I Ry S
’//’ N \a/
: / VR [
/ I J—
]
ATA L A =
[N

TRANSPARENT LOTOS

TN T
/'/) V7

Technical Report C88-40

September 1988

By /)]
A s A
S / P~y —
// // }_VDI \ /]j / } // 17 7/ Z
/o / j // / S—

/ ' I /]

[F /h [e .
A 7 i /’{ A L — Tommaso Bolognesi
S N L~ . = /

/,/‘ N N/ \ T / jI]/ -~ \\\/ T
/ y VY /Y I
= VA B A R B
S N
/ ””””” / / /l "!I I ~7 /7 B -
((\ // "]) \K , ; A ’ ,fi /,
e g 4 - Fay N <1
e ,ﬁ_;,ﬂf,c’f/_ — \ y{j | S U - —
S N/ Vo [[,,f
o) \/)) /
/ e \/ / / /b j
/ v r] / ‘[T
fg / / o
[e I / / / v
((\// /7/ \ f (A { A {
N A S N e
/ -~V |/ Y 4 |/
\ / ,) /
/)L ____ J \ / // ;,/ / / i J/ /1
H / ; /
[, —
A [/ N
7/ [A e B
{ B // ?/ / \ { {r\“_,// { L/ / [
// [\ \ o]
S - -~ /

Transparent LOTOS

Tommaso Bolognesi
CNUCE - C.N.R.

Tecnical Report C88-40

Copyright September 1988

RN R e

Preface

This is a collection of 41 foils on the ISO specification language LOTOS [1, 2]. I have used them for
an introductory seminar on the language, at the FORTE '88 international conference on (standard)
Formal Description Techniques (University of Stirling, September 6th, 1988). 1 believe that an ideal
duration for their presentation, includin g reasonable interaction with the audience, is two hours and a
half. If you intend to use this material, please let me know of any difficulties encountered in your
presentation, and feel free to suggest improvements. I wish to express my gratitude to Ed Brinksma
and Jan De Meer, who have indirectly contributed to some parts of the presentation. The formal
specification of the Daemon Game example is completely due to Ken Turner.

Pisa, Sept. 19, 1988 Tommaso Bolognesi

[1] ISO - Information Processing Systems - Open Systems Interconnection - "LOTOS- A Formal
Description Technique Based on the Temporal Ordering of Observational Behaviour", IS 8807,
1987.

[2] T. Bolognesi, E. Brinksma, "Introduction to the ISO Specification Language LOTOS",
Computer Networks and ISDN Systems, Vol. 14, No 1, 1987 .

S S R R SR R BRI B SRR S S
B s e R S e i

Transparent LOTOS

Tommaso Bolognesi
CNUCE /C.N.R. - Pisa

Contents

l.
2.
3.

B

General features of the language
Specification of abstract data types
Specification of process behaviours - I

%k okesk

Specification of process behaviours - 11
Daemon Game example

1. General features of the language

% 3

EHEEERRH RN R ERRRRHIINRERS

3

P O A R R A T L T8 S T N
i R L R RN

iSRS

The LOTOS tree

Language

Of

Temporal

Ordering

Specification (of communicating systems)

Summer ‘88 ISO International Standard

March '85

ISG Draft Proposal

;i (Brinksma,
'§§§.Vissers).§§'

general features - 1

LOTOS describes a system as a process
which may:

interact with its environment

via interaction points called gates,

that is, perform observable actions at the gates
(observation = interaction);

perform unobservable (internal, hidden) actions.

process /\\ gate hidden gate ~
b = (p
N Y
P2 [b,c]

G) P[a, b] <a> c}“

P1[a,b,c]| P3I[c]

Quter view of process P Internal structure of P

An observable action consists of offering / accepting
("establishing™) zero or more values at a gate.

An interaction may occur when two or more processes
are ready to perform the same observable action.

An interaction may involve data exchange, and is an
instantaneous event (synchronous communication).

general features - 2

Algebraic nature

Process behaviours are described by algebraic
expressions, called

behaviour expressions.

