial assumption on the range of the function f is
made. From a mathematical point of view, we can manage all the different
cases by means of hypersurfaces (i.e. functions f : RY — R), whereas
from a perceptual point of view, it is different to visualize d independent
scalar fields from visualizing a vectorial field. We classify the data in SciViz
according to their domain, range and structure.

Domain In most cases, data to be visualized are distributed in a domain
Q c EY with d < 3. The simplest case is the two-dimensional one: the
domain is a plane or a closed two-manifold [42]. Visualizing discrete three-
dimensional data is generally known as volume visualization [60]; the set of
points and their associated values are known as a volumetric dataset. The
cases in which the examined data are defined in IEY spaces, with d > 3, obvi-
ously require different visualization technniques [10, 11, 53]. Moreover, data
defined in IEY space and varying in time can be simply handled considering
the data as distributed in E%t! space.

Range For each point v; € Q a quantity f(v;) is given; this quantity can be
scalar, vectorial or tensorial; it must be noted that visualization techniques
are chosen according to the range of data. In fact visualizing a vector field in
3D is different from visualizing three independent scalar fields. This thesis
deals with scalar fields.

Topology and Geometric Structure Along with the data a structure
characterizing in some way the distribution of points v; is often given. This
characterization can be geometrical (i.e. all the points are distributed on
an deformed regular grid) and topological (i.e. there exists a structure that,
given a point v;, permits to retrieve the points of V' neighbor to v;.)

The topological structure can be implicitly defined; for example, if the
data point are distributed on three-dimensional regular grid it is easy to
find the neighbors of a given point. An other example of the topological
structure can be a simplicial complex having the points v; as vertices. If
such a topological structure does not exist it can be created. The existence
of such a structure is exploited in the visualization process.



In the case of a three dimensional domain, the following volumetric
dataset classifications are common:

e regular: data points are regularly distributed in E3 on a three dimen-
sional rectilinear grid;

e curvilinear: data points are distributed in a deformed (warped) three
dimensional grid;

e unstructured: data points have no “regular” geometric structure but
there is a topological structure;

e scattered: data points are scattered with no correlation between them.

In the case of regular and curvilinear datasets the geometric structure of
the dataset is implicitly defined; scattered datasets generally imply the cre-
ation of a topology by means of IE¢ triangulation techniques (for example
Delaunay triangulations).

The algorithms and data structures in the following chapters will address
mainly the case of three dimensional scalar data, even if most of the proposed
techniques are general and can be extended to higher dimensions.

1.1.2 Data Sources

Many research fields can create data for analysis in SciViz. In a lot of
sciences, non invasive inspection techniques provide sources of regular volu-
metric scalar datasets. Modern techniques of investigation [86] such as CAT,
MRI, PET can be used to produce volumetric datasets representing parts
of the human body.

Computational fluid dynamics, the study of flows and fluids, is a common
source of volumetric vectorial and tensorial datasets. Molecular modeling,
the study of new compounds, geosciences and the study of seismic structures
are other common sources of volumetric data.

Mathematics and the understanding of high dimensional relationships
are the most important sources of datasets with domains in E¢ with d > 3.
Another source of data to be visualized are terrains; their efficient visualiza-
tion plays a key role in flight simulators. Although terrain visualization is
not generally included in SciViz, it can be treated as one: terrain data can
be considered as scalar fields defined in a two dimensional domain (height
fields). A typical case in which the data are distributed over a closed two—
manifold is, for example, where data are distributed over a sphere (e.g.
ozone distribution). Although this problem could be solved by projecting
the data over a plane, visualization of the data over a sphere improves the
user’s understanding.



1.1.3 Data Reduction Techniques

Interactive visualization techniques greatly improve the comprehension of
three-dimensional structures. The spatial ambiguities, that may appear
from a single image of a three dimensional scene, immediately disappear
if the user is able to interactively rotate/translate the 3D scene. The pos-
sibility to interactively manage visualization is therefore a must, and this
imposes the availability of enormous computational resources. A common
technique to speed up rendering, beside the use of parallel hardware [73], is
to reduce the quantity of data to be visualized. Such a reduction process is
obviously aimed to limit the error introduced by the elimination of part of
the data. This technique is increasingly used in SciViz as well [64, 25, 19].

Most of the work in this field covers the simplification of two dimensional
surfaces, e.g. terrains or boundary representation of 3D objects [44, 32, 89,
18]. Some of the work in this field originated from the need of reducing the
spatial complexity of isosurfaces produced in visualizing large volumetric
datasets [89, 74].

Once we have models with different resolutions we must face the problem
of managing them. Multiresolution modeling has as objective to structure
models at different resolutions into a comprehensive framework that allows
data to be manipulated at different resolutions according to the needs of a
given application or task.

Data reduction techniques for tetrahedral complexes and multiresolution
models for SciViz will be addressed in Chapter 5 and 6, respectively.

1.2 Simplicial Complexes as a basis for Scientific
Visualization

In spite of a substantial progress in the last few years, the data structures
and algorithms developed for Scientific Visualization still suffers for poor
integration or generality. One of the goals of this thesis in the process of
standardization of this discipline is the proposal of adopting simplicial com-
plexes as the unifying kernel structure in the representation of geometrical
data. We justify this choice in the following both in terms of generality (by
showing how a number of different subproblems might be solved adopting a
simplicial representation) and of efficiency of the solutions designed.

Some of the characteristics suggesting us the adoption of simplicial com-
plexes as the kernel data representation structure in SciViz are briefly in-
troduced in the following:

e they are a structure suitable to model data in any dimension;



e it is possible to find simplicial decompositions of domains containing
scattered data points;

e they are a suitable basis for many interpolation techniques [43];
e data structure design is simplified;

e handling degenerated cases (i.e. coincident points in 3D space) is sim-
plified, because a simplex degenerates to a lower-dimension simplex;

e visualization algorithms are in general faster, integration of different
techniques is simpler and can be accelerated by adopting a multireso-
lution approach.

Among the positive aspects of the simplicial complexes we must highlight
their inherent dimensionality-independence: it allows simple interchange of
solutions between classes of problems embedded in spaces at different di-
mensionality (i.e. solving problems in E¢ space by extending solutions to
similar E%~! problems).

In the next sections we give some formal definitions and a more detailed
justification to our assertions, by showing how simplicial complexes might
be the unifying structure for a number of visualization problems in E? and
E3.

Common techniques for terrain or surface representation and rendering
adopt triangular facets as kernel elements. The graphics hardware available
nowadays on most of the workstations was designed identifying the “triangu-
lar mesh” as the basic primitive. While in the 2D case the use of triangular
meshes is now well estabilished, in the visualization of 3D data there is not
such a common approach. In the case of Volume Visualization there is a lot
of good reasons to use simplicial complexes (actually tetrahedral complexes):

e most cell complexes found in Volume Visualization are easily decom-
posable in a simplicial complex (even implicitly, in order to avoid the
growth of datasets);

e simplicial complexes can be easily rendered using various classes of
algorithms (e.g. ray-tracing, scan-line, or projective approaches);

e isosurface extraction from simplicial complexes avoids the ambiguities
that occur with hexahedral complexes;

e most of the rendering algorithms for irregular cell complexes are sim-
pler to be described and implemented on tetrahedral complexes;

e integration of different techniques is simpler and it can be accelerated
by adopting a multiresolution approach.

10



It should be noted that tetrahedral complexes in visualization are more and
more used; they are becoming a standard for the visualization of unstruc-
tured datasets; there are, for example, efficient and robust techniques [4] for
reducing various classes of datasets into tetrahedral complexes.

In this thesis we propose the tetrahedron as the volume rendering prim-
itive element in the same way as the triangle is the most common primitive
for surface rendering. It must be noted that this aim is much more than the
simple use of tetrahedral complexes for solving some problems in Volume
Visualization; the final goal should be the fundation of a complete set of
general purpose rendering techniques that are tetrahedron-centric, able to
manage all the classes of presented data and efficient enough to make their
practical use suitable.

Our approach to Volume Visualization based on tetrahedra could re-
semble the Kaufmann’s proposal for Volume Graphics [61] as a subfield of
Computer Graphics. In Kaufmann’s approach the base element is the voxel
and Volume Graphics is concerned with synthesis, manipulation and ren-
dering of 3D objects stored as volumes of voxels. Beside the different choice
of the basic element an all the advantages of using an adaptive, all purpose
structure, the strenght of our approach lies on the complete dimension inde-
pendence of the structure: simplicial complexes work in any dimension and
the same holds for the associated management techniques. For example, the
multiresolution techniques conceived for generic simplicial complexes (like
the ones described in Chapter 6) work for both terrains and volume data.

1.3 Data modeling based on Simplicial Complexes

In this Section, we formally introduce simplicial complexes, describing their
properties and how they can be used to represent volumetric scalar datasets.

Consider a set V = {vg,v1,...,v4} of d+ 1 linearly independent points
in the k-dimensional Euclidean space IE¥, with d < k. The subset ¢ of IEX,
formed by all points which can be expressed as linear convex combination of
the points of V, is called a d-simplez. The points of V' are called vertices of
o, while d is the order of . Any s-simplex &, 0 < s < d, which is generated
by a subset of s+ 1 vertices of o, is called an s-face of 0. If s < d, then £ is
called a proper face of o.

A collection ¥ of simplices is called a d-simplicial complex when the
following conditions hold:

e for each simplex o € 3, all the faces of o belong to 3;

e for each pair of simplices 0,7 € X, either c N7 = () or 6 N7 is a proper
face of both o and 7;
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e d is the maximum of the orders of the simplices belonging to 3 (d is
called the order of ¥).

The union of all s-simplices of 3, with 0 < s < d, regarded as a point set, is
called the domain of ¥, and denoted Q); any proper face of a simplex of ¥
is called a boundary face if it belongs to the boundary of 2, an internal face
otherwise.

In practice, d-simplices are used as building blocks to cover the domain.
Boundary faces form the boundary of the domain, while internal faces sepa-
rate such blocks from one another. If general polyhedra are used as building
blocks, instead of simplices, the previous concepts can be generalized to de-
fine a cell complex. We will not formalize this concept for the sake of brevity,
since in this work we just use simplicial complexes. Nevertheless, we wish to
point out that a cell complex is a very general structure that can be used to
formalize digital hypersurface models: such use will be informally discussed
in Section 1.3.1.

An advantage of simplicial complexes with respect to the more general
cell complexes can be found in the design of data representation schemes;
this is because:

e a d-simplicial complex . is fully characterized by its combinatorial
description plus the coordinates of its vertices;

e any simplex o implicitly defines all its faces;
e the number of k faces of a d-simplex is a constant;

e the combinatorial structure of 3 is completely characterized by the list
of its top simplices; if 3 is regular it is characterized by the list of its
d-simplicies.

A special class of d-simplicial complexes is the one of the Delaunay com-
plexes. A d-simplicial complex ¥ in 9 is called a Delaunay simplicial
complez if and only if it covers the convex hull of its vertices and the hyper-
sphere circumscribing each d-simplex of 3. does not contain any vertex of >
in its interior. For a given set V C IE? of n points (n > d 4 1), there exists
a unique Delaunay simplicial complex having V' as vertex set if and only if
there are no d 4+ 2 points of V' that are cospherical.

A Delaunay simplicial complex can be built on any set of vertices V', and
the shape of its simplices is the most regular among all possible simplicial
complexes built on V. Moreover, efficient algorithms have been proposed for
the construction of the Delaunay simplicial complex, given as set of vertices
vV [98].
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From the visualization point of view, a number of rendering algorithms
able to handle simplicial complexes exist. The use of simplicial decompo-
sitions to manipulate and render curvilinear dataset implies an increase in
the number of cells (at least 5 simplices for each hexahedral cell), but sim-
plifies problems caused by occasional degenerate cells (e.g., non-hexahedral
cells due to coincident sites) and cells with non-planar faces. Handling such
cases is generally more complex if a non-simplicial cell decomposition is
used. In fact, many visualization algorithms have been described with high
generality (i.e. they have been specified “on the paper” for general convex
cell complexes), but they have often been implemented only on simplicial
complexes.

In the following, we deal with 3-simplicial complexes in IE3, called also
tetrahedralizations.

1.3.1 Digital Hypersurface Models

A formal approach to volume dataset modeling, in order to express both
geometry and field values, is to embed the volume dataset in IE* and to
consider it as a four-dimensional hypersurface, defined piecewise over a de-
composition of the domain into cells.

Given a domain Q C IE3, and a function f : Q — IE, the hypersurface
corresponding to f over Qis ¥(2, f) = {(z,y, 2, f(z,y,2)) | (z,y,2) € Q}.
We call the pair M = (€, f) a mathematical hypersurface model. In practical
applications, function f will be known only at a finite set of points in the
domain Q. Let S = {s1,...,sy} be a finite subset of Q, at which f is
known, called a dataset. The pair Mg = (S, f|s) is called a sampled model
(of f). Here, we consider the problem of building a digital model on
approximating a given sampled model Mg with a certain precision.

It is hardly possible to describe a hypersurface v by means of a sin-
gle analytic function over the whole domain 2. A finite description can be
given by tessellating €2 into cells, such that i) can be described by a func-
tion over each of such cells. To this aim, we define a digital hypersurface
model as a special case of a mathematical hypersurface model, where func-
tion f is defined piecewise over a cell complex I', having a set of 3-cells
{71, y¥m}- Thus, a digital hypersurface model is a pair ¢ = (I", F'), where
F ={f1,fa,..., fm}, with m number of cells of ', such that each function f;
is defined over a 3-cell y; of I'. If f represents a continuous function, all f;’s
must have the same value on the common faces of adjacent cells, otherwise
suitable extensions of the f; on the proper faces of I' should be specified.

A simple example of digital hypersurface model is the well-known vozel
model. In this case, the dataset S is a grid of regularly spaced points in
IE3, and the cell complex is composed of cubes: each cube 7; is centered on

13



a datum s; and the function f; is constantly equal to f(s;) over ;. Such
a model represents all data in Mg exactly, and requires a number of cells
(voxels) equal to the cardinality of S. A similar case can also occur for tetra-
hedral complexes: many finite analysis simulation algorithms operating on
tetrahedral domains associate values directly to the cells, and not to their
vertices.

In the rest of our thesis we will use tetrahedral complexes to represent
volume data so we adopt the following hypersurface model; given a sampled
model Mg = (S, f|s), a Tetrahedral Hypersurface Model (THM) is a digital
hypersurface model ¢ = (X, F') having the following properties:

1. the set V of vertices of X is the set of sample points S}
2. X is a tetrahedralization of V;

3. all functions of F' are linear interpolants of f at the vertices of V: all
such functions are uniquely defined by the values of f on V', denoted
by f(V), and the hypersurface ¢ is continuous and piecewise linear.

It should be noted that the choice of linear interpolation function is moti-
vated by simplicity but higher order interpolation functions can be adopted
[117].

1.4 Outline of the Thesis

In Chapter 2 we state our interpretation of SciViz as a two-step mapping
problem: a modeling step where data are mapped into geometries with vi-
sual attributes, and a rendering step where geometries are transformed into
images. Following this interpretation we give a general survey of the main
techniques for visualizing a three-dimensional scalar field described with a
tetrahedral complex. Then we describe the state of the art and our contri-
butions in the field of isosurface extraction and direct volume render of a
tetrahedral dataset.

Direct volume rendering (DVR) requires efficient depth sorting of the
geometric primitive thus in Chapter 3 we describe in detail the problem
of depth sorting a tetrahedral complex and we introduce a new technique
for sorting complexes which belong to the class of projective complexes.
The approach is based on the preliminary construction of the lifted complex
corresponding to the given one and on its representation as a power diagram.
This approach exhibits a O(nlogn) runtime complexity to sort a complex
and require only linear storage

14



Isosurface extraction and DVR are, for many aspects complementary
techniques: they give to user different kind of information. In Chapter 4,
we present an original solution to correctly integrate, using projective tech-
niques, isosurfaces and DVR. The proposed technique is based on a tabular
on-the-fly decomposition of tetrahedral cells along isosurfaces. In the sec-
ond part of the Chapter we introduce the concept of Discontinuos Transfer
Function: it unifies, in a single framework, the managment of visualization
of volume data in which both isosurface extraction and DVR techniques are
used.

Very often datasets are so large that they cannot be rendered interac-
tively, for this reason in Chapter 5 we discuss how to build smaller datasets
using simplification techniques. Two simplification algorithms for tetrahe-
dral meshes are proposed.

A collection of simplified models can be managed in a single unified
framework by adopting a multiresolution representation; in this way we can
adapt the resolution and the size of the dataset to the needs of the user. In
Chapter 6 we show how these methods permit the compact representation of
many different approximations of the dataset. Multiresolution techniques al-
low, for example, the use of low resolution models for interactive phases and
the extraction of variable resolution representations according to viewing pa-
rameters and/or to the user specification of a particular region of interest.
Using the existing framework of Multiresolution Simplicial Model (MSM)
we introduce the original concept of Hyper Simplicial Complex (HySC) that
codifies a MSM in IEY as a simplicial complex in IE4t!. In particular we
propose an algorithm for the extraction of a variable resolution model with
the full face-adjacency topological relation. We also give some details on the
effective use in volume visualization of multiresolution, and in particular, on
the use of variable resolution representations.

Chapter 7 concludes the thesis and presents some open research issues.

15



Chapter 2

Tetrahedral Volume
Visualization

In this Chapter we state our interpretation of SciViz as a two-step mapping problem:
a modeling step where data are mapped into geometries with visual attributes, and
a rendering step where geometries are transformed into images. Following this
interpretation we give a general survey of the main techniques for visualizing a
scalar field described with a tetrahedral complex. Then we describe the state of the
art and our contributions in the field of extracting isosurfaces and directly render a
tetrahedral volume dataset.

The purpose of scientific visualization is to help the user to understand
the structure of data under analysis through its visual representation. Ob-
serving in the most general way this visualization process we can identify
two distinct steps: in the first one, called the modeling step, a meaningful
geometric structure is extracted from our data; such structure, composed for
example of triangles or lines, together with its visual properties (like color
and transparency) exhibits some relevant features of the dataset. In the
second step of the visualization process, called the rendering step, we can
exploit the algorithms, tools and techniques supplied by computer graphics
to render the previously extracted geometric structure. In other words dur-
ing the first step we transform the data precisely into coloured geometries,
then we render them into images.

In the next section we will justify /verify this interpretation by surveying
the existing techniques for the visualization of a scalar field and identifying
the two steps in them. In Section 2.2 and 2.3 we will describe in detail the
two major visualization techniques, Isosurface Extraction and Direct Volume
Rendering; particular attention will be payed in section 2.2 (in which we will
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Figure 2.1: Tsosurface and direct volume rendering of the same dataset.

discuss modeling and rendering problems of isosurface extraction) to our
contribution to the optimal solution of the problem of purging non-active
cells during isosurface extraction.

2.1 Modeling vs. Rendering in Volume Visualiza-
tion

Many visualization strategies have been proposed to reveal the inner struc-
ture of a three-dimensional scalar field. Here we shortly survey these vi-
sualization techniques, describing them in terms of a modeling/rendering
process.

Slicing: Using a common visualization technique the values of the field
are mapped with colors, so that the domain of the dataset is modeled as
a solid object whose interior is colored according to the field (like a sort of
agate). The dataset is then sliced in order to reveal the colors in the inner
parts of the domain [95]. Only a 2D subset of the information in the dataset
is visualized for each slice; generalized cutting plane/surfaces can be defined
by the user to improve the power of this technique.

Isosurface fitting: In this case the objective of the modeling step is the
reconstruction of polygonal surfaces representing, in most cases, an approx-
imation, of an isosurface, the subset of points of the domain € where the
value of the field is equal to a given threshold value. Another example of
the modeling step in isosurface extraction is the work done by Interrante
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Figure 2.2: Separating modeling from rendering in Visualization.

[65, 100] on improving the comprehension of transparent isosurfaces where
opacity textures are applied on isosurfaces as an “artistic device” for indi-
cating their shapes and its essential features more explicitly.

Scalar Topology Graph Another form of visualization modeling, intro-
duced for the two dimensional case by Bajaj and Schikore in [8], consists in
the reconstruction of the scalar topology graph obtained by connecting all
the critical points (minima, maxima and saddles) of the field. This approach
can be seen as the dual of isosurface extraction: the arcs of the graph follow
the gradient of the field and are orthogonal to the isocontours; this graph
shows complementary information w.r.t. the isocontours: a quantitative
view of the general behaviour of the field instead of the distribuition of a
single value over the domain.

Direct Volume Rendering: The idea of mapping the field value into col-
ors is extended to include also opacity: in the modeling step we transform
our dataset into a semitransparent blurry object, where the color and opac-
ity of each point precisely reflects, and therefore visualizes, the field value. In
the case of Direct Volume Rendering the distinction between modeling and
rendering is blurred by the fact that before the rise of Volume Visualization,
the rendering of translucent solid objects received little attention, so that
many of the algorithms for DVR were developed as an answer to a specific
need in Scientific Visualization, rather than in the quest for photorealism.

This interpretation of Visualization enbles us to focus better between
problems and objectives of modeling and rendering:

e modeling: discovering new significant means of extracting from the
dataset geometric coloured objects that convey meaningful informa-
tion.

e rendering: supplying all the tools for transforming the previous ob-
jects into images, such tools should be general, efficient and possibly
not too closely linked with a particular visualization technique.
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Figure 2.3: Marching Tetrahedra: vertex configurations and corresponding
isosurface patches.

Our choice of simplicial complexes as a unifying kernel for scientific visual-
ization reflects this belief; in particular we think that choosing a particular
primitive, the tetrahedron, for representing visual properties in a portion of
space and defining how the color and opacity are rendered into images al-
lows us to concentrate on the modeling problems of visualization. From this
point of view it will be straightforward to propose the unified view of Isosur-
facing and DVR presented in Chapter 4 as a unique visualization modeling
strategy.

2.2 Isosurface Fitting

In this section we discuss the isosurface extraction issue for tetrahedral com-
plexes. Some parts of the following description, like the three-value vertex
classification with correct handling of degenerate situations and the opti-
mization techniques described in section 2.2.1, are original.

Given a volume dataset described by a tetrahedral complex ¥ with a set
of scalar values f(v;) associated with the vertices v; of the complex, and a
threshold value §, the isosurface passing through the points of the volume
dataset having a value of § can be reconstructed by using a per cell approach
similar to the Marching Cubes algorithm [69]. It is therefore usually called
Marching Tetrahedra (MT). Some details of the algorithm that we are now
going to describe will be used later in Chapter 4 when we will show how to
integrate Isosurface and DVR.

The main idea behind the algorithm is to traverse all given cells and
to extract for each cell o crossed by the isosurface (active cell) the isosur-
face patch passing through o. Each vertex v of the dataset is classified as
black, grey or white if the value associated with v is, respectively, less, equal
or greater than the given threshold 4. Such classification of a cell vertices
can generate 3* = 81 different combinatorial configurations. By exploit-
ing symmetries, the latter can be fitted into the six main classes shown in
Figure 2.3.
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Once the class for each tetrahedron has been identified, the position of
the isosurface vertices are calculated by linear interpolation on the tetrahe-
dron edges. The choice of which edges must be used and how to connect
the vertices found is made using a table accessed through the tetrahedron
class. A surface normal should also be calculated for each isosurface vertex,
to improve the smoothness of the resulting isosurface.

Our three value classification and the consequent six classes of figure
2.3 are necessary to correctly handle the degenerate situation of vertices
with field value w; equal to the isosurface threshold J. The usual two-value
classification generates only the first three classes of figure 2.3 (the ones with
no grey vertices): fitting the situation of class 3, 4 or 5 into class 1 or 2 can
generate a null triangle that should be purged in a postprocessing phase.

Particular attention must be payed to the management of class 5, since,
when an isosurface facet coincides with a face of the tetrahedron, we could
generate the same facet twice. To get round this problem, we modify the
81-entry table of the MT in order to generate isosurface facets of class 5 cells
only if the vertex of the tetrahedron not on the isosurface is greater that the
threshold value. This solution represents a compromise and its shortcomings
reflect the fact that it is not possible to solve all the ambiguities looking only
at the vertices configurations. In fact, this trick correctly solves the problem
for all cases except two: isosurfaces passing exactly through the boundary
of the domain of the dataset, and the non-2-manifold situation of isosurfaces
passing exactly through a face that is an area of local minimum/maximum
of the field. A more correct solution can be found only by exploiting the
topology of the cell complex marking the adjacent class 5 cell in order to
prevent a redundant generation of this facet.

Moreover, it should be noted that an isosurface, defined as the set of
points where the family of linear interpolating functions has a given value,
is not necessarily a 2-manifold surface with boundary. For example, if three
cell vertices with the same value define an area of local maximum § (or
minimum), then the isosurface with threshold 4 is the one shown in Figure
2.4: the edges of the central triangular face are not a 2-manifold set.

2.2.1 Purging non—active cells

A drawback of the isosurface visualization is that only a small subset of the
dataset, and therefore of the information contained in it, is represented in
the final image; in most cases the ability to modify interactively the thresh-
old value while viewing the resulting isosurface permits us to infer the global
structure of the scalar field. For this reason efficiency issues are very impor-
tant when visualizing isosurfaces. The isosurface extraction can be made
more efficient by introducing some optimizations; this subsection describe
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Figure 2.4: Non-manifold situation in isosurface fitting: the central trian-
gular face is a local minimum area passing exactly through a face of the
dataset.

our contribution to the optimal solution to the problem of the identification
of the set of cells crossed by the isosurface; infact the determination of this
set usually needs the traversal of the whole dataset, even if the searched
isosurface crosses few cells. The time spent in the exhaustive search of the
crossed cells is, in many cases, the dominant part of the whole isosurface
extraction process. Speedup techniques were proposed in order to avoid
the analysis of non-active cells, and can be classified according to two main
criteria:

e search modality: active cells can be searched either in the geometric
space (geometric approach) or, alternatively in interval space (interval
approach), defined as the set of the min-max data value intervals of
each cell. In the former case a data structure is built over the domain
of the dataset in order to find the parts of the domains containing cells
traversed by the isosurface, in the latter case the intervals containing
the given threshold are searched for and then the corresponding active
cells recovered. The selection of the search modality is often subject
to the geometric structure of the underlying dataset: the geometric
approach is generally well suited for regular datasets, the interval ap-
proach is independent of the geometric strucute of the dataset, though
it generally implies higher costs in terms of memory requirements.

o Jocality exploitation: if an isosurface crosses a given cell it certainly
crosses also some of the adjacent cells. This coherency information
can be exploited both to find efficiently the cells intersected by the
isosurface and to reduce redundancy in geometric computations (iso-
surface vertices are shared by adjacent cells, so their position can be
calculated just once). This approach is particularly well suited to the
case of regular or curvilinear dataset where the adjacency information
is implicitly maintained.
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Figure 2.5: The span space. Each interval I = [a, b] is represented as a point
of coordinates (a,b). To detect the intervals that contain the query value
g we have to find the points which lie to the left of the line min = ¢ and
above the line maz = q.

Before presenting our solution we review some of the results in the localiza-
tion of the active cells. Wilhelms and Van Gelder [111] use a branch-on-need
octree to purge sub-volumes while fitting isosurfaces, based on the range in-
terval spanned by each sub-volume. This method achieves a worst case time
efficiency O(k + k log(n/k)) (where n is the total number of cells, and & is
the number of active cells) [68], with small overhead (the octree increases
storage occupancy only for about 16%).

Gallagher [47] proposes a method based on a subdivision of the range
domain into buckets, and on a classification of intervals based on the buckets
they intersect. The tradeoff between efficiency and memory requirements is
highly dependent on the resolution of the bucketing structure. Giles and
Haimes [50] report an approach in which two sorted lists of intervals are
constructed in a pre-processing phase by sorting the cells according to their
minimum and maximum values, respectively.

In a recent paper, Shen and Johnson [90] try to overcome some limita-
tions of [47], and [50], however, a worst-case computational complexity of
O(n) was estimated for all three methods outlined above [68].

Livnat et al. [68] introduce the span space (see Figure 2.5), which is a two-
dimensional space where each point corresponds to an interval in the range
domain. The span space is very useful for understanding range-based meth-
ods geometrically, therefore we will refer to this representation also in the
next sections. A kd-tree is used to locate the active intervals in this space,
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achieving an O(y/n + k) time complexity in the worst case. In a more re-
cent paper, Shen et al. [68] propose the use of a uniform grid to locate the
active intervals in the span space. Such an approach is suitable for parallel
implementation.

Approaches that exploit the locality rely essentially on two requirements:
the ability to find an active cell (seed) for each connected component of
the isosurface and the ability to propagate the surface by traversing the
mesh from cell to cell through adjacencies [95]. Adjacencies are implicit in
structured datasets, while they need to be stored explicitly in unstructured
datasets. Storing adjacencies explicitly roughly doubles the memory require-
ment of the dataset, hence making the overhead of surface-based methods
in the unstructured case either comparable to, or even higher than the over-
head of range-based methods. Moreover, further auxiliary structures are
needed in order to find seeds.

Itoh et al. [56] base the search for seeds on a graph, whose nodes are the
cells holding local minimum or maximum data values: therefore, an arc of
the graph spans an interval in the range domain. Each arc supports a list of
cells connecting its two end nodes. Given an isovalue, the graph is searched
for an active arc, and the cells connected to this arc are sequentially scanned
until a seed is found. A propagation method is activated on this seed. Since
the isosurface can be made of many connected components, seed search must
be repeated until all active arcs have been visited. This can take O(n) time
in the worst case [68].

A more efficient method of finding seed sets is proposed by Bajaj et
al. [7, 103]; they show the relation between the seed sets selection and the
contour tree problem, a tree that captures the contour of the topology of the
function represented by the mesh; this structure has been studied before in
image processing and GIS research. From the contour tree it is possible to
find the minimum size seed set in polynomial time (reduciing the problem
to a min-cost flow in a DAG), or find a good approximation of this optimum
in O(n?). The seed set can be encoded in a range-based search structure,
in order to locate efficiently active seeds for a given isovalue: optimal time
efficiency can be achieved by using an interval tree. The seed set is very
small on average, hence causing a small overhead, but it can be as big as
O(n) in the worst case (e.g., if the underlying field has a sinusoidal shape
or it is simply affected by noise).

2.2.2 Selecting Cells by Using Interval Trees

The technique we have proposed in [20, 22] for active cell selection is in the
class of range-based methods, and therefore it can be used both for regular
and unstructured datasets. Let ¥ be the input mesh. Each cell o; € X is
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associated with an interval I, whose extremes a; and b; are the minimum
and maximum field values at the vertices of o, respectively. Since o; is
active for an isovalue ¢ if and only if its corresponding interval I; contains
q, the following general query problem is resolved:

“given a set Z = {Iy,...,1I,} of intervals of the form [a;, b;], with

a; < b; on the real line, and a query value ¢, report all intervals of 7
that contain q”.

The problem is effectively visualized using the span space introduced by
Livnat et al. [68] (see Figure 2.5): each interval I; = [a;, b;] is represented as
a point in a 2D Cartesian space using the extremes a; and b; as the z and y
coordinates of the point, respectively. From a geometrical point of view, the
problem of reporting all intervals that contain the query value ¢ is reduced
to collecting the points in the span space lying in the intersection of the two
half—spaces min < g and maz > q.

An optimally efficient solution for the query problem above can be ob-
tained by organising the intervals of Z into an interval tree, a data structure
originally proposed by Edelsbrunner [38] (see also [83]), which is reviewed in
the following. For each ¢ = 1,...,m, let us consider the sorted sequence of
values X = (x1,...,x)) corresponding to distinct extremes of intervals (i.e.,
each extreme a;, b; is equal to some ;). The interval tree for 7 consists of a
balanced binary search tree 7 whose nodes correspond to values of X, plus
a structure of lists of intervals appended to non-leaf nodes of 7. The inter-
val tree is defined recursively as follows. The root of 7 has a discriminant
Op = Tp = Tray, and Z is partitioned into three subsets as follows:

o I} ={Li €T | b <d};
o I, ={Li €T |a;>d}
o I5, ={l; €T | a; < 0, < b;}.
The intervals of Zs, are arranged into two sorted lists AL and DR as follows:

e AL contains all elements of Z; sorted in Ascending order according
to their Left extremes a;;

e DR contains all elements of Z5, sorted in Descending order according
to their Right extremes b;.

The left and the right subtrees are defined recursively by considering inter-
val sets Z; and Z,, and extreme sets (z1,... ,.’I,'|—E-|71) and (.’IJ|—E-|+1, cees ),
2 2

respectively. The interval tree can be constructed in O(mlogm) time by a
direct implementation of its recursive definition. The resulting structure is a
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binary balanced tree with h nodes, and a height of [log h], plus a collection
of lists of type AL and DR, each attached to a node of the tree, for a total
of 2m list elements.

Given a query value g, tree T is visited recursively starting at its root:

e if ¢ < ¢, then list AL is scanned until an interval I; is found such that
a; > q; all scanned intervals are reported; the left subtree is visited
recursively;

e if ¢ > 4, then list DR is scanned until an interval I; is found such that
b; < q; all scanned intervals are reported; the right subtree is visited
recursively;

e if ¢ = 4, then the whole list AL is reported.

The geometric interpretation of the search in the span space is also given
in Figure 2.6. The regions containing the active intervals are those to the
left of and above the dotted lines from ¢. Each sector of space (node of
the tree) which contains the horizontal dotted line (i.e., such that 4, > q)
is visited top-down (scanning the AL list) until such a line is reached; each
sector containing the vertical dotted line is visited left to right (scanning
the DR list) until such a line is reached. Therefore, [logh| nodes of the
tree are visited, and for each node only the intervals reported in output,
plus one, are visited. Hence, if k is the output size, then the computational
complexity of the search is O(k +log h). Since log h is the minimum number
of bits needed to discriminate between two different extreme values, no query
technique could have a computational complexity smaller than Q(logh),
hence the computational complexity of querying with the interval tree is
output-sensitive optimal. It is interesting to note that the time complexity
is independent of the total number m of intervals, i.e., of the input size:
indeed it only depends on the output size, and on the number of distinct
extremes.

It is worth mentioning that, although our proposal is the first application
of the interval trees to speedup isosurface extraction, other authors have
used it to address related problems: Laszlo [63] considers the extraction
of wireframes from a grid of generic polyhedra, by using an interval tree,
where each interval corresponds to an edge of the input grid; van Kreveld
[102] extracts isolines from triangulated terrain data, by associating each
triangle with the interval of altitudes it spans.

Moreover is should be noted the existence of another data structure, the
segment tree [83], that achieves the same worst case complexity O(k + log h)
for queries. The segment tree has a O(m log h) asymptotic space complexity
while the interval tree is O(m), however for small values of h (i.e. for datasets
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Figure 2.6: A graphical representation of the interval tree for the example
of Figure 2.5. By definition, the intervals lying on subdivision lines belong
to the upper level of the tree. The tree search for a value ¢g: sectors with
0 < q (intersected by the horizontal line max = q) are visited top-down;
sectors with d, > ¢ (intersected by the vertical line min = q) are visited left
to right.

where the field assumes a small number of different values) the segment tree
shows an effective lower space complexity.

Recently other authors [17] have extended our idea, proposing the cre-
ation of the interval tree in a preprocessing phase, and its storage on sec-
ondary memory; this structure is then accessed with an I/O optimal algo-
rithm without loading either the interval tree or the whole dataset in main
memory, thus making the interval tree suitable also for very large datasets.

Some further optimizations can be introduced to improve the efficiency of
isosurface extraction: when calculating the isosurface normals and to reduce
redundant computations. Gradients of the scalar field at the vertices of the
mesh can be computed in a preprocessing step, as the weighted average of
normalized gradients on all tetrahedra sharing the vertex v, where the weight
for the contribution of a tetrahedron ¢ is given by the solid angle' of ¢ at
v. The normal at a vertex of the isosurface I is computed during isosurface
extraction by the linear interpolation of gradients at the endpoints of the
cell edge where I lies. The redundant computation of both coordinates and
normals on common vertices of the isosurface may be avoided either by
exploiting the adjacency information to recover already computed values in

!The solid angle of a triedral angle is A = a + 3 + v — 7 where a, 8, are the diedral
angles between the tetrahedron facets.
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Dataset | Interval Tree

nodes | intervals nodes | creation
Name (n) (m) depth (h) time
Fighter | 13,832 | 70,125 15 12,538 1.50
Bluntfin | 40,960 | 224,874 16 28,022 5.34

Table 2.1: Data on the interval trees for the test datasets (times are CPU
seconds).

near cells or, when the topology of the complex is not available, through a
hash indexing [111, 22].

Experimental Results Our proposals, based on the interval tree data
structure, were tested on a number of different datasets. We report here the
results for two datasets:

Fighter, an dataset built on the Langley Fighter, reporting a wind tunnel
model simulation performed at NASA Langley Research Center. The
dataset was represented by adopting a 3D Delaunay triangulation;

Bluntfin, originally defined as a curvilinear dataset, it has been represented
here by adopting a tetrahedral decomposition; Bluntfin represents the
air flow over a flat plate with a blunt fin rising from the plate. Courtesy
of NASA Ames Research Center;

The results refer to the use of the interval tree data structure, the hash
indexing technique and the pre-computation of the gradients of the field
in the vertices of the cells in the case of unstructured datasets, IT On,
compared with a standard Marching Tetrahedra implementation, IT Off (see
Table 2.2). Numeric results have been obtained on an SGI Indigo2 (200MHz
R4400 CPU, 16K instruction and 16K data caches, 1IMB secondary cache,
32MB RAM, TRIX 5.3).

Table 2.1 reports numeric values on the datasets used and on the associ-
ated interval trees: the number m of intervals, which is equal to the number
of tetrahedral cells, the interval tree depth, the number h of nodes of the
interval tree and the time (in seconds) required to build the interval tree
data structures.

2.2.3 Rendering Transparent Isosurfaces

After an analysis of the modeling aspects of the isosurface technique of vi-
sualization we can now deal with a rendering problem that is commonly
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| Threshold | Facets | IT On | IT Off |

NASA Fighter - 70125 Tetrahedral cells
2.6534 386 3 142
2.4420 1754 13 154
2.2007 5545 41 185
2.0221 9735 78 220
0.5599 | 20560 164 312
Bluntfin - 224874 Tetrahedral cells
4.8722 444 3 255
0.3409 1184 7 238
4.2741 2100 12 263
3.2071 5171 33 279
2.1305 | 10384 72 304
0.5371 | 20663 154 357

Table 2.2: Isosurface extraction times on tetrahedralized datasets, in mil-
liseconds.

ignored: the correct and efficent rendering of many transparent isosurfaces
simultaneously. When rendering more than one single isosurface, to obtain
the best comprehension of inner structures of the dataset it is necessary to
use transparency. An easy/low quality solution is to render them using a
common graphics library like OpenGL and adopting the screen door trans-
parency, [41]; to obtain better quality without using high-quality and slow
algorithms like scanline or ray-tracing techniques, it is necessary to draw
and blend directly the isosurface facets in depth order onto the screen. This
problem is strictly related to the problem of sorting the tetrahedral complex
itself addressed in Chapter 3: each isosurface facet is entirely contained in-
side a tetrahedron, so the occlusion relation between two isosurface facets
in different cells agrees with the relation between the tetrahedra themselves;
for this reason, if a depth ordering for the whole complex is available, it is
sufficient to sort the isosurface facets separately inside each tetrahedron and
collect these orderings following the tetrahedra depth order for the complex.
This in-tetrahedron ordering can be easily achieved in linear time in the fol-
lowing way: we assume we maintain inside each tetrahedron ¢ the isosurface
facets contained in it sorted according to increasing values of their thresh-
old, and we assume that the facet normals agree with the field gradient. For
each facet f;, we check if the viewpoint lies on the same side of the normal
of f;, marking f; with a ’4+’ or a ’-’; all the isosurface facets in ¢ are parallel,
so that to obtain a correct back to front ordering it is sufficient to draw first
all the facets with a '+’ sign, in the field value order and then the ones with
’-” in reversed field value order.
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2.3 Direct Volume Rendering

Direct volume rendering techniques are the visualization approach that aims
at producing a projected image directly from the volume data, without
intermediate representation as isosurfaces. These techniques rely on the
mapping of the field value into the color/opacity of the 3D domain itself;
they require some model of how the volume generates, reflects, scatters or
occlude light. In the next Sections we will describe the optical models used
in DVR and we review direct volume rendering solutions, with emphasis on
the ones working on simplicial decompositions; the presentation will follow
the classical image-order vs object-order classification:

e ray tracing methods process the dataset in image-order, and accumu-
late color and opacities interpolated while tracing each ray;

e scan line methods can be considered an evolution of ray tracing meth-
ods, because they adopt an image-order but exploit the coherency
between rays to reduce visualization times;

e projective methods are based on an object-order visit of the dataset:
cell are processed in depth order, and each cell is projected and com-
posed onto the current image in a single pass; they therefore exploit
coherence at the object level.

Figure 7 on page 134 gives an high level view of these approaches.

2.3.1 Volume shading models

Many models for simulating propagation, scattering and shadowing through
semi-transparent media have been proposed in literature. The first models
aimed to simulate natural phenomena, like dust [15] or clouds [58]. Later
on these models were extended or modified [37, 88, 65] to fulfill scientific
visualization needs. This distinction still remains, and it is therefore useful
to clarify the two different objectives in modeling semi-transparent media:

e photo-realism: we want to model real semitransparent media, like
clouds, fog, dust, to reproduce their aspect with the utmost visual
fidelity;

e comprehension: in the visualization of a 3D structure, we want to
exploit the hints that shading can add to obtain easier comprehension
of the information we are visualizing.
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Figure 2.7: An infinitesimally thin cylindrical slab filled with spherical par-
ticles.

In the first case, an accurate model of the medium should take into account
phenomena like self-shadowing and second and higher order scattering of
light inside the medium; while the realism of the images computed in this
way is often stunning, the computational times involved are so large that
interactivity, a requirement in Visualization, is prevented.

In the following, we sketch the basis of the most common model in sci-
entific visualization, known as the density emitter model, following the pre-
sentation given in [71].

State of the art of volume density optical models

A volume dataset lighting model can be approximated by a number of in-
finitely small spherical particles of radius r and projected area A = mr?
(Figure 2.7). Consider a small cylindrical slab with a base of area E, a
thickness of ds and a volume of Fds. This slab is filled with particles with a
given density p (number of particles per unit volumes). The slab therefore
contains N = p E/ds particles. We now consider three different classes of
behaviour of the particles: perfectly black particles, perfectly transparent

particles glowing, and glowing and absorbing particles.

Absorbing Medium In this case we assume that particles are perfectly
black, i.e. they absorb all the light that they occlude without any scattering
(reflective) effects. If the thickness of the slab ds is small enough, we can
assume that there is no overlap between particles along the height of the
cylinder, so the total occlusion area is NA = p K ds A and the fraction of
light blocked by the particles is pAds. With 7(s) = p(s)A we denote the
extinction coefficient that defines the rate of light that is occluded at distance
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s. We can write the differential expression showing the fraction of absorbed
light when the slab thickness reaches zero as:

% = —71(s)I(s)

where s is a length parameter and I(s) is the light intensity at distance s.
The negative sign in this differential equation is because we are calculating
the light that is subtracted when traversing the volume. Remember that the
extinction coefficient (also referred to in literature with a misleading term
as opacity) range from zero (no particles) to infinity (opaque medium). The
solution of the above equation gives us the light intensity 7(s) that reaches
position s along a ray traversing a volume.

s

I(s) = Ipe” Jo (0t

where I is the starting light intensity when the ray enter in the volume. The
following quantity is the cumulative transparency of the medium between 0
and s, that is the fraction of light that is absorbed between 0 and s:

s

T(s) = edo 7O (2.1)

If the extinction coefficient 7 varies linearly, as in the case of the linear
interpolation of the visual parameters inside a tetrahedron, 7(s) = 79 + 7s,
the previous equation becomes:

_s(@7gtTs)

T(s)=¢e 2

Emitting Medium Proceeding in a similar way, we assume that the parti-
cles are perfectly transparent (no absorption) and glowing diffusely (isotrop-
ically), with an intensity g(s) = C(s)7(s) proportional to their density. The
equation that describes the light intensity emitted by this type of media, in
the case where the glowing factor is a linear function g(s) = gg + g s, is:

2

§ S
1(5):10+/ g(t)dt = To +go's + 2
0

Absorbing and emitting medium (density emitter model) In this
case the light emitted by the volume is partially occluded by the opacity of
the volume itself. The differential equation becomes:

dl

=)~ (5)1(5)
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If we consider the general case where the glowing and absorbing function,
7(s) and g(s) are two linear equations the solution of the above differential
equation is:

H@:hﬂ@+£%@f@ﬁ

where i
T'(k) = exp < / T(’I’)(]’I’)
Jk

but there is no simple closed form for the equation above, even if simple
numerical techniques for approximating it can be devised [113].

A simplifying assumption is that the glowing factor of the volume g(s) =
Go7(s) depends on the density of the volume. While keeping these two values
separate permits a larger flexibility, this assumption allows us to write the
close form of the integral:

I(s) = Ipedo 70 4 g <1 —eh T“)dt) (2.2)

recalling the definition of transparency in equation 2.1, the equation 2.2 can
be written as:

I(s) = T(s)Io + (1 — T(s))Gy (2.3)

It is interesting to note that this result can be interpreted as the classical
compositing formula [82] of a color G atop a background Iy with an opacity
a=1-T(s).

2.3.2 Ray Tracing

The first techniques developed for rendering volumetric data directly were
based on the ray tracing approach [58, 65]. For each pixel of the image, a
ray is cast and intersected with the cells of the volume data. The trans-
fer function, which transforms the data values into opacities and colors, is
then discretely sampled and integrated along the ray. The result of this
integration determines the color of the pixel. Such techniques were initially
described for regular volume dataset only (regular volumes can be ray-traced
in a rather efficient way by exploiting the regular structure of the data).

Garrity presented a technique to perform ray-tracing on irregular datasets
exploiting the topological relationships between cells to perform efficiently
the color and opacity integration along the ray [48]. Although the technique
described works on volumetric datasets composed of convex cells, the author
uses only tetrahedral volume datasets to avoid handling hexahedral datasets
degeneracies explicitely.
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This approach works in two steps. In a preprocessing phase, the cell
faces which are on the boundary of the dataset are detected and inserted
in a bucketing structure (based on a regular space subdivision). In the sec-
ond phase, for each ray, the nearest intersected face is searched among the
boundary ones, and cell tracing starts from the associated cell. Then, jump-
ing from cell to cell by exploiting the connectivity of the dataset, all the cells
intersected by the ray are detected. When the ray exits the dataset, the list
of boundary faces is browsed again to see if the ray enters the dataset again
(e.g. in the case of non convex or multi component datasets). Particular
attention must be payed to degenerate cases (ray passing through faces,
edges or vertices). The restriction to tetrahedral cells simplifies handling of
degenerate cases.

Once the intersected tetrahedra are found, the integration of the transfer
function along the ray spans contained inside each tetrahedron can be carried
out as explained in Section 2.3.1.

2.3.3 Scan Line

The ray-tracing approach fails to exploit the fact that adjacent rays probably
intersect the same cells, and its computational cost is therefore excessively
high. Scanline algorithms try to exploit this coherence. The first scanline
algorithm to render volume dataset described by arbitrary cell complexes
was proposed by Giertsen [49]. The algorithm uses a scan plane buffer, a
data structure associated with a plane (zz) perpendicular to the viewplane
(zy) and passing through a line of the viewplane. Volume cells are progres-
sively sliced by the scan plane; each slice is then triangulated in order to
interpolate linearly the values inside each cell slice?.
The volume cells are maintained y-ordered and the set of cells intersected by
the scan plane is updated following the Y-sweeping of the plane. The scan
plane buffer (spb) is a structure that maintains discretely (a two-dimensional
array) the intersections between the cells and the scan plane. Cell slices
are scan-converted in random order into z segments orthogonal to the view-
plane, and the length and the opacity/color contribution of each segment are
stored into the spb structure. Once all cell slices have been scan converted,
the colors of the pixels on the current scan line are calculated by traversing
in the z direction the spb and accumulating the opacity/color contributions
contained in them.

Another algorithm based on the scanline approach was the Lazy Sweep
Ray Casting (LSRC) proposed in [94, 93]. Its main contribution is to avoid

It must be noted that this kind of interpolation is not rotational invariant and that
therefore it creates aliasing effects when rotating the volume. A more correct solution, as
suggested by the same Giertsen [49], is to decompose each cell into tetrahedral elements.
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the use of a discrete scanplane, to prevent the possible aliasing effects that
can derive from datasets having high variations in cell size (differences of the
order of 1:100,000 can occur). The LSRC algorithm works on two phases:
a space sweep with a sweep plane like the Giertsen one, orthogonal to the
viewing (XY) plane, and a sweep of that plane with a sweep line parallel to
the Z axis.

The space sweep proceeds (like any algorithm based on the sweep paradigm
[83]) by maintaining a sweep structure which monitors discrete sweep events.
In our case events occur when the sweep plane hits vertices of the mesh.
The sweep plane structure maintains the subdivision S resulting from the
intersection between the plane and the mesh.

For each scanline, we process S sweeping it with a line. The sweep line
status this time is a Z-ordered set of intervals (the intersection between
the sweep line and S). For each pixel coordinate x, we can easily calculate
the resulting pixel color/opacity by compositing the contribution of each
segment in the sweepline status structure.

Another scanline algorithm that exploits a spatial hierarchical organiza-
tion of the dataset has been described by Wilhelms et al. in [110]. The main
difference with this approach (that like the previous algorithms uses both a
scan plane orthogonal to the view plane and a scan line lying on that plane)
is that it renders semi-transparents regions of space between polygons as well
as opaque polygonal surfaces immersed in the dataset. The method builds a
k-d tree over the polygons (either cell faces or immersed object faces) to im-
prove efficiency. The hierarchy is also used to render approximate images of
the dataset. The method has been parallelized on a shared memory MIMD
machine. The problem of a rotationally invariant field interpolation inside
each cell still holds, unless a tetrahedral decomposition is adopted.

