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Abstract. We study the problem of finding relevant relationships among user de-
fined nodes of XML documents. We define a language that determines the nodes
as results of XPath expressions. The expressions are structured in a conjunctive
normal form and the relationships among nodes qualifying in different conjuncts
are determined as tree twigs of the searched XML documents. The query exe-
cution is supported by an auxiliary index structure called the tree signature. We
have implemented a prototype system that supports this kind of searching and we
have conducted numerous experiments on XML data collections. We have found
the query execution very efficient, thus suitable for on-line processing. We also
demonstrate the superiority of our system with respect to a previous, rather re-
stricted, approach of finding the lowest common ancestor of pairs of XML nodes.

1 Introduction

A typical characteristic of XML objects is that they combine in a single unit data val-
ues and their structure. Such encapsulation of data and structure is very convenient
for exchanging data, because the separation of schema and data instances in tradi-
tional databases might cause problems in keeping proper relationships between these
two parts.

XML is becoming the preferable format for the representation of heterogenous in-
formation in many and diverse application sectors, such as electronic data interchange,
multimedia information systems, publishing and broadcasting, public administration,
health care and medical applications, and information outside the corporate database.
This widespread use of XML has posed a significant number of technical requirements
for storage and content-based retrieval of XML data – many of them are still waiting for
effective solutions. In particular, retrieval of XML data, based on content and structure,
has been widely studied and the problem has been formalized by the definition of query
languages such as the XPath and XQuery. Consequently, most of the implementation ef-
fort have concentrated on the development of systems able to execute queries expressed
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in these languages. To tackle the problem of structural relationships, the main stream of
research on XML query processing has concentrated on developing indexing algorithms
that respect the structure. Though other alternatives exist, thestructural or containment
join algorithms, such as[ZND+01], [LM01], [SAJ+02], [CVZ+02], and [BKS02], are
most popular. They all take advantage of theinterval basedtree numbering scheme.

However, many other research issues are still open. A new significant problem is
that of searching for relationships among XML components, that is either nodes and/or
values. Indeed, there are many cases where the user may have a vague idea of the XML
structure, either because it is unknown, or because it is too complex, or because many
different, semantically close or equivalent, structure forms are used for XML coding. In
these cases, what the user may need to search for are the relationships that exist among
the specified components. For instance, in an XML encoded bibliography dataset, one
may want to search for relationships between two specific persons to discover whether
they were co-authors, editors, editor and co-author, cited in the bibliography, etc. In all
these cases, the user may obviously have problems with languages that require to spec-
ify (as precisely as possible) the search paths. Any vagueness may result in a significant
imprecision of search results and certainly in an undesirable increase of the computa-
tional costs. For example, provided that the schema is known, a very complex XQuery –
taking into account all possible combinations of person roles – or several queries should
be expressed in order to obtain the same result, with an obvious performance drawback.
In Section4.3 we give a real example on a car insurance policy application. This will
show the suitability of our approach both in terms of the expressiveness of the query
language and the performance efficiency.

In fact, there have been attempts to base search strategies on explicitly unknown
structure of data collections. Algorithms for the proximity search in graph structured
data are presented in[GS98]. The objective is torank retrieved objects in one set,
called theFind set, according to their proximity to objects in another given set, called
the Near set. Specifically, applications generate theFind andNear queries on the un-
derlying database. The database (or information retrieval) engine evaluates the queries
and passes theFind andNear object result sets to theproximity engine. The proxim-
ity engine then ranks theFind set using available distance function represented as the
length of the shortest path between a pair of objects from theFind andNear sets. In
[GS98], the formal framework is presented and several implementation strategies are
experimentally evaluated. However, the performance remains the main problem.

The Nearest Concept Queries from[SKW01] are defined for the XML data collec-
tions, and the queries use advantage of themeet operator. For two nodeso1 ando2

in given XML tree, the meet operator,meet(o1, o2), simply returns thelowest common
ancestor, l.c.a., of nodeso1 ando2. Such node is called thenearest conceptof nodes
o1 ando2 to indicate that the type, i.e. the node’s tag, of the result is not specified by
the user. Though extensions of this operator to work on a set of nodes are also speci-
fied, reported experiments only consider pairs of nodes. Further more, the response time
dramatically depends on the actual distance between the nodes.