Complex behaviours (processes) are expressed by
composing more simple behaviour expressions
(subprocesses) via the LOTOS operators. Examples:

3

Sequentiality ?{P A@ P»aQ
3

Parallel , a

composition P 4 Pl Q
@ .

Disabling P i PI>Q

L
Behaviour expressions satisfy algebraic laws. Examples:

PE>QIIQ = PI>Q
a; (P[1Q) # a;P[la;Q

LOTOS abstract data types --> multi-sorted algebras

general features - 3

Two components

 Ultimately, the behaviour of a process is expressed in terms
of which interactions (observations) are possible with it, that
1s:

. WHICH values are offered / accepted ...
o WHERE / WHEN (in which temporal order) ?

%/

e N
Abstract data types(ADT) Processes
value expression: behaviour expression:
WHAT is offered WHEN/WHERE does
in the interaction ? the interaction occur ?
push((x + 1), stack) first interact at gate 'a/,

then interact at gate 'b'

e LOTOS specification = ADT defs. + process defs.

general features - 4

vi’f}%?

FHEE S
HARRHTENY

Syntactic interplay of the two components

Gpecificaﬁon |

spec-identifier

formal-parameter-list

)

_C

data-type-definition

)

beha@

.

behaviour-expression

where

data-type-definition

-

process-definition

o

{ endspec |

(process | proc-identifier

formal-parameter-list

e

)

behaviour-expression

where

data-type-definition

-

process-definition

o

) 8 -

endproc)

general features - 5

1y

2)

3)

4)

ENEAN S AN N NS R 04 5 S N SN N N SR e Ye i

Value expressions may appear within behaviour expressions

in four different places, for expressing:

values offered at a gate
(<value expr. 1>);

values offered at the special 'successful termination' gate
(<value expr. 2>);

conditions for a behaviour to take place
(<bool. value expr. 3>);

actual values for instantiating a parametric process
(<value expr. 4>).

<behaviour expression>

/

.

g ! <value expr. 1>; exit (<value expr. 2>)

[]
<bool. value expr. 3>] --> P <value expr. 4>
P g P
4

behaviour expressions are built up with

- LOTOS predefined operators (e.g.: '[1);

value expressions are built up with

- user-defined operators, and
- LOTOS predefined operators.

general features - 6

2. Specification of abstract data types

* Data type definitions provide the syntax
and the semantics of the value expressions
to be used within behaviour expressions.

° User-defined data types
appear within an actual LOTOS spec.;

° Standard data types
appear in the standard library of data types, in
158807, and can be referenced by an actual

LOTOS spec.

data types - 1

Example of data type definition

type VeryBasicNaturalNumber is

sorts Nat \
. the signature
opns 0 : --> Nat > defines the
Succ : Nat --> Nat syntax
n - Nat. Nat --> Nat of value expressions
—_— h 3 /
egng forall m, n: Nat \
the equations
ofsort Nat dofine the
m+ 0 =m semantics
of value expressions

m + Succ(n) = Succ(m) +n
endtype

Graphic representation of the signature:

e Some correct value expressions of sort 'Nat': 0
Succ(0)
0 + Succ(0)

» Two value expressions of sort 'Nat' with the same semantics
(one can be transformed into the other by applying both
equations once, as rewrite rules)

0 + Succ(0) = Succ(0)

data types - 2

NIVINIS SN SER FeRL AR CR AT R f O R I A T2 I A O R S e T s sy
B A R B R I e S e S e S e L T s I e g e i

Extensions of type definitions

type BasicNaturalNumber (* Standard Library *) is
VeryBasicNaturalNumber

opns kL wE : Nat, Nat --> Nat
eqns forall m, n : Nat
ofsort Nat

m * (0 = 0

m * Suce(n) = m+ (m * n);

m ** () = Succ(0);

m ** Succ(n) = m * (m ** n);

endtype

« Extensions may also introduce new sorts.
Example (from "Daemon Game"):

Identifier Type

type IdentifierType is

Boolean

Boolean
gorts [dSort
opng Baseld
NextId

€q, _ne_

eqns
endtype

Nextld

(equations not shown)

data types - 3

Parameterized types

type ParametricQueue is

formalsorts element

formalopns ¢0 : --> element

sorts queue

opns create :-->queue
add : element, queue --> queue
first : queue --> element
remove :queue --> queue

eqns

endtype
remove ParametricQueue

first

I create

R
1 : 2 '
W remove

first

add

This definition characterizes only those properties of the objects of
sort ‘queue’ which do not depend on the nature of the elements in
the queue.

data types - 4

Actualizing a parametric type

type QueueOfVeryBasicNaturalNumber is

ParametricQueue actualizedby
VeryBasicNaturalNumber using
sortnames nat for element
opnnames 0 for e0
endtype

QueueOfVYeryBasicNaturalNumber

ParametricQueue
YeryBasic
NaturalNumber
= (for e0)
create
Suce A4
.‘ otk - Nat '-. »
(for elemem) {N queue
G 3 remove

first

All the properties of the actualizing type (its equations) are
imported into the actualized type

data types - 5

* Formal equations can be used within a parametric type
definition for imposing semantic requirements on
candidate actualizing types.

Example

A new formal operation is added to type ParametricQueue, and is
required to be commutative:

type RefinedParametricQueue is

Jormalopns #
Jormalegns forall x, y : element
ofsort element

x#y = y#x

endtype

The actualization below is correct because '+' is commutative (as
implied by the equations of VeryBasicNaturalN umber):

type QueueOfVeryBasicNaturalNumber LS

RefinedParametricQueue actualizedby
VeryBasicNaturalNumber using
sortnames nat for element
opnnames 0 for e0
+ for #

endtype

data types - 6

PR

Type renaming

* Creates a new type, isomorphic to an already defined one.

« Allows one to assign mnemonic names to sorts and
operations which fit better into the desired application.

Example
iype ParametricConnection is
ParametricQueue renamedby
sortnames channel Jor queue
message Jor element (* formal *)
opnnames nomessage for e0
send Jor add
receive for first
endtype

(the operations create and remove of type ParametricQueue are
not renamed, but they are still available.)

data types - 7

3. Specification of process behaviours - I

A behaviour expression is built by applying a (behavioural)
operator to 0, 1 or 2 behaviour expressions.

Examples:

nullary operator

behaviour
expressions

behaviour
expressions

H .. B1[1B2
binary operator (infix)

behaviour
expressions

unary operator (prefix)

B, B1 and B2 are behaviour expressions

behaviours - 1

Formal semantics of behaviour expressions

% data type
= definitions

“| process
= definitions

behaviour
expression

o9 labelled
LOTOS transition

system

operational semantics

The axioms and inference rules of the operational semantics
allow one to derive:

» the initial, alternative actions of behaviour E (e.g.: a, b)

 the behaviour expressions into which E is transformed
after the occurrence of its initial actions (e.g.: E', E")

behaviours - 2

The inference rules identify the initial actions of E based on
its syntactic structure.

Example
(E1[1Ep) --- 227 ---> 772

is defined in terms of

Bl --x-->E{'" and Ep-—-y-->E).

There are two types of action:

e
the internal (unobservable, hidden) action

8V, vy V>

the observable action of offering / accepting

a tuple <v{, ..., vp> of 0 or more values of some sort
at gate g

behaviours - 3

Imaction: stop

No axiom ia associated to the behaviour expression stop.

Hence this behaviour does not denote any action.

