
Technical Report, No. 402734, May 2019
Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”

The OpenAIRE Research Graph: Third-
party Publishing APIs

Claudio Atzori, Miriam Baglioni, Alessia Bardi, Paolo Manghi, Sandro La
Bruzzo, Michele De Bonis, Andrea Dell’Amico, Michele Artini, Andrea
Mannocci, Enrico Ottonello

name.surname@isti.cnr.it

Abstract

This work describes the specification of the OpenAIRE publishing APIs that support third-party
services at publishing metadata about interlinked and packaged research products into the
OpenAIRE Research Graph, in respect of the OpenAIRE interoperability guidelines
(https://guidelines.openaire.eu). Research products generated by researchers using services of
research infrastructures are today manually published by researchers in a repository external
to their research infrastructure. This phase is often considered an extra burden, because
researchers have to fill in metadata forms with information that is already available in the scope
of the services they used. By using the OpenAIRE publishing APIs, services of research
infrastructures can implement an on-demand publishing workflow for any type of research
products to support their researchers at improving the FAIRness of their research products
and relief them from the tedious step of finding a suitable repository and manually depositing
the products in it.

Keywords: OpenAIRE, APIs, publishing, Open Science

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”

1. Introduction

The OpenAIRE publishing APIs supports the concept of “continuous publishing” in digital research
settings where researchers conduct their activities in digital laboratories using ICT tools and
services for processing and analyzing research data. By using the OpenAIRE publishing APIs, a
service/tool can automatically publish metadata on behalf of the researchers.
The service/tool and its underlying infrastructure is responsible for keeping persistent identifiers,
preserving the payload of the objects and the metadata.
If the service does not want to keep the above responsibilities, then using the Zenodo API is
preferred. By depositing an object into Zenodo, the object will get a DOI and its metadata and
payload will be preserved according to the policies available at http://about.zenodo.org/policies/ .
Metadata will also be automatically pushed into the OpenAIRE Research Graph.

When a metadata record is pushed into the OpenAIRE Research Graph, via the Zenodo API or
the OpenAIRE Publishing API:

• the metadata record is immediately visible via the OpenAIRE search portal and HTTP
APIs;

• the metadata record will be cleaned and de-duplicated in a second stage according to the
OpenAIRE content provision workflow described at https://www.openaire.eu/aggregation-
and-content-provision-workflows and http://doi.org/10.5281/zenodo.996006 .

Researchers benefit from a service that uses the OpenAIRE publishing APIs in several ways:

• The service will support the generation of metadata to improve the FAIRness of the relative
research products;

• Researchers are relieved of the burden of depositing the products they want to publish in
a repository external to their digital laboratory;

• Researchers can choose to publish research products at any step of their research activity.

Outline Section 2 describes the architectural specification of the APIs.
Section 3 describes the formats of records, based on the OpenAIRE guidelines, that can be
submitted via the API.

2. Architecture

The high-level architecture of the APIs and how they interact with the OpenAIRE infrastructure is
summarised in figure 1.
The external service calls the APIs to push one metadata record into the OpenAIRE Research
Graph. The API component will store the metadata in a dedicated metadata store and call the
already existing Direct Indexing API in order to make the metadata available in the OpenAIRE
portal and the Search API.
Records in the metadata store will be daily processed by the OpenAIRE Aggregation system to
perform cleaning and harmonization to the OpenAIRE internal format, so that they can be de-
duplicated and enriched thanks to the OpenAIRE mining algorithms.

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”

Figure 1. High-level architecture of the OpenAIRE publishing APIs

Details on the API components are shown in figure 2. The APIs provide two main entry points:

• The API key deliverer: a GUI for requesting the API key needed to call the publishing
endpoint;

• The publishing endpoint that clients, provided an API key, use to publish metadata into
OpenAIRE.

Figure 2. High-level architecture of the OpenAIRE publishing APIs

Figure 3 illustrates the procedure to obtain an API key. The manager of the external service willing
to use the OpenAIRE publishing endpoint goes to the Web GUI for token requests and fills in the
request form. The form asks the service manager the following information:

• Contact email (mandatory): it will be used by the OpenAIRE Technical team to
communicate with the service manager

• Service name (mandatory): it will be used to generate a new OpenAIRE Content Provider.
This is needed to track provenance information of the metadata published via the APIs.

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”

• Organization (mandatory): the organization that is responsible for running the service. The
service manager will be able to select one of the organization already in OpenAIRE or to
add a new one. In case a new organization must be added, the service manager must
provide the following information:

o official/legal name (mandatory)
o english name (optional)
o jurisdiction/country (optional, EU will be used by default)
o web site URL (mandatory)

The API key deliverer component interacts with the Content Provider Manager Service of
OpenAIRE to create a new content provider and associate it to the selected (or just created)
organisation. An API key associated to the content provider is generated and returned to the
service manager.

Figure 3 Process to request an API key for the OpenAIRE publishing APIs

Once the API key is obtained, the service manager can configure its service to perform calls to
the publishing endpoint providing the API key in the HTTP header.

The publishing endpoint exposes methods to push metadata records in XML format, complaint to
the OpenAIRE guidelines. If a record is not compliant to the guidelines, the request will be rejected
with an HTTP 4xx Client Error status code.

The sequence diagram in figure 4 describes how the various OpenAIRE components collaborate
in case of a successful push request.

The publishing endpoint receives a push request from an authorised service. The request is
forwarded to the Publisher component, which validates the input XML record via the XML validator.

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”

If the validation succeeds, as in the case depicted in figure 4, the record is stored in the metadata
store and transformed into the format expected by the OpenAIRE Direct Indexing API. The Direct
Indexing API transforms again the record into a Solr document and sends it to the OpenAIRE Solr
server serving the OpenAIRE production portal and the public search API.

Figure 4. Push request to the OpenAIRE publishing endpoint

2.1 Existing OpenAIRE services used by the publishing APIs

As described in the previous section, the OpenAIRE publishing APIs use existing OpenAIRE
internal services to accomplish their task: the Content Provider Manager Service, the Direct
Indexing API and the Metadata Store Service. In the following, a brief description of the mentioned
services is provided. Note that all these services are not for public use and are accessible only by
other OpenAIRE services.

Content Provider Manager Service The Content Provider Manager Service is a service for the
management of data sources providing content that is aggregated into the OpenAIRE Research
Graph by the OpenAIRE Aggregation infrastructure.
The service supports typical CRUD (Create, Retrieve, Update, Delete) operations via a RESTful
interface on the data sources integrated by the OpenAIRE infrastructure. The service is currently
used by OpenAIRE Aggregation Infrastructure and the Content Provider Dashboard.

Direct Indexing API The Direct Indexing API has been developed to enable selected components
of the OpenAIRE infrastructure (namely Zenodo and the Claim functionality of the OpenAIRE
portal) to push metadata records into the Solr index used by the OpenAIRE portal and Search API
without waiting for the normal aggregation and content provision workflows to take place. The
normal workflow execution that generates updated content for the Solr index takes 1 or 2 weeks
and includes several steps of harmonization and enrichment, as explained in details in
https://www.openaire.eu/aggregation-and-content-provision-workflows and
http://doi.org/10.5281/zenodo.996006. Using the direct indexing API, the harmonization and
enrichment steps are not executed, but end-users can view the metadata record on the OpenAIRE
portal and the search API just some seconds after their action on Zenodo or on the portal. Records
added via the Direct Indexing API that have not been harmonised and enriched are marked as
“Records in preview” in the OpenAIRE portal.

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”

Metadata Store A metadata store (mdstore) is a storage unit capable of storing metadata objects
in XML format. Metadata stores are managed by the D-Net MDStore Service and are typically fed
via metadata aggregation workflows. The OpenAIRE publishing APIs will feed a dedicated
mdstore with the validated XML records received from external services. Records will be subject
to the OpenAIRE harmonization and enrichment processes like any record collected from
“traditional” data sources.