Our approach can be seen as an extension or a generalization of[SKW01] and
[GS98], assuming the XML structured object collections. In principle, the result of
a relationship (or structure) search query can be represented as a set of twigs of the
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Fig. 1. Preorder and postorder sequences of a tree

searched data. In this way, all structural relationships, not only the l.c.a., are encapsu-
lated and made available to the user for additional elaboration or ranking. To achieve
high performance, we use thetree signatureconcept[ZAR03], which is a compressed
XML tree representation supporting efficient search and navigation operations. The sig-
natures have already been applied to the traditional XML searching with good success
– see[ZAD03] for theorderedand [ZMM04] for theunorderedinclusion of query trees
in the data trees.

In the following, we summarize the concept of tree signatures in Section2 and
define their analytic properties. In Section3, we specify the structure search queries
and elaborate on procedures for their efficient evaluation. We describe our prototype
implementation in Section4 where we also report results from experimentation. Final
discussion and our future research plans are in Section5.

2 Tree Signatures

The idea of the tree signature[ZAD03,ZAR03,ZMM04] is to maintain a space effective
representation of the XML tree structures. Formally, the XML data treeT is seen as an
ordered, rooted, labelled tree. To linearize the trees, thepreorderandpostorder ranks
from [Die82] are applied as the coding scheme. For illustration, see the preorder and
postorder sequences of a sample tree in Figure1 – the node’s position in the sequence
is its preorder/postorder rank, respectively.

The basic (short) signature of treeT with m = |T | nodes has the following format

sig(T ) = 〈t1, post(t1); t2, post(t2); . . . ; tm, post(tm)〉,

whereti represents the name of node with preorderi and postorderpost(ti). A more
rich version of the tree signature, called theextended signature, is a sequence

sig(T ) = 〈t1, post(t1), ff(t1), fa(t1); . . . ; tm, post(tm), ff(tm), fa(tm)〉,

whereff(ti) is the pointer to (preorder value of) thefirst following node, andfa(ti)
refers to thefirst ancestor, that is the parent node ofti. If there are no following nodes,
ff(ti) = m + 1. Since the roott1 has no ancestors,fa(t1) = 0. For illustration, the
extended signature of the tree from Figure1 is

〈a, 10, 11, 0; b, 5, 7, 1; c, 3, 6, 2; d, 1, 5, 3; e, 2, 6, 3; . . . ; h, 8, 11, 7; o, 6, 10, 8; p, 7, 11, 8〉
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descendantsD(ti) = {tj |i < j < ff(ti)},
with |D(ti)| = size(ti) = ff(ti)− i− 1;

following F (ti) = {tj |ff(ti) ≤ j ≤ m},
with |F (ti)| = m + 1− ff(ti);

ancestors A(ti) = {tj |j < i ∧ post(tj) > post(ti)},
with |A(ti)| = level(ti) = ff(ti)− post(ti)− 1;

preceding P (ti) = {tj |j < i ∧ post(tj) < post(ti)},
with |P (ti)| = i + post(ti)− ff(ti).

Fig. 2. Properties of the preorder and postorder ranks.

Given a nodeti with pre(ti) = i, all the other nodes can be divided into four disjoined
subsets of computable cardinalities, as illustrated in Figure2.By definition of the nodes’
ranks, thedescendantD nodes (if they exist) form a continuous preorder as well as a
postorder sequences. Further more, thefollowing F nodes end the preorder sequence
and theprecedingP nodes start the postorder sequences. So there is actually some
empty space in thepre/post plain as highlighted by the dark area in Figure2 (left). In
the preorder sequence, theancestorA nodes interleave with the preceding nodes, in the
postorder sequence, the ancestor nodes interleave with the following nodes.

As demonstrated in[ZAD03], the signatures also efficiently support execution of
tree operations such as the leaf detection, path slicing, (sub-)tree inclusion tests, and
many others. Thelowest common ancestor, l.c.a., of nodesti andtj is the node with
highest preorder of{A(ti) ∩ A(tj)}. Assumingi < j, an efficient algorithm to find
l.c.a. recursively follows thefa pointer to find the first nodetk, such thatff(tk) > j.
Without any increase of complexity, this strategy can easily be generalized to finding
the l.c.a. ofn nodes.

A sub-signature, sub sigS(T ), is a specialized (restricted) view ofT through sig-
natures, which retains the original hierarchical relationships of nodes inT , but it is
not necessarily forming a tree. Consideringsig(T ) as a sequence of individual entries
representing nodes ofT ,

sub sigS(T ) = 〈ts1 , post(ts1); ts2 , post(ts2); . . . ; tsk
, post(tsk

)〉

is a sub-sequence ofsig(T ), defined by the ordered setS = {s1, s2, . . . sk} of indexes
(preorder values) insig(T ) with 1 ≤ si ≤ m for all i.

3 Structure Search Queries

The key construct of most XML query models and languages is thetree pattern, TP .
Accordingly, research on evaluation techniques for XML queries has concentrated on
tree pattern matching defined by the pairQuery =(Q,C), whereQ = (B,E) is the
query treein which each node fromB has a name (label), not necessarily different,
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each edge fromE represents theparent-childor theancestor-descendantrelationship
between pairs of nodes fromB. TheconstraintC is a formula specifying restrictions on
the nodes and their properties, including in general their tags, attributes, and contents. In
order to improve query efficiency, this concept was recently extended in[CJL+03] into
thegeneralized tree patternquery, GTP, where edges of the query treeQ can beoptional
or mandatoryand each node carries a real number valuedscore. The tree signature
concept has already proved to be highly competitive with respect to numerous other
alternatives to accelerate execution ofTP queries both considering the query trees as
ordered[ZAD03,ZAR03] and also unordered[ZMM04].

In this paper, we consider a different concept of query. It does not explicitly declare
relationships among qualifying data tree nodes. Discovering relationships is actually
the objective of querying to find hierarchically dependent subsets forming a tree. In the
following, we first define the query model, then define its evaluation principles, and
finally specify an efficient algorithm for the query execution.

3.1 Structure search query model

We define the structure search querySS Q as a conjunctive normal form of node spec-
ification expressionsEj

i as

SS Q = (E1
1 ∨ . . . ∨ E1

n1
) ∧ . . . ∧ (Ek

1 ∨ . . . ∨ Ek
nk

),

where eachEj
i is an XPath expression determining candidate nodes to be used as a

starting point for relationships discovery. The result of such a query is the set of twigs,
of the searched data tree, where structural relationships existing among nodes qualifying
Ej

i of different conjuncts are made explicit. Individual nodes can be constrained by full
or partial name-path specifications as well as by content predicates. Observe that an
expressionsEj

i might also search for all elements having a specific content, no matter
what is the name of the element, or it might search for all elements of a certain name,
independently of their content and structural relationships in the data tree.

Provided the XML schema is known, traditional XML processing tools, e.g. XQuery,
can also determine instances of all such structural relationships. However, this would
require execution of multipleTP queries, each of which considering a specific node
relationships constrain. Our approach has a higher expressive power, because it does
not require a priori knowledge of the structure of the XML documents and, as we will
see later, offers higher processing performance.

More formally, the answer to a structure search querySS Q is a set of sub-trees (or
twigs) of the data tree, obtained as follows. LetT be the data tree andSS Q a structure
search query consisting ofk conjuncts. LetRQ be apattern ofk nodesof T such that:

– each node qualifies in a different conjunct, and
– all the nodes share a common ancestor.

Then, a qualifying twigTQ is the sub-tree ofT induced byRQ. TQ consists of all
nodes ofRQ, but can also include additional,induced, nodes, which are the ancestors
of nodes fromRQ up to their l.c.a., that is the root of the twig. SinceTQ is a sub-tree
of T , the relationships of nodes inTQ are the same as inT . In the following, we denote
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the pattern of induced nodes asIQ. For formal manipulations, we see the patternsRQ

andIQ as well as the twigTQ as sub-signatures ofsig(T ), designated, respectively, as
sub sigSR(T ) andsub sigSI (T ). For brevity, we usesub sigS(T ) whenever explicit
distinctions between the patterns and twigs are not necessary.

For illustration, consider the following query.

(//person[name=John] ∨ //person[name=Jack])
∧ (//person[name=Ted]) .

The qualifying patterns are pairs, because the query consists of two conjuncts. Fur-
thermore, one node of the pair is always a person with name Ted and the other is a
person with name John or Jack. However, the resulting twigs can be quite different
even for a specific pair of nodes. For example, Jack and Ted can appear below the el-
ement<author> , which implies that they are coauthors of the same article. But they
can have the<journal> element as their l.c.a. where several alternatives for twigs
can occur. Two persons can be authors of different journal papers, but they can also be
editors of this journal, or one of them can be the editor and the other the author.

Level constrained structure search In some cases, it might be desirable to find twigs
with the root at level of at least certain value – we assume the document’s root to be at
level 0. For example, consider the DBLP XML data set[DBLP]. It consists of just one
large XML document (file), having the<dblp> element as its root. In this case, struc-
ture search queries would typically produce a large set of results, because all possible
query patterns have at least the<dblp> element as the root. Further more, the fact that
two names with the l.c.a.<dblp> appear in the DBLP bibliography is probably of low
significance. It would be more useful to search for structural relationships excluding the
<dblp> root element, that is searching for twigs with the root element on levels greater
than 0. We denote suchlevel constrainedstructure search queries asSS Qlevmin , indi-
cating that the level of the roots of the qualifying twigs should be greater than or equal
to levmin.

3.2 Query evaluation principles

Assume a collection of XML documents and anSS Qlevmin query. Suppose each con-
junct produces a non-redundant listLi, i = 1, 2, . . . , k of preorder values of qualifying
nodes inT . The central problem of the query evaluation is to determine the query pat-
ternsRQ as the sub-signaturesub sigSR(T ) | SR = {s1, s2, . . . , sk}, which satisfies
the following properties:

1. eachsj is from exactly one listLi and no two instances are from the same list;
2. the constraints1 < s2 < . . . < sk is satisfied;
3. the l.c.a. of{s1, s2, . . . , sk} exists on level≥ levmin.

For example, if the query is(//g ) ∧ (//f) ∧ (//c) , then the qualifying pattern in
treeT from Figure1 is sub sigSR(T ) = 〈c, 3; g, 4; f, 9〉, becauseSR = {3, 6, 7}. The
l.c.a. of nodesc, g, andf is a, that is a node at level 0.
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3.3 Structure search query evaluation strategies

The query evaluation proceeds in the following four phases: 1) evaluation of the ex-
pressionsEj

i ; 2) evaluation of the conjuncts; 3) generation of the node patternsRQ

4) generation of resulting twigsTQ. This sub-section discusses efficient execution of
phases 1), 2), and 3). Section3.5 concerns the evaluation of the phase 4).

The evaluation of each expressionEj
i returns a listLEj

i of nodes qualifying for the
corresponding XPath expression. We suppose that these lists are ordered according to
the preorder ranks. The efficient evaluation of expressionsEj

i and ordering of the lists
LEj

i can be obtained by using XML path indexes and/or the XML tree signatures, as
discussed in[ADR+03,ZAD03].

The result of thej-th conjunct is the union of the listsLEj
i for all i and a specific

j. Since the listsLEj
i are ordered with respect to the preorder ranks, multiple merge of

corresponding lists ensures efficiency of this procedure. This will producek listsLi of
nodes, one for each conjunct, still ordered by the preorder ranks.

A naive way to obtain patternsRQ is to first produce the Cartesian product of thek
lists Li, and then eliminate thosek-tuples that do not satisfy the conditions defined in
Section3.2. However, the cost of such process can be very high, because the Cartesian
product can produce many tuples among which only few are finally qualifying. Such
approach also assumes completek lists to be available. In the following, we propose
a new algorithm, called thestructure join, which is able to perform this step of query
execution efficiently.

1: procedure STRUCTUREJOIN(L1, . . . , Lk, levmin)
. L1, . . . , Lk are the lists with elements sorted with respect to preorder numbering;

. levmin is the minimum level accepted for roots of qualifying twigs;
. Li(j) is the j-th element in listLi;

2: result := ®;
3: if (∃i : Li = ®) then return result;
4: else
5: ci := 1[∀i, i = 1, . . . , k]; . Cursors pointing to current tops of the lists
6: P := max{ pre(Li(ci))| i = 1, . . . , k};
7: M ∈ { j| pre(Lj(cj)) = P ∧ 1 ≤ j ≤ k};
8: aM ∈ {a| a ∈ ancestors(LM (cM )) ∧ level(a) = levmin};
9: if(aM = null) then cM := cM + 1; gotostep 6;end if
10: if (∃i : pre(Li(ci)) ≤ pre(aM )) then
11: ci := min{c| pre(Li(c)) > pre(aM )}[∀i : i = 1, . . . , k];
12: if(∃i : ci > length(Li)) then return result; else gotostep 6;
13: else
14: plM := ff(aM )− 1; . plM is the preorder of the last node of the sub-tree rooted ataM

15: SLi := {Li(c)|ci ≤ c ∧ pre(Li(c)) ≤ plM}[∀i : i = 1, . . . , k];
16: <Generate sub-signatures of lengthk with each element from a differentSLi; put them inresult >
17: ci := min{c|pre(Li(c)) > plM}[∀i : i = 1, . . . , k];
18: if (∃i : ci > length(Li)) then return result; else gotostep 6;
19: end if
20: end if
21: end procedure

Table 1. Structure Join Algorithm

TheStructureJoin algorithm specified in Table1 takes as inputk lists of qualifying
nodes, with elements sorted with respect to preorder numbering, and the level constraint
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levmin. The algorithm avoids the unnecessary generation of not valid sub-signatures by
restricting the computation of the Cartesian product to portions of the listsLi that con-
tain elements which belong to the same potentially qualifying sub-tree. Step 3 checks
for an empty list, which terminates the algorithm. Then cursorsci are set to refer the
first element of the lists in Step 5. Step 6 and 7 chooseM as the index of the list that
has the elementLM (cM ) with maximum preorder. Provided that a pattern of nodes with
structural relationships withLM (cM ) exists, the corresponding sub-signatures will have
LM (cM ) as the last node. Step 8 determines the ancestoraM of LM (cM ) which has
level levmin. The ancestor can be efficiently obtained by using the tree signature. This
ancestor is the root of the sub-tree containing all possible nodes that can be joined with
LM (cM ) (i.e. having valid structural relationships withLM (cM )). If a valid ancestor
cannot be found, i.e.level(LM (cM )) < levmin, the element is discarded by moving
the cursor forward (Step 9). Step 10 checks that the top element of all lists belongs to
the sub-tree rooted ataM , that is, checks that the preorder of the top elements is greater
than or equal topre(aM ). If the top element of at least one list is smaller thanpre(aM ),
then the cursor of that list should be moved to the first element with preorder greater
thanpre(aM ) (Step 11) and if the end of the list is reached, the algorithm ends (Step
12). If the top element of all lists is greater thanpre(aM ) then Step 14 uses the first
following pointer, contained in the signatures, to computeplM , the preorder of the last
node in the sub-tree rooted ataM . Note that at this point no list can have a top element
with preorder greater thanplM , because that list should have been selected at Steps 6
and 7. All nodes in the lists that have preorder included betweenpre(aM ) andplM are
used to generate qualifying sub-signatures, that is, the Cartesian product will be com-
puted only using the consecutive portions of the lists corresponding to elements having
preorder betweenpre(aM ) andplM . In fact, Step 15 determines the set of elements in
each list that should be used for the Cartesian product – sub-listsSLi always form a
continues sequence in corresponding listsLi. Step 16 computes the Cartesian product
by generating all possible combination of nodes belonging to the sub-tree rooted ataM

present in the lists, and arranges the obtained tuples to form valid sub-signatures. Step
17 moves the cursor to point to the new top element corresponding to the next sub-tree
in each list. If the end of at least one list is reached, the algorithm ends (Step 18).

Example: We illustrate the behavior of the algorithm with an example. Figure3
shows a data tree template (on the left) and the manipulation process of the joined lists
(on the right). Suppose a structure search query with three conjuncts, where the phases
1) and 2) have produced the ordered listsL1, L2, andL3. Sub-trees involved in the
algorithm execution are labelled from 1 to 4. The nodes of these sub-trees contained
in the lists are highlighted with rectangles also labelled as the corresponding sub-trees.
Finally, suppose to be at the beginning of a generic iteration of the algorithm with
cursors pointing to positionsc1

1, c1
2, andc1

3. Steps 6 and 7 chooseM1 such that the
preorder ofLM1(c1

M1) is the maximum (i.e. the rightmost) among the elements pointed
by the list cursors. Step 8 determinesaM1 as the highest possible ancestor of such a
node. Elements with admissible structural relationships withLM1(c1

M1) should be in
the sub-tree rooted ataM1 . Step 10 detects that there are lists where the first element
is not in the currently considered sub-tree. In fact, the first element of listL1 is from
sub-tree1. Note that in order to have valid structure relationships involving elements
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of sub-tree 1, all other lists must have elements of that sub-tree. However, the fact that
cursors of the other lists refer elements of sub-list 3 means that no elements from sub-
tree 1 were found in previous iterations. Step 11 moves cursors of the lists to point the
first element with preorder greater thanpre(aM1). Note that also elements of sub-tree
2 in list L1 are skipped at this step. Now, Step 6 and 7 chose the new rightmost element
LM2(c2

M2), which now belongs to sub-tree 4. Step 8 determinesaM2 , which now is the
root of sub-tree 4. Step 10 determines that there are lists whose first element does not
belong to sub-tree 4 (both listsL2 andL3 have the first element from sub-tree 3). As
before, Step 11 moves the cursors forward to refer elements afteraM2 . Current situation
is that now all lists have elements from sub-tree 4. Therefore the algorithm arrives at
Step 14 were the preorderplM3 of the last element of sub-tree 4 is determined and the
Cartesian product of sub-lists with elements of sub-tree 4 is performed at Step 16. Step
17 moves the cursor to the next sub-tree in the lists and goes for a new iteration.

3.4 Algorithmic complexity considerations

It is important to point out that this algorithm, in case that the width of the sub-trees is
small compared to all the elements contained in the lists, would compute the Cartesian
product of small (continues) portