
Noname manuscript No.
(will be inserted by the editor)

LSTM-Based Real-Time Action Detection
and Prediction in Human Motion Streams

Fabio Carrara · Petr Elias · Jan
Sedmidubsky · Pavel Zezula

Received: date / Accepted: date

Abstract Motion capture data digitally represent human movements by se-
quences of 3D skeleton configurations. Such spatio-temporal data, often re-
corded in the stream-based nature, need to be efficiently processed to detect
high-interest actions, for example, in human-computer interaction to under-
stand hand gestures in real time. Alternatively, automatically annotated parts
of a continuous stream can be persistently stored to become searchable, and
thus reusable for future retrieval or pattern mining. In this paper, we focus
on multi-label detection of user-specified actions in unsegmented sequences
as well as continuous streams. In particular, we utilize the current advances
in recurrent neural networks and adopt a unidirectional LSTM model to ef-
fectively encode the skeleton frames within the hidden network states. The
model learns what subsequences of encoded frames belong to the specified ac-
tion classes within the training phase. The learned representations of classes
are then employed within the annotation phase to infer the probability that
an incoming skeleton frame belongs to a given action class. The computed
probabilities are finally compared against a learned threshold to automati-
cally determine the beginnings and endings of actions. To further enhance
the annotation accuracy, we utilize a bidirectional LSTM model to estimate
class probabilities by considering not only the past frames but also the fu-
ture ones. We extensively evaluate both the models on the three use cases of
real-time stream annotation, offline annotation of long sequences, and early
action detection and prediction. The experiments demonstrate that our mod-
els outperform the state of the art in effectiveness and are at least one order
of magnitude more efficient, being able to annotate 10 k frames per second.

F. Carrara
ISTI-CNR, Pisa, Italy
E-mail: fabio.carrara@isti.cnr.it

P. Elias · J. Sedmidubsky · P. Zezula
Masaryk University, Brno, Czech Republic
E-mail: petr.eli.cz@gmail.com, xsedmid@fi.muni.cz, zezula@fi.muni.cz



2 Fabio Carrara et al.

1 Introduction

Motion capture data, or simply motion data, are 3D trajectories of human-
skeleton joints recorded in a frame-by-frame manner. Current research mainly
focuses on recognizing the classes of already segmented actions, based on the
pre-classified training data [35,47,10,12,18,5,28,32,47]. Recognizing actions
is quite difficult because the same actions can be performed by various sub-
jects in a number of alternatives that vary in spatio-temporal configurations,
i.e., speeds, timings or positions in space. To effectively learn the spatial and
temporal motion characteristics, the state-of-the-art approaches often involve
deep convolutional [23,35] and Long-Short Term Memory (LSTM) neural net-
works [28,47,32,36]. Compared to the traditional model-based approaches [42,
39,18] and classifiers [34,45,38], deep learning exhibits a great ability to rec-
ognize patterns in multimedia data [2,3].

All the action recognition approaches mentioned above, however, can clas-
sify only the actions that are already manually pre-segmented in advance. But
motion data are often recorded continuously in form of unsegmented skele-
ton sequences or pseudo-infinite streams. Only a few approaches [30,41,46,11,
43,6,37,27] are able to detect actions within such unsegmented sequences or
streams. The task of action detection, also referred to as stream or sequence an-
notation, constitutes a much more difficult problem than recognizing classes
of short action clips because the beginnings and endings of actions are un-
known and have to be determined precisely. It is even harder in time-critical
applications (e.g., security) where high-interest actions (e.g., drawing a gun)
are required to be detected immediately, within a maximum delay in order of
tens to hundreds of milliseconds.

Based on the application scenario, the annotation task can be solved by
offline or online algorithms. The online ones can process only the currently
accessible part of a skeleton stream and have to make irrevocable decisions
in real time, while the offline ones can process an input skeleton sequence as
a whole and analyze not only preceding but also succeeding frames. In this
paper, we focus on both scenarios of offline sequence annotation and online an-
notation of continuous streams. We also concentrate on action early-detection
and prediction of actions shortly before they happen. For these scenarios, we
perform a task of supervised and multi-label annotation, i.e., we expect that
multiple actions can happen simultaneously and that some small amount of
annotated sequences is available for the training purposes.

2 Related Work

While the action recognition paradigm is well-solved by many state-of-the-
art classifiers [9], the offline and online annotation tasks still lack effective
and efficient approaches. Effective unsupervised (category-blind) annotation
approaches [13,21,44] exist, but they are hardly applicable for the real-time
annotation as they need to process the whole motion sequence in advance to



Title Suppressed Due to Excessive Length 3

discover and learn the discriminative repeating patterns first. On the other
hand, supervised annotation approaches [41,46,11,43] can effectively process
motion sequences in the stream-based nature to discover class-relevant frames
or segments. In the following, we describe existing motion features and com-
pare the traditional segment-based approaches with the frame-based variants
of annotation algorithms.

2.1 Motion Features and Their Comparison

In the majority of related work as well as in this work, the spatio-temporal
motion data is normalized [33] to become invariant towards the subject’s po-
sition, orientation, and skeleton size. In particular, the skeleton in each frame
is moved by pinning the root joint (see Figure 1) into the origin (0, 0, 0) and
rotated so that the skeleton hips are facing the fixed direction. The normal-
ized data are further processed to extract descriptive frame-based [10,41,46,
47,30] or segment-based features [16,12,35]. Features can be compared for
(dis)similarity by various distance measures, such as the Euclidean distance
in [35], Hamming distance in [40], Dynamic Time Warping (DTW) in [5] or
its variants in [30,13]. To avoid costly feature extraction and comparison, fea-
tures can be embedded in the stateful automatons, graph-based models [41],
or, similarly to our approach, extracted from hidden states of deep neural
networks [37,27].

2.2 Segment-based Annotation

A continuous motion sequence or stream is gradually partitioned into short
segments, typically using a no-prior knowledge partitioning [30,11,4]. The seg-
ments are identified using the traditional principle of sliding window that is
shifted in a systematic and overlapping manner, which introduces a non-trivial
replication of the input data. For instance, a multiple simultaneous sliding
windows of different lengths in [11] cause a 20-fold increase in the data repli-
cation. To avoid a high segmentation overlap, a non-linear segmentation [6]
is proposed to produce varying-length segments that carry a semantic power.
The segments need to be processed to extract segment-level features that are
used to retrieve the nearest matches within the features of the predefined class
samples. If the similarity between a segment and its nearest match is high, the
nearest-match class is considered as the segment label [11,30]. However, com-
paring the features of a large number of segments with a lot of provided action
samples can be computationally demanding, especially when the costly DTW
function of quadratic time complexity is employed [30]. Moreover, the labelled
segments do not have to straightforwardly mark the precise beginnings and
endings of actions. Another disadvantage is that each segment has to be first
read from a stream before its processing begins, implying that annotations
are discovered with a slight delay. Due to these disadvantages, the frame-level
annotation based on deep recurrent learning is preferred in this work.



4 Fabio Carrara et al.

2.3 Frame-based Annotation

To avoid the disadvantages of the segment-based approach, per-class prob-
abilities can be estimated for each frame to immediately infer the labels of
classes, by exploiting the learned class representations. To enhance the anno-
tation quality, the contextual information of so-far scanned frames is continu-
ously encoded, for example, in the recurrent frame-based features [46], hidden
states of auto-encoders [7], deep beliefs [41] or recurrent neural networks [17].
The LSTM recurrent neural networks [37,27] are very effective in preserving
semantic context in the hidden states of the LSTM cells, compared for exam-
ple to linear SVM classifiers that need to model the temporal context within
the frame-level features [39]. In [37], two separate attention network modules
are embedded, one spatial for discovering the most descriptive joints and one
temporal for discovering the most important key poses. Similarly, in [27] a
two-branch model is used, one branch is used for classification and one for es-
timating beginnings and endings of actions. In both cases, only one class can
be annotated at the same time simultaneously. Also, the networks are very
deep, containing multiple (3+) layers of LSTM cells and (4+) fully connected
layers. We propose rather a light-weight architecture with only one LSTM cell
for online annotation and two for offline annotation, which makes the training
and annotation process more efficient.

2.4 Early Detection and Prediction

Learning-based frame-level approaches [37,27] and traditional segment-based
retrieval approaches [11] are able to annotate motion sequences or streams in
real time; meaning that the average frame annotation rate is higher than the
actual frame rate. The major difference is that the frame-based annotation
approaches [29,26,27] are additionally suitable for the task of early detection,
i.e., discovering the beginnings of actions even before they finish. By increasing
the accepting sensitivity, actions can be even predicted several frames ahead [7,
17], usually at the cost of lower recognition accuracy. Action prediction is
important in time-critical applications, for example, in gesture recognition for
game play [20].

2.5 Our Contributions

To significantly outperform the current algorithms for annotating skeleton
sequences, we employ the LSTM-based recurrent neural networks that have
already proved successful in recognizing short pre-segmented actions [28,32,
47]. In particular, we propose an online action detection algorithm (Online-
LSTM) that is able to recognize precise beginnings and endings of concurrent
actions within motion streams. We show that the beginnings of actions are
detected immediately, without the necessity to wait for their termination and



Title Suppressed Due to Excessive Length 5

that by increasing the sensitivity of accepting thresholds, actions can even
be predicted a few hundreds milliseconds ahead. Additionally, we propose an
offline algorithm (Offline-LSTM) that utilizes a bidirectional LSTM network to
further enhance the annotation accuracy by analyzing future-to-past context.
In contrast to standard algorithms, both approaches provide a multi-label
annotation of actions that can be performed concurrently.

Both online and offline annotation scenarios are experimentally evaluated
on real-life skeleton streams as well as unsegmented sequences on a standard-
ized dataset from both effectiveness and efficiency points of view. We further
analyze how the annotation quality is influenced by changing the frame-per-
second rate. The achieved results are measured using well-established metrics
(F-measure and Average Precision) and compared with the state-of-the-art
approaches. Our approach achieves not only clearly higher effectiveness but
shows a superior performance as it is at least one order of magnitude more
efficient than other state-of-the-art annotation algorithms.

3 Methodology

We formally define motion capture data and the problem of their multi-label
annotation. Then, we introduce two approaches (Online-LSTM and Offline-
LSTM) based on recurrent neural networks to perform online annotation of
streams and offline annotation of sequences.

3.1 Problem Definition

A motion sequence (or simply motion) is represented by a sequence (P1, . . . , Pn)
of consecutive skeleton poses Pi (i ∈ [1, n]). The total number n of skeleton
poses determines the motion length. The i-th pose Pi ∈ R93, captured at the
time moment i (1 ≤ i ≤ n), consists of 3D coordinates of 31 tracked joints, as
graphically illustrated in Figure 1.

Fig. 1 Skeleton with
31 joints. The root is
depicted by red color,
hips by blue color. Fig. 2 Simple illustration of the multi-label annotation.



6 Fabio Carrara et al.

Table 1 Table of symbols.

Symbol Description
Pi i-th skeleton pose consisting of 3D joint coordinates
n total number of sequence poses
Cj j-th action class
m total number of action classes
yi,j ground-truth label of i-th pose and j-th action class
pi,j probability that the i-th pose belongs to the j-th action class

A stream is a motion sequence that is pseudo-infinite (i.e., the length n is
not bounded). In a given time moment, only a limited number of past frames
can be accessed in main memory and if they are not processed or stored,
they are lost. The difference between motion sequences and streams is that
sequences can be processed offline and as a whole, while streams require real-
time processing without any knowledge of the content coming in the future.

Simply illustrated in Figure 2, annotation, sometimes referred to as ac-
tion detection, is the problem of determining what subsequences of a stream
(resp. sequence) correspond to the predefined classes of actions. The prede-
fined training set C = (C1, . . . , Cm) consists of m classes, where each class
Cj (j ∈ [1,m]) is characterized by a non-empty set of action samples. The
supervised multi-label annotation task is formally defined as follows: given
the training set of classes C = (C1, . . . , Cm) and a sequence (P1, . . . , Pn) of
skeleton poses, determine for each pose the probabilities pi,j ∈ [0, 1] that the
pose Pi belongs to the class Cj , j ∈ [1,m]. Consequently, the j-th class is as-
signed to the i-th pose Pi if pi,j is greater than some fixed [11] or variable [13]
threshold. Since multiple classes of actions can happen simultaneously, the as-
signed annotations are not necessarily exclusive, i.e., multiple classes can be
assigned to a single pose. Thus, an independent set of probabilities for each
class is predicted, i.e.,

∑m
j=1 pi,j 6= 1. To train neural networks and verify

annotation results, the ground-truth labels are needed. They are denoted as:
y ∈ {0, 1}n×m, where yi,j = 1 if the i-th pose Pi belongs to class Cj ; yi,j = 0
otherwise.

Note that all the notations used throughout this paper are summarized in
Table 1.

3.2 Online-LSTM: Stream Annotation

We model all the probabilities pi,j of each incoming stream pose Pi (i ∈ N) to
belong to each class Cj (j ∈ [1,m]) with an architecture based on recurrent
neural networks (RNN). In particular, we adopt the Long Short-Term Memory
(LSTM) [15] in the recurrent part of the network due to its effectiveness already
proved in several sequence-modeling tasks [32,28,47]. LSTM is comprised of
learnable gating functions specifically designed to better manage the internal



Title Suppressed Due to Excessive Length 7

...

... ...

p2,1 p2,m

...

pn,1 pn,m

h1 hn−1 hn
LSTM

WE, bE

WC , bC

h2

P1 P2 Pn

P ′1 P ′2 P ′n

p1,1 p1,m

h0

Fig. 3 Online-LSTM architecture.

memory state when coping with long sequences and mitigate the vanishing
gradient problem in RNNs.

The recurrent cell, which is applied to each pose of the stream, is defined
as follows. First, we embed each stream pose Pi ∈ R93 into a E-dimensional
space with a linear projection (with parameters WE ∈ R93×E and bE ∈ RE)
followed by a ReLU activation:

P ′i = ReLU(WE · Pi + bE). (1)

Learning a projection of the original data in the end-to-end training phase
permits us to work with data of reduced dimensionality and a higher level of
abstraction in the rest of the pipeline, with both effectiveness and efficiency
advantages with respect to original motion data.

The obtained embedded poses P ′i ∈ RE are then fed to a unidirectional
LSTM cell, which produces a H-dimensional hidden state vector hi ∈ RH :

hi = LSTM(P ′i , hi−1). (2)

The initial state h0 is set to zero. This state vector together with the consec-
utive pose Pi+1 are given as input to the next step.

At each step, the hidden state hi is used to efficiently encode the informa-
tion about the history of the poses seen so far. The prediction for each class
probability for the i-th pose Pi is obtained from the hidden state hi as follows:

pi,j = σj(WC · hi + bC) j ∈ [1,m], (3)

where WC ∈ RH×m and bC ∈ Rm are the parameters of a linear projection
with m outputs, and σj(·) denotes the result of the sigmoid function applied
to the j-th component of its argument. The whole architecture is denoted as
Online-LSTM; it is graphically illustrated in Figure 3.

We optimize the parameters (WE , bE , WC , bC , and LSTM parameters) by
minimizing the binary cross-entropy between the pose-level predictions and the
targets. Let yi,j be the ground-truth annotation of pose Pi (i.e., yi,j = 1 if Pi



8 Fabio Carrara et al.

0.
0

0.
5

1.
0

p i
,j

A
n

n
ot

.

0 250 500 750 1000 1250 1500 1750 2000
Frame

G
T

move tpose turn

Fig. 4 The per-frame probability output pi,j for three different classes of “move” “pose” and
“turn” of the trained Online-LSTM model annotating a motion sequence of approximately
2,100 frames. The horizontal black line in the first row indicates the value of accepting
threshold. The resulting annotations (“Annot.”) and the ground-truth annotations (“GT”)
are shown below.

belongs to an action of class Cj ; yi,j = 0 otherwise) and pi,j be the probability
estimation of the network for pose Pi and class Cj , the loss function is then
defined as follows:

L = −
n∑

i=1

m∑
j=1

yi,j · log(pi,j) + (1− yi,j) · log(1− pi,j), (4)

where n is the length of the training sequence, and m the number of classes
to be recognized.

Once trained, in the test phase we obtain a hard annotation for each stream
pose Pi and each class Cj by applying a threshold to all the pi,j predictions, as
depicted in Figure 4. Moreover, we can define such a threshold independently
for each class. In the experiments, we evaluate different values of thresholds
and also introduce the way of their automatic tuning during the training phase.

This Online-LSTM architecture is particularly suited to be applied in on-
line stream processing scenarios because the annotation of the incoming pose
Pi+1 is obtained from the newly arrived data and the current hidden state hi
only.

3.3 Offline-LSTM: Enhanced Sequence Annotation

Albeit the Online-LSTM model described in Section 3.2 is eligible for online
annotation of a theoretically infinite stream, it is unable to exploit information



Title Suppressed Due to Excessive Length 9

...

... ... ...

...

h0 h1 hn−1 hn
LSTM

WE, bE

WC , bC

h2

P1 P2 Pn

P ′1 P ′2 P ′n

p1,1 p1,m p2,1 p2,m pn,1 pn,m

h′1 h′3 h′n LSTM
h′2

Past to Future

Future to Past

h′n+1

Fig. 5 Offline-LSTM architecture.

about the future poses to refine the prediction of the current pose. For scenar-
ios where sequences of finite lengths can be annotated offline, we propose an
augmentation of the model in which we integrate the information about the
future in the current pose classification. We employ a bidirectional LSTM as
the recurrent neural network, which adds a second LSTM cell to process the
sequence in reverse, from the future to past. This cell is responsible to encode
the information of the future poses. Formally, the output of this newly added
LSTM is the following:

h′i = LSTM(P ′i , h
′
i+1), (5)

where P ′i is the embedding of pose Pi (defined in the same way as in Equa-
tion 1) and h′i is the hidden state. This hidden state is computed starting from
the current pose Pi and the previous state (in the future) h′i+1, thus encoding
the “future history” of all the poses Pi, Pi+1, . . . , Pn. The initial state h′n+1 is
set to zero.

In order to obtain an enhanced classification of the pose Pi, we combine
the past-to-future hi and future-to-past h′i states. Consequently, we obtain a
prediction as in Equation 3 that now, however, depends on the entire sequence:

pi,j = σj(WC · [hi|h′i] + bC) j ∈ [1,m], (6)

where [hi|h′i] is the concatenation of both past-to-future hi and future-to-past
h′i states, and the rest being the same as in Equation 3. This Offline-LSTM ar-
chitecture is graphically illustrated in Figure 5. Since the Offline-LSTM model
contains a second LSTM, we halve the dimensionality of hidden states for both
LSTMs (i.e., hi, h

′
i ∈ RH/2) to have roughly the same model capacity as in the

Online-LSTM model, described in Section 3.2. The Offline-LSTM model is
optimized using the same loss function as defined in Equation 4.



10 Fabio Carrara et al.

4 Experimental Evaluation

The annotation quality of both the proposed Online-LSTM and Offline-LSTM
models is experimentally analyzed in terms of effectiveness and efficiency. The
models are also evaluated on three different application use cases: real-time
stream annotation, offline annotation of sequences, and action early-detection
and prediction. In addition, each use case is validated on three different subsets
of the HDM05 dataset [31]. The motivation for using this dataset is that
it provides overlapping ground truth, which is suitable for the evaluation of
multi-label annotation task, and recognizes up to 130 classes, which is the
highest number of classes with respect to existing datasets. The best-achieved
results are compared with the state-of-the-art approaches evaluated on the
same HDM05 dataset.

4.1 Dataset

The HDM05 dataset [31] contains 324 sequences performed by 5 different sub-
jects. The total length of all sequences is about 3.5 hours, which corresponds
to 1.5 M frames with a sampling frequency of 120 Hz. The dataset provides the
following ground-truth sets that label subsequences of selected sequences by
different motion classes.

– HDM05-15: 1, 464 actions in 15 non-uniformly populated classes, such
as “rotate arms”, “kick” or “exercise”. The shortest action takes 0.34 s
(41 frames) while the longest one has 17.2 s (2, 063 frames). These actions
are annotated within 102 motion sequences (491, 847 frames in total ∼
68minutes).

– HDM05-130: 2, 345 actions in 130 classes, with the shortest and longest
action of 0.1 s and 7.5 s (13 and 900 frames), respectively. The actions
are labeled within 238 sequences (1, 125, 652 frames ∼ 156minutes). This
ground truth has the additional two following variants:
– HDM05-65: A more granular categorization that divides all the 2, 345

actions into 65 more general classes, combining primarily repetitive
movements into the same class, e.g., “clap 1 repetition” and “clap 5
repetitions”. This categorization is also proposed in [10].

– HDM05-122: The same ground-truth as the HDM05-130 without the
8 least-populated classes containing a very low number of samples
(2, 328 actions are categorized in 122 classes in total). This catego-
rization also appears in [35].

The Online-LSTM and Offline-LSTM models are evaluated on the variants
of HDM05-15, HDM05-65 and HDM05-122 ground-truth sets. For simplicity,
we call individual ground-truth variants as datasets. For each variant, available
motion sequences are split roughly into halves in order to apply the 2-fold
cross-validation procedure. The sizes of splits are specified in Table 2 for the
individual variants.



Title Suppressed Due to Excessive Length 11

Dataset Fold Sequences Frames Minutes Annotations

HDM05-15
#1 38 225, 319 31.3 min 742
#2 64 266, 528 37.0 min 722

HDM05-65/122
#1 105 486, 788 67.6 min 1,151
#2 133 638, 864 88.7 min 1,177

Table 2 Partitioning sequences of each dataset into two folds (the HDM05-65 and HDM05-
122 datasets have the same folds since they are defined over the same sequences) to contain a
similar number of annotated subsequences (the Annotations column). The column Sequences
denotes the number of sequences contained in a specific fold, while Frames and Minutes
columns state the total length of all sequences in the number of frames and minutes.

4.2 Experimental Protocol

In the first pass of the 2-fold cross-validation procedure, the first fold is used
for training and the second one for testing the annotation. Within the training
phase, the training sequences are used to train neural-network architectures
of Online-LSTM and Offline-LSTM models, based on the description in Sec-
tion 3.2 and Section 3.3. In the second pass, the training and test folds are
swapped.

4.2.1 Training Details

We train our models using the Adam optimizer [19] with a learning rate of
0.0005. We update the parameters after every sequence is fed to the network
(i.e., the batch size is 1). As regularization techniques, we apply an L2 weight
decay of 0.0001, we clip the norm of the gradients to a maximum value of 10,
and apply dropout with a keep probability of 0.5 after the embedding layer
and before the classifier. We train both models for 200 epochs, selecting as
the final model the one yielding the best micro-AP metric on the test fold.
The dimensionality of the embeddings E and of the hidden state vector H are
selected to be respectively 64 and 1, 024 for both models, as they achieve the
most reasonable trade-off between accuracy and performance when detecting
122 action classes – we empirically observed that higher dimensionalities only
provide negligible or no improvements.

4.2.2 Metrics

For each pass, efficiency is measured as the average time to annotate a single
frame based on the total annotation time and the total number of frames. The
accuracy is quantified by two standard metrics: F-measure (F1) score and
Average Precision (AP ) score. Both these scores are based on the precision
and recall metrics that are computed on the level of individual frames as:

– Precision: the ratio of correctly annotated frames and all the model-annotated
frames on test sequences;



12 Fabio Carrara et al.

– Recall : the ratio of correctly annotated frames and all the ground-truth
annotated frames on test sequences.

The values of the precision and recall are sensitive to the settings of an accep-
tance threshold on action-pose probability. Higher values increase the preci-
sion, but many annotations can be falsely rejected. On the other hand, select-
ing very low values causes that nearly all poses are labeled by all the classes.
This is the reason why we select all possible settings of thresholds to report the
trade-off between recall and precision. Considering t ∈ N different threshold
settings, the F1 and AP scores are defined as:

– F1 score: the harmonic mean between precision (Precisioni) and recall
(Recalli) with respect to the i-th threshold value (i ∈ [1, t]) computed as:
F1 = 2 · (Precisioni ·Recalli)/(Precisioni +Recalli);

– AP score: the area under the precision-recall curve computed as a weighted
mean of precisions at each unique threshold value i, where the increase in
recall from the previous threshold is used as the weight:

AP =

t∑
i=1

(Recalli −Recalli−1) · Precisioni. (7)

While the F1 score is traditionally reported for the best-performing thresh-
old with the most optimistic values of precision and recall, the AP score is
a more realistic metric expressing the annotation behavior disregarding one
fixed, possibly extrapolated, threshold.

These scores are obtained for each sequence and for each class, and they
can be averaged on either micro or macro level to obtain a unique global met-
ric. The micro-averaging method computes the metric over all model-provided
annotations with respect to the ground truth annotations globally, disregard-
ing the cardinality of classes. Micro-F1 and micro-AP metrics are computed
using the micro-averaged precision (micro-P ) and recall (micro-R) defined as:

micro-P =

∑m
j=1 TPj∑m

j=1 TPj + FPj
, micro-R =

∑m
j=1 TPj∑m

j=1 TPj + FNj
, (8)

where TPj ,FPj ,FNj are respectively the number of True Positives, False Pos-
itives, and False Negatives of class j. Consequently, the micro-averaged metric
can be strongly biased towards more frequent classes, while ignoring the less
frequent ones. In such case, the macro-averaging method is useful as it com-
putes the average from all the per-class metrics disregarding the individual
class sizes:

macro-F1 =
1

m

m∑
j=1

F1,j , macro-AP =
1

m

m∑
j=1

APj , (9)

where F1,j and APj are respectively the F1 and AP scores computed for the
j-th class. The accuracy as well as the efficiency of a given annotation model
are finally expressed as an average over both folds.



Title Suppressed Due to Excessive Length 13

4.2.3 Thresholds on Action-Pose Probability

To determine the beginnings and endings of actions, an acceptance threshold
on pose probability has to be specified. We define either a single global (GL)
action-pose threshold same for all the classes, or multiple class-based (CB)
thresholds computed for each class independently. The values of both variants
of global and class-based thresholds can be either automatically derived from
the training data only, or purposely set to best fit on the test data. These
variants are further analyzed in more detail.

4.3 Thresholds and Annotation Accuracy

To express the trade-off between precision and recall, each experiment is eval-
uated using all possible threshold values (within interval [0, 1]) on action-pose
probability. Figure 6 illustrates such trade-offs calculated for both Online-
LSTM and Offline-LSTM using the global-threshold approach on the sequences
of the HDM05-15 dataset. The computed precision-recall curves constitute an
overall annotation accuracy – the larger under-curve area, the higher annota-
tion quality. We quantify the areas by the AP score, which reaches high values
of 88.22 % and 88.88 % for the Online-LSTM and Offline-LSTM, respectively.

In contrast to the AP score, the F1 score depends on the specific thresh-
old selection. We automatically derive the suitable threshold as the value that
achieves the highest F1 score on the training sequences. We denote this fair-
fit threshold-selection scenario as FF . Alternatively, the best-fit threshold-
selection scenario is computed as the threshold achieving the highest annota-
tion accuracy on the test data and is denoted as BF . The best-fit threshold
reflects the upper bound on the annotation accuracy and is commonly used in
the state-of-the-art papers [11,30].

Table 3 presents the accuracy results of Online-LSTM for both scenarios of
the fair-fit (FF) and best-fit (BF) threshold selection. Both these scenarios are
further evaluated using global (GL) and class-based (CB) thresholds. For ex-

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Online-LSTM

Offine-LSTM

Fig. 6 Illustration of the precision-recall curves and AP scores (AP = 88.22 % for Online-
LSTM and AP = 88.88 % for Offline-LSTM) computed using the global-threshold approach
on sequences of the HDM05-15 dataset.



14 Fabio Carrara et al.

Metric Thresh. HDM05-15 HDM05-65 HDM05-122

AP - 88.22±0.02% 64.00±2.45% 47.03±2.21%

F1
FF-GL 79.17±0.04% 59.81±2.80% 47.66±1.73%
FF-CB 79.10±0.41% 61.23±1.10% 46.17±2.53%

F1
BF-GL 79.47±0.32% 60.86±2.06% 48.37±1.97%
BF-CB 80.25±0.18% 63.80±0.86% 48.89±1.25%

Table 3 Annotation accuracy of the Online-LSTM model based on the global (GL) and
class-based (CB) thresholds derived from either training (FF-), or test (BF-) data. The AP
and F1 metrics are computed on the micro-level approach.

Metric Thresh. HDM05-15 HDM05-65 HDM05-122

AP - 88.88±0.06% 70.21±0.25% 60.59±0.69%

F1
FF-GL 80.69±0.60% 64.82±0.28% 57.66±1.32%
FF-CB 80.93±0.18% 68.01±0.24% 45.61±16.57%

F1
BF-GL 81.08±0.26% 66.03±1.44% 58.83±1.02%
BF-CB 82.11±0.21% 72.21±0.95% 65.18±0.97%

Table 4 Annotation accuracy of the Offline-LSTM model based on the global (GL) and
class-based (CB) thresholds derived from either training (FF-), or test (BF-) data. The AP
and F1 metrics are computed on the micro-level approach.

ample, the FF-CB variant automatically learns the 15, 65 and 122 independent
threshold values for the HDM05-15, -65 and -122 datasets, respectively. The
difference between fair-fit and best-fit results are surprisingly low – around
1 percentage point on average across the datasets –, which demonstrates the
ability of the approach to automatically derive appropriate thresholds from
the training sequences only. The second observation is that the class-based
thresholds in the best-fit scenario (BF-CB) obviously outperform the single
global threshold (BF-GL). Unexpectedly, in the fair-fit scenario, the class-
based thresholds (FF-CB) perform worse on the HDM05-122 dataset with re-
spect to the global threshold (FF-GL). This ambiguity is caused by over-fitting
of the fair-fit thresholds since the categories are very sparse and have uneven
distribution of samples, which results in two different thresholds across the
two folds. This phenomenon is even more noticeable in the FF-CB scenario of
Offline-LSTM in Table 4, where a set of one-fold thresholds is much narrower
than the other one. Consequently, very high standard deviations in FF-CB
can be observed.

Otherwise, the trends of Offline-LSTM depicted in Table 4 are similar
to the trends of Online-LSTM. As expected, Offline-LSTM outperforms the
results of Online-LSTM on all the scenarios and datasets because it addi-
tionally leverages the time-reverse knowledge. The noticeable improvement of
16 percentage points (i.e., 33 %) is reached on the BF-CB variant applied to
the most difficult HDM05-122 dataset.



Title Suppressed Due to Excessive Length 15

1 2 4 8 15 30 60 120

0.76

0.78

0.80

0.82

m
ic

ro
-F

1

HDM05-15

1 2 4 8 15 30 60 120

FPS (logarithmic scale)

0.5

0.6

0.7

0.8
HDM05-65

Online-LSTM

Offline-LSTM

1 2 4 8 15 30 60 120

0.3

0.4

0.5

0.6

0.7
HDM05-122

Fig. 7 Annotation accuracy of both Online-LSTM and Offline-LSTM evaluated using the
FF-GL scenario on the sequences of the three datasets with a varying frame-per-second rate
(on the x-axis of a logarithmic scale).

In the following experiments, we always consider the fair, train-data-derived,
global-threshold scenario (FF-GL), due to its universality and stability in the
achieved results across the folds and datasets.

4.4 Influence of the FPS-Rate

We analyze the robustness of the annotation models with respect to the input
quality of motion data, in terms of different frame-per-second (fps) rates. We
simulate a decreasing data quality by reducing the original 120-fps rate to
the 60-, 30-, 15-, 8-, 4-, 2- and 1-fps rate. The lower-quality sequence of the
i-fps rate is obtained by considering only each (120/i)-th frame of the original
motion sequence. In this way, we modify the training and test sequences of
both folds as well as the ground truth provided for all the three datasets.

Figure 7 depicts how the annotation accuracy of both the Online-LSTM
and Offline-LSTM models changes with respect to the varying fps rate on a
logarithmic scale. We can see that even a lower fps rate (around 8) is sufficient
to achieve a very high accuracy. On the HDM05-65 and HDM05-122 datasets,
the 8-fps rate even reaches the top accuracy. This is caused by the fact that
the shorter sequences are simpler for recurrent network learning while the key
movement characteristics are still preserved at this fps rate. Also, the beginning
and ending frames of actions at lower fps rates become less ambiguous to be
recognized. In the following sections, we always evaluate the experiments on
the highest data quality, i.e., recorded with the 120 poses per second.

4.5 Use Case 1: Real-Time Stream Annotation

To simulate a stream, the sequences of each test fold (out of 2) are concatenated
into one long sequence, separately for each of the three datasets HDM05-15,
HDM05-65, and HDM05-122. The total lengths of concatenated sequences
are in order of dozens of minutes – the exact times are specified in Table 2
for individual variants. To annotate such long sequences in the stream-like
environment, we can only utilize the Online-LSTM model that continuously
processes the sequence from the past to future. In particular, Online-LSTM



16 Fabio Carrara et al.

Metric HDM05-15 HDM05-65 HDM05-122

micro-AP 86.46 ± 0.05% 38.73 ± 1.58% 26.87 ± 1.96%
macro-AP 79.49 ± 2.09% 46.78 ± 0.24% 28.75 ± 1.14%

micro-F1 77.80 ± 0.30% 42.36 ± 0.79% 33.01 ± 1.49%
macro-F1 73.13 ± 1.99% 31.92 ± 0.64% 19.73 ± 2.75%

Table 5 Annotation accuracy of Online-LSTM evaluated using the FF-GL scenario on
simulated stream data, independently produced for each of the three datasets.

processes the stream in a frame-by-frame fashion and requires only to access
the very last pose (i.e., the current frame). The most recent history is already
embedded in the hidden state. This is a great advantage against common
annotation approaches [30,11] that usually require a much longer time window
to analyze the past and current data at each time moment.

Table 5 depicts the results of stream-annotation effectiveness. For each
dataset, the average AP and F1 scores along with standard deviations over
both folds are evaluated on the micro as well as macro (i.e., class-average)
level. As expected the annotation accuracy decreases with an increasing num-
ber of classes to be recognized. In comparison with the results of AP and
F1 on the same FF-GL scenario in Table 3, the separate test sequences are
more effectively annotated than the same sequences concatenated into one
single stream. It is caused by the fact that artificially-linked stream data are
much longer than the training sequences and also contain hard cuts between
the concatenated sequences, on which the Online-LSTM model has not been
trained.

The total annotation time proportionally depends on the actual length
of the processed stream. Based on our measurements, a single pose is pro-
cessed and annotated in 0.13 ms. For example, the 120-fps-rate stream data
corresponding to the second-fold sequence of 37.0 minutes of the HDM05-15
dataset are processed in 35.3 seconds. This demonstrates that (potentially mul-
tiple) streams can clearly be annotated in real time. A more detailed evaluation
of efficiency is discussed in Section 4.8.

4.6 Use Case 2: Offline Sequence Annotation

In scenarios where motion data do not need to be processed in real time, the
Offline-LSTM model can be utilized to enhance the annotation effectiveness.
This model can be applied to the stored test sequences that are processed
from the past to future and simultaneously from the future to past. Table 6
demonstrates the results of Offline-LSTM on the FF-GL scenario and all the
three datasets. Compared to the stream-annotation use case in Table 5, all the
results are significantly better, mainly for the HDM05-65 and -122 datasets.
We mainly highlight a more than 80 % F1 accuracy on the HDM05-15 dataset.
This approach might be suitable to significantly reduce human costs for tasks
of automatic annotation of very large unannotated motion corpora, or segmen-



Title Suppressed Due to Excessive Length 17

Dataset HDM05-15 HDM05-65 HDM05-122

micro-AP 88.88±0.06% 70.21±0.25% 60.59±0.69%
macro-AP 84.39±1.68% 73.81±0.36% 63.72±2.54%

micro-F1 80.69±0.60% 64.82±0.28% 57.66±1.32%
macro-F1 75.39±1.61% 57.52±2.35% 44.12±0.18%

Table 6 Annotation accuracy of Offline-LSTM evaluated using the FF-GL scenario on the
test sequences of the three datasets.

tation of very long and continuous motion sequences to become searchable and
reusable.

4.7 Use Case 3: Early-Detection and Prediction of Actions

The majority of annotation approaches detect actions when they finish or even
with a short delay. This delay is caused, for example, by using a segmentation
policy that has to wait for the segment to be read as a whole before it can
be processed [11], or by a costly post-processing that is required to enhance
the detection of beginnings and endings of annotations [30]. Since the pro-
posed Online-LSTM model enables real-time stream annotation on the level
of individual frames, it can detect actions even before they finish, with high
confidence and only with a minimal delay.

The delay of detected actions is evaluated on the same setup as the first
use case, i.e., on the stream-based HDM05-15 dataset using the Online-LSTM
model. The delay is measured as a difference between the beginning times of
the action detected by Online-LSTM and that of the ground truth. A negative
value means that the action has been predicted before it even started, while
a positive one denotes how long it took to detect the action after its start.
An average delay is computed as the mean of all the annotation delays. Since
the average delay depends on the selection of an acceptance threshold, the
experiments are conducted for 500 threshold values evenly spaced within the
(0, 1) interval.

To fairly evaluate action-detection delays, we focus only on “correctly found
annotations” that have a high overlap with the ground-truth ones. The size
of overlap is quantified by IoU – the intersection of frames over the union
of frames, between the found and ground-truth annotations. The scatter plot
in Figure 8 shows that the found annotations that highly overlap with the
ground-truth ones have more stable delay values, whereas the delay of less
accurate annotations becomes quite spread. For this reason, we measure the
delay and accuracy only for those annotations that are closely related, i.e.,
have IoU ≥ 0.5.

Figure 9 depicts how the average delay relates to the annotation quality
expressed by the F1 score – the experiment is computed for the annotations
having IoU ≥ 0.5 for all the tested threshold values between (0, 1). As ex-
pected, higher thresholds give higher F1 scores at the expense of some delay



18 Fabio Carrara et al.

0.5 0.6 0.7 0.8 0.9 1.0

IoU

−500

−400

−300

−200

−100

0

100

200

300

D
el

ay
(f

ra
m

es
)

Delay vs IoU

0.2

0.4

0.6

0.8

Fig. 8 A scatter plot of Online-LSTM-based annotations that are correctly related to the
HDM05-15 ground truth with the corresponding IoU (intersection of frames over the union
of frames). The 500 different thresholds between (0, 1) for which the experiment is conducted
are color-coded on the right axis.

−0.5 0.0 0.5

Average Delay [s]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
1

F1 vs Average Delay

0.2

0.4

0.6

0.8

Fig. 9 Average delays and F1 scores obtained by Online-LSTM model on the HDM05-15
dataset for 500 different thresholds between (0, 1) color-coded on the right axis.

in the prediction. The highest F1 score is achieved with an average delay of
approximately 100 ms, which is slightly faster than average human reaction
time (0.25–0.35 seconds). Focusing on negative average delays, the actions can
be predicted 0.3 seconds before they happen with an F1 score of 0.5. Such
action prediction is especially useful in time-critical applications, for example,
in security or human-computer interaction, when actions are required to be
automatically detected at their early beginnings.



Title Suppressed Due to Excessive Length 19

4.8 Efficiency Evaluation

Efficiency is quantified in seconds and measured independently for the training
and annotation processes on a Linux machine with an i7-4790 3.60 GHz CPU
and one NVIDIA Tesla K40 card. We use PyTorch to implement and train our
models with GPU acceleration. The training process is quite efficient and does
not require partitioning the sequence data into segments and extracting their
features, as used in related papers [11]. The whole training takes roughly 5 and
3.5 hours to learn the Online-LSTM and Offline-LSTM model, respectively,
on the first HDM05-15 fold containing 38 sequences of the total length of
31.3 minutes.

The second HDM05-15 fold of 64 sequences (37 minutes in total) is very
efficiently annotated in 35.3 and 20.6 seconds by the Online-LSTM and Offline-
LSTM model. This means that a single pose is processed and annotated in
0.13ms by Online-LSTM and in 0.08ms by Offline-LSTM. Note that Offline-
LSTM is faster than Online-LSTM since matrix multiplications of two LSTMs
with hidden-state size of 512 (utilized by Offline-LSTM) are computationally
less expensive than a single LSTM with hidden-state size of 1, 024 (employed
by Online-LSTM).

The measured annotation times have the same trend also on the other folds
of the HDM05-65 and HDM05-122 datasets, as the performance is proportion-
ally dependent to the sequence length. This implies that annotation time is
about two orders of magnitude faster than the actual duration of a sequence,
even sampled with the 120-fps rate. With lower fps rates, the sequence is an-
notated even much faster. For example, considering the high-accurate 8-fps
rate, the 37-minute sequence is annotated in 1.5 seconds by the Offline-LSTM
model. At this reduced fps rate, as many as 1, 500 streams could be possibly
processed in real time at once.

4.9 Comparison with the State of the Art

We quantitatively compare effectiveness of our approach on the HDM05-15
dataset against two multi-label annotation approaches [11,30], and qualita-
tively to the methods [27,37,6,46,41] that closely relate to our work. However,
these approaches are evaluated on different datasets that do not provide the
multi-label (i.e., overlapping) ground-truth. Finally, a comparison of annota-
tion efficiency is provided in terms of annotation frame-per-second rate.

Effectiveness Quantitative Comparison. Evaluated on the same train/test data
and frame-level metric, our approach significantly outperforms approaches [30,
11], as demonstrated in Table 7. In particular, the retrieval-based approach
of Elias et al. [11] replicates the test sequences into multitude of short over-
lapping segments organized in a hierarchical way and matches them with the
training action samples using k-NN search. The best reported micro-F1 score
of 68.65 % is achieved. To avoid repetitive segment to action matching, each



20 Fabio Carrara et al.

Train Test Train Per-frame processing time micro-
data data time F. ext. Annot. Total F1

[min] [min] [h] [ms] [ms] [ms] [%]

Müller (online) [30] 24 60 N/A 1.88 2.29 4.17 61.00
Müller (offline) [30] 24 60 N/A 1.88 0.15 2.03 75.00

Elias (online) [11] 17 51 2.0 7.13 0.48 7.61 68.65

Online-LSTM BF-GL 17 51 5.0 - 0.13 0.13 74.95
Offline-LSTM BF-GL 17 51 3.5 - 0.08 0.08 78.78

Table 7 Comparison with state-of-the art approaches on the HDM05-15 dataset.

action class is summarized by compact templates in [30]. These templates are
matched with data segments by the online annotation algorithm with the 61 %
F1 score. This result is significantly improved to 75 % by the offline genetic
algorithm that extracts characteristic motion key-poses from the whole data
sequence.