In [105] Westermann and Ertl present a different approach to the scanline
paradigm in order to exploit common graphics hardware, during the sorting
of cells crossing the scanplane. The key idea lies in a two-pass approach:
first the vsbuffer, a discrete representation of the scanplane, is filled with the
intersection of the cells that it crosses, then this buffer is traversed in front to
back order to perform the volume integration. The vsbuffer approach can be
seen an extension of the original scan plane buffer proposed by Giertsen [49];
in this case the discrete scan plane is filled by looking the scanplane from the
top and rendering all the cells crossing it twice: in the first rendering pass
objects above the screenplane are clipped and their backfacets drawn, in the
second one objects below the scan plane are clipped and front facets drawn.
The RGB color of each cell is chosen to unambiguously code the cell index.
The result of the two rendering are compared and if two corresponding pixels
share the same color/index then that pixel is covered by that cell. At the
end of this process each pixel of the vsbuffer contains the index of the cell
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Figure 2.8: Classification and decomposition into triangles of the projection
of a tetrahedron.

(coded with color) that covers it.

2.3.4 Tetrahedra Projection

The problem of rendering directly a volume dataset can be solved using a
object order approach: the visual contribution of each tetrahedron is com-
puted and accumulated onto the screen buffer. To obtain a correct result
the compositing must be done in depth order (back to front or viceversa)
so a correct ordering must be calculated. This particular problem of depth
sorting a tetrahedral complex will be dealt with greater detail in the next
Chapter.

Once the complex has been sorted, various techniques are available to

calculate and compose the contribution of each tetrahedron to the interme-
diate image.
A first approach is to scan-convert each tetrahedral cell, adopting a pure
software threedimensional scan-conversion process [72]. For each pixel, the
contribution in color and opacity can be directly calculated during the 3D
sampling, according to the shading model chosen.

A faster approach renders tetrahedral cells by approximating each cell
with semi-transparent triangles, and compositing such triangles using stan-
dard graphics libraries/hardware [92]. The main idea is to classify the shape
resulting from the projection of a tetrahedron (see Figure 2.8) in a limited
number of classes which can be easily decomposed into triangles. Then,
the correct opacity/color of the thickest point of the projected tetrahedron
(indicated with a small circle in Figure 2.8) is computed, and the cells con-
tribution to the current frame is obtained by gouraud—interpolating the pro-
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jected shape.
The same idea of rendering the silhouette of the projected cell as a bunch
of semi—transparent triangles was applied by Wilhelms and Van Gelder to
rectilinear hexahedral (coherent projection) cells [108] and to slightly more
generic convex hexahedral cell (incoherent projection) in [101].

The classification of the projected silhouette and the identification of the
thickest point can be done in, at least, two different ways, according to the
sorting algorithm used:

e (Cell classification after a topological sort. In this case the transfor-
mation of the adjacency graph into a direct one gives, for each tetra-
hedron, the number of faces which are oriented toward the observer.
Starting from this number, together with the number of facets or-
thogonal to the viewplane, we can automatically deduce the class of
projection. The equations of the planes passing through the facets can
also be used to calculate the coordinates of the thickest point.

e (ell classification after a numerical or an NNS sort. In this case, each
tetrahedron must be classified independently. The easiest technique
is to test the clockwise ordering of vertices of each tetrahedron facets
according to the viewpoint. This can be done by a simple cross product
between two edges of each face.

Aliasing One of the drawbacks of using graphics hardware to render the
projected silhouette of tetrahedral cells with transparent triangles is the
aliasing introduced, as pointed out by Wilhelms and Van Gelder [101] and
Steiner et al. [97]. There are two main reasons for these errors in rendering:

e limited numerical precision of rendering subsystems to compute the
rgba compositing,

e linear interpolation of the opacities, while an exponential interpolation
should be used to approximate opacity contribution correctly.

To reduce the latter problem, the multipass blending approach [101] renders
and composes each triangle three times to give a quadratic interpolation.
With the first two passes the quadratic interpolation of opacity is obtained
by a double linear interpolation and composition of opacity; the third pass
applies the color contribution. In a more efficient solution [97], color and
opacity are correctly interpolated between vertices using hardware assisted
texture mapping (the texture map is, in this case, a two dimensional table
with the values of the correct exponential opacity).
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Approximated Projection Technique

An example of an approximate rendering technique is the Incremental Slic-
ing method proposed by Yagel et [116]. Given the current view direction,
the volume is transformed into viewing space and then the 2D polygonal
subdivisions resulting from the slicing of that volume with a set of planes
parallel to the view plane are calculated and stored. Such polygonal meshes
are then rendered and composed in visibility order using graphics hardware.
The number of slices is chosen adaptively to reduce the number of cells not
intersected by any slicing plane.

Splatting techniques

A different image/order approach for DVR, based on samples rather than on
cells, is the splatting technique. This approach was developed by Westover
in [106] to accelerate the rendering of regular datasets. The first step of the
volume rendering process is to define the field value over the whole domain of
the dataset, that is, using Westover terms, to reconstruct a continuous signal
from discrete samples. Instead of using the common trilinear approach,
Westover reconstructs the sampled signal by convolving the reconstruction
kernel with the sampled data. The volume rendering process is regarded as
a integration along the viewing direction: the contribution of each sample
to the final image can be obtained by the integration of the kernel function
used in the interpolation process. Choosing a rotational invariant kernel
function it is possible to precompute the footprint of such an integral. In
this way the contribution of each sample to the final image, called splat, can
be composed onto the screen in the usual back-to-front way. This approach
can be implemented very efficiently by using various approximations of the
kernel function, usually a simple 2D elliptical Gaussian sampled and stored
in a table [107] or directly drawn with a small collection of Gouraud shaded
polygons [64].

The direct extension of Westover’s splatting algorithm to tetrahedral
complexes or curvilinar grids is difficult because, in many cases, it is almost
impossible to select a simple splatting kernel for each grid point. In [70]
Mao propose an algorithm to resample the curvilinear grid with a set of new
points so that it is possible to reconstruct the original signal using common
ellipsoidal kernel function around these new points. Using these points the
volume is then rendered with the usual splatting approach.

One of the main disadvantages of this class of algorithms is the low
quality of rendering when the sample points are not uniformly distributed
in the image space.
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2.3.5 Conclusions

Summarizing the various key aspects of techniques presented above we can
mention some pros and cons:

e Ray Tracing:
Pros: High quality, general technique; it can integrate volume mod-
els with surface geometry, photorealistic effects like refractions or self
shadowing, and it can use oversampling techniques to generate high
quality images with no aliasing problems.
Cons: Very slow; acceleration techniques work but they present low
flexibility and rendering capabilities; it cannot be used interactively.

e Scan Line
Pros: High quality, it can integrate volume models with standard sur-
face geometry, much faster than ray tracing but less general.
Cons: Still too slow, and not very flexible.

e Projective
Pros: Fast, it can exploit graphics hardware, it shares the same flexi-
bilty of the triangle-based graphics library.
Cons: the rendering quality can rely on the graphics hardware capa-
bilities.

Given the importance of the interactivity issue in visualization we have
chosen to investigate some of the problems that the projective approaches
still present. In the next chapter we will face the problem of depth sorting
a tetrahedral complex, a step needed for projective algorithms to correctly
compose tetrahedron contributions on the screen. Later in Chapter 4 we
will discuss how to correctly mix isosurfaces and DVR through projective
algorithms.

Recalling our distinction between modeling and rendering in Visualiza-
tion, we can add that we can base our work on what we call tetrahedral
graphics: our guess is that it could be possible face most of the rendering
problems in tetrahedral visualization if we assume that we have a simple
and robust primitive for the correct rendering and composition of a single
tetrahedron on the screen. Given such a primitive, i.e. the thetrahedral
analogous of the triangle based primitives present in most graphics library,
the main problem of the user is to sort them in the correct order. Other
problems, like the problem of correctly manage non linear transfer functions
and integrating isosurfaces with DVR using a projective approace, become
modeling problems rather than rendering ones, and within this approach,
they will be faced in Chapter 4.
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Chapter 3

Depth sorting a Tetrahedral
Complex

In this Chapter we describe in detail the problem of depth sorting a tetrahedral com-
plexe, reviewing known results and algorithms and their effective usability or robust-
ness. Then we introduce a new technique for sorting complexes which belong to the
class of projective complexes. The approach is based on the preliminary construc-
tion of the lifted complex corresponding to the given one and on its representation
as a power diagram. This approach exhibits a O(nlogn) runtime complexity to sort
a complex and require only linear storage.

Projective algorithms render a tetrahedral mesh through direct projec-
tion and composition of tetrahedra [72, 92, 112]. They are generally based
on a two-phases process: first, cells are sorted in depth; second, depth-
ordered cells are projected onto the view plane and rgba composed on the
frame buffer. To compose rgba contributions correctly, cells have to be
depth ordered with respect to the given viewpoint.

In this Chapter we address the problem of depth sorting a given complex.
In Section 3.1 we give some definitions that will be used throughout the
chapter, then in Section 3.2 we review the current solutions to this problem
on the basis of their theoretical and practical interest. In Section 3.3.3 we
introduce a new technique for sorting that is based on a preprocessing step
in which the original complex T is lifted in the convex polyhedron in IEI+!
I'* whose projection in IEY gives I'. T'* can be stored as a power diagram
and efficently used to depth sort I along any view direction. This approach
makes it possible also to establish if I' is a projective complex and therefore
can be depth ordered from any viewpoint.
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3.1 Definitions

In this section we give some definitions regarding depth ordering, acyclicity,
projective complexes and power diagrams that will be used in sections 3.3
to present our results.

Obstruction Relation The obstruction relation <, (usually called in-
front/behind relation) for a pair of non self-intersecting cells 1, 9 with
respect to a viewpoint p can be formally expressed as follows:

Y1 <p 72 iff 3 a ray r emanating from p and intersecting both
v and 3, such that all points in 7 Ny, are closer to p than any
point in r N ;.

A visibility order of a set of objects, with respect to a viewpoint p, is a
sequence of such objects such that, if object A obstructs object B when
seen from p, then A preceeds B in the sequence.

Acyclicity A cell complex I' is called acyclic with respect to a given view-
point p if and only if relation <, defines a partial order on the cells of T'.
In this case, it is possible to order the cells of I' either front-to-back or
back-to-front with respect to the viewpoint.

In the following a cell complex that is acyclic w.r.t. any viewpoint will
be denoted, for sake of conciseness, as an acyclic cell complez.

3.1.1 Projective Complexes

Cell complexes in IEY that can be obtained as the orthogonal projection of
the lower part of the boundary of a convex polytope in IE4*! are called pro-
jective complexes. These complexes are also known as reqular cell complezes
[39].

An important result relative to projective complexes is that they are
acyclic:
Theorem 1. (Edelsbrunner [39]) The in-front/behind relation defined for

the faces of any projective complex and for any fized viewpoint in Y is
acyclic.

The proof of this theorem is based on the construction, given a viewpoint
p, of a function @ : 0 € ¥ — IR that agrees with the occlusion relation, that
is: ®,(0o) is such that ®,(0) < ®,(7) if 7 <, 0. Clearly, if such a function
exists for a given viewpoint then <, is acyclic indeed it is impossible to have
a set of cells o1, ..., 0, that forms an occlusion cycle:

01 <p " <p O =<p 01
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because the corresponding function ® should hold:
Dy(01) < Ppo2) < -+ < Pp(or) < Pp(o1)

The construction of the function ® used by Edelsbrunner is rather com-
plicated and not reported here for brevity. In Section 3.3 we will show a
simpler way to build this function.

It should be noted that this theorem has been stated only in one direc-
tion: if a complex is projective then it is acyclic; we know nothing about
the reverse of this theorem, if any acyiclic complex is also a projective one.
In other words we do not know if the projective and acyclic complexes rep-
resent the same class: it is an open problem to show the existence of an
acyclic complex in IEY. that is not obtainable as the orthogonal projection
of a convex complex in E4*!,

Delaunay simplicial complexes (see definition in Section 1.3) are acyclic
with respect to any viewpoint [39]. This is an important property, because
it assures that a volume dataset represented by a Delaunay complex can
always be sorted and correctly visualized.

3.1.2 Power diagrams

Now, we recall some definitions and results regarding power diagrams; a
complete introduction about power diagrams can be found in [6].

The power of a point p with respect to a sphere s C IEY with center z
and radius 7, is defined as pow(p,s) = d(p, 2)? — r2. Thus pow(p,s) < 0 if
p belongs to the ball bounded by s, pow(p,s) = 0 if p lies on the surface of
s and is greater than zero otherwise; in the last case it easy to show that
pow(p, s) is equal to the squared distance of p from the touching point of a
line tangent to s through p.

Let s and ¢ be two spheres in E4 with centers zg # z; and radii rg, 7.
The points z satisfying pow(z, s) = pow(x,t) describe a hyperplane h that
is perpendicular to the line joining z; and z;, known as the chordale of s and
t, or chor(s,t) for short. A nice property of chordales is that if s N¢ # ()
then s N¢ C chor(s,t); otherwise s and ¢ are contained in the same open
halfspace bounded by chor(s, ¢) if and only if s encloses (or it is enclosed in)
t.

Let S denote a finite set of spheres in IEY, for s € S we call the set

cell(s) = {z € EY|pow(x,s) > pow(x, t)Vt € S — {s}}

as power cell of s and the collection of all cell(s), for s € S, the power
diagram of S, or PD(S) for short.
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Figure 3.1: A power diagram in two dimensions.

Let S denote a finite set of spheres in IEY, by definition the power cell
cell(s) is the intersection of m — 1 halfspaces bounded by chordales, and
therefore is a d—polyhedron with at most n — 1 facets. This implies that
PD(S) is a cell complex in IE4.

Figure 3.1 shows a PD of six circles in IE?; note the possible occurrence
of empty cells, like cell(s5) and the fact that cells may be separated from
their generating spheres, cell(s4) is distinct from s4.

Power Diagrams and Voronoi Diagrams The following relations ex-
ists between power diagrams, Voronoi diagrams and Delaunay triangulations
[6]. Given a finite set of points P in T84 the Voronoi diagrams of P corre-
spond to the PD of the set of spheres S with centers in P and radii equal
to zero. It should be noted that power diagrams are considered one of the
generalization of Voronoi diagrams that have the strongest similarities to
the original diagrams. These relations, together with our practical expe-
rience in using the numerical sorting for Delaunay triangulations, the dual
structure w.r.t. Voronoi Diagrams, led us to the use of PD’s as the basis for
the design of a new depth sorting algorithm.
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3.2 Related Work

The problem of depth sorting has received considerable attention in the
literature: a lot of research deals with the two dimensional version of the
problem, but here we survey some of the most important, sometimes mainly
theoretical, results concerning the three dimensional depth-sorting problem.

It should be noted that in the most general case, a non convex, possibly
unconnected arbitrary tetrahedral complex, the problem of calculating a
depth ordering (when it exists), w.r.t. a given viewpoint, has a lower bound
of O(nlogn) [94], and none of the proposed algorithms still matches this
bound.

In [78] Nurmi gave an algorithm for computing three-dimensional depth
orders of a set of n line segment in IE? with a worst case complexity of
O(nlogn + 1) where i is the number of intersections of the segments when
the segments are projected on the zy plane. Note that i can be O(n?); Nurmi
extended his algorithm to 3D polyhedra with a complexity of O((n+1i) logn).

Chazelle et al. in [16] studied the problem of ordering lines in the space
and noted that, in absence of cycles, a depth order can be obtained by a
standard sorting algorithm, because any two lines can be always compared;
in other words if there are no cyclic overlaps between lines, the < relation is
a total order. Unfortunately, this is not true for a set of segments in space,
because not all the pairs can be compared, so this problem can be reduced
to the extension of the < relation from being a partial order (in the case of
absence of cycles) to a total ordering.

This approach to the problem has been adopted by de Berg in [29];
he observes that the depth sorting problem is the same as computing a
linear extension of the < relation; he describes an algorithm that solves this
problem in a general way for a given relation < and its transitive closure <,
on a set S of n objects; the complexity of the de Berg’s algorithm relies on
the efficiency of a data structure for storing a subset S’ that can return a
predecessor (successor) in S’ of a query object o € S, if it exists. The data
structure should also support efficient deletion of objects from a subset S’.

The basic strategy of this algorithm is divide and conquer: choose a
pivot object o, € S, partition the remaining objects into subsets S<(S.)
of objects that must come before (after) o0, and recursively sort these sets.
Note that not every pair of objects is comparable with o, under <., therefore
there is a third subset Sy that contains such objects; this subset should be
sorted recursively as well. Using a result obtained by Agarwal and Matousek
in [2] for solving ray-shooting queries, de Berg is able to build efficiently
the needed data structure for predecessor/successor queries. The resulting
algorithm can compute a depth order for a set of segments, or decide that
there is a cyclic overlap among the segments, with a worst case complexity
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of O(n/3+¢). This result is then extended to triangles instead of segments
with the same complexity.

An interesting related problem is that one of verifying the correctness
of a given depth order; Chazelle et al. in [16] give a O(n%/**+¢) algorithm
to solve this problem; a solution with the same complexity is also given by
de Berg in [29]. Another contribution to lowering the complexity of this
problem has been given in [1] by Agarwal et al.; their approach solves the
linear extension problem, when the relation < is not cyclic, and for triangles
whose zy projections are fat enough in O(nlog6 n).

The above results assume that there is no preprocessing of the set of
objects to be sorted. If this assumption is relaxed, different approaches can
be chosen.

A popular technique for the preprocessing of a set of 3D objects is the
Binary Space Partition tree (BSP), proposed by Fuchs et al. [45]. This
structure, makes it possible to recover a depth order of a set of objects in
time that is linear with the size of the BSP tree. The BSP tree is based
on the recursive bi-partitioning of the space with planes, all the objects
crossed by these partitioning planes are subdivided. This strategy has the
drawback that the best bound of the size of a BSP tree of n objects in a
three dimensional space is O(n?) [80]: that is the polygon subdivision along
planes can generate a quadratic number of polygons. Moreover, while this
bound is far from reality in common three dimensional scenes, where it is
possible to choose space-partition planes such that they subdivide a very
small number of objects, for our purposes this bound becomes much more
realistic. In a generic tetrahedral mesh, any partitioning plane crosses (and
therefore subdivides) a considerable fraction of the dataset creating a large
number of new tetrahedra.

3.2.1 Depth Sorting Algorithms

Some practical algorithms for depth sorting a tetrahedral complex have been
proposed and used on real problems; in this subsection we give a short
overview of them and evaluate their complexities and the main drawbacks
of each approach.

Topological sort The cells of an acyclic convex complex can be sorted by
exploiting the face-adjacency relation between tetrahedra and face orienta-
tion. An algorithm, called Meshed Polyhedra Visibility Ordering (MPVO),
based on this approach was proposed by Williams [112, 114].

In a preprocessing phase, the MPVO algorithm constructs the adjacency
graph for the given mesh and calculates the plane equation coefficients for
each face. At rendering time, the algorithm works in two steps. Given the
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Figure 3.2: Topological sorting fails in the case of cycles created by wrong
DAG orientation due to approximation error.

current viewpoint, first, exploiting the stored plane equation, it computes
the occlusion relation for all pairs of adjacent cells, and converts the ad-
jacency graph into a direct acyclic graph (DAG). Second, a total ordering
of the cells is obtained in linear time by a topological visit of the DAG. If
the topological sort is obtained by a depth first visit of the DAG the pres-
ence of cycles can be detected and a partially correct mesh ordering can be
calculated.

The author proposes an extension of this algorithm to manage non-
convex meshes by sorting all the cells with boundary faces according to their
centroid, and then selecting them in the DFS visit of the DAG according
to that ordering. It should be noted that this extension can produce an
incorrect sort, because the occlusion relation does not always agree with
the centroid distance. Another possible extension to managing non-convex
meshes is the filling of non-convex parts with new cells, in order to obtain
a convex complex. This filling operation can be very difficult, like any
constrained threedimensional triangulation, and it can create a quadratic
number of cells; this will increase the final time and space complexity of this
approach.

The robustness of this approach depends on the accuracy of the computa-
tion of the occlusion relation between adjacent tetrahedra when considering
faces almost perpendicular to the viewpoint; an error in the orientation of
a link in the DAG may result in the creation of cycles and therefore sorting
errors; the solution proposed by Williams [114] of considering almost per-
pendicular faces as not related may still introduce visible errors in sorting.
The use of geometric primitives [91] that guarantee an error bounded by
the machine precision, can solve most of these problems in most cases by
introducing a small degradation of performance.
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Figure 3.3: Numerical sorting fails on degenerate Delaunay meshes.

Numerical Sort A different technique working only on tetrahedral com-
plexes was proposed in [72]; this technique does not need to store the adja-
cency relation between tetrachedra and is based on the following property
of Delaunay tetrahedral complexes:

the length of the tangent from the viewpoint to the sphere cir-
cumscribed to a tetrahedron reflect the depth ordering of the
complex.

A detailed discussion of this property and its relation with power diagrams
is presented in Section 3.3. To use this technique the centers ¢; and radii r;
of all the tetrahedra o; of the complex must be precomputed once and stored
together with the dataset. Then, in order to sort the tetrahedral complex it
is sufficient to calculate for each tetrahedron o; the square of the distance
from the current viewpoint to centers ¢;, subtract from it the squared radius
r;, and sort the resulting values numerically.

The worst case complexity of this technique is O(nlogn) with n the
number of tetrahedral cells. The main drawback of this technique is its
applicability only to Delaunay complexes and its sensitivity to Delaunay
degeneracies. This sort can fail on many common datasets, such as those
obtained by regularly decomposing hexahedral cells in 5/6 tetrahedra: all
these 5/6 tetrahedra shares the same circumsphere, so the ordering between
them is not calculated at all.

Numerical sorting can be considered, in some aspects, more robust than
topological sorting; its weakness is due to the shape of the dataset itself
rather than on the particular viewpoint chosen. Moreover, despite its higher
worst-case complexity, running times of the two techniques are comparable
[24].

This technique can be succesfully applied also to simplicial complexes
that are subsets of Delaunay complexes such as the alpha shapes [40]; there-
fore, as explained in Corollary 1, this technique of sorting is not inherently
limited to convex and/or connected domains.
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Newell, Newell and Sancha’s Sort Acyclic tetrahedral meshes can
also be sorted using an extension of the Newell, Newell and Sancha (NNS)
sort algorithm [97]. In the same way as the original sorting algorithm [76]
for polygons, the sorting process is organized into two phases. In the first
phase the vertices are view transformed and a preliminary approximate sort
of the polyhedra is calculated according to the rearmost z component of
each polyhedron. The second step is a fine tuning of the sort, organized into
checks of increasing computational complexity, similarly to the original NSS
algorithm.

The goal of fine tuning is to find a separating plane between two polyhe-
dral cells which permits us to deceive the correct cell drawing order easily.
Given a cell o on the top of the z rearmost ordered list (result of the first
phase) it can be safely rendered only if it does not overlap any cell in the
list with a rearmost z less then the nearmost z of o. If an overlapping cell is
found, then it is put on the top of the list and the process is started again.
The existence of cycles can be detected by tagging every overlapping cell and
testing if a cell is involved in an overlapping more than once. No solutions
for breaking the cycles are presented.

The worst case complexity of this approach is O(n?), and the running
times presented in [97] are much higher than the ones of the two previous
algorithms. On the other hand, this algorithm is the only one which correctly
handles any class of acyclic polyhedral complexes.

3.2.2 Final considerations on sorting tetrahedral complexes

In table 3.1 we summarize the main characteristics of algorithms for sorting
three-dimensional cell complexes. It is worth noting that the de Berg’s
algorithm has never been practically adopted for visualization purposes: its
presence in this table denotes the best theoretical result for sorting a generic
cell complex.

‘ ‘ Topological ‘ Numerical ‘ de Berg ‘ NNS ‘

Class convex Delaunay any any
of complexes | complexes | (subset of) | complex | complex
Worst Case
Complexity O(n) O(nlogn) | O3t | On?)

Storage
OverHead O(n) O(n) O(1) O(1)

Table 3.1: Results on computing depth orders for tetrahedral complexes.

It should be noted that the above algorithms can generate a correct depth
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ordering only if the starting complex is acyclic with respect to the specified
viewpoint. Practical algorithms for testing the acyclicity of a simplicial
complex for any viewpoint are not known. A brute-force algorithm, based on
the idea of depth-sorting the complex from all significant possible viewpoints,
was sketched as a personal communication between H. Edelsbrunner and P.
Williams [114]. The idea is to place all the significant viewpoints in all
the cells v of the plane arrangement H generated by the partition of the
space with planes passing through all the faces of the cells. All the points
p in the same cell v of H certainly share the same depth ordering of the
original complex > w.r.t. p, because the occlusion relation between two
cells can change only when crossing the plane affine to one of the faces
of the two cells. The main drawback of this approach is its complexity,
since the arrangement of the planes affine to facets of a simplicial complex
with n vertices can contain O(n?) cells, therefore if we sort the complex
foreach reasonable direction using a topological approach we obtain a O(n?)
complexity that limits the algorithm usability.