3. Publishing research products into the OpenAIRE
Research Graph

Requests to the OpenAIRE publishing API must include the XML metadata record to publish. Its
schema varies based on the type of the described resource, according to the OpenAIRE
guidelines (http://guidelines.openaire.eu).
The OpenAIRE guidelines are an integrated suite of guidelines for data sources, whose purpose
is to set a common and interoperable approach for exporting metadata about research products.

In the following, the guidelines for each type of research product whose metadata can be
published via OpenAIRE are briefly described and the following support material is linked to
support adopters of the OpenAIRE publishing APIs:

• Guideline documentation;
• XML Schema used by the XML validator component;
• Examples of valid metadata records.

3.1 Publishing literature products¶

Metadata about literature products (e.g. scientific articles, technical reports) can be pushed into
the OpenAIRE Research Graph provided they are compliant to the application profile specified by
the OpenAIRE guidelines for Literature Repository Managers v4
(https://guidelines.openaire.eu/en/latest/literature_v4/index.html).

The application profile is based on the Dublin Core and DataCite Metadata Schema v4 and COAR
vocabularies for access rights (http://vocabularies.coar-repositories.org/documentation/access_rights/) and
resource types (http://vocabularies.coar-repositories.org/documentation/resource_types/).

Table 1 lists the fields that are mandatory. Examples of complete and minimal metadata records
compliant to the OpenAIRE guidelines for Literature Repository Managers v4
(https://guidelines.openaire.eu/en/latest/literature_v4/index.html) are available at
https://github.com/openaire/guidelines-literature-repositories/tree/master/samples.
The XML schema adopted by the XML Validator component is available at
https://www.openaire.eu/schema/repo-lit/4.0/. If the submitted record cannot be validated via the
schema, the request will be rejected.

Table 1. Mandatory fields in the application profile for literature products

OpenAIRE field Metadata Element Note
Title dc:title

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”

Creator datacite:creator Possibly with identifier, like ORCID
FundingReference datacite:fundingReference Mandatory if the literature product is funded by a project
Embargo Period
Date

datacite:date (with
dateType="Available")

Mandatory if the embargo period hasn’t ended yet

Publisher dc:publisher Mandatory if available.
Publication date dc:date

Publication type dc:type Values from the COAR vocabulary of resource types
Description dc:description

Resource identifier dc:identifier In the form of PID or stable URL. The value will be used
by OpenAIRE to uniquely identify the product.

Access rights dc:rights Values from the COAR vocabulary of access rights
Full-text location aire:file Specify where the full-text of the product can be directly

downloaded

3.2 Publishing dataset products

The current OpenAIRE guidelines for Data Archive Managers 2.0 (
https://guidelines.openaire.eu/en/latest/data/index.html) are based on the DataCite Metadata Schema
v3.1 by making some of the otherwise optional DataCite properties mandatory, as well as
enforcing specific encoding schemes on the values of some DataCite properties. A new
application profile based on DataCite Metadata Schema v4 is expected to be proposed by the
OpenAIRE consortium in the context of the OpenAIRE-Advance project.

For this publishing APIs, it has been agreed not to adopt the current application profile for research
data based on version 3.1 Datacite Metadata Schema, but to enhance it to adopt the new features
of the Datacite Metadata Schema v4, in a similar way it has already been done for the new
OpenAIRE guidelines for Literature Repository Managers v4. Namely, the new features that have
been included to generate the application profile and the relative XML schema for the publishing
APIs are:

• The adoption of COAR vocabularies for access rights: http://vocabularies.coar-
repositories.org/documentation/access_rights/;

• The adoption of COAR vocabularies for resource types: http://vocabularies.coar-
repositories.org/documentation/resource_types/;

• Use of the Datacite v4 field datacite:fundingReference for the specification of links to
projects (instead of using datacite:contributor with contributorType="Funder", as in the
current guidelines for data repositories)

Table 2 lists the fields that are mandatory. An example of complete XML record compliant to the
application profile is available at http://tinyurl.com/yyadfxtd. The XML schema adopted by the XML
Validator component is available at https://tinyurl.com/y3s82hg7. If the submitted record cannot
be validated via the schema, the request will be rejected.