Example:

process broken_vending machine : noexit :=
stop

endproc

behaviours - 4

HEGNEHTH e

action prefix (unobserv.): i; B
Axiom:
i N
i, B > B
Example:

process broken vending machine : noexit :=
i; stop

endproc

The only possible transition is

1; stop ---1---> stop

but the user (observer) cannot distinguish this machine from the

previous one.

behaviours - 5

action prefix (observ.): g .. B

Axioms:

g<value (E)>

g IE ;B > B
AV
g ?x:t; B ’ > B

for any v of sort t

Example:

process useless_machine [insert coin, box]: noexit :=
insert_coin ? x:coin;
box ! x;
stop

endproc

Given a type with constants 'nickel', 'dime’, 'quarter’, of sort

'coin', the following transition tree can be derived:

behaviours - 6

insert_coin ? x: coin;
boxlx;
stop

insert coin insert coin insert coin
<nickel> <dime> <quarter>
box | nickel; box I dime; box | quarter ;
stop stop stop
box | <nickel> box | <dime> box | <quarter>

(o) Gor) (Cmar)

The coin inserted at gate insert_coin is returned at gate box.

Note the substitution of nickel/dime/quarter for x in expression

"box ! x; stop".

behaviours - 7

choice: B1[] B2

Inference rules:

Bli>Bl
B1[1B2 > B1
B2 B2
B1[1B2 > B2

Examp le:

process trap_machine [insert coin, box]: noexit :=
insert coin ?x:coin;
(box!x; stop
[l i stop
)

endproc

It may happen that the inserted coin is never returned.

behaviours - 8

guarding: <guard> --> B

<guard> is

1) <value expression 1> = <value expression 2>

11) <boolean expression>

Inference rule:

...
R R e A R

A A N R N A A O R RO ENLEA

..

Example of guarding and process instantiation (recursion)

process fair_machine [insert coin, box] : noexit :=
insert_coin ?x:coin,
([eq(x, quarter)] -> box !gianduiotto;
Jair_machine [insert coin, box]
[l [ne(x, quarter)] -> box! x;

Jair_machine [insert coin, box]

)

endproc

LOTOS gates are not typed

behaviours - 9

4. Specification of process behaviours - 11

parallel comp. - interleaving: B1 ||| B2

Behaviours B1 and B2 are independent of each other, and any
interleaving of their actions is possible.

Example
room 313
slot_ machine fair machine
inp out insert coin box

process room_313 [inp, out, insert coin, box] : noexit :=

slot_machine [inp, out]
Il fair_machine [insert coin, box]

where
process slot_machine [inp, out] : noexit :=
inp ! dime;
(i, out!nickel; slot machine [inp, out]
[] i, out!dime; slot machine [inp, out]
[] i, out!quarter; slot machine [inp, out]

)

endproc
process fair_machine [insert coin, box] : noexit :=
endﬁfbc

endproc (* room 313 *)

behaviours - 10

parallel comp.-
synchromnization: B1 |[g1,...,gn]| B2

Behaviours B1 and B2 are independent of each other, but must
interact at the synchronization gates gl,...,gn.

hiding: hide gl,...,gn in B

The actions of B occurring at the hidden gates gl,...,gn are
transformed into the unobservable action i.

Example
slot_vending machine
slot machine fair machine
L mid—]
inp box

process slot vending machine [inp, box] : noexit :=

hide mid in
(slot_machine [inp, mid] |[mid]| fair machine[mid, box])

where ...

endproc (* room 313 *)

Synchronization on all gates is expressed by B1 || B2:
the two composed processes are forced to proceed together.

behaviours - 11

Synchronization with transition trees

mid box box box
<nickel> <dime> <gianduiotto>
<quarter>

o & 4

mid 1d
<nickel> <dime>

e slot_machine - fair _machine
— linp, mia] ™Il “pp oy box]
inp| <dime>
i
mid
<nickel> <dime>
box box box
<nickel> <dime > <gianduiotto>

o o 4

behaviours - 12

Hiding on action trees

. - g = slot machine . fair _machine —
hide mid in [[inp, mid] [[mid]] [mid, box]]

inp| <dime>

mid
<nickel> <dime>
box box box
<nickel> <dime > <gianduiotto>
— 'Y 4
N
1 i
1 box box box

<nickel> <dime> giahduiotto:—

box box box O © O

<nickel> <dime> <gianduiotto>

O O O

behaviours - 13

Sequential composition (emabling):

B1>> [accept x1:t1, ..., xn:tn in] B2

The behaviour B2 is enabled if and when the behaviour B2
reaches a successful termination.