Effectiveness Qualitative Comparison. The most relevant approaches are the
LSTM recurrent networks [27,37] that achieve superior annotation results on
datasets captured by Kinect (OAD, G3D, PKU-MMD) that are challenging
due to their low frame-rate and high tracking errors. Both approaches utilize
very deep multi-layered architecture. In [27] two modules are used that require
multi-stage training – one for classification and one for detection of beginnings
and endings. Two attention modules are used also in [37]. We rather propose a
fast and light-weight solution that models classification and annotation within
one single LSTM cell simultaneously. However, the key difference is that we
provide multi-label output, whereas in [27,37] only a single action class can
be annotated at one time. Model-based approaches [41,46,6] reach very com-
petitive results on the MSRC-12 dataset [14], however, the reported F1 scores
are measured on the benevolent action level and not on the strict frame level.

Efficiency Comparison. We compare efficiency only among the online action
detection algorithms [27,37,6,46,41,30,11] since the requirement on timeliness
is more important than in offline processing. The comparison of annotation
efficiency is shown in Table 8 in terms of the annotation frame-per-second (fps)
rate, denoting the number of frames that could be possibly annotated within 1
second in real time. We can observe that all the compared methods provide a
real-time annotation for data of fps rate of 130 or lower. Our approach demon-
strates superior performance that is one order of magnitude more efficient that
related approaches, having the ability to annotate 40 streams simultaneously
at standard 30 fps rate in real time. This is primarily due to the light-weight
architecture of the proposed solution. Table 8 also summarizes the ability of
approaches to provide early detection (i.e., annotation of actions before they
finish) and prediction (i.e., annotation of actions before they start).



Title Suppressed Due to Excessive Length 21

Approach Prediction Early detection Annot. fps rate

JCR-RNN [27] X X 1, 230
STA-LSTM [37] X X N/A

CuDi3D [6] X X 670
SSS Squared+L21 [46] N/A X 500

DBN+HMM [41] × ∼ 1 s delay N/A
Müller et al. [30] × × 240

Elias et al. [11] × × 130

Online-LSTM (this work) X X 7, 700

Table 8 Comparison with the state-of-the art real-time annotation approaches.

5 Conclusions

Inspired by the recent advances in recurrent neural networks, we successfully
apply both unidirectional and bidirectional LSTM architectures to a demand-
ing task of multi-label action detection in unsegmented skeleton sequences1.
In particular, we introduce the Online-LSTM model suitable for time-critical
action early detection in skeleton streams, and the Offline-LSTM one that
further increases the accuracy when annotating long sequences offline. Both
approaches establish a new annotation baseline in accuracy on the HDM05-65
and HDM05-122 datasets – still being the largest publicly available dataset in
the number of classes – and additionally outperform the state-of-the-art result
on the HDM05-15 dataset. The accuracy is measured not only for the best-
performing threshold selection (F1 score) as presented in the majority of re-
lated work but also by the threshold-independent average precision (AP) that
better reflects the behavior between the precision and recall over all the pos-
sible threshold settings. The ability to detect actions with a minimum or even
no delay is demonstrated only with a slight decrease in precision. Moreover,
the ability to predict actions few hundreds milliseconds before they happen is
observed for annotations having a high IoU with the ground truth. A major
improvement in efficiency is demonstrated as it takes only 0.13 ms (Online-
LSTM) and 0.08 ms (Offline-LSTM) to annotate a single frame, which is much
more than one order of magnitude faster than the state-of-the-art action de-
tection approaches.

In the future, we plan to combine both the Online-LSTM and Offline-
LSTM models together to enhance the accuracy of online stream annotation
at the cost of very short delays. Also we want to extend the idea to other related
areas, such as video processing [24,25] and motion understanding from streams
of 2D skeleton poses [1,8]. Understanding entitativity and social interactions
in groups [22] are another promising future research directions.

1 The code to reproduce the experiments is publicly available at https://github.com/

fabiocarrara/mocap

https://github.com/fabiocarrara/mocap
https://github.com/fabiocarrara/mocap


22 Fabio Carrara et al.

Acknowledgements This research was supported by Smart News, “Social sensing for
breaking news”, CUP CIPE D58C15000270008, by Automatic Data and documents Anal-
ysis to enhance human-based processes (ADA), CUP CIPE D55F17000290009, and by
ERDF “CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Ex-
cellence” (No. CZ.02.1.01/0.0/0.0/16 019/0000822). We gratefully acknowledge the support
of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.

References

1. Aberman, K., Wu, R., Lischinski, D., Chen, B., Cohen-Or, D.: Learning character-
agnostic motion for motion retargeting in 2d. ACM Trans. Graph 38(4) (2019)

2. Asadi-Aghbolaghi, M., Claps, A., Bellantonio, M., Escalante, H.J., Ponce-Lpez, V., Bar,
X., Guyon, I., Kasaei, S., Escalera, S.: A survey on deep learning based approaches for
action and gesture recognition in image sequences. In: 2017 12th IEEE International
Conference on Automatic Face Gesture Recognition (FG 2017), pp. 476–483 (2017)

3. Baltruaitis, T., Ahuja, C., Morency, L.: Multimodal machine learning: A survey and
taxonomy. IEEE Trans. on Pattern Analysis and M. Intelligence 41(2), 423–443 (2019)

4. Barbič, J., Safonova, A., Pan, J.Y., Faloutsos, C., Hodgins, J.K., Pollard, N.S.: Segment-
ing motion capture data into distinct behaviors. In: Proceedings of Graphics Interface
2004, pp. 185–194. Canadian Human-Computer Communications Society (2004)

5. Barnachon, M., Bouakaz, S., Boufama, B., Guillou, E.: Ongoing human action recogni-
tion with motion capture. Pattern Recognition 47(1), 238–247 (2014)

6. Boulahia, S.Y., Anquetil, E., Multon, F., Kulpa, R.: Cudi3d: Curvilinear displacement
based approach for online 3d action detection. Computer Vision and Image Under-
standing (2018)

7. Butepage, J., Black, M.J., Kragic, D., Kjellstrom, H.: Deep representation learning for
human motion prediction and classification. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 6158–6166 (2017)

8. Cao, Z., Simon, T., Wei, S., Sheikh, Y.: Realtime multi-person 2d pose estimation
using part affinity fields. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1302–1310 (2017)

9. Chen, C., Jafari, R., Kehtarnavaz, N.: A survey of depth and inertial sensor fusion for
human action recognition. Multimedia Tools and Applications 76(3), 4405–4425 (2017)

10. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton based
action recognition. In: 2015 IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 1110–1118 (2015)

11. Elias, P., Sedmidubsky, J., Zezula, P.: A real-time annotation of motion data streams.
In: 19th Int. Symposium on Multimedia, pp. 154–161. IEEE Computer Society (2017)

12. Evangelidis, G., Singh, G., Horaud, R.: Skeletal quads: Human action recognition using
joint quadruples. In: 22nd Int. Conference on Pattern Recognition (ICPR 2014), pp.
4513–4518 (2014)

13. Field, M., Stirling, D., Pan, Z., Ros, M., Naghdy, F.: Recognizing human motions
through mixture modeling of inertial data. Pattern Recognition 48(8), 2394–2406 (2015)

14. Fothergill, S., Mentis, H., Kohli, P., Nowozin, S.: Instructing people for training gestural
interactive systems. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’12, pp. 1737–1746. ACM, New York, NY, USA (2012)

15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8),
1735–1780 (1997)

16. Hussein, M.E., Torki, M., Gowayyed, M.a., El-Saban, M.: Human action recognition
using a temporal hierarchy of covariance descriptors on 3D joint locations. Joint Con-
ference on Artificial Intelligence (IJCAI 2013) pp. 2466–2472 (2013)

17. Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-rnn: Deep learning on spatio-
temporal graphs. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) pp. 5308–5317 (2016)

18. Kadu, H., Kuo, C.C.J.: Automatic human mocap data classification. IEEE Transactions
on Multimedia 16(8), 2191–2202 (2014)



Title Suppressed Due to Excessive Length 23

19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

20. Kratz, L., Smith, M., Lee, F.: Wiizards: 3d gesture recognition for game play input.
Proceedings of the 2007 Conference on Future Play, Future Play ’07 pp. 209–212 (2007)

21. Krüger, B., Vögele, A., Willig, T., Yao, A., Klein, R., Weber, A.: Efficient unsupervised
temporal segmentation of motion data. IEEE Transactions on Multimedia 19(4), 797–
812 (2017)

22. Lakens, D.: Movement synchrony and perceived entitativity. Journal of Experimental
Social Psychology 46(5), 701 – 708 (2010)

23. Laraba, S., Brahimi, M., Tilmanne, J., Dutoit, T.: 3d skeleton-based action recognition
by representing motion capture sequences as 2d-rgb images. Computer Animation and
Virtual Worlds 28(3-4) (2017)

24. Li, K., He, F.Z., Yu, H.P.: Robust visual tracking based on convolutional features with
illumination and occlusion handing. Journal of Computer Science and Technology 33(1),
223–236 (2018)

25. Li, K., He, F.z., Yu, H.p., Chen, X.: A correlative classifiers approach based on particle
filter and sample set for tracking occluded target. Applied Mathematics-A Journal of
Chinese Universities 32(3), 294–312 (2017)

26. Li, S., Li, K., Fu, Y.: Early recognition of 3d human actions. ACM Trans. Multimedia
Comput. Commun. Appl. 14(1s), 20:1–20:21 (2018)

27. Li, Y., Lan, C., Xing, J., Zeng, W., Yuan, C., Liu, J.: Online human action detection
using joint classification-regression recurrent neural networks. In: B. Leibe, J. Matas,
N. Sebe, M. Welling (eds.) Computer Vision – ECCV 2016, pp. 203–220. Springer In-
ternational Publishing, Cham (2016)

28. Liu, J., Wang, G., Duan, L., Hu, P., Kot, A.C.: Skeleton based human action recognition
with global context-aware attention LSTM networks. IEEE Transactions on Image
Processing 27(4), 1586–1599 (2018)

29. Ma, S., Sigal, L., Sclaroff, S.: Learning activity progression in lstms for activity detec-
tion and early detection. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1942–1950 (2016)

30. Müller, M., Baak, A., Seidel, H.P.: Efficient and Robust Annotation of Motion Capture
Data. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA
2009), pp. 17–26. ACM Press (2009)

31. Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., Weber, A.: Documen-
tation Mocap Database HDM05. Tech. Rep. CG-2007-2, Universität Bonn (2007)

32. Nunez, J.C., Cabido, R., Pantrigo, J.J., Montemayor, A.S., Velez, J.F.: Convolutional
neural networks and long short-term memory for skeleton-based human activity and
hand gesture recognition. Pattern Recognition 76, 80–94 (2018)

33. Poppe, R., Van Der Zee, S., Heylen, D.K.J., Taylor, P.J.: Amab: Automated measure-
ment and analysis of body motion. Behavior Research Methods 46(3), 625–633 (2014)

34. Raptis, M., Kirovski, D., Hoppe, H.: Real-time classification of dance gestures from
skeleton animation. In: ACM SIGGRAPH Eurographics Symposium on Computer An-
imation (SCA 2011), SCA 2011, pp. 147–156. ACM (2011)

35. Sedmidubsky, J., Elias, P., Zezula, P.: Effective and efficient similarity searching in
motion capture data. Multimedia Tools and Applications 77(10), 12,073–12,094 (2018)

36. Singh, D., Merdivan, E., Psychoula, I., Kropf, J., Hanke, S., Geist, M., Holzinger, A.:
Human activity recognition using recurrent neural networks. In: A. Holzinger, P. Kiese-
berg, A.M. Tjoa, E. Weippl (eds.) Machine Learning and Knowledge Extraction, pp.
267–274. Springer International Publishing, Cham (2017)

37. Song, S., Lan, C., Xing, J., Zeng, W., Liu, J.: Spatio-temporal attention-based lstm net-
works for 3d action recognition and detection. IEEE Transactions on Image Processing
27(7), 3459–3471 (2018)

38. Vieira, A., Lewiner, T., Schwartz, W., Campos, M.: Distance matrices as invariant
features for classifying mocap data. In: 21st Int. Conference on Pattern Recognition
(ICPR 2012), pp. 2934–2937 (2012)

39. Wang, C., Wang, Y., Yuille, A.L.: An approach to pose-based action recognition. In:
Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR ’13, pp. 915–922. IEEE Computer Society (2013)



24 Fabio Carrara et al.

40. Wang, Y., Neff, M.: Deep signatures for indexing and retrieval in large motion databases.
In: 8th ACM SIGGRAPH Conference on Motion in Games, pp. 37–45. ACM (2015)

41. Wu, D., Shao, L.: Leveraging hierarchical parametric networks for skeletal joints based
action segmentation and recognition. In: 2014 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 724–731 (2014)

42. Xia, L., Chen, C.C., Aggarwal, J.K.: View invariant human action recognition using
histograms of 3D joints. CVPR Workshops pp. 20–27 (2012)

43. Xu, Y., Shen, Z., Zhang, X., Gao, Y., Deng, S., Wang, Y., Fan, Y., Chang, E.C.: Learning
multi-level features for sensor-based human action recognition. Pervasive and Mobile
Computing 40, 324–338 (2017)

44. Yu, X., Liu, W., Xing, W.: Behavioral segmentation for human motion capture data
based on graph cut method. Journal of Visual Lang. & Computing 43, 50–59 (2017)

45. Zanfir, M., Leordeanu, M., Sminchisescu, C.: The moving pose: An efficient 3d kine-
matics descriptor for low-latency action recognition and detection. In: International
Conference on Computer Vision (ICCV 2013), pp. 2752–2759 (2013)

46. Zhao, X., Li, X., Pang, C., Sheng, Q.Z., Wang, S., Ye, M.: Structured streaming skele-
ton – a new feature for online human gesture recognition. ACM Trans. Multimedia
Comput. Commun. Appl. 11(1s), 22:1–22:18 (2014)

47. Zhu, W., Lan, C., Xing, J., Zeng, W., Li, Y., Shen, L., Xie, X.: Co-occurrence feature
learning for skeleton based action recognition using regularized deep LSTM networks.
In: 30th AAAI Conference on Artificial Intelligence, AAAI 2016, pp. 3697–3703. AAAI
Press (2016)


	Introduction
	Related Work
	Methodology
	Experimental Evaluation
	Conclusions