Table 2. Mandatory fields in the application profile for dataset products

OpenAIRE
field

Metadata Element Note

Resource
identifier

datacite:identifier In the form of PID or stable URL. The value will be used by OpenAIRE
to uniquely identify the product.

Creator datacite:creator Possibly with identifier, like ORCID
Title datacite:title

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”

Publisher dc:publisher Mandatory if available.
Publication year datacite:publicationYear In the form YYYY
Date datacite:date The type of date must be specified
Access rights datacite:rights Values from the COAR vocabulary of access rights
Description datacite:description

3.3 Publishing software products

Metadata about research software can be pushed into the OpenAIRE Research Graph provided
they are compliant to the OpenAIRE guidelines for Software Repository Managers
(https://guidelines.openaire.eu/en/latest/software/index.html). 1 The application profile is based on the
DataCite metadata schema v4, the OpenMinTed SHARE-OMTD software guidelines, DOE CODE
and Codemeta initiatives.

Table 3 summarises the mandatory field defined by the application profile.

Examples of XML records compliant to the application profile is available at
http://tinyurl.com/y43elymg. The XML schema adopted by the XML Validator component is
available at https://tinyurl.com/y4puu46e. If the submitted record cannot be validated via the
schema, the request will be rejected.

Table 3. Mandatory fields in the application profile for software products

OpenAIRE
field

Metadata Element Note

Resource
identifier

datacite:identifier In the form of PID or stable URL. The value will be used by OpenAIRE to
uniquely identify the product.

Creator datacite:creator Possibly with identifier, like ORCID
Name datacite:title

Software
Type

datacite:resourceType The attribute resourceTypeGeneral must be “Software”. The text value of
the element can contain the specific type of software (e.g. Data mining,
Statistical analysis)

Access rights datacite:rights Values from the COAR vocabulary of access rights

3.4 Publishing “other products”

Metadata about other research products can be pushed into the OpenAIRE Research Graph
provided they are compliant to the OpenAIRE guidelines for Other Research Products (ORP)
Repository Managers (http://guidelines-other-products.readthedocs.io/en/latest/index.html).

The application profile is based on the DataCite metadata schema v4, and the OpenMinTed
SHARE-OMTD software guidelines.

1 OpenAIRE guidelines are always open for consultation and possible changes in the future. We invite
developers of external services using the OpenAIRE publishing APIs to also provide their feedback in order
to improve the application profile and guidelines and contribute to best practices on sharing, citation and re-
use of research products that are not literature, data, nor software.

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”

Table 4 summarises the mandatory field defined by the application profile.
Examples of complete XML records compliant to the application profile are available at
http://tinyurl.com/y42av55o.
The XML schema adopted by the XML Validator component is available at
https://tinyurl.com/y4golxfy.
If the submitted record cannot be validated via the schema, the request will be rejected.

Table 4. Mandatory fields in the application profile for other research products

OpenAIRE
field

Metadata Element Note

Resource
identifier

datacite:identifier In the form of PID or stable URL. The value will be used by OpenAIRE to
uniquely identify the product.

Creator datacite:creator Possibly with identifier, like ORCID
Name datacite:title

Type datacite:resourceType The attribute resourceTypeGeneral must be one of the Datacite terms:
“Other”, "Workflow", "Service", "Model". The text value of the element can
contain the specific type (e.g. protocol, trial, web service)

Access rights datacite:rights Values from the COAR vocabulary of access rights

4 Acknowledgments

This work was partially funded by the EC H2020 OpenAIRE-Connect project (grant agreement:
731011).