Successful termination: exit[(El, ..., En)]

a self-explanatory, altruistic alternative to the stop process.
Value expressions El, ..., En match variables x1:t1, ..., XN:tn

Example

game_vending machine

game > fair_machine
— l !
keyl key2 insert coin box

process game vending machine
[keyl, key2, insert coin, box] : noexit =

gamefkeyl, key2] >> Jair_machine/ insert _coin, box]
where
process gamef[keyl, key2] : exit :=
keyl,; game[key2, keyl]
[l key2; exit
endproc

process fair_machine[insert coin, box] : noexit =
endproc

endproc

behaviours - 14

Disabling: Bl [> B2

Behaviour B1 may be disabled at any time (except after
successful termination) by behaviour B2.

Example

process powercut_machine [insert coin, box] : noexit :=

Jair_machine[insert coin, box]
[> i; stop

where
endproc

powvercut_machine

fair _machine 4 i;stop

.01
insert coin box
nickel dime
fair fair
machine machine
nickel (N dime ji i/ /i
quarter __ gianduiotto lf

behaviours - 15

Generalized choice: choice x:t [] B(x)

The choice is offered among all behaviours B(v/x), where v is
any value of sort t.

Example

The process definition:

process slot_machine [inp, out] : noexit .
inp ! dime;

choice x : coin []

i; out!x; slot machine [inp, out]
endproc

is equivalent to the previous process definition:

process slot_ machine [inp, out] : noexit :
inp ! dime;
(i, out!nickel; slot machine [inp, out]
[] i; out!dime; slot machine [inp, out]
[l i; out!quarter; slot machine [inp, out]

)

endproc

behaviours - 16

N

ST AT A A

3

RSN

(SR SRS IN

5. Daemon Game example

Daemon game - informal specification

result

A daemon generates bump signals randomly.

A player guesses, by the command probe, whether the
number of bumps is

odd: the system signals win,
and increases the player's score by one, or

even: the system signals lose,
and decreases the player's score by one.

A player may issue the result command, to see his score.
At login (command newgame) the system allocates to the

player a unique identifier, and score = 0; at logout
(command endgame) the identifier is de-allocated.

daemon game - 1

Daemon game in LOTOS

Fundamental design choices:

e No central daemon.

The spec. must describe the system behaviour as
experimented by the players. Since experiments (e.g.
probe) cannot be simultaneous, players cannot distinguish an
architecture with a centralized daemon from one with many
local daemons.

* No explicit spec. of the local daemons

The local daemon is experienced by the player as a random
occurrence of signal win or lose from the system
(==> no bump signals, no bump counter).

daemon game - 2

Top level structure of the spec. - Processes

(p)
s
Game [P] (id, total) Gate P
is for all
NoGame [P] (id) interactions

players-system
System [P] (ids)

/NoGame(idl) _[Game] M [L
System NoGame (id;) [%2me] |

L NoGame (id) _| 0%™e] [

System describes the overall system as the independent
composition of all permitted games.

NoGame describes the infinite sequence of games played under
the same game-id. (login-id.). Unexpected commands
issued between two games are also handled.

Game describes, for a single game-id., all legal interactions

between system and player that may occur between a
newgame command and the next endgame command.

daemon game - 3

AR T I NN

Top level structure of the spec. - Data types

Identifier

IdentifierSet

Integer

Signal

for distinguishing games by login ids.

for indicating the set of login-ids supported by
the system.

for scoring.

for interactions players - system.