3.3 Power Diagram Sorting

In this section we describe the links between acyclic complexes in IEY with
convex polyhedra in B9+ and power diagrams, and how to exploit these
relations to depth sorting a projective complex.

3.3.1 Power diagrams and convex polyhedra

In this subsection we explore some of the connections between convex poly-
topes and power diagrams, giving a simple proof of the acyclicity of a pro-
jective simplicial complex.

Let IE9*! be spanned by the coordinate axes zi,---,z4y1 and let hg
denote the hyperplane x4, = 0. The following result, that relates PD and
convex polyhedra, is presented in [6]:

Theorem 2. (Aurenhammer [6]) For any (d+1)-polyhedron P, which can
be expressed as the intersection of upper halfspaces, there exists an affinely
equivalent power diagram in hg, and viceversa.

It is assumed, without loss of generality, that all the upper halfspaces gen-
erating the polyhedron P cross the unitary paraboloid U : 441 = Z;;i:l T3
This theorem is based on the following transform II that maps a sphere
s C hg with center z and radius r in the hyperplane:

H(s): g1 =22 -2—2-2+712 (3.1)
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Figure 3.4: A 2D simplicial complex I' (top left), and the corresponding
Power Diagram (top right). Below a 3D representation of the complex I" on
the plane hg, the lifted complex I'* and the resulting power circles on hy.

The hyperplane II(s) crosses the unitary paraboloid U, such that the pro-
jection of U NTI(s) onto hy is equal to s. Conversely, the mapping from
planes crossing U back to spheres in hy can be defined.

An interesting property of this transform is that, if s and ¢ are two
non-concentric spheres in hg, then chor(s,t) is the vertical projection of
II(s) N II(¢) onto hg. Therefore, given a polyhedron P, it is possibile to
obtain a set of spheres S whose PD is equal to the projection of P onto hy.

3.3.2 Bounded and Unbounded Convex Polyhedra

In theorem 2 we referred to polyhedra formed by the intersection of non-
vertical upper halfspaces, therefore unbounded infinite polyhedra whose pro-
jection onto hy is a partition of the whole plane. With the following theorem
we extend this relation in order to be able to manage bounded polyhedra
such as the lower part of a convex hull.

Theorem 3. Let P be the lower part of a convex polyedron bounded by
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simplicial facets; there exists a power diagrams PD(S) of a set of spheres S
whose cells are superset of the projection of the facets of P onto hg.

Proof As in the previous case we assume, without loss of generality, that
the hyperplanes affine to all the facets of P cross the unitary paraboloid U.
Let Py be the projection of P onto hyg. Consider the halfspaces passing
through the d-facets of P and let P’ be the (d+1)-polyhedron which is
obtained by the intersection of these upper halfspaces. The internal facets
of P (the ones not having a d — 1 facet on the boundary of P) have a
direct correspondence in P’. Conversely the d-facets having one or more
d — 1 facets on the boundary of P lose these (d-1)-facets and become larger,
possibly unbounded, d facets.

For theorem 2 we can build the PD that is affine to the projection P}
of P' onto hg. It is easy to see that each d-facet o of Py corresponds to a
d-facet o' of P} such that o = ¢’ if o is an internal d-facet, or o C ¢’ if o is
a boundary d-facet. O

In Figure 3.4 we show a 2D simplicial complex Py (top left) and the
corresponding lower part of a convex polyhedron P in 3D (bottom); in the
top right part of the figure we show the power diagrams resulting from the
application of theorem 3.3.2 to P.

Acyeclicity of projected convex polyhedra From the relations recalled
in the previous paragraphs we can devise a new proof for the acyclicity of
a simplicial complex that is the projection of the lower part of a convex
polyedron in IE9*!; we think that this proof is considerably simpler than
the one presented in [39].

Given a viewpoint p, we introduce a numerical function ® that agrees
with the occlusion relation that is: ®,(o) such that ®,(c) < ®,(7) if 7 <, 0.
Clearly if such a numerical function exists for a given viewpoint then <, is
acyclic since it is impossible to have a set of cells ¢1,...,0, that forms an
occlusion cycle:

01 <p " =<p Ok <p 01

because the corresponding numerical function ® should give:
Dp(01) < Ppo2) < -+ < Pp(og) < Dp(o7)

It easy to show that, if o <, 7 and ¢ and 7 are not adjacent, we can
find a chain o <, 01 <, -+ <, 0} <, 7 such that all these simplexes are
consecutively adjacent; for example such a chain can be built by choosing
the d-simplices crossed by a line segment starting from p and crossing both
o and 7. For this reason we can simplify our proof and reduce it to the case
of two (d-1)-adjacent simplexes.
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Let I'* be the convex polyhedron whose projection onto hg is affine to
I'; for theorem 2 using the transform IT we can build the set of spheres Sp
such that the power diagram PD(Sr) is affine to T".

Let o and 7 be two (d-1)-adjacent simplexes of ', o* and 7* be the two
corresponding (d-1)-adjacent simplexes of I'*, s, and s, be the two spheres
of St, such that cell(s,) = o and cell(s;) = 7; the hyperplane I1(s,) contains
o* and II(s,;) contains 7*.

The (d-1)-face f common to o and 7 lies on the chordale chor(s,, s;), be-
cause, as observed in previous section, chor(s,,t,) is the vertical projection
of TI(sy) NTI(s;) onto hg.

Now consider the obstruction relation between the two simplexes, for
the convexity of o and 7, it holds o <, 7 if and only if the viewpoint p
belongs to the halfspace bounded by the hyperplane passing through the
(d-1)-face f, that is chor(sy,s,); but chor(ss,s;) partition IEY in the re-
gion where pow(z,s,) < pow(z,s;) and viceversa. Therefore o <, 7 —
pow(p, sy) < pow(p,s:), so the pow(p,s,) can be considered the searched
numerical function ®.

3.3.3 Sorting a simplicial complex

The most interesting aspect of the results in the previous section is that they
suggest a technique for depth sorting a simplicial complex in IE4 that is the
projection of the lower part of a convex polyhedron in IE4*!. Infact given the
viewpoint p it is sufficient to sort the d-cells o; of the complex according to
pow(p, S, ), where s, is the sphere obtained by the transformation IT from
the plane h; affine to the facet o;. Hereafter we will refer this approach to
depth sorting as Power Diagram Sorting or PD sorting.

The main problem of this approach is that in the common cases we have
just a simplicial complex I' in IEY and not T'*. In some special cases it is sim-
ple to find the convex polyhedron, for example if I' is a Delaunay simplicial
complex we can exploit the well known correspondence with convex hull in
IEd*! to find T'*. In this section, given a generic complex I’ we address the
following problem, hereafter denoted as the lifting problem: finding a convex
polyhedron I'*, if there exists one, such that I' is the vertical projection of
.

Finding an efficient and usable solution to this problem means finding a
new approach to the depth sorting problem. The most interesting aspect of
this approach is the clearness of the structure needed for the sorting once
the corresponding polyhedron has been found: for each simplex it is only
necessary to store the power circle. Apart from the intrinsic simplicity of
this approach, its flatness can be useful in the creation of data structures
for secondary memory: any subset of the complex can be independently
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recovered and sorted using just the stored power circles.

Useful corollaries So far we have dealt with the lifting and projection of
convex complexes, here we add two corollaries that extend the applicability
of this technique of sorting.

Corollary 1. The acyclicity theorem, and therefore the agreement between
®, and <, holds also for a complex T" that is a subset of a complex T' that
is obtainable as a projection of a convex polyhedron T'*.

The proof of this corollary immediately derives from the fact that the
sort is based only on the numerical value of the ® function; once this function
has been calculated we can discard part of the complex I' without any risk.

This remark permits us to use the PD sorting also for non-convex com-
plexes which are subsets (maybe carved out) of large convex complexes.
An important class of such complexes is, for example, Edelsbrunner alpha
shapes [40].

Corollary 2. Given a complex ' obtainable as a projection of a convez
polyhedron I'*, the acyclicity theorem, and therefore the agreement between
®, and <, holds also for a complex T having the following property: for
each d-cell o' € T' it is possible to find a d-cell o € T' such that o' C o and
ifo’. 7 el o,rel, o Co, 7 Cr1theno #717 =0 #7.

Proof The agreement of ®, function with <, relation depends on the in-
tepretation of chordales as separating planes. Obviously these separation
works also if the cells are smaller and totally included in the larger power
cells of the power diagram. Finally the last condition of this corollary (
o' # 17" — o # 1) requires that for each cell of the PD there is at most one
smaller cell. U

This means, in other words, that we can use the PD sorting for com-
plexes whose d-cells can be seen as shrinking of larger cells, therefore the
requirements for the d + 1 convex polyhedron that we search are that its
orthogonal projection be a complex whose d cells cover all the cells of our
d-complex.

A consequence of these corollaries is that this approach can also be used
to sort scattered triangles in space: in this case, for each triangle f, it is
necessary to find a supporting tetrahedron o such that f belongs to the
facets of o and o does not intersect any other triangle. This can be done
by adding a vertex sufficiently close to the face f. Using this approach we
could sort a set of triangles with a complexity of O(nlogn), with just a
linear storage overhead (the center and radius for each sphere).
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Figure 3.5: A lifted complex of ~ 1000 facets in IE2.

3.3.4 Lifting a tetrahedral complex

The lifting problem consists in lifting each vertex v of a complex I' in &4
along the d + 1 axis in order to obtain a convex polyhedron in IE4+!. The
first observation is that such a problem does not have a single solution:
there exists an infinite number of different convex polyhedra having the
same projection onto hg, and therefore there are infinite sets of spheres that
can be used to sort our complex.

Now we will formulate the lifting problem as a linear programming prob-
lem. The lifted complex is convex if and only if the dihedral angle between
any two lifted (d — 1)-adjacent simplex is convex. This condition can be
expressed in the following way: let o and 7 be two simplexes that are (d-
1)-adjacent through the common (d-1)-face f; let v, and v, be the two non
shared vertices of o and T,

ho : Tap1 = po1T1 + po2T2 + - + loaTd + ko

be the equation of the non vertical hyperplane in IE4*! passing through o.
The convexity of the dihedral angle between ¢ and 7, is guaranteed if
the projection of v, onto h, is strictly higher than the d + 1 coordinate of
Ut
Ur,d+1 > Mo 1Vr1 + Mo 2Ur 2 +-+ Mo,dVr,d—1 + ka’

It can be observed that the coefficients ji,; linearly depend only on the
vertices of o, so we can express such linear inequalities having as unknown
variables the d + 1 coordinates of vertices of o and v,.
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In this way we can express the lifting problem as a set of m linear in-
equalities, with » unknowns, where n is the number of vertices, and m is
the number of internal (d-1)-facets of T'.

A solution of this system can be easily found used the simplex algorithm;
this requires to transform all the strict inequalities by adding a slack constant
¢ in order to fix the minimum distance between v, and h,:

Vrdt1 — MoiUr1 — He2Ur2 — - — ledVrd—1 — ko > 0

and to set as objective function the minimization of the complessive sum of
the new (d+1) coordinates of vertices. It should be noted that the coefficient
matrix of this LP problem is very large, but fortunately it is very sparse:
each line of the system has at most d+2 non zero elements.

If the simplex algorithm does not find a solution we have demonstrated
that the given complex I' is not a projective one. It is still an open problem
whether this fact implies the existence of a viewpoint p such that the <,
relation for I' is cyclic.

Some experiments in two dimensions showed that the solution of the
linear programming problem generated by a complex of one thousand tri-
angles (Figure 3.5) can be found in less than a minute on a small personal
computer using a public domain LP solver. This preliminary result appears
to be a reasonable preprocessing step, and it allows us to claim the practical
relevance of the proposed solution.

Non Convex Simplicial Complexes The technique presented works
only if the complex to be lifted is convex; for corollaries 1 and 2 we know
that if we consider a non-convex complex I as a subset of a larger convex
polyhedron I', that is projection of the lower part of a convex polyhedron
I'* in B!, our sorting method is still applicable, but the lifting technique
previously proposed does not work.

We can solve this problem including for each (d-1)-face f on the bound-
ary, with f belonging to a simplex o, the constraint that the halfspace h,
in IE4*! passing through the lifting of o, does not contain any other lifted
vertex. It should be noted that this approach can increase the number of
constraints of the linear programming problem from O(m) to O(m?). An
application of this techinque to the lifting of a non convex two dimensional
complex is shown in Figure 3.6.

3.4 Conclusions

In this chapter we have presented a new approach to the problem of depth
sorting a complex. The approach is based on the connection between power
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Figure 3.6: A the lifting of a 2D non-convex 2D complex.

diagrams and the class of projective complexes. Given a simplicial complex
I'={og,...,0,} in IE this approach has two steps:

e Preprocessing: lift the complex in IE4t! obtaining a complex I'*
that is the lower part of a convex polyhedron in IE*!. From T'*,
using the II transformation defined in (3.1), build the set of spheres
80 = {Soys - - - » So, |, One sphere foreach simplex of I', such that PD(S)
is affine to T

e Depth-Sort: Given a viewpoint p, calculate, for each simplex o,
pow(p, $4,) and sort the simplices according these numerical values.

Summarizing, we can briefly describe some pros and cons of the proposed
depth sorting technique:
Pros:

e run-time efficiency: the depth sorting consists in the calculation of
power distance for each cell and the simple sorting of these values;

e data structure simplicity: for each cell we need to store just a
center of a sphere and a radius, there is no need for face-adjacency
information;

Cons:

e time consuming preprocessing: the lifting in IE9+! of the original
complex can be a very long process for large non convex datasets, this
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fact also implies that the visualized dataset cannot be interactively
modified; the definition of better algorithms for the lifting problem is
a critical issue;

e universality: we do not know if any acyclic complex can be lifted
and then depth sorted using our technique;

Besides this innovative sorting approach, this chapter provided also a con-
structive solution (the lifting technique) to the problem of testing if a given
complex is projective (and therefore acyclic). Tt should be noted that if we
fail to lift the complex we have a proof that the given complex is not a
projective one.

As a final note, we want to remember that it is still an open problem
the exact relation between the class of acyclic complexes and the class of
projective complexes. We do not know if a complex I' that is not projective is
necessarily a cyclic complex, that is, if I' not projective implies the existence
of a viewpoint p such that the <, for I' is cyclic.
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Chapter 4

Integrating DVR and
Isosurfaces

In this Chapter we present an original projective technique which is able to correctly
integrate isosurfaces and direct volume rendering. The proposed technique is based
on a tabular on-the-fly decomposition of the tetrahedral cells crossed by isosurfaces.
In the second part of this Chapter we introduce the concept of Discontinuos Transfer
Functions; this concept unifies, in a single framework, the management of visual-
ization of isosurfaces and direct volume rendering in the visualization of volume
data.

The two most commonly used techniques to inspect volume data, isosur-
face extraction and direct volume rendering, cannot be easily integrated if
we use a projective approach. The intersection of isosurfaces with tetrahe-
dral volume elements can generate rendering artifacts due to the incorrect
depth ordering of isosurface facets and tetrahedra. No trivial solution (e.g.
drawing the isosurface facet f before/after the tetrahedron containing f)
can give a correct solution to this problem.

The main idea of our approach is to split each tetrahedron along the
internal isosurface patches and project in the correct order all the result-
ing parts; we will show that such cutting can be implicitly done during the
rendering process using a tabular approach driven by the class of the iso-
surfaces crossing the tetrahedron. In Section 4.1 we show the basic splitting
technique in the simple case of a single isosurface; in the next section we
extend this approach to manage the case of multiple isosurfaces crossing a
single tetrahedron. In Section 4.3 we apply the developed techniques for
integrating DVR and isosurfaces in order to solve the problem of the correct
rendering of discontinuous transfer functions, and we introduce the Discon-
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tinuos Transfer Function unifying in a single framework the visualization of
volume data with isosurface and direct volume rendering.

4.1 Integrating a Single Isosurface with DVR

A tetrahedron o crossed by a facet f of an isosurface can be correctly ren-
dered if we cut it along the isosurface, decompose the two resulting blocks
into smaller tetrahedra and project, in the correct order, these tetrahedra
and the isosurface f. In this chapter we show that this process can be
done automatically and efficiently at rendering time using a table-driven
approach. A sketch of this process is shown in Figure 4.1. It can be imme-
diately seen that this splitting process does not involve the creation (and
therefore the computation) of any new vertex, all the resulting tetrahedra
have vertices that belong either to o or to f. How to build the final tetra-
hedra starting from vertices of ¢ and f depends only on how the isosurface
crosses o, i.e. it depends on the class of the isosurface.

ATl of these decomposition and splitting could be obviously done in a
preprocessing phase (immediately after the extraction of the isosurface) and
the resulting mesh could be stored and managed as usual, but such a naive
approach has two main negative aspects:

e storage overhead: the splitting and decompositions can generate a
large number of tetrahedra, that must be deleted and recreated every
time the user changes the isosurface threshold.

e increasing in the time for the isosurface extraction: when creating the
isosurface all the new tetrahedra must be created and conveniently
inserted in the data structure storing the tetrahedral complex; this
operation can be time consuming (e.g. updating all the adjacency
information).

Fortunately there is no need to explicitly store the splitted parts of each
tetrahedron, but they can simply be built on-the-fly with a table driven
process during the tetrahedra projection starting from the isosurface class.
Moreover we observe that the depth ordering of the tetrahedra resulting
from the splitting is independent w.r.t. the global depth ordering of the
original tetrahedral mesh, and therefore can be computated on the fly for
each splitted tetrahedron during the rendering phase. Such local sort (local
to each splitted tetrahedron) can be accomplished in two steps: first, de-
termine the depth ordering between the two block, then sort the tetrahedra
derived from the decomposition of each block. This process will be described
later in section 4.1.2.
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Split tetrahedron Split blocks

1 into blocks into tetrahedra
A ’ &

Figure 4.1: Splitting a tetrahedron with an isosurface into blocks and blocks
into tetrahedra: all the configuration can be combinatorially determined
starting from the Marching Tetrahedra vertex configurations.

4.1.1 Splitting a Tetrahedron

To efficiently decompose a tetrahedron during the rendering process we must
carefully code all the needed information into a table. We assume that, for
each tetrahedron o, we can retrieve the isosurface facet crossing it, and
the class c the tetrahedron belongs to (determined during the isosurface
extraction). As explained in Section 2.2 the class number, in the range
0..3%, classifies the tetrahedron vertices according to their field value w.r.t.
the threshold 0 of the isosurface and unambiguously determines the shape
of the isosurface facet crossing o.

Our table has one entry for each c value and describes the resulting
blocks in terms of vertices and tetrahedra composing them. These blocks
have vertices in both the sets of vertices of dataset > and of the isosurface
itself and these two sets are commonly distinct, so an adequate address-
ing/referring technique must be used. For each of the 81 entries of the table
we store two block descriptions: the first one is relative to the block below
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the isosurface threshold and the second one to the above. One or both of
these block descriptions can be empty if, respectively, the isosurface crosses
one of the facets of o or if the tetrahedron is not crossed by the isosurface.
Each block description contains the following information:

e the number of the tetrahedra in which the block has to be decomposed;
e the indexes of the vertices of each tetrahedron composing the block.

The following simple mapping strategy can be used to address the vertices
of the block using the tetrahedron and isosurface vertices: the indexes of the
vertices of the block are denoted with integers in the range [0..7], indexes
in the range [0..3] refer to the tetrahedron vertices and indexes in the range
[4..7] refer to the isosurface vertices.

It should be noted that, by exploiting the symmetry of the isosurface con-
figurations, the crossing of an isosurface can decompose a tetrahedron only
in five different ways corresponding to the five isosurface classes. There-
fore the size of the table describing the decomposition of the blocks into
tetrahedra could be reduced to only five entries. However the mapping of
isosurface and tetrahedron vertices into block vertices must always be done
on the basis of a larger 81-entry table, therefore we decided for the simpler
approach of using a unique, although larger, table.

4.1.2 Sorting the decomposition

Once the decomposition of the original tetrahedron o has been determined,
the resulting smaller tetrahedra have to be correctly depth ordered. We
execute this depth sort in two step: first we sort the two blocks and then
we separately sort the tetrahedra of each block.

To depth sort the two blocks it is sufficient to look at the orientation of
the isosurface plane w.r.t. the point of view. Similarly the correct depth
ordering of tetrahedra composing each block depends only on the orientation
of the facets internal to the block, as in the case of topological sort. For
example, if we have an isosurface of class 1T (like the one in Figure 4.1)
tetrahedra forming the triangular prism block are sorted on the base of the
orientation of the two internal facets with respect to the viewpoint. The
choice of the internal facets to be used to sort each block is table driven
for efficiency reasons. Moreover we can exploit the smallness of our blocks
(they are composed of at most three tetrahedra) to code in the table also the
relation between the internal face orientation and the resulting depth order.
Infact we have at most two internal facets so the possible orderings are! at

"We can consider all the internal facets that are perpendicular to the observer as
directed in an arbitrary way without losing the resulting depth order correctness.
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most 22, and it is reasonable to code these orderings into each row of the
table. At rendering time we will check the internal facets orientation w.r.t.
the viewpoint and we can immediately retrieve the corresponding ordering
without storing or needing adjacency information between the tetrahedra
inside each block.

For sake of completeness we should note that also the adjacency informa-
tion could be stored into the table and convenientely exploited by a standard
topological sor; the setup time to convert these information from the table
coding format to the one necessary for the topological sorting is too high for
an operation that should be done for each tetrahedron during the projection.
Therefore we choose to add the following information to each block entry of
our table:

e the number f; of internal facets of the block;
e the indexes of the vertices of each internal facet;

e the 2/ depth orderings of the tetrahedra of the block.

The final table is composed of 81 entries and, by storing all the indexes in
one byte, its size is less than two kilobytes. We can now summarize the
whole splitting process executed at projection time for each tetrahedron o
that is crossed by an isosurface f:

e using the isosurface facet orientation, decide the depth ordering be-
tween the two blocks and the isosurface facet;

e following this order we process and render the two blocks and the
isosurface facet. For each block:

— recover from the table the internal facets, compute their orienta-
tion w.r.t. the viewpoint;

— use the result to locate in the table the depth order of the tetra-
hedra composing each block;

— following this order draw the tetrahedra out of the table and
project them.

4.2 Multiple Isosurfaces

The technique proposed in the previous section works only if we have to ren-
der a single isosurface. If we need to extract and visualize many isosurfaces
simultaneously, a tetrahedron can be cutted by more than one isosurface.
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Figure 4.2: A tetrahedron crossed by multiple isosurfaces is splitted into
convex blocks.

Fortunately, all the isosurface crossing the same tetrahedron are parallel (be-
cause of the linearity of the interpolation function inside the tetrahedron),
therefore the possible different decompositions, resulting from multiple iso-
surface cuts, are simple enough to be classified and managed using a tabular
approach as in the previous case.

To determine all the possible shapes of the resulting blocks we consider
a tetrahedron cutted by k parallel planes (the isosurfaces) into k + 1 convex
blocks. The shape of each block depends only on the class ¢, ¢ of the two
cutting isosurfaces that bound it. Let’s denote with i.j the block between
two isosurfaces of class 4 and j. We consider the isosurfaces in order of
increasing threshold value, in other words we step from vertices below the
threshold ¢ to vertices above §. The first and last block are usually denoted
with 0.2 and 4.0, but we can focus our attention on the shape of the generic
inner blocks 7.5 because, for the blocks of class 0.2 and .0, bounded by a
single isosurface, the table described in the previous section can be used. In
the case of multiple isosurfaces our table should also give all the information
about a generic 7.7 block.

It is immediate to see that most of the 81 x 81 cases are not possible,
infact if we consider two threshold §; < do the vertices of the tetrahedron
can be classified only in five different ways according their field value w.r.t.
81,02. Therefore we use a five values? classification of the vertices of the
tetrahedron that can give 5* = 625 different classifications of o w.r.t. two

2We adopt the following classification convention: 0’ if the vertex field valued ¢ is less
than d1,4d2, 1" if ¢ = &1, 2" if §1 < ¢ < 41, '3’ if ¢ = d2 and 4" if ¢ > Ja.
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isosurfaces. Most?® of these 625 configurations correspond to tetrahedra that
are crossed by none or just a single isosurface, in this cases there are no
inner blocks, so we leave the corresponding rows of the table empty.

The resulting table is therefore organized to manage the decomposition
of the inner block only, and contains the following information:

e the number of the tetrahedra in which the block has to be decomposed;
e the indexes of the vertices of each tetrahedron composing the block.

The following simple mapping strategy can be used to address the vertices
of the block using tetrahedron and isosurface vertices: the indexes of the
vertices of the block are denoted with integers in the range [0..11] , indexes
in the range [0..3] refer to the tetrahedron vertices, indexes in the range [4..7]
refer to the first isosurface vertices and indexes in the range [8..11] refer to
the second isosurface vertices.

4.2.1 Depth sorting

In this section we show how to sort simplicial complex generated by splitting
a single tetrahedron with many isosurfaces. First of all we must be sure
that such sorting always exists; for this reason we introduce the following
theorem:

Theorem 4. The simplicial complex generated by splitting a single tetrahe-
dron with many isosurfaces is always acyclic.