All observable actions at gate P are of type:

where

P <id, sig>

id is the player involved;

sig is the command issued by the player, or
the signal generated by the system.

daemon game - 4

Daemon game - Data types

(* The following type defines game-identifiers. An infinite set of
pairwise distinct objects is defined. *)

type IdentifierType is Boolean
sorts IdSort
opns Baseld :--> [IdSort
Nextld s IdSort --> IdSort
eq , ne_ - IdSort, IdSort --> Bool

eqns forall Id, Idl, Id2 : IdSort
ofsort Bool

Baseld eq Baseld = True;
Baseld eq Nextld(ld) = False;
Nextld(Id) eq Baseld = False,

Nextld(Idl) eq Nextld(ld2) =IdI eqld2;

Idl ne Id2 = not(ldl eq 1d2),

endtype

daemon game - 5

(* The following type renames the library type Set, without
affecting its formal components. *)

type IdentifierSetFormalType is :
Set renamedby
sortnames IdSetSort for Set
endtype

(* The following type defines sets of game-identifiers. It is an
actualization of the parametric type IdentifierSetFormalType *)

type IdentifierSetType is
IdentifierSetFormalType actualizedby
IdentifierType, Boolean using

sortnames IdSort for element
Bool Jor Fbool

endtype

daemon game - 6

(* Signature of IdentifierSetType

(some of the operations not used in the spec. are not shown)

IdentifierSetType

C.\not
true

Insert, Remove

deemon game - 7

AT T e I T T T T I PO

(* "... you mean this one is not in the library ?... *)
type IntegerType is
SOFts IntSort

opns 0 :--> IntSort
inc, dec : IntSort --> IntSort

eqns forall n: IntSort
ofsort IntSort
inc(dec(n)) =n,
dec(inc(n)) =n,
endtype

(* The following type defines the signals between the players and
the system *)
type SignalType is IntegerType
SOFLs SigSort
opns Newgame, Endgame,
Probe, Win, Lose,
Result o --> SigSort

Score o IntSort --> SigSort
endtype

daemon game - 8

Daemon game - Processes

(* The following process specifies the overall behaviour of the
system as the independent composition of all permitted games *)

process System [P] (ids : IdSetSort) : noexit :=

choice id : IdSort []
[id IsIn ids] -->
(NoGame[P] (id) Il System[P] (Remove (id, ids)))
endproc

Game Came Game Game

daemon game - 9

(* The following process describes the infinite sequence of games
played under the same game-id. One of the graphical syntaxes
currently considered for LOTOS is adopted here; can you figure
out the meaning of this definition ? (Hint: the dotted lines identify

alternatives of the choice operator.) *)

(P

lid
| Aewr (ame

N

Game
(id, 0)

Y

NoGame
(id)

NoGame (id : [dSort)

lid
| Froke

lid
| Rasut

L

L

NoGame
(id)

NoGame
(id)

daemon game - 10

(* the following process describes an individual game *)

process Game [P] (id : IdSort, total : IntSort) : exit :=

P !id! Newgame;
Game [P] (id, total)
[] P!id!Probe;
(i, P!ld!Win; Game [P] (id, inc(total)
[] i P!ld!Lose; Game [P] (id, dec(total))
)
[] P !lid!Result;
P I'id ! Score(total); Game [P] (id, total)
[l P!lid!Endgame;
exit

endproc

daemon game - 11

Complete Daemon game spec. in LOTOS

specification Daemongame [P] (ids : IdSetSort) : noexit

library Boolean, Set endlib

type ldentifierType

type IdentifierSetFormalType
type ldentifierSetType

type IntegerType

type SignalType

behaviour System [P] (ids)

where

... endtype
... endtype
... endtype
... endtype
... endtype

process System [P] (ids : IdSetSort) : noexit :=

... NoGame ...
where
process NoGame ... :=
... Game ...
where
process Game ... :=

endproc (* Game *)
endproc (* NoGame *)
endproc (* System *)

endspec (* Daemongame *)

daemon game - 12