Proof. We prove this statement in two steps. As first step we note that
the cell complex formed by the convex blocks 7.5 is acyclic, because there
exists a set of distinct parallel planes separating the blocks, so it is impos-
sible to find a cyclic ordering without crossing twice one of these separating
plane. The second step of this proof is that the tetrahedral complex ob-
tained subdividing a block is still acyclic. This decomposition is generated,
as explained in section 4.2.2, as the Delaunay triangulation of the block ver-
tices calculated on a reference equilateral thetrahedron. If we consider the
affine transformation that maps the reference equilateral tetrahedron into a
generic one, we can easily see that it preserves the acyclicity property of the
complex.

To effectively calculate the depth ordering of the decomposition of a
tetrahedron crossed by k isosurfaces, we propose the following two-steps
algorithm: first we sort the convex blocks ¢.5, then we sort the tetrahedra

30Only 198 configurations give blocks bounded by two isosurfaces
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Figure 4.3: The blocks of a tetrahedron crossed by multiple isosurfaces are
sorted using the orientations of isosurface facets.

composing each block independently. We assume that, for each tetrahedron
o, we can immediately retrieve the list of k isosurface facets f; crossing o,
together with their classes ¢j, ordered by increasing threshold and that the
isosurface facets have the normal agreeing the field growing direction.

To find the correct depth ordering of the blocks a topological sort can
be applied. In this case the topological relation between blocks is trivial (all
the blocks are along a row) so this procedure can be furtherly simplified.
As already stated we assume that the isosurface are sorted w.r.t. increasing
threshold values and their normals agree with the field gradient inside the
tetrahedron. To sort the blocks we classify isosurface facets f; w.r.t. the
viewpoint (+’ if they see the viewpoint, -’ otherwise) and store in an array
the result. Then get all the blocks with agreeing '+’ according to the order
of the array, followed by the ones with agreeing -’ in inverse order and as last
block (if it exists) the one with disagreeing signs. In figure 4.3 we show an
example of this technique of sorting; the tetrahedron in figure, seen from the
viewpoint, is crossed by four isosurfaces and splitted into five blocks, under
each isosurface facets the result of the classification is shown; the resulting
depth order of the blocks (back-to-front) is 0.fq, fo.f1, f3.0, fo.f3, f1-fo.

Once the blocks are ordered we can independently depth sort the tetra-
hedra forming each block i.j using the orientation of facets internal to i.j
and exploiting the same approach proposed for the single isosurface case:
we store in each row of the table all the orderings resulting from all the 29
possible orientations of the ¢ internal facets of the block. Even if the num-
ber of tehtrahedra composing a block is larger than in the single isosurface
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tetrahedron
number G [} (o3 Jo Ji
500 | 3 1 21 (45¢628)(85610)(85109) | (856)(8510) | (210)(021)(1L02)(012)
block internal indexes of tetrahedra indexes of depht ordering w.r.t.
class facet internal facets internal facet orientation
number

Figure 4.4: A row of the table indicating how to decompose and sort a block
bounded by two isosurfaces.

case (a block can be composed up to six tetrahedra), this approach remains
convenient and the table size is still manageable.

At the end of this ordering process we have a sorted list of tetrahe-
dra, whose vertices are chosen between the ones of the original tetrahe-
dron and the vertices of the isourface facets inside it, that can be classi-
fied and rendered using projective techniques. Figure 4.4 shows a row of
our table. The first number (500) denote the configuration of the block,
as resulting from our five values vertex classification. The tetrahedron in
figure has vertices vi,v{,v§ under the first isosurface threshold and v§
above both isosurface thresholds, giving a block configuration number of
0-5Y4+0-5"4+0-5244-5% = 500. The second and third number denote
the number of tetrahedra and internal facets resulting from the decompo-
sition of the block. The following three quadruples indicate how to build
the three tetrahedra og, 01, 09 of the decomposition; similarly the next two
triplets give the indexes of the two internal facets fjq, fi1. These indexes
are given using the mapping strategy presented above; near to each vertex
v{ ... is shown the corresponding table index. The last four triples codify the
possible depth sorting of the tetrahedra w.r.t. the orientation of the internal

facets fio, fi1-

4.2.2 Building the table

Manually coding large tables, involving geometric properties, is a tedious
and error prone process and its debugging is difficult. The choice of not
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| BuckyBall Dataset (176687 Tetrahedra) |

thr | Isosurf. Total Splitted | Overhead | Trivial | Correct Trivial
size Tetra Tetra Factor | Hybrid | Hybrid | Times X

Overhead Times Times | Overhead

0.15 | 25,517 | 268,410 91,723 152 | 14.77 21.95 22.45
0.27 10,811 | 214,128 37,441 1.21 11.40 14.19 13.79
0.30 5,476 | 194,161 17,474 1.10 10.59 11.07 11.64

Table 4.1: Result of the integrating of isosurfaces and DVR using the split-
ting approach.

exploiting all the possible simmetries kept the table structure simple enough
to permit the automatic filling of the table. To calculate the characteristics
of each block we used an equilateral tetrahedron and generated on it all the
625 possible configurations of vertices values for two isosurface.

For each configuration we extracted the vertices of the corresponding
block and built the Delaunay triangulation of them. For the convexity of
the blocks, we obtained a decomposition of each block. Particular attention
had to be payed to the geometric robustness of the Delaunay triangulation
code adopted because most of the blocks presents degeneracies (5 or more
cospherical points).

4.2.3 Experimental Results

The technique proposed has been implemented and tested; here we present
some results of the first, rather unoptimized, implementation. The timings
and the images refer to the integration of a the single isosurface with DVR
and were executed on a SGI Indigo2 workstation (M1Ps4400 200MHz). The
case of multiple isosurfaces presents similar timings because in most cases
the cells crossed by many isosurfaces are a very small portion of the dataset.

Table 4.1 reports results on the integration of three different isosurfaces
with DVR. The experiment was run on a 32% subsampling of the Buckyball
dataset (see chapter 5 for a more detailed description). The table reports
the isosurface threshold, the number of facets of the extracted isosurface,
the total number of the tetrahedra projected using the splitting procedure,
the number of tetrahedra of overhead w.r.t. the original dataset, and the
relative overhead. The last three columns reports respectively the rendering
time for the trivial integration of isosurfaces and DVR (the isosurface facet is
drawn before its tetrahedron), for the proposed approach, and the product
between the relative overhead factor and the trivial integration rendering
time.

It can be noted that the rendering time of our approach is very similar
or lower than the time for a naive approach multiplicated for the relative
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increase of tetrahedra, therefore the time for splitting on-the-fly the tetra-
hedra crossed by the isosurface is a negligible portion of the total time of
rendering.

4.3 Discontinuous Transfer Functions

In the framework presented in 2.1 both isosurface extraction and transfer
function mapping belong the modeling part of the volume visualization pro-
cess, the part in which a dataset becomes a geometric entity with well defined
visual attributes. Here we try to unify these two visualization techniques
by introducing a new single concept: the Discontinuous Transfer Functions
(DTF). The main idea is to permit to the transfer function to have a num-
ber of discontinuity points where the mapping of field values into colors can
sharply change.

We denote with C the color/opacity space; given a color ¢ € C we denote
with ¢, ¢, ¢, ¢ the red, green, blue and opacity components of c. A DTF T
is a piecewise linear function 7 : R — C with a finite set of C? discontinuity

values D = dq,---,dy in which for each d; € D, we can have:
lim - T(v)=¢;
T(di) =c
hmv—)df" T(U) = C;ﬁl—

where c;,ci,cj € C are, possibly different, color/opacity values. This class
of functions permits the definition of TF’s that are able to combine both
the benefits of DVR and isosurface extraction in a single image:

e sharp discontinuities give, just like isosurfaces, a quantitative informa-
tion permitting the exact localization of the regions in which the field
assumes a given value;

e smooth color variations give a qualitative information about the field
variations in space and the direction and intensity of the field gradient.

It is obvious that a DTF must be correctly rendered in order to be useful
and, while this can be effectively done for some rendering approach (e.g. ray
tracing) it can be difficult when projecting tetrahedral meshes; in Section
4.3.1 we deal with this problem.

It could be objected that DVR techniques based on ray-tracing of regu-
lar datasets have always been able to display both semi-transparent medium
and isosurfaces [37, 66] and so the innovative contribution of our proposal
could seem vague. Beside our original technique for table driven tetrahedra
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decomposition which permits, as shown in Section 4.3.1, the correct ren-
dering of DTF to projective solutions, our main contribution is that we do
not simply mix isosurface and DVR but we propose a single visualization
modeling tool, the DTF’s, that allow us to map the dataset into a geometric
object with well defined visual attributes in such a way that the benefits of
both DVR and isosurfaces can be exploited.

Other works have faced problems that are somewhat related with our
approach, either in the direction of extending the isosurface technique to-
wards DVR or, viceversa, using trying DVR to rendering not sharply defined
surfaces. Here we briefly summarize present these related works, marking
how DTF’s cover all the presented solutions.

Shell Rendering Udupa and Odhner presented a data structure model
for volume rendering called shells [99]; it roughly consists of a set of vox-
els in the vicinity of a surface structure that is not very sharply defined,
and therefore it is difficult to extract with a classic isosurface algorithm.
Using our DTF model case the corresponding DTF is the one completely
transparent except for an opacity spike around the interesting value. While
in regular datasets the uniform smallness of the cells permits us to ignore
the problem of rendering voxels that are partially covered by the interest-
ing fuzzy region, on tetrahedral domains we must resort to the technique
presented in previous sections. This approach was also aimed to reduce the
rendering time by proposing a data structure for traversing only the opaque
part of a regular dataset. We will show how the opacity information of the
DTF can be used to reduce the size of the rendered dataset by means of
multiresolution techniques in Chapter 6.

Interval Volume A step in the direction of extending the isosurface con-
cept was given by Fujishiro et al. [46]. Instead of a single isosurface, they
propose to extract an Interval Volume IV («, 3), that is the polyhedral rep-
resentation of the portion of the dataset with field values in the interval
[, B]. The algorithm proposed is based on the extension of the Marching
Cube algorithm [69]. For each cell, they separately retrieve the polyhedral
representation of the portion of the cell below 8 and above a by means of an
extended MC look-up table. These polyhedral blocks, one for each cell, are
then merged togheter in a postprocessing phase and the face shared between
blocks deleted.

Interval Set Another step in the search of an unified approach between
DVR and isosurface rendering was the Interval Set concept proposed by
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Guo [51]. His approach is to segment the volume into interval sets, similar
to the interval volumes cited above, and render them as surfaces or directly
as semitransparent clouds. The technique proposed to effectively extract
an interval set from a regular dataset is based on the construction of the
alpha shapes [40]. An a-shape complex is built over a point set which is
the union of the dataset points with field value belonging to the interval
and the isosurface vertices, and with a radius a equal to one half of the
diagonal of a cubic cell. It should be noted that this approach, beside its
high computational cost*, does not ensure that the boundary of the interval
set matches the original isosurfaces (it is possible to construct examples in
which the isosurfaces has small features that cannot be captured by the
a-shapes, so the reconstructed volume is an approximation of the desired
interval set).

A third contribution has recentely be added by Nielson and Sung [77].
They propose an algorithm for computing a tetrahedralization of interval
volume that it better than the one of Fujishiro et al.; their approach is
based, similarly to our, on the use of the isosurface class to subdivide the
the tetrahedron along the isosurface, but their approach is oriented to a pre-
processing phase rather than an on the fly decomposition, does not handle
degenerate situations, and it is designed for surface rendering rather DVR,
so the sorting problem is not taken into account.

These two last approaches, Interval Volumes and Interval Sets, can be
correctly and efficiently modeled by using DTF’s. However their limit is
that they focus their interest on a single interval of the field domain, trying
to extract information about this set. The DTF model manages all these
situations in a broader way, permitting the precise coloring of the intervals
of the: infact it is easy to think of DTF’s not manageable with previous
approaches (like sawtooth transfer functions). See the figure 7.4 on page
136 for an example of a DTF that is not an interval volume.

A very recent technical report of Max et al. [115] describes a technique
to accurately render unstructured volume data that is very similar to the one
presented here: decompose cells crossed by isosurfaces and discontinuities
into smaller tetrahedra after the sorting phase. The high level objectives of
their work is to obtain the highest accuracy in rendering (infact they rely
on a very accurate software scan conversion of each projected cell), while
our aim is to obtain the best quality with the smallest overhead. One of
the main differences between our approach and the one presented in [115] is
that we exploit precomputed tables to recover both the decomposition and

“The Delaunay triangulation and a-shape generation can cost O(n?), with n number
of vertex complex contained in the specified interval.
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Figure 4.5: Aliasing due to the application the transfer function only to the
vertex of a triangle.

depth ordering of the splitted cells in order to reduce the computation at
projection time.

DTF and Optical Models In order to better exploit the possibility of
DTEF’s, the volume shading model commmonly used, the density emitter
model, must be enhanced. In particular, a non-realistic shading effect can
be added to improve the shape comprehension of fuzzy surfaces defined by
spike opacity in the DTF. To reach this result we follow the approach used
in ray tracing DVR [66, 37] to add a diffuse shading contribution on the
regions with high opacity variations, or proportional to the gradient of the
opacity.

4.3.1 DTF Rendering

Transfer function transforms the dataset in a colored transparent geometric
object and is part of the modeling part of the volume visualization process.
This process is done with different accuracy depending on the DVR tech-
nique used: in ray tracing the TF is applied to all the points collected by the
traversing ray in the volume, in projective and most of scan-line approaches
the TF is applied only to the vertices of the dataset and then the result-
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Figure 4.6: Aliasing due to the application of a transfer function with two
C" discontinuity points dg and d; to the vertex of a triangle.

ing visual parameters are linearly interpolated across the space spanned by
each tetrahedron. This linear interpolation of the visual attributes inside
a tetrahedron can create some aliasing effects when the TF is not linear in
the field range spanned by the tetrahedron. In figure 4.5 we show an ex-
ample of this problem in the two-dimensional case. This aliasing problem is
rarely considered in current rendering solutions. We propose the use of the
splitting techniques developed in Section 4.2 to correctly render a DTF.In
a DTF T the C° and C! discontinuities, can managed in the following way.

C° discontinuities are managed just like classical isosurfaces: we first
extract the isosurface with threshold ¢ equal to the discontinuity value d;;
during the rendering we process each tetrahedron with the split-by-isosurface
procedure explained in Section 4.2; when rendering each block b, bounded
by two isosurfaces I;, I; generated by two discontinuity points d; < d; of T,
we assign to the vertices of b belonging to I; the color cl-+ and to the one
belonging to I; the color ¢; . The isosurface I; is colored with ¢;.

C' discontinuities appears where the DTF change its linear behaviour
and can be managed in various ways. The simplest and most common ap-
proach is to ignore them with the possible aliasing effects shown in figure
4.5. A more sophisticated approach, presented by Max et al. [97], propose,
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during the rendering to calculate exactly the color integration only on the
thickest point of the projected tetrahedron and linearly interpolate elsewere.
Our splitting technique could be used to decompose each tetrahedron along
the isosurfaces corresponding to the field values where 7 present C! discon-
tinuity. While this approach guarantees the correctness of the rendering,
an excessive number of tetrahedra could result from the splitting, and this
could slow down the rendering process.

It is important to estimate and manage the error, hereafter named color
error that we introduce calculating the DF'T values only on the vertices and
linearly interpolating these color values inside each tetrahedron o. Consider
a tetrahedron o; with vertices vg, v1,v2, v3, and let f; be the linear function
intepolating the field value inside ;. If we compute the colors of TF only
onto the vertices of o; and we interpolate the result inside o;, we can define:

fiT ‘R?® = C

as the function interpolating inside each tetrahedron the colors T (f;(vg))
T(fi(v1)) T(fi(ve)) T(fi(vs)) calculated on the field values on the vertices
of ag;.

Let || - || be a suitable norm on the rgba space, then the color error
committed on point v can be denoted by the function:

Q) = 1T (fi(v)) — fF @)II°

Obviously, ) is always null on the vertices of tetrahedra. For each tetrahe-
dron ¢ it is easy to find, in a preprocessing step, the maximum error inside o,
hereafter denoted with a little abuse of notation with Q(o). If a tetrahedron
o is not crossed by any C' discontinuity of 7 then Q(o) is null; otherwise
Q(v) takes its maximum value on one of the C' discontinuities crossing o.
To take into account the fact that errors on opaque points are more visible
than errors on transparent ones, the resulting error can be weighted with
the maximum « value of 7(f;(v)) and f£(v).

Once we are able to measure the committed color error for each tetra-
hedron we can fix a threshold e and, for each tetrahedron o with Q(o) > e,
extract and store the isosurface passing through the C'' discontinuity value
that generate the maximum error inside o, so that at rendering time we can
decompose, and therefore correctly render, only the tetrahedra with greater
error. Such an approach permits also to estabilish an a priori maximum
percentage/number of tetrahedra that can be correctly rendered throug de-
composition, in order to precisely bound the overhead due to the splitting
in rendering time.
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4.3.2 Experimental Results

In figure 7.4 and 7.5 on page 136 we show two examples of the wrong and
correct rendering of a DTF for the buckyball dataset. In the lower part of
Figure 7.4 the DTF applied is shown. On the left we show the result of
a simple projective rendering with the DTF applied only to the vertices of
the tetrahedra. On the right we show the result of splitting the tetrahedra
along the C°. The buckyball dataset, shown in these figures, is composed
of 176,687 tetrahedra. The tetrahedra containing C° discontinuities, and
therefore incorrectly rendered, were 48,439. The splitting of these tetrahe-
dra along the disconituities has brought the total number of tetrahedra to
360,200. The rendering time, like the case of correct rendering of isosurfaces
and DVR, depends only on the total number or tetrahedra and is therefore
roughly doubled.

4.4 Conclusions

In this chapter we have presented two main results. The first one is the
splitting technique, that allows to integrate correctly and in a efficient man-
ner isosurfaces with the direct volume rendering through tetrahedra projec-
tion. The second contribution is the new concept of Discountinuous Transfer
Function, that allows the unified management of isosurface, interval volumes
and direct volume rendering in a unique framework. The splitting technique
presented in the first part of this chapter is then used to correctly render a
DTF.

It should be remarked that the modeling/rendering framework, intro-
duced in Chapter 2 for Visualization, led us to a better focusing of the prob-
lem faced in this Chapter: we have assumed the tetrahedron with linear
interpolation of per-vertex color attributes as the basic rendering primitive
for volume visualization. Then the problem of correctly render a DTF is a
modeling one: we don’t need new rendering primitives for each new visual-
ization technique, but we should find visualization modeling strategies such
that we can correctly transform the dataset in, for example, tetrahedra with
linear interpolation of per-vertex color attributes.
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Chapter 5

Size Reduction of
Tetrahedral Meshes

Very often datasets are so large that they cannot be rendered interactively. Simplifi-
cation techniques can build smaller datasets ensuring a limited/controlled degrada-
tion in the represented data. Two original simplification algorithms for tetrahedral
meshes are described in detail.

The real usability of a system for the visualization of volume data is
strictly connected to the level of interactivity the system performs. This
is because the user system interaction is enhanced and the understanding
of the results is improved through motion and interactive modifying of the
visualization parameters (e.g. transfer function, isosurface threshold). The
efficiency of the visualization algorithm is therefore crucial.

Direct projection of tetrahedral cells, using the hardware capabilities of
current state-of-the-art graphics workstations, is an efficient process (nearly
of the order of 10K + 100K tetrahedral cells per second). Nevertheless,
the performance required for the interactive use of these techniques is still
far beyond current speeds, especially in the case of low or medium power
workstations.

A data simplification approach can be applied to produce significant
speedups while maintaining good approximations in the images produced.
Therefore, we prove William’s intuition [112] that real-time interactive pro-
jection can be only obtained through data reduction.

The Chapter has the following structure: in section 5.1 we survey tech-
niques to perform data simplification of tetrahedral volume datasets, in Sec-
tion 5.2 we introduce the notation used in Section 5.3 and 5.4 to describe
two original simplification algorithms; finally in Section 5.5 the empirical
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results of the application of the first algorithm are presented .

5.1 Related Work

The main approach to build an approximate representation of a tetrahedral
dataset is choosing a subset of the original vertices and building a new
triangulation of (almost) the same domain.

Many different adaptive methods, which try to select the smallest set of
points approximating a dataset within a given error, have been developed
in 2D for the simplification of irregular meshes and topographic surfaces; a
detailed review of these algorithm is beyond the scope of this chapter, for a
complete survey on this subject see [26].

Very concisely we can summarize by saying that effective solutions to the
simplification problem have been obtained through incremental techniques,
based on what we can call either refinement (refine a coarse representation
by adding points [44, 32]) or decimation (simplify the dataset by removing
points [89, 18, 9]) strategies. Most of these techniques can be extended to
the 3D case to simplify volume data, but only few experiments have been
carried out [21, 52]. In the following we review the specific results regarding
tetrahedral meshes.

A first attempt in this direction was proposed by Williams in [114]; he
suggest to choose a random subset of the vertices of the mesh and retriangu-
late them using a Delaunay triangulation conformed in order to approximate
the original domain. This proposal was neither implemented nor specified
in details and presents two serious drawbacks: there is no control on the
accuracy of the simplified mesh and the technique is not adaptive, i.e. the
density of the data cannot vary over different regions of the domain.

A more detailed description of a very similar approach is given by Renze
and Oliver in [85]; they propose a volume decimation algorithm in which,
given a volume dataset described by a tetrahedral complex X, they try to
remove, without any specified order, the internal vertices of the mesh; the
retriangulation of the hole left by the removal of a vertex v is done by
building the Delaunay triangulation 3, of the vertices adjacent to v, and
searching, if it exists, a subset of the tetrahedra of 3, whose (d-1)-faces
match with the faces of X. If such a subset does not exists the vertex is not
removed; it should be noted that such condition may very ofter occur if the
original complex is not a Delaunay one. The Renze and Oliver’s approach,
as the idea sketched by Williams, neither measures the approximation error
introduced in the reduced dataset, nor tries to select the vertex subset in
order to minimize this error.

In [52], Hamann and Chen introduce a refinement strategy for the sim-
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plification of tetrahedral convex complexes. Their method is based on the
selection of most important points and Their insertion into the convex hull
of the domain of the dataset. Significant data are identified by large absolute
curvatures obtained by a local least square approximation method. When
a point is inserted into the triangulation, local modifications (by face/edge
swapping) are performed in order to minimize a local approximation error.
This process leads to a data dependent triangulation.

In a recent paper Popovic and Hoppe [81] have extended the Progres-
sive Meshes algorithm [54], a simplification strategy for three-dimensional
surfaces based on edge-collapse operations, to generic simplicial complexes.
However their approach is more oriented towards the simplification and man-
agement of surfaces in the most comprehensive way, than towards the topol-
ogy preserving simplification of tetrahedral complexes for scientific visual-
ization.

5.2 Approximated meshes

Let V be a volume dataset, and let I" be a given mesh over V, covering a
domain €2, and having all points of V as vertices. The pair (V,T') is called
a reference model for the volume dataset. An approzimated model of such
volume data is given by a pair (V', ), with ¥ a tetrahedral mesh having as
vertices the points in V! C V, and covering a domain Q that approximates
Q. A linear function is given for each tetrahedron of ¥ to interpolate the
field inside sigma. The accuracy of approximation is given by the difference
between the reference model and the approximated model, and it depends
essentially on:

e the warping of the domain, i.e., the difference between €2 and its ap-
proximation £2;

e the error made in approximating values at the points of V through
the piecewise-linear function defined on X.

Hereafter we will denote the accuracy of an approximation with the pair y =
(6,€) where § and € denote the warping and the error of the approximated
dataset, respectively.

Some considerations on the computation of warping and error can be
made for the following classes of volume datasets.

Convex Datasets. This is the simplest case: we can assume that Q = ,
i.e., there is no warping error because convex datasets usually have a small
number of vertices on their convex hull; in particular, regular datasets have
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Figure 5.1: Lifting and warping for curvilinear datasets (example in 2D):
(a) the lifting maps a regular mesh I'. into a curvilinear mesh I'; (b) the
triangular mesh 3 approximating I is back-projected in computational space
into mesh ¥.; (c) the warping at a point v is equal to the distance from v

to the warped point ©.
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a convex hexahedral domain that can be defined with just six vertices. In a
convex dataset, the error on a point v contained in a tetrahedron o is given
by the absolute value of the difference between the field value at v, and the
value of the linear function associated to o computed at v.

Non-convex curvilinear datasets. This class of datasets is a common
result of simulations: the domain is represented by a deformed hexahedral
lattice. We consider a parallelepiped 2., that we call the computational
domain, and a regular hexahedral mesh I'. covering €., and isomorphic to
I'. The one-to-one correspondence (isomorphism) between vertices of T'.
and T' will be called a lifting from computational to physical domain (see
Figure 5.1a). Since ¥ has vertices on a subset of vertices of I', we can
use lifting to back-project ¥ into a corresponding tetrahedral mesh . in
computational domain (see Figure 5.1b). Meshes I'. and . both cover €.,
provided that 3. has at least the eight corners of €. as vertices. Therefore,
each vertex v, of I'; is contained into some tetrahedron o. of 3.. We express
the position of v, in baricentric coordinates with respect to o., and we con-
sider the point v in physical space having the same baricentric coordinates
as v, with respect to the tetrahedron o, image of . in the physical space.
Point 9 is called the warped image of v (where v is the image of v, through
lifting). The warping at v is the distance between v and o (see Figure 5.1c).
The maximum distance over all the vertices of I' whose back-projection lies
inside o, provides an estimation of the warping of its lifted image o; the
maximum warping over all tetrahedra of 3 defines the warping of the whole
approximated model.

The field value error E is measured by computing the difference between
the field value at v, and the value of the linear function in the computational
domain: this is equivalent to measure the difference between the field at a
datum v and the estimated value at its corresponding warped point v defined
above.

Non-convex irregular datasets. This is the most general case; for the
estimation of the warping errors we follow the approach used in the field
of the simplification of 3D surfaces and we estimate the actual difference
between the boundaries of © and Q. Such a difference is measured by com-
puting the Hausdorff distance between the two domains, defined as follows:
the Euclidean distance between a point p and a set P C IE4 is defined by

d(p. P) = mind(p. z
(p, P) min (p, )

where d() is the Euclidean distance between two points in I89. The one-sided
Hausdorff distance dg (P, Q) from a set P C IEY to a set Q C B is defined
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Figure 5.2: For non-convex irreqular datasets, we estimate the actual differ-
ence between the boundaries by computing at each boundary vertex of I' its
minimum distance from the boundary of X.

by
d(P,Q) = max d(p, Q)

An approximation of this distance can be computed as follows.The warping
of a boundary face o of ¥ is the maximum among all the distances cor-
responding to the boundary vertices of I' that are projected onto o; the
warping of ¥ is the maximum warping of all its boundary faces [18].

To estimate the error in approximating the field on a non-convez irreqular

datasets we need to consider two possible cases: if v is inside €2, then we
compute the field difference as in the convex case; if v lies outside €, we
compute first the projection v, of v on the boundary of Q. then we measure
the difference between the field at v and the linear interpolation at v,. In
this case, v is said related to the tetrahedron o having v, on its boundary
(see Figure 5.2).
The error of a tetrahedron o is the maximum error of all the vertices v; such
that: for the convex case, v; lies inside o; for the non-convex curvilinear
case, the point corresponding to v; in computational space lies inside o.; v;
is either inside o, or related to 0. The error of the mesh ¥ is the maximum
among all errors of its tetrahedra.

Hereafter, warping and error will be denoted by functions W () and E(),
respectively; they can be evaluated at a point v, at a tetrahedron o, or at a
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mesh Y. Warping and error at data points can also be weighted by suitable
functions that may vary over 2. Weights can be useful to obtain a space-
based measure of accuracy. For example, if we assume that for applicative
needs accuracy is important in the proximity of a selected point p, then we
can select weights decreasing with distance from p. Similarly, range-based
error can be used to require more accuracy where data assume a given value
g: in this case, a weight for error can be obtained by composing the value
function v with a real univariate function decreasing with distance from gq.

5.2.1 Building an approximated model

Given a reference model (V,T'), and a threshold pair ;4 = (4, ¢), we deal with
the problem of building an approximated model (V',¥) that represents the
volume dataset with accuracy u, i.e. with a warping smaller than § and an
error smaller than €. A key issue is that the size of 3 should be as small
as possible. A result in 2D [3] suggests that the problem of minimising the
size of the mesh for a given accuracy is intractable (NP-hard); moreover,
approximated algorithms that guarantee a bound on the size of the solution
with respect to the optimal one are difficult to find, and hardly applicable in
practice [3]. Hence, heuristics can be adopted to obtain a mesh of reduced
size by following data simplification strategies. There are two basic classes
of strategies for simplifying a mesh:

e Refinement strategies start from a mesh whose vertices are a very small
subset of vertices of I'. The mesh is iteratively refined by inserting
other vertices of I' into it. Refinement continues until the accuracy of
the mesh satisfies the required threshold. The vertex to be inserted can
be selected on the basis of the best improvement of the mesh accuracy.

e Decimation strategies start from the reference model I' and iteratively
modify it by eliminating vertices. As many vertices as possible are
discarded, while maintaining the required accuracy. Also in this case,
points are selected at each iteration in order to cause the least possible
increase in warping and error.

In the following Sections, we present two algorithms for the simplification of
a tetrahedral mesh: the first method is based on refinement and Delaunay
tetrahedralization; it can be applied to convex datasets, and to non-convex
curvilinear datasets; the second method is based on decimation, and it can
be applied to any dataset, provided that the reference mesh I is a tetrahedral
mesh, but it is especially well suited to non-convex irregular meshes.
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5.3 A method based on refinement

In [19] we have proposed the extension of an existing refinement for convex
datasets and we have further extended it in [21] to deal also with non-convex
curvilinear datasets. In this section we describe the basic technique and our
proposed extention. The basic idea comes from an early technique developed
in the two-dimensional case and widely used for approximating natural ter-
rains [44, 33]. An on-line algorithm for Delaunay tetrahedralization is used
together with a selection criterion to refine an existing Delaunay mesh by
inserting one vertex at a time. In the case of curvilinear datasets, a Delau-
nay tetrahedralization is computed in the computational domain, while its
image through lifting gives the corresponding mesh in the physical domain.
In both cases, the selection strategy at each iteration is aimed to refine the
tetrahedron that causes the maximum warping/error in the current approx-
imation: this is obtained by selecting the datum v,,,, corresponding to the
maximum warping/error as a new vertex. The description of the algorithm
is general, while specific aspects of either the convex or the curvilinear case
are explained when necessary.

Given a dataset V', an initial mesh ¥ is created. If V is a convex dataset,
then X is a tetrahedralization of the convex hull of V. If V is a non-convex
curvilinear dataset, then a tetrahedralization X, of the computational do-
main (), is considered: since 2. is a block, >, has only the eight corners of
Q. as vertices, and it subdivides €. into five tetrahedra; X is obtained by
lifting >, into the physical domain. Given a threshold u for the accuracy,
the usual refinement strategy [33] is applied:

procedure REFINEMENT(V, ¥, );
while not (X satisfies u) do
Umaz < SELECT_POINT(V, X, u);
Y < ADD_VERTEX(E, Uas)
end while ;
return (X)
end ;
This refinement procedure always converges since the number of points

in V is finite; total accuracy is warranted when all of them are inserted as
vertices of 2. In summary, three tasks are accomplished at each iteration of
the refinement procedure:

1. test the accuracy of ¥ against p: this requires evaluating E(X) and,
in the curvilinear case, W (), and comparing them with £ and 4§,
respectively;

2. select a new vertex vy, from the points of V' by means of the pro-
cedure SELECT_POINT: for the convex case, the point of V that
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maximises F() is selected; for the curvilinear case, the point of V
that either maximises W () or maximises E() is selected, depending on
whether W (X)/E(X) is larger or smaller than d/e.

3. update X by inserting v, by ADD_VERTEX: this is done by using
an algorithm for on-line Delaunay triangulation that was proposed in
[67]: in the curvilinear case, update is always made on the tetrahedral
mesh in computational domain, and ¥ is obtained through lifting.

In order to implement the algorithm, we have used a data structure that
can achieve efficiency, while remaining as simple as possible. A tetrahedral
mesh is encoded as a set of vertices plus a set of tetrahedra. For each vertex
v, only its coordinates and its field value are stored; in the case of curvilinear
datasets, the coordinates of v are maintained both in computational and in
physical domain. For each tetrahedron o, four pointers to its vertices, and
four pointers to its adjacent tetrahedra are maintained.

The relations among tetrahedra and points of V' that are not vertices of X
are maintained by means of a bucketing technique similar to that proposed in
[59, 33] for dynamic triangulation in 2D: for each tetrahedron o we maintain
a list of data points of V' it contains; for the curvilinear case, containment is
intended in computational domain. For every such point, also its accuracy
values (error and warping) are stored; the vertices with the maximum error
and maximum warping are stored at the head of the list. This data structure
is initialised by locating each point of V' with respect to the tetrahedra of the
initial mesh Y. Then, each time X is updated, all points that lie within the
modified volume are relocated with respect to the new tetrahedra generated
during updating.

Tetrahedra of ¥ are stored in a priority queue that supports efficient
retrieval of tetrahedra maximising error and warping, hence evaluation of
E(X) and W (X), respectively. Such a query actually provides also the point
Umaz cOrresponding to the maximum error or warping: therefore, point se-
lection is obtained as a side effect of the test of accuracy.

The procedure ADD_VERTEX updates the tetrahedral mesh, while main-
taining the whole data structure consistent. The on-line algorithm proposed
in [57] updates the mesh at each vertex insertion by using a sequence of ac-
tions called face flips. A face flip modifies the mesh only locally: each
face flip replaces one, two, or three tetrahedra with four, three, or two new
tetrahedra, respectively (see Figure 5.3).

Beside modifying the mesh, we must also update the bucketing structure,
and the priority queue after each face flip. The following operations must
be performed:

e climinate from the priority queue all tetrahedra replaced by face flips;
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a) b) o)

Figure 5.3: A tetrahedra split, due to a new vertex selection and insertion
in the mesh (top image); the two classes of tetrahedra flip actions: the
2_to_3 flip, which produces three cells out of two (center image); the 3_to_2
flip, needed when the two tetrahedra present a non convex union (a), and a
third cell (b) has to be included in the flip action.

e relocate all data points that were contained inside such tetrahedra
with respect to the new tetrahedra;

e insert the new tetrahedra into the priority queue.

Relocation of points is simply done by scanning the lists of points at-
tached to the “old” tetrahedra, and, for each point v in a list, deciding which
of the “new” tetrahedra contains v. Dynamic update of the priority queue
is performed efficiently by standard methods.

A further remark is necessary, though, about the case of curvilinear
datasets. During the initial stages of refinement, mesh > might result ge-
ometrically inconsistent because of the warping caused by lifting. Indeed,
while mesh Y. is a Delaunay tetrahedralization of the computational do-
main, hence consistent, some tetrahedra might “flip over” during lifting,
hence changing their orientation and causing geometric inconsistencies in 3.
See Figure 5.4 for a two-dimensional example. Consistency can be tested by
verifying whether each tetrahedron maintains its orientation both in com-
putational and in physical domain.

We assign infinite warping to each tetrahedron presenting an inconsistent
lifting. In this way, inconsistent tetrahedra are refined first, and the mesh
rapidly converges to a consistent one.
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Figure 5.4: Inconsistency in curvilinear mesh (2D example): mesh Y. is
geometrically consistent, while its lifted image ¥ is not.

Complexity  The time complexity of the refinement procedure is not
crucial to our application, as long as it remains within reasonable bounds,
because the algorithm is applied off-line to the volume dataset in order to
build a multiresolution model (see Chapter 6). However, time analysis when
all the n points of V have to be inserted into ¥ shows a bound of O(n?)
in the worst case [19], while experiments show a subquadratic behaviour in
practice. On the other hand, the space occupancy of this algorithm is quite
high, due to the need to maintain both a bucketing structure and a priority
queue (see empirical evaluations in Section 5.5, Tables 5.1 and 5.2).

5.3.1 Refinement of large datasets by block-decomposition

For datasets having a regular structure (either in physical or in computa-
tional domain) it is possible to bring the size of the structure into more
manageable bounds, by splitting the dataset into blocks, and running the
algorithm separately on each block. Assume, for instance, that a regular
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Figure 5.5: Two adjacent blocks ¥; and X9, and the coincident triangula-
tions T and T5 of their common face.

dataset of size m x n x p is given: we can subdivide it, e.g., into &3 blocks
of size (m/k+1) x (n/k+ 1) x (p/k + 1) and process them separately, with
the same threshold p in all cases. Then, the resulting meshes are joined to
form a mesh of the whole domain.

In order to warrant the correctness of such a procedure, we must be sure
that the structure obtained by joining all results is a tetrahedralization of
the whole domain. A similar approach is presented in the two dimensional
case in [33]. This can be proved by showing that given two blocks sharing
a common face, the refinement algorithm will triangulate such a face in the
same way while refining each block (see Figure 5.5). Let ¥; and X3 be the
meshes of the two blocks, and let T7 and 75 be the triangulations of the face
r common to both blocks in 3; and s, respectively. We may assume that,
upon suitable initialization of the meshes, T and 75 are initially coincident.
Let us consider a generic step of the algorithm that refines 3;: if the inserted
vertex does not lie on r, the update change will not change either 77 or the
error/warping of data points lying on r; on the contrary, if the vertex inserted
lies on r, it must be the point which maximizes error/warping among all data
points lying on r. This means that the sequence of vertices refining T} is
independent of the refinement that occurs in the rest of ;. Since the same
situation occurs for the refinement of Y5, we can conclude that the same
sequence of vertices will be selected for T, hence the two triangulations for
a given accuracy will be coincident. However it should be noted that the
result will not be the same that we would obtain by running the refinement
algorithm on the whole dataset, since the resulting tetrahedralization might
not be globally Delaunay: the Delaunay property is verified only locally to
each block.
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5.4 A method based on decimation

The refinement method described above is difficult to adapt to the case of
non-convex irregular datasets. Major difficulties arise in finding an initial
coarse mesh to approximate the domain €2 and in the estimation of warping.
Delaunay triangulation is not applicable to non-convex polyhedra; moreover
even if we have an approximation of the boundary of the starting domain
finding a tetrahedralization of this polyhedron, without adding new points,
is an NP-complete problem [87].

Experience in the approximation of non-convex surfaces through 2D tri-
angular meshes suggests that a decimation technique might be more ap-
propriate to the case of non-convex irregular datasets (see, for example,
(89, 54, 18]). In the following, we describe an algorithm that extends such
heuristics to volume data: starting from the reference mesh I', vertices are
iteratively discarded as long as it is possible. Given a threshold u for the
accuracy, the following decimation procedure is applied:

procedure DECIMATION(V, T, u);
Y T
while ¥ satisfies u do
VUmin < SELECT_MIN_VERTEX(V, X, u);
Y + REMOVE_VERTEX(X, vsmin)
end while ;
return (X)
end ;

The two procedures SELECT_MIN_VERTEX and REMOVE_VERTEX select
the vertex to be removed and effectively remove it, respectively. They are
somehow more delicate than their respective counterparts in the refinement
approach SELECT_MAX_POINT and ADD_VERTEX. In the following subsection
we give some details about them.

5.4.1 Selecting a vertex to be removed

Selecting a vertex to be removed involves an estimation of the amount of
error and warping due to the removal: the criterion adopted is that the
vertex causing the smallest increase in error/warping should be selected at
each iteration. An exact estimation of the change in error and warping
can be obtained by simulating deletion of all vertices in the current mesh.
This would be computationally expensive, since each vertex has 24 incident
tetrahedra on average. This may involve relocating many points lying inside
such tetrahedra. We prefer to use heuristics to estimate apriori how a vertex
removal affects error and warping. Such an estimation is computed for all
vertices before decimation starts, and it is updated for a vertex each time
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Figure 5.6: Estimating the error due to the collapsing of v on w.

one or more of its incident tetrahedra change.

In order to estimate error increase, we pre-compute the field gradient V,,
at each vertex v of the reference model: this can be done by calculating the
weighted average of gradients in all tetrahedra incident at v. The weight
for the contribution of a tetrahedron ¢ is given by the solid angle of ¢ at
v. Then, for each vertex v in the mesh, we search the vertex w, among
those adjacent to v, such that the difference AV, ,, between V, and V,, is
minimum. Value AV, ,, gives a rough estimate of how far from linear is the
field in the neighbourhood of v: the smaller AV, ,,, the smaller the expected
error increase if v is removed. Value AV, ,, and a pointer to w are stored
together with v.

Another estimation can be given by the local error introduced with the
collapsing of v on w. Let g, be the tetrahedron containing the removed ver-
tex v after the collapsing. We note that o,, is tetrahedron incident on v and
containing the extension of the edge (v, w) on the v side. Once determined
0w Wwe evaluate the error as the difference between the field value on v and
the field obtained by interpolating inside o, on v position. Figure 5.6 shows
the tetrahedron o, before and after the edge collapsing operation and, as a
dashed line, the extension of the edge (v, w).

Warping changes only if a vertex lying on the boundary of ¥ is removed.
Therefore, for each boundary vertex v, we estimate apriori warping increase
caused by removing v on the basis of the local geometry of the boundary of
¥ in the neighbourhood of v. We adopt a criterion proposed in [89]; it is
essentially based on the distance d, between v and a plane that best fits all
vertices lying around v on the boundary of ¥ (see Figure 5.7): the smaller
d,, the smaller the expected warping increase if v is removed. Therefore, d,
is stored together with v.

Vertices of ¥ are maintained in a priority queue supporting efficient se-
lection. In this framework, the selection criterion adopted in procedure
SELECT_MIN_VERTEX is symmetrical to the one used in the refinement algo-
rithm: we select the vertex of ¥ which is expected to produce the smallest
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Figure 5.7: An apriori estimate of warping increase caused by removing
a boundary vertex v is obtained by measuring the distance of v from an
average plane fitting its adjacent vertices on the boundary of .

increase in either warping or error, depending on whether W(X)/E(X) is
larger or smaller than d¢/e.

5.4.2 Removing a vertex

Once a vertex v has been selected, we need to tetrahedralize the polyhedron
resulting from the elimination of all the tetrahedra incident on v. Unfortu-
nately the removal of this vertex from the mesh is not always possible: this
difficulty is related to the fact that it may be not possible to tetrahedralize
a non-convex polyhedron. Since deciding whether this is possible or not
is NP-complete, we use heuristics to try to remove a vertex by collapsing
one of its incident edges to its other endpoint. Given a vertex v, we try
to remove it by collapsing the edge e that joins v to vertex w having the
smallest difference AV, ,, from v in its surface normal; recall that w had
been selected while estimating the cost of removing v in terms of error.
Edge collapse is a simple operation: all tetrahedra incident at e are deleted,
while all other tetrahedra that have a vertex at v are modified by moving
such a vertex at w. All adjacencies are updated accordingly: if two tetrahe-
dra 07 and o9 were both adjacent to a tetrahedron oy that is deleted, then
o1 and o9 become mutually adjacent (see Figure 5.8a for an example in 2D).

In order to be correct a collapse must pass some topological and geo-
metric consistency tests. We desire that the edge collapse operation does
not topologically modify our complex, that is that it neither it change its
genus neither it introduce some not 3-manifold. A collapse is topologically
consistent if the following conditions are satisfied:
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Figure 5.8: Edge collapse in 2D: (a) a valid collapse; (b) an inconsistent
collapse.

e if v and w are boundary vertices then the edge (v, w) is a boundary
edge;

e if v and w are boundary vertices then for each boundary vertex 2
adjacent to both v and w, the face (w,v,i) exists and is a boundary
facet.

e if v and w are boundary vertices then the complex formed by all the
boundary facets reachable through adjacency from v and w has at
least 5 vertices.

Geometric consistency of the mesh may be violated if some tetrahedron
“fips over”, i.e., it changes its orientation, because of edge collapsing (see
Figure 5.8b for an example in 2D). Consistency can be tested simply by
checking the orientation of each tetrahedron incident at v before and after
collapse. If collapse is impossible, then no mesh update occurs and v is tem-
porary tagged as non-removable, by setting its error and warping estimate
at infinity. In this way, a different vertex will be selected at the next cycle.

After a successful edge collapse, a precise evaluation of the current accu-
racy must be obtained. As in the refinement method, we adopt a bucketing
structure to maintain the relations between tetrahedra and data points they
contain. Updating this structure involves only the portion of mesh covered
by the “old” tetrahedra that were adjacent to v. All removed points (in-
cluding v) that belong to such a volume are relocated with respect to the
“new” tetrahedra. Note that, if v is a boundary vertex, some points may
fall outside the mesh: such points (including v) are assigned to tetrahedra
by considering their projections on the “new” boundary faces of the mesh
(see Figure 5.9). Changes in accuracy are computed for each point on the
basis of its new location. Finally, the apriori estimate of error and warp-
ing increase is recomputed for each vertex that was adjacent to v, and the
priority queue is updated accordingly.
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Figure 5.9: Points that fall outside the mesh are assigned to tetrahedra by
projecting them on the boundary faces.

Complexity. The complexity of this algorithm can be calculated as fol-
lows. The vertex collapse operation has a cost depending on the number of
incident tetrahedra on v, that can be, in the worst case, O(n) where n is the
number of vertices of the mesh. Similarly, the vertex relocation operation
in the bucketing structure, needed for the error evaluation, can cost O(n).
The resulting overall worst case complexity of the decimation algorithm is
therefore O(n?).

5.5 Experimental Results

The performance of the refinement based simplification algorithm were eval-
uated on four datasets, representative of the two classes of regular and non-
convex curvilinear datasets. The implementation of the decimation based
algorithm was still under development at the time of writing. Datasets com-
monly used in the volume rendering field were chosen in order to facilitate
comparisons with other proposals:

e BluntFin, a 40 x 32 x 32 curvilinear dataset, was built by running a
fluid-flow simulation of an air flow over a blunt fin and a plate!;

e Post, a 38 x 76 x 38 curvilinear dataset which represents the result of
a numerical study of a 3D incompressible flow around multiple posts;

'Both BluntFin and Post are produced and distributed by NASA-Ames Research Cen-
ter.
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e SOD, a subset 32 x 32 x 32 (not a subsampling) of a regular rectilinear
dataset which represents the electron density map of an enzyme?;

e BuckyBall, a 128 x 128 x 128 regular rectilinear dataset which repre-
sents the electron density around a molecule of Cgy. Some experiments
are presented on either 32 x 32 x 32 or 64 x 64 x 64 subsampling of
such a dataset?.

Tables 5.1 and 5.2 shows results of the simplification of curvilinear and regu-
lar datasets, respectively. Each table reports: computation times required to
refine the whole model, maximal RAM space occupancy during construction
and some information on a number of approximated meshes extracted from
it. The accuracy of each approximation is measured as follows: warping is a
percentage of the length of the diagonal of a minimum axis-aligned bounding
box containing the dataset, while error is a percentage of the range spanned
by data values. Times are CPU seconds on a SGI Indigo workstation (MIPS
R4000).

The graph of Figure 5.10 shows the number of vertices of the mesh
through refinement, depicted as a function of approximation error. Note
how rapidly the size of the mesh decreases when the error increase. These
results give a quantitative estimate of the advantage of using approximated
representation of volume datasets.

Figure 5.11 shows the spatial distribution of sites of the BluntFin dataset,
compared with the spatial distribution of vertices of an approximated model
at accuracy p = (2.%, 2.%)

As it can be noted the experiments presented in Table 5.2 for the Buck-
yBall dataset were run on a subsampling, because of limitations in the
available RAM. A multiresolution model of the whole dataset, and of two
subsampled datasets, were also obtained by using the block-decomposition
refinement described in Section 5.3.1. Results are presented in Table 5.3.
By adopting this method we can overcome the intrinsic RAM limitations of
a specific platform, because for any dataset we can always have a partition
such that the refinement of each block becomes a tractable problem with
the available resources.

In particular, we can compare the results obtained for the 32° subsam-
pled dataset refined as a whole (lower part of Table 5.2) and refined as 64
independent blocks (upper part of Table 5.3). Note that, with the block
decomposition refinement, total computation time decreases from 1,318 sec.
to 532 sec., while we have only a small increase in the number of vertices

230D was produced by D. McRee, Scripps Clinic, La Jolla (CA), and kindly distributed
by the University of North Carolina at Chapel Hill.
®BuckyBall is available courtesy of AVS International Center.

91



‘ Curvilinear Datasets H no. tetra. no. vertices % of vertices

BluntFin (40x32x32) H 40,960

Construction Time: 1,704 sec. RAM = 35,300 Kb
5 <4.0%, € <4.0% 20,324 3,612 8 %
5 <3.0%, € <3.0% 30,116 5,296 12 %
5 <2.0%, € <2.0% 47,189 8,263 20 %
5 <1.0%, € <1.0% 80,883 14,162 34 %
8 <0.5%, € <0.5% 111,251 19,620 47 %
§ <0.2%, € <0.2% 152,927 27,351 66 %
5 <0.1%, € <0.1% 182,660 32,945 80 %
5 <0.0%, € <0.0% 222,528 40,960 100 %

Post (38x76x38) H 109,744

Construction Time: 7,794 sec. RAM = 95,240 Kb
5 <4.0%, € <4.0% 47,691 8,282 7%
d <3.0%, € <3.0% 76,893 13,177 12 %
5 <2.0%, € <2.0% 121,181 20,773 18 %
5 <1.0%, € <1.0% 193,971 33,681 30 %
8 <0.5%, € <0.5% 277,822 48,418 44 %
5 <0.2%, € <0.2% 395,299 69,568 63 %
8 <0.1%, £ <0.1% 490,337 87,085 79 %
§ <0.0%, € <0.0% 609,245 109,744 100%

Table 5.1: Measures on multiresolution models built from curvilinear

datasets
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Figure 5.10: Number of points in the simplicial model expressed as a function
of the approximation error.
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‘ Regular Datasets H no. tetra. no. vertices % of vertices ‘

SOD (32x32x32) [ 32,768
Construction Time: 1,491 sec. RAM = 45,134 Kb ‘
Levels of Detail:

e=4.0 (%) 11,485 2,094 6 %
e =3.0 (%) 17,178 3,082 9%
e =2.0 (%) 28,521 5,026 15 %
e =10 (%) 59,718 10,443 31 %
e =0.5 (%) 91,963 16,269 49 %
e =0.2 (%) 95,314 16,825 51 %
e =0.1 (%) 95,349 16,831 51 %
e =0. (%) 95,349 16,831 51 %

BuckyBall (32x32x32) H 32,768

Construction Time: 1,318 sec. RAM = 25,860 Kb
e =4.0 (%) 42,468 7,125 21 %
e =3.0 (%) 51,490 8,680 26 %
e =2.0 (%) 63,649 10,808 32 %
e=1.0 (%) 83,667 14,372 48 %
e =05 (%) 104,113 18,090 55 %
e=0.2 (%) 130,152 22,982 70 %
e =0.1 (%) 150,249 26,854 81 %
e =0. (%) 176,687 32,768 100 %

Table 5.2: Measures on multiresolution models built on two regular datasets.

Figure 5.11: Distribution of vertices of the BluntFin dataset: original
dataset (40,960 sites) on the left, approximated mesh with § < 2% and
e < 2% (8,263 sites) on the right.
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necessary to achieve a given accuracy. Such an increase is due to the spatial
constraints introduced by the block boundaries.

Note also how the performance of data simplification, in terms of data
needed to achieve a given accuracy, improves with the resolution of the input
dataset. If we consider, for example, the LoD meshes at accuracy 1.0 % from
the 323, 64% and 128% multiresolution models of BuckyBall, the percentage
of sites needed to build each approximated mesh decreases respectively from
45.2% to 22.1% down to 6.8% of the total number of sites of the dataset. In
absolute values, the ratio between the 1283 and the 323 datasets is 64:1 at
full resolution, while it decreases to 10:1 at accuracy 1.0%.

5.5.1 Rendering features evaluation

Figure 7.6 on page 137 presents visual results related to isosurface and direct
volume rendering of three representations of the BluntFin dataset. The
images at the top refer to the mesh at full resolution, the images in the
middle refer to an approximated mesh at accuracy p = (1.0%, 1.0%), while
the images at the bottom refer to an approximated mesh at accuracy p =
(4.0%,4.0%).

Numerical results regarding the size of the meshes of the extracted iso-
surfaces, as well as times for Direct Volume Rendering, are summarized in
Table 5.4. The images provide evidence that the image degradation is al-
most inperceptable when passing from full accuracy to p = (1.0%, 1.0%)
accuracy, while it is still small at p = (4.0%,4.0%). On the contrary the
output sizes (and times) are considerably reduced.

The visualization results obtained, which are essentially based on the
concept of data simplification, can be also compared with results obtained
with approximation methods based on graphics output simplification. In the
case of isosurface rendering, the size and number of the facets extracted
from a simplified mesh depend essentially on the variation of the field func-
tion (namely, few large facets are fitted on subvolumes where the gradient is
constant or nearly constant). On the other hand, a geometry-based simpli-
fication of an isosurface extracted from the mesh at full resolution would
be driven by isosurface curvature ([89, 54]). An obvious computational
advantage of the approach based on data simplification is that the most
strenuous part is made in a preprocessing stage (i.e., when the simplified
or multiresolution model is built), while standard simplification approaches
are implemented as a post-processing phase, therefore reducing throughput
in interactive applications.

Moreover, standard geometry-based methods may produce anomalies if
the surface has variations in curvature which are small in size, but reflect
significant variations of the field (e.g., a sinusoidal function, having ampli-
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| || no. tetra. no. sites % of sites

BuckyBall (32x32x32) H 32,768
Levels of Detail:
e =4.0 (%) 43.929 7,426 22.6 %
e =3.0 (%) 53,025 8,974 27.3 %
e =2.0 (%) 65,409 11,133 33.9 %
e=1.0 (%) 86,130 14,839 45.2 %
e=0.5 (%) 106,695 18,584 56.7 %
e =0.2 (%) 131,967 23,340 71.2 %
e =0.1 (%) 151,345 27,073 86.6 %
e =0.0 (%) 176,641 32,768 100 %
BuckyBall (64x64x64) H 262,144
Levels of Detail:
e =4.0 (%) 105,422 17,164 6.5 %
e=3.0 (%) 140,183 22,833 8.7 %
e =2.0 (%) 203,885 33,202 12.6 %
e =10 (%) 353,652 58,014 22.1 %
e =0.5 (%) 522,764 86,633 33.0 %
e =0.2 (%) 749,259 125,711 47.9 %
e =0.1 (%) 954,551 161,378 61.5 %
e =0.0 (%) 1,483,742 262,144 100 %
BuckyBall (128x128x128) H 2,097,152
Levels of Detail:
e =4.0 (%) 178,138 28,272 1.3 %
e =3.0 (%) 257,390 41,262 1.9 %
e =2.0 (%) 424,283 67,878 3.2 %
e=1.0 (%) 897,994 143,936 6.8 %
e =0.5 (%) 1,672,207 269,195 12.8 %
e =0.2 (%) 3,301,742 537,843 25.6 %
e=0.1 (%) || 4,748,306 780,509 37.2 %
e =0.0 (%) || 12,152,055 2,097,151 100 %

Table 5.3: Tetrahedralization of the BuckyBall dataset using the block-
decomposition refinement: 1283 dataset is the original one, while 64% and
323 datasets are obtained by subsampling. Decompositions: 323 divided
into 64 blocks of size 83; 643 divided into 64 blocks of size 163; 1283 is
divided into 512 blocks of size 163.

| Accuracy || no. vertices | no. tetra || no. iso. triangles || DVR time
(0.0%,0.0%) 40,960 222,528 19,499 44.1
(1.0%,1.0%) 14,162 80,883 9,143 16.1
(4.0%,4.0%) 3,612 20,324 3,442 3.9

Table 5.4: Isosurface rendering (with threshold value 1.244), and direct
volume rendering of the Bluntfin dataset at different accuracies shown in
Figure 7.6 on page 137. Times are in seconds on an SGI Indigo XS24 R4000.
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tude lower than the simplification threshold), and, even worse than this,
intersections between surfaces at different isovalues may occur because of
simplification. These problems do not arise with methods based on data
simplification.

In a recent paper [24], we have extensively compared the performance
of the standard projected tetrahedra (PT) algorithm applied to a simplified
mesh, to the performance of approximated versions of the PT algorithm
[112] applied to a mesh at full resolution. Experiments provided evidence
that images with visual degradations similar to those obtained using the ap-
proximated PT are produced using highly simplified datasets, thus achieving
much shorter processing times (about five times shorter).

The large difference in speedups is due to the fact that standard approx-
imated PT techniques only act on the pure rendering phase, thus achieving
a reduction in overall time of up to a maximum of 50%. On the contrary,
the speedup in overall time achieved by using a data simplification approach
is linearly proportional to the simplification operated on data (this means
that not only pure rendering is affected, but depth sorting, cell classification
and splitting as well).
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Chapter 6

Tetrahedral Multiresolution
Models

A collection of simplified models can be managed in a single unified framework
adopting a multiresolution representation; in this way the resolution and the size
of the dataset can be adapted to the user’s need. We show how these methods
permit the compact representation of many different approzimations of the dataset.
Multiresolution allows, for example, the use of low resolution models for interactive
phases or the extraction of variable resolution representations according to viewing
parameters and/or to the user specification of a particular region of interest.

The iterative application of a simplification technique with different ap-
proximation parameters produces a collection of representations at different
accuracies. A data structure that holds a constant (and usually small) num-
ber of different representations of the dataset, with various accuracies, is
called a representation at different levels of detail (LoD). LoD representa-
tions of surfaces are widely used in a number of important applications
(e.g., virtual reality based on VRML). An evolution of a LoD representation
is a multiresolution representation, which supports (with the greatest flexi-
biltity) the compact storage of a number m (usually large) of representations
at different levels of detail, where m is a monotonic function of the size of
the input dataset (i.e., the more data, the more representations). Multires-
olution or LoD can greatly improve the efficiency of data rendering, e.g.,
through suitable progressive visualization algorithms. The multiresolution
approach improves over the LoD one with valuable characteristics:

e The user or the application have much more flexibility in selecting the
“best” level of detail, depending on their specific needs in terms of
accuracy, memory, and time performance: in many cases, it is better
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to leave that choice at run time, instead to force it in the preprocessing.

e Multiresolution schemes may be more compact in space than an LoD
one, since they encode in a single structure a large number of different
representations.

e Multiresolution representations can permit extracting models in which
the resolution varies over the domain of the dataset; in this way the
user, or the visualization system itself, may choose to render/manage
with the highest detail only some parts of the dataset, for example the
ones chosen by the user or the most important ones.

The chapter is organized as follows: in Section 6.1 we survey other approach
to the multiresolution management of tetrahedral datasets; then in Section
6.2 we introduce a simple technique oriented towards the management of a
large collection of levels of detail with a compact data structure; in Section
6.3 we adopt the Multiresolution Simplicial Model (MSM), introduced by
De Floriani et al [34], as a unified framework to model multiresolution. In
Section 6.3.3 we specialize this model for the handling of volume datasets
describing how to extract variable resolution models. In Section 6.4 we
face the problem of extracting a variable resolution model together with the
face-adjacency topology and we propose an original data structure for the
management of a MSM based on the concept of a MSM as a complex in a
higher dimension.

6.1 Related Work

While many different approaches have been proposed for the multiresolu-
tion management of surfaces, (see, e.g., [32] for a survey), the multiresolu-
tion volume data management is still in a developing stage. Some of the
proposed multiresolution models, like methods based on wavelets [104, 75]
or on Multi-Dimensional Trees [109], work only on regular volume datasets.
Following our tetrahedral framework we focus our interest on techniques for
multiresolution management of tetrahedral meshes.

In [12] De Floriani et al. proposes the use of hierarchical simplicial com-
plexes as a model for the multiresolution representation of a volume scalar
field. This model is based on the recursive refinement of a tetrahedral com-
plex: a tetrahedron o of the complex can be refined by replacing it with
tetrahedralization ¥, whose domain cover o. The recursive application of
this refinement process results in a hierarchy of tetrahedralizations. Algo-
rithms for extracting models with a given accuracy or directly extracting
isosurfaces from a hierarchical tetrahedral complex are presented.
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Zhou, Chen and Kaufman have recently presented a multiresolution
framework, called MultiTetra [118] for regular datasets based on tetrahedral
subdivision. This is a 3D extension of the Lindstrom’s subdivision strategy
[67] for regular two-dimensional grids. The MultiTetra model is built by
the recursive subdivision of tetrahedra along an edge; the starting model is
a tetrahedralized cube. The subdivision process follows a regular pattern
so the authors can represent all the resulting multiresolution model as a
binary tree (each tetrahedron is always subdivided in two along an edge)
whose leaves represents the tetrahedral cells at a given resolution. Using
this approach the authors are able to support efficent extraction of variable
resolution models and store the multiresolution model in a very compact
way.

A multiresolution model for simplicial complexes, called Progressive Sim-
plicial Complex (PSC) has been proposed by Popovic and Hoppe [81], as
an extension of the Progressive Meshes (PM) model [54]. The PM models
are based on the simplification of a mesh with a sequence of edge-collapse
transformations, this sequence of operations is encoded in the PM structure.
Given a PM, a mesh can be reconstructed by applying, in the right order,
a series of vertex-split transformations (the reverse of edge-collapse). The
PSC codifies in a similar manner the sequence of more general edge-collapse
transformations. It should be noted that while the PSC are quite general,
they has been conceived for the management of 2D surfaces rather than sim-
plicial complexes, so the conditions of legality of a sequence of vertex-split
operation of a generic complex are not specified.

A comprehensive multiresolution model for simplicial complexes has been
introduced in [34]. This framework is the one we have chosen and is described
in detail in Section 6.3.

6.2 The Historical Model for Multiresolution

Each one of the algorithms described in the Chapter 5 can be regarded as
producing an “historical” sequence of tetrahedra, namely all the tetrahedra
that appear in the current mesh X during its construction. Based on such
an observation, we have extended in [21] to the three-dimensional case a
simple idea to manage multiresolution, which we proposed in [27] in the
two-dimensional case, for the multiresolution representation of terrains. A
very similar approach has been independently described in [13] for the man-
agement of pyramidal simplicial complexes and called Sequence of List of
Simplices (SLS). This structure encodes a simplicial complex represented by
a collection (a pyramid) of complexes with different accuracies and covering
the same domain. The main idea of the SLS is the same of the historical
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model (giving to each cell a accuracy interval), but the objectives are differ-
ent: we need just a compact way of storing and retrieving a large number of
LOD’s, while SLS’s are a powerful tool that permits also to solve interference
queries.

The structure presented here, though it does not support sophisticated
features like variable resolution extraction, it is well suitable to store, in a
compact way, a large number of different levels of details. It can be effectively
used, for example, in visualization systems where the choice of the size of
the level of detail depends both on user needs and hardware characteristics
and therefore it cannot be defined apriori.

The main idea of the historical approach is that each tetrahedron of
the sequence is marked with two accuracies u, and pg, called birth and
death accuracy, and corresponding to the worst and best accuracy of a mesh
containing it, respectively. The intuitive meaning of the names refers to
the fact that, adopting a refinement strategy of simplification u; and g
are the accuracies of the mesh when o appears and disappears respectively.
Tetrahedra belonging to the final mesh are assigned a death of (0,0). The
two birth/death values are swapped in case the historical sequence is built
by a decimation strategy.

For each site in the dataset, we store its coordinates and field value, while
for each tetrahedron in the historical sequence, we store its vertex indexes
and the birth and death accuracies. Space occupancy obviously depends only
on the number of sites and on the number of tetrahedra in the historical
sequence.

Querying the model Given a query accuracy p, the mesh at accuracy
u will be formed by all the tetrahedra that are p-alive, i.e., such that ug <
1 < pp. Based on this fact, we use pup and pg as filters to retrieve tetrahedra
that either form a given mesh, or cover a given range of accuracies, from the
historical sequence. Such a filter can also be combined with a spatial filter
to perform windowing operations, i.e., to retrieve only tetrahedra belonging
to a given query region.

The query time can be optimalized by using an interval tree [38, 83]. In
our case, the interval tree consists of a binary search tree with O(h) nodes,
where A is the total number of accuracies spanned by the multiresolution
model: each leaf corresponds to an accuracy, and leaves are sorted in order
of increasing accuracy. Each internal node n has a discriminant value p,
associated with, and two sorted lists of tetrahedra u,-alive are appended to
n, sorted according to their birth and death accuracies, respectively. With
such a data structure, a mesh of k tetrahedra can be retrieved in optimal
time 6(logh + k). Note that this data structure is more expensive than the
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previous one, since every tetrahedron appears in two lists, and the whole
structure must be maintained in the main memory, in order to achieve a
true speedup with respect to the data structure described in the previous
paragraph.

A data structure for sequential files. If the multiresolution model
must be maintained in a sequential file, tetrahedra forming the historical
sequence can be simply saved into the file in the order they appear during
the refinement (in the inverse order if the model is built through decimation).
In this case, the sequence of tetrahedra belonging to a model at a given
resolution p is obtained by sequentially scanning the file, and selecting tetra-
hedra according to their birth and death accuracies: only tetrahedra that
are p-alive are accepted, and the search stops as soon as a tetrahedron hav-
ing a birth accuracy better than p is found. This search may take a time
linear in the total number of tetrahedra of the model in the worst case.

6.2.1 Transmitting the model through the network

If a multiresolution model must be transferred from a server to a client over
the network, it is important to compress information further.

Conciseness can be achieved by avoiding the explicit transmission of tetra-
hedra forming the historical sequence, but providing an implicit encoding
that allows the client to make the structure explicit efficiently. To this aim,
we directly extend techniques recently proposed for surface simplification
(62, 54].

If the model is built through a refinement strategy, by exploiting the
properties of Delaunay tetrahedralizations, we can transmit only the ver-
tices of the final mesh 3 in the order they were inserted during refinement
(i.e., in the order we store them on file). For each vertex, we send to the
client its coordinates, its field value, and the accuracy of the mesh just af-
ter its insertion. This allows the client to reconstruct the whole historical
sequence in the right order, by applying a procedure for on-line Delaunay
tetrahedralization [57] while vertices are received. Note that this is a task
much cheaper than rebuilding the model from the initial dataset, since the
selection of vertices now comes free from the sequence. Moreover, the on-line
construction performed by the client directly results in a progressive repre-
sentation (and, possibly, rendering) of the mesh at the highest resolution.

If the model is built adopting a decimation strategy, a similar technique
may be adopted, following Hoppe [54]. In this case, the coarsest mesh is
transmitted explicitly, while the remaining vertices are listed in inverse or-
der of decimation (i.e., in the order we store them in the file). For each
vertex, we send to the client its coordinates, its field value, the accuracy of
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the mesh just before its deletion, and the vertex it was collapsed on. This
last information permits us to perform a vertez-split operation that inverts
the edge-collapse performed by the decimation algorithm [54]. Therefore,
the client can generate the whole historical sequence in the right order, by
using a sequence of vertex splits. Similarly to the previous case, mesh recon-
struction is performed by the client efficiently, and progressive transmission
and rendering are supported. Note that, in this case, operations performed
by the client at each vertex split are much simpler than those required by
a Delaunay procedure, but, on the other hand, the amount of information
transmitted is slightly larger.

In both cases, we transmit only the list of vertices (with for each vertex
its coordinates, field value, and birth accuracy). The size of data transmitted
can be further reduced by using geometric compression [35].

6.3 A Framework for Multiresolution

The multiresolution model presented in the previous section presents some
limitations, the most important one is its inability of extracting models with
varying resolution. In this section we introduce the framework of multires-
olution simplicial models (MSM) introduced by De Floriani, Puppo and
Magillo [34] as a multidimensional extension of the two dimensional struc-
ture described by Puppo in [84].

In this framework we will propose in Section 6.4 an original data struc-
ture to manage a MSM together with all the face-adjacency topological
information. This structure, called Hyper Simplicial Complex (HySC), cod-
ifies a MSM in IEY through its embedding as complex in IEI*1,

6.3.1 Definitions

Let S be a finite set. A partial order on S is a antisymmetric and transitive
relation < on its elements. A pair (S, <) is called a partially ordered set
(poset). For every s,s' € S with s <’ s we mean that s < s’ and As” such
that s < s” < s’. A subset &' C S is called a lower set if Vs’ € §',s <
s’ = s € §'. Intuitively S’ is a lower set if it contains all the elements
that precede each of its elements. The algebraic structure of a poset (S, <)
can be described by a DAG, where nodes represent elements of S and arcs
encode the <’ relation. For any s € S the set Sy = {s’ € S|s' < s} is the
smallest lower set containing s and it is called the down-closure of s. The
sub-closure of s is defined as S; = S;\{s}.

We call any finite set of d-simplexes in IE" a d-set; a regular d-simplicial
complex ¥ is completely characterized by the collection of its d-simplexes
i.e. by the d-set associated with ..
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When managing a collection of representation of the same complex at
different resolutions, as done in the previous section, we need a measure
of the error we commit. With u(o) we denote a function p : ¥ — [0,1]
measuring this error, 1(0) means exact representation. With p(X) we denote
the maximum error among all the tetrahedra of X: max,¢cy (o).

Operators: interference and combination We define two operators
on d-sets: the interference operator ® and the combination operator .
Both operators take two d-sets as arguments and produce a d-set. The
interference operator of two d-sets is defined as:

Ni®%; ={c€ %3 € 8j,i(0c) No’ # 0}

In other words, the interfernce of two d-sets 3J;, 3J; is the set of the simplexes
of ¥; that have a proper intersection with some simplexes of ¥;.
The combination operator of two d-set is defined as:

Y @Y =%\(35 ® %) UL,

In other words, the combination of two d sets X;, ¥ is the set of the simplexes
of that can be obtained by adding to ¥, the simplexes of ¥; not intefering
with X;.

If 3; ® X, is a d-simplicial complex and A(Y; @ 3;) = A(X;) UA(E;),
then the complex ¥; it is said to be compatible over ;.

Let [Yo, ..., Y] be a sequence of d-complexes. the combination @F_%,
is defined as:

o if k=0 then ®Y_,%) = %

o if k> 1 then @F % = (@51 %) @ %4

6.3.2 Multiresolution Simplicial Model

A Multiresolution Simplicial Model (MSM) on  is a poset (S, <), where
S = {Xp,..., 2} is a set of d-complexes and < is a partial order on S
satisfying the following conditions:

1. A(X) = Q,
2. Vi,j =0.h,i# 7},

(a) > <Izj:>2i®2j7éw
(b) X ® Zj 7é 0= Y isin relation with Z]‘
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Figure 6.1: The DAG describing a simple two-dimensional MSM.

3. the sequence [Xg,...,%;] of all complexes of S defines a consistent
order w.r.t. relation < and [Xg,..., Y] is a compatible sequence.

The meaning of the second condition becomes clearer if we consider the
DAG encoding relation <’ for the set S:

e if two complexes ¥; and XJ; are connected by an arc, they are interfer-
ing;

e if two complexes ¥; and ¥; interfere then they are connected throug
a path.

The elements of S are called components or fragments; intuitively the frag-
ments describe a portion of the domain €2 at a certain resolution. For exam-
ple, if we think to an iterative refinement procedure on a simplicial mesh,
the set of simplexes, derived from the substitution of a complex with a more
refined one, can be considered as a fragment that is combined over the ex-
isting complex. Combining a lower set of S give us a complete description
of €} at various resolutions.
The following properties holds for MSM’s:

Lemma 1. Y is unique minimum element of (S, <).

104



In other words >y is the starting coarsest complex. Given any sub-
set 8’ C S the total order of its elements consistent with the sequence
[¥o,...,2n] is called the default order of S'.

Lemma 2. The default order of any lower set S' C S is a consistent order.

Lemma 3. In a MSM (S,<), the combination of a lower set S' C S is
independent of the specific consistent order.

Since the combination obtained from any consistent order is unique, it
will simply called the combination of S’ and denoted with ®&S. Let X; be
a component of (S, <); the combination of the subclosure Sy, is called the
support of 3;; the set of the simplices of the support that are interfering
with X;, (6Sy) ® ;is called the floor of ;.

The following definitions permit us to consider a particular class of
MSM’s where the order relations provide control over the size in terms of
number of simplexes. A MSM (S, <) is increasing if and only if for every
pair of lower sets §',S” holds: (§' € §" = | @ S'| < |® S"|. Similarly is
defined the concept of decreasing MSM; an increasing or decreasing MSM is
said monotone. In other words a MSM is increasing (decreasing) if and only
if the size of each fragment is larger (smaller) than the size of its floor.

In Figure 6.1 is shown a simple multiresolution simplicial model for the
two dimensional case; the arrows in the figure correspond to the relation
<'. The fragments of a MSM can be used to build different triangulations
of the domain Q through the paste operator. The intuitive meaning of the
< relation is of dependence between the pasting of the fragments: if we use
a fragment ¥; in a triangulation then all the fragments ¥; < ¥; must also
be used.

In Figure 6.2 is shown the triangulation resulting from the pasting/combi-
nation of a subset S’ of fragments in a consistent order X, X9, X3, X4, X7;
note that any other consistent order of pasting of S’ (like Xq, X3, 3o, ¥4, 37)
builds the same triangulations.

Topological Information The topological information of a MSM, which
encodes the adjacency, boundary and coboundary relations among the sim-
plexes of the model, can be distincted in local topology and global topology;
local topology is concerned with topological relations between simplexes
within the same component, while global topology considers relations be-
tween simplexes not necessarily belonging to the same component. In the
next subsections we will describe the standard data structure for MSM that
does not codify any topological information and in section 6.4 we will intro-
duce the Hyper Simplicial Complexes, an original data structure for man-
taining the global topology in a MSM.
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Figure 6.2: A subset 8’ C S combined in a consistent order builds a trian-
gulation

6.3.3 MSM for Volume Visualization

Each algorithm described in Chapter 5 can be used to build a MSM. Both a
decimation or a refinement algorithm for simplifying a tetrahedral complex
can be regarded as producing an “historical” sequence of tetrahedra, namely
all tetrahedra that appear in the current mesh 3 during its construction.
An historical sequence can be also viewed as the sequence of all subdivisions
of the whole domain that are obtained through changes, or as an initial sub-
division plus a sequence of fragments reflecting the local changes iteratively
done to the mesh, i.e. subdivisions of portions of the domain, which can
be partially overlapping and are pasted one above the other to update the
existing structure.

For example, if we follow the refinement heuristics, the minimum of the
poset is the starting coarse triangulation; when we insert a new point v; in
the complex the new tetrahedra that are built form a new fragment 3J;; the
floor of this fragment is constituted by the tetrahedra that were destroyed
by the insertion of v;.

Following the MSM all these fragments, represented by a 3-simplicial
complex covering a small part of the whole domain 2, are arranged in a
poset where the order relation between fragments is dependent on their
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interferences in 3D space. The minimum fragment >, the coarsest repre-
sentation of our mesh, has an empty floor. Similarly all the triangles on
the top of S, representing the dataset at its full resolution, have no upper
fragments.

In the next subsections we will describe how to effectively manage a
MSM for tetrahedral complexes, describing the data structure that we need
and an algorithm for the extraction of a variable resolution model. The algo-
rithms and data structures here presented are a straightforward extension to
tetrahedral complexes of the one presented in [30, 84]. They are needed for
an easier introduction and for a comparision with our structure, the hyper
simplicial complexes, that we present in Section 6.4.

6.3.4 A data structure for encoding a tetrahedral MSM

In this section we describe the data stuctures presented in [30] to encode a
MSM for the specific case of tetrahedral complexes. We need to maintain
the set of all the vertices of S, the set of all tetrahedra g, the set of all
fragments S, and for each tetrahedron, the reference to the vertices forming
it and its accuracy. To codify the <’ relation we note that each tetrahedron
o is referenced by two fragments:

e the fragment X; containing ¢ and called lower fragment;
e the fragment containing o in its floor, called upper fragment.

We also note that, for each fragment, we need to recover the tetrahedra
composing ¥; and the floor of ¥;. Expliciting all these needs, our data
structure will contain:

e a vector V containing the coordinates of all the vertices in S;
e a vector T containing all the tetrahedra description;
e a vector F containing the description of all the fragments;

Each element of vector T describes a single tetrahedron ¢ and contains the
indexes of the vertices of o in V, the accuracy u(o) and two pointers to
the lower and upper fragments. Each element of vector F describes a single
fragment >; and contains a vector with the pointers to the tetrahedra com-
posing 3; and another vector with the pointers to tetrahedra composing the
floor of ¥3;.

With this data structure it is possible to implement the following oper-
ations with a complexity that is linear in the size of the output:

e Floor(3};): returns the tetrahedra forming the floor of 3;,
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e Lower(o),Upper(c): return the lower and upper fragment of o, respec-
tively.

6.3.5 Extracting a variable resolution model

We suppose that our MSM is monotone, to extract a variable resolution
model we need a boolean acceptance function ¢(o) in order to decide, for a
given tetrahedron, if its accuracy is sufficient or if we need to further refine
that part of the domain. The choice of an acceptance function suitable for
Volume Visualization will be the topic of Section 6.5. The algorithm to build
a variable resolution model is shown in figure 6.3; it tries to incrementally
build the desired solution by adding new fragments to the current solution.
The algorithm is based on a breadth-first traversal of the DAG representing
the MSM. The traversal starts from the coarsest fragment g, root of the
DAG, and fragments above the current solution are progressively traversed
and marked. The current solution is maintained as a list of tetrahedra
Yout- For each fragment Y that we encounter in the traversal of the tree,
the following two loops are executed:

e we search for fragments before X, still not visited and, if found, they
are added to the traversal queue (). All the fragments before 3 can be
found by checking, for each tetrahedron o € i, if the corresponding
lower fragment Lower(o), has been marked.

e for each tetrahedron o € X, if it satisfies the acceptance function
¢(o) then o is added to the current solution, else we add the upper
fragment of o to the traversal queue () and mark it to be removed
from the solution.

The correctness of this algorithm has been proved in [31].

6.4 Hyper Simplicial Complex

Though the MSM represents a valid framework for the modeling of multires-
olution, the data structure presented in the previous Section cannot manage
global topology, that is the (d-1)-face adjacency relation between simplexes.
In other words the extracted models are just a collection of simplexes, in
our case tetrahedra, without explicit representation of adjacency between
tetrahedra. The adjacency relations can be very useful in many situations
in Volume Visualization, for example to exploit locality in isosurface ex-
traction (cfr. Section 2.2.1) or to use a topological sort for Direct Volume
Rendering (cfr. Section 3.2).
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procedure EXTRACT(S, ¢(), Eout);
local var ): queue;
local var X, ¥5 : Fragment;
local var o : tetrahedron;
Y = Least(S)
Mark(X)
Add(Q,X)
while Q # ()
¥ = First(Q)
foreach o € Floor(X) check if we have visited all fragments before 2
Mark(o)
Yo=Lower(o);
if X5 # 0 and not Marked(Xs)
Mark(%5)
Add(Q,X»)
foreach o € ¥
if c(o)
then
Add(sigma, Xout)
else
Yo=upper(c);
Mark(o); tetrahedron t is not good
Mark(X5);
Add(2,Q)
foreach o € Yt Remove marked tetrahedra from solution
if Marked(o) then Remove(a, Xout)
end ;

Figure 6.3: The algorithm for extracting a variable resolution tetrahedral
complex in the MSM framework.
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In this Section we will follow the Hypertriangulation (HyT) approach to
interpret a MSM with all the face-adjacency information as a complex in
IE4+1. We proposed this approach in two dimension [27, 28] to manage the
representation of discrete topographic surfaces at variable resolution. The
main idea of HyT consists in the interpretation the model containing all
the triangles of a historical sequence of a simplification as a cell complex
embedded in 3D space. Intuitively, we look at the simplification process as
a sequence of local modifications in which we substitute a subset of triangles
with a (possibly) larger one covering the same domain and sharing the same
boundary: we store all these modifications by sewing the patch formed by
the new triangles over the old ones.

In Figure 6.4 we show this process for a pair of refinement operations:
by sewing the patch of new triangles over the existing mesh we codify the
multiresolution model as a cell complex in 3D.

Following the terminology introduced in Sections 6.3 and 6.3.3 for MSM’s,
we can give the following interpretation of a hypertriangulation:

e the upper part of each patch encodes a fragment 3; of a MSM;

e the lower part of each patch, formed by the triangles covered by the
patch, is the floor of ;.

e the <’ relation of MSM corresponds to the concept of above between
a patch/fragment 3; and the patches under ;.

The main idea of the HyT is that the < relation can be encoded by the topol-
ogy itself. It can be showed that, if we do not permit unconnected fragments,
i.e. each fragment is a single connected component, any two-dimensional
MSM can be codified by a hypertriangulations: the third condition of the
definition of MSM guarantees that the sewing is always possible, infact the
existence of a compatible sequence [Yg,...,X,] means that all the partial
pastings of a fragment over the previous ones gives a simplicial complex, so
the boundary of a fragment and its floor must coincide.

In the case of the fragments made by more than one single connected
component the case MSM express stronger constraint for dependences be-
tween fragments. Let 3;1, ;2 be the two connected components of a single
fragment, with floor Zﬁ, ng; in HySC we model this situation as the sewing
of ¥j; and ;5 over Bf] and B, respectively. The < relation is implicitly
stored in the topology of the HySC, so we have codified ©f; < ¥;; and
2k < Yo but not, for example, X4 < ;5. We think that such constraints
are not very frequent or useful.
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accuracy

Figure 6.4: We can codify a fragment ¥; and its floor ¥; as the sewing of
the patch made with triangles of 3J; over its floor X;.

6.4.1 Managing HyT and HySC

The HyperTriangulation approach can be extended to the most general of
multiresolution simplicial complexes in IEY building what we call a Hyper
Simplicial Complex (HySC). For sake of clarity we will continue to show
examples only in two dimensions. When managing a Hy'T we are interested
in efficiently traverseing the two-dimensional skeleton of a particular class
of a complex. Here we define some traversal operation to navigate a HyT
and their direct extention to HySC. In the next subsection we will show how
to efficiently implement the operations for extracting a variable resolution
model from a MSM using the HySC as underlying structure. In this way we
will be able to extract also all the face-adjacency topologic information for
the variable resolution model.

As shown in figure 6.4, when sewing a fragment over an existing mesh
the sewed edges share more than two facets; in the general case it means that
the (d-1)-facets on the boundary of the new fragment are shared by more
than two d-simplexes. Given the structure of the complex representing a
HyT we can imagine to subdivide all the facets incident on a single edge
in two groups, namely those formed by the faces whose projection on the
original space of the complex (the zy plane of figure 6.4) lie on the left or on
the right of the projection of the edge. The same subdivision can be done in
higher dimensions, partitioning the d-simplexes using the hyperplane passing
through the common (d-1)-face. After this partitioning all the facets lying
on one side of a given edge can be linked and ordered together according
their accuracy.
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Figure 6.5: Facet-edge ordering in the half-facet-rings follows the error order-
ing (on the right: the lines represent faces, the bullets represent coincident
edges, the arrows represent the linking between facets on the same side

Figure 6.5 shows a side view of the facets incident on a single edge, the
arrows represent the linking between the facets and the numbers the error
(the lower the error the higher the accuracy) for the faces.

Now we can introduce the operators for navigating a HySC. We base
our navigation function on pairs (o, f) formed by a d-simplex o and a (d-
1)-facet f of 0. In two dimensions this pair is the same that is the base of
the facet-edge data structure proposed by Dobkin and Laszlo [36]; here we
use an extension of generic d-simplexes. We assume that the (d-1)-facets of
a d-simplex of our complex can be consistently ordered. Moreover we can
associate to each pair (o, f) the vertex of o that is not contained in f. Our
representation of a HySC allows the following navigation operators:

e Up(o, f), Down(o, f) returns, if exists, the pair (¢, f), formed by the
facet f and the simplex ¢’ with lower (higher) accuracy, immediately
above (under) o;

e Other(o, f) returns the pair (o', f) formed by the same facet f and
the simplex ¢’ on the other side w.r.t. ¢ and with accuracy lower or
equal to the one of o.

e Next(o, f) returns the pair (o, f') formed by the same simplex o and
the next face f' of 0. It holds Next?! (o, f) = (o, f).

Intuitively the first two functions provide the means to navigate the HySC
moving in the accuracy space, while the last two permit to move in the
domain of the original complex. The arrows of Figure 6.5 represent the
application of the Up operator, while the arrows of Figure 6.6 denote the
application of the Other function. Remember that the numbers represent

the error (the lower the error the higher the accuracy) for the faces.
The data structure codifying a pair (o, f) can be described with a C-like
syntax, as follows:
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Figure 6.6: The result of the Other function.

struct SimplexFace
{
Vertex *v;
SimplexFace *0ther;
SimplexFace *Next;
SimplexFace *Up;
SimplexFace *Down;

}

This structure can be codified in a more compact manner using the data
structure called Packed Facet-Edge (PFE) that we have proposed in [23] for
the two dimensional case of HyT: instead of having a single facet-edge for
each edge-face pair, the PFE representation encodes into a single record all
the facet-edges incident on a given oriented edge from one of its sides. This
packing strategy can be applied also to our SimplexFace structure.

6.4.2 MSM operation with HySC

The first observation is that in HySC there is not an explicit representation of
fragments, but all the information that we need can be easily reconstructed
from any simplex belonging to it, so we can use one of the simplexes that
belong to Lower(X) to represent the fragment Y. The functions Lower,
Upper and Floor presented in previous sections must be adapted as follows
in order to manage simplexes in HySC, instead of fragments.

e Lower(o): we can retrieve all the simplexes belonging to the same
fragment of o by visiting, through face adjacencies, all the simplexes
that can be reached through faces f such that Down(o, f) = 0;

e Upper(o): we move, through adjacencies, until a simplex with Up(o, f) #
() is found, and then we move up.
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e Floor(o): we can retrieve all the simplices belonging to the floor, by
reaching the boundary of our patch, moving down and visiting all the
simplexes Up(o, f) = 0;

The first and last functions return a set of simplexes, the second one returns
a simplex representant of a fragment. The algorithm presented in figure 6.3
can therefore be modified as shown in Figure 6.7 in order to extract from
a HySC H a variable resolution model. The main idea is to represent each
fragment ¥ with one of the simplexes that belong to Lower(X). For this
reason we keep in our stack just a set of simplexes, when we extract one of
them we can think we have extracted the fragment having it in Lower(X).
We must pay a little of attention with the marking strategy: we distinguish
two kind of marking for simplexes: the first, called MarkV, to denote that we
have already visited the fragment represented by o, the second one, called
MarkE, to denote that o cannot be part of the solution. This distinction
between marks is due to the fact that we have no way of explicitly marking
a fragment. In the presented code we denote with oy, a} the simplexes that
are interpeted as representant of fragments. When marking a simplex o
representant of fragment ¢ we must pay attention to mark all the simplexes
in Lower(X).

The correctness of this algorithm strictly depends on the correctness of
the Lower, Upper and Floor functions, because the main structure of this
algorithm is the one for general MSM.

It can be noted that the cumulative time spent in traversing the HySC
for executing the Floor, Lower, Upper functions during a variable resolution
extraction is linear with the number of simplexes of the visited fragments.
Infact the Floor operation, whose cost is linear in the number of returned
simplexes, is applied at most once for each fragment, similarly the Lower
operation, is executed at most twice for each simplex. The most complicated
part of the analysis regards the Upper function. It could seem that the search
for the boundary of the floor, needed to retrieve a representant of the upper
fragment, could be done once for each simplex belonging to the floor of the
upper fragment; this can be simply avoided by marking (with a third mark!)
the simplexes traversed in this search and abort the search returning nothing
when we encounter a marked simplex. Infact if we found a marked simplex
it means that we have already executed an Upper operation on the simplex
beloging to that floor of a fragment > and therefore we have already inserted
that fragment into Q.

Once we have collected all the simplexes of our variable resolution com-
plex, it is easy to reconstruct the face-adjacency topology using the HySC;
for each simplex o, if simplex ¢’ such that (o', f) = Other(o, f) belongs to
the solution (i.e. is not marked) we can link o and ¢’ together through face
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procedure EXTRACT (HySC H, c(), Xout);
local var : queue;
local var o, U’,Uf,O'.’f, : tetrahedron;
Y = Least(H)
foreach o € ¥
MarkV (o)
choose a tetrahedron o € ¥
Add(Q,0)
while Q) #
oy = First(Q)
foreach o € Floor((ff) check if we have visited all fragments before ¥
MarkE(o)
if not MarkedV (o)
Add(Q, o)
foreach o' € Lower (o)
MarkV(c")
foreach o € Lower(oy)
if c(o)
then
Add(o, Xout)
else
o =Upper(o);
MarkE(o); tetrahedron t is not good
MarkV (% );
Add(o}, Q)
foreach o € Yt Remove marked tetrahedra from solution
if MarkedE (o) then Remove(o, ¥oyt)
end ;

3

Figure 6.7: The algorithm for extracting a variable resolution tetrahedral
complex in the HySC framework.
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f; otherwise we search for the first simplex o” such that (¢”, f) = Up*(d’, f),
where Up*() is the iterative application of the Up operator.

In [23] we have also described an algorithm for extracting a variable
resolution model form a 2D HySC that works with a completely different
strategy: instead of traversing bottom-up the MSM we walk orthogonaly
over the domain of the complex incrementally building the variable reso-
lution model. Although its worst case computational complexity is higher
than the algorithms here presented, it shows good empirical perfomances.

6.5 Acceptance Functions for Variable Resolution

In the previous section we have shown how to manage multiresolution tetra-
hedral models and discussed how to extract models where the representation
error is not constant. In this section we show how effectively use multiresolu-
tion in Volume Visualization, why variable resolution models are important
and what kind of acceptance function we can use to define our variable
resolution model.

The definition of an acceptance function implies the definition of what
should be considered important. We can identify two different strategies for
considering a portion of the domain more or less important:

e range based: the user, or the system itself, considers more important
a particular range of the domain of the field value;

e space based: the user, or the system itself, consider more important
a particular portion of the spatial domain of the dataset.

Range Based Acceptance Function In this case the user specifies a
value or a range of values and the dataset is extracted with varying res-
olution: the highest resolution is reserved to the portions of the domain
containing the desired values. In the case of volume rendering if the Discon-
tinuous Transfer Functions (DTF) introduced in section 4.3 are used, this
definition can be implicitly done by the user; the important values are the
ones where DTF has a C° discontinuity; moreover we can assign the lowest
importance to the values of the field that are mapped by the DTF in colors
with a high transparency. These regions have a minimal contribution to the
final image.

If we link the acceptance function to the DTF, the varying resolution
model of the dataset must be modified each time we change the DTF, so a
multiresolution model that suppors efficient updating of the current model-
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Figure 6.8: The MagicSphere tool used to specify a high resolution area on
an isosurface on the SOD dataset.

has to be used. The MSM and their implementations based on the HySC
support this feature.

Space Based Acceptance Functions In addition to the range based
methods, we should also allow the user to specify a region of interest where
he want the higher resolution. To perform this kind of specification inter-
actively we have proposed 3D widget called MagicSphere [25]. This tool,
that is an extension of the ToolGlass”™ paradigm [14] is presented as a
transparent or wireframe sphere whose position and size in 3D space are
interactively controlled by the user. The center of the MagicSphere speci-
fies the center of the region of interest where the user want the dataset at
the highest resolution, and the its radius specify how quickly the resolution
must decrease. The MagicSphere tool is shown in Figure 6.8; the isosurface
inside the MagicSphere has a higher resolution. Note that the cracks on the
boundary of the MagicSphere are due to the lackness, at implementation
time (1994) of a multiresolution model able to extract a variable resolution
representation of the dataset.
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6.6 Conclusions

In this chapter we discussed the use of multiresolution models in tetrahedral
volume visualization. In the framework of the Multiresolution Simplicial
Model we have introduced the original concept of Hyper Simplicial Com-
plex (HySC) that codifies a MSM in IEY as a simplicial complex in IE4+!,
This approach permits us to define data structures and algorithm for the
management of the global topology of a MSM. In particular we have pro-
posed an algorithm for the extraction of a variable resolution model from
a HySC with the full face-adjacency topological relations. We think that
the HySC interpretation still needs further work, in particular we think to
give better proofs of correctness and worst-case complexity analysis of the
presented algorithms; we will also investigate on the definition of algorithms
for answering spatial interference queries using HySC.

In the last section we have given some details on the effective use of mul-
tiresolution, and in particular on the use of variable resolution representation
in volume visualization.

The implementation of the presented Multiresolution techniques is still
in an early stage of development. We think to complete this work and
compare the implementation with other multiresolution techniques.
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Chapter 7

Concluding Remarks

In this Thesis we have proposed the use of simplicial complexes as a frame-
work for representing the geometric structure generated by the modeling
step of the visualization process (cfr. Chapter 2). In particular we have fo-
cused our attention on the three-dimensional case by providing techniques,
strategies and algorithms for the visualization modeling and rendering of vol-
umetric scalar datasets represented by tetrahedral complexes. In summary,
we can outline the main contributions of this work as follows:

An original intepretation of the SciViz process as a two-step mapping
problem: a modeling step in which data are mapped into geometries
with visual attributes, and a rendering step where geometries are trans-
formed into images (Section 2.1).

The optimal solution to problem of the search of the cells crossed by an
isosurface by the use of the interval tree data structure (Section 2.2.1).

A new technique for sorting a complex belonging to the projective
class. The approach is based on the preprocessing construction of the
lifted complex and on its representation as a power diagram (Chap-
ter 3).

A run-time splitting technique for the decomposition of projected
tetrahedra along isosurfaces; this technique is based on a tabular ap-
proach, is very efficient and allows the correct integration of DVR and
isosurface (Section 4.2).

The introduction of the concept of Discontinuous Transfer Function
(DTF) which unifies the management of isosurfaces, interval volumes
and direct volme rendering (Section 4.3). The problem of correctly
rendering a DTF has been also addressed, by exploiting the splitting
technique descrbed in Section 4.2.
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e Two algorithms for the simplification of volume datasets represented
by tetrahedral meshes with accurate control of the introduced error
(Chapter 5). The two algorithm are based on the refinement and
decimation strategies, respectively.

e Hyper Simplicial Complexes (HySC), an original interpretation of a
Multiresolution Simplicial Complex in IEY as a complex in IE4+! (Sec-
tion 6.4); a data structure for HySC and an algorithm for extracting
a variable resolution representation from a HySC have been also pre-
sented.

Some of the ideas here presented were integrated into a tetrahedral volume
visualization system called TAn (Tetrahedra Analyzer) available in the pub-
lic domain'. We are now developing the 2.0 version of our system that will
include all the solution here presented.

In spite of the intensive research done on volume visualization and, in
particular, on simplicial volume visualization, some issues still need further
investigation. Now we sketch some of the areas in which we want to continue
our work.

Power Diagram Sorting We think that the sorting approach proposed in
Chapter 3 needs some more work in order to improve its practical relevance.
In particular the lifting problem should have a solution better than the one
we presented in order to be applied on common datasets. We are working
in two directions to solve this problem. There is some evidence that we
can substitute the Simplex algorithm with a specialized algorithm like the
network simplex. The pivot operations of the simplex algorithm can be
interpreted in terms of geometric modifications on the original simplicial
complex. Another approach can be the definition of heuristic algorithms
that build a lifted complex by lifting one vertex after the other, by checking
the convexity of the resulting complex only locally.

Moreover the Power Diagram sorting approach also suggest a strategy
for the management of non-projective, and perhaps cyclic, complexes. We
plan to investigate into heuristics which transform a partially-convex lifted
complex, resulting for example by the failure of the simplex algorithm, into
a convex one. Such a process can be performed by adding new points onto
the non-convex (d-1)-facets of the partially lifted complex, splitting them
and trying again to lift the new complex.

'SGI executables of the TAn system are freely downloadable on our web
sitehttp://miles.cnuce.cnr.it/cg/swOnTheWeb.html.
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Tetrahedral Mesh Simplification The implementation of the decima-
tion algorithm, proposed in Chapter 5, is still under developement at writing
time. We think that better strategies for evaluating the future error resulting
from a vertex removal could be suggested from the result of this implemen-
tation.

The memory requirements of these algorithms can be very high, so we
are planning to design a decimation algorithm working on very large meshes
by applying windowing strategies to advance (and decimate) only a portion
of the dataset at a time, while mantaining the mesh correctness.

Multiresolution Models We plan to implement and compare the two
multiresolution models for tetrahedral complexes described in Chapter 6.
One of the two multiresolution models will be integrated in the new release
of the TAn visualization system. We will use the MagicSphere tool for
specifying space-based focus areas and Discontinuous Transfer Functions
for range-based focus vaules in order to extract variable-resolution models
which fit the user needs.

The memory requirements for multiresolution models are generally very
high, therefore we are also interested in studying the use of I/O optimal
techniques and data structures (like the Buffer Tree [5]) for the management
of the multiresolution model on secondary memory.

Using these techniques we hope to succeed in efficiently mantaining only
the low resolution part of the multiresolution model in main memory, and
accessing to multiresolution model stored on the secondary memory only for
the high resolution parts of the specified by the focus area.

Flow Visualization Our thesis dealt only with scalar field visualization,
but many applications manage and require the visualization of vectorial
data. The inclusion of this kind of data in simplification algorithms and
multiresolution model is straightforward: it is sufficient to change the error
evaluation functions.

An interesting problem is the definition of algorithms for the construction
of streamlines working on multiresolution models, using for example variable
resolution models where the resolution follows the turbolence of the flow.

We are also investigating the possibility of including some visualization
technique, like illuminated field lines [96] in the next release of TAn.

Tetrahedron as a Graphics Primitive Finally, we wonder if the state
of Volume Visualization is stable enough to include volume primitives into
graphics systems, either software libraries and toolkits or hardware subsys-
tems. In the case of regular volume datasets, this has been recently made
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possible by a slight modification of the graphics subsystems. The adoption
of new rendering approaches, based on hardware texture mapping and trilin-
ear interpolation, produced impressive speedups to voxel-based applications
(e.g. medical imaging). Will it be possible in the near future to have a hard-
ware support for the efficient rendering of tetrahedral volume primitives and
its inclusion in standard graphics libraryl’
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Ray Tracing

search the first intersected face (red)

and, exploiting face adjacency (blue facets),
detect all the intersected cells.

Scan Line

1) scan from top to down the dataset with
aplane (red) calculating its intersection
with the cell complex;

2) scan thisintersection with ascan line

(green) computing, for each pixel, the

resulting color.

Projective

1) sort the cell in depth order;

2) project in that order al the cells
compositing on the screen the
results

Figure 7.1: Tetrahedral direct volume rendering approaches (Section 2.3).
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Figure 7.2: Trivial Integration of DVR and Isosurfaces (left) and the correct
one (right). See Chapter 4.

Figure 7.3: A zoomed in portion of the comparision between trivial integra-
tion of DVR and Isosurfaces (left) and the correct one (right)
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Figure 7.4: DTF rendering: without splitting on C° discontinuities (left)
and using our approach (right). The DTF is shown in the lower part of the
figure. See Section 4.3.

Figure 7.5: A zoomed in portion of the DTF rendering of figure 7.4. On the
left the approximate rendering and on the right the correct one.
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Figure 7.6: Isosurface visualization and direct volume rendering of the
BluntFin dataset simplified with the refinement approach. The dataset
is shown at three different resolutions, from top to bottom: (d,e) =

(0,0),(d,e) = (1.0%, 1.0%) and (d,¢) = (4.0%,4.0%). See Section 5.

Accuracy no. vertices | no. tetra || no. iso. triangles DVR time
(0.0%,0.0%) 40,960 222,528 19,499 44.1
(1.0%,1.0%) 14,162 80,883 9,143 16.1
(4.0%,4.0%) 3,612 20,324 3,442 3.9

Figure 7.7: Numerical values for isosurface (thr.= 1.244), and direct volume
renderings of Figure 7.6. Times are in seconds on an SGI Indigo R4000.
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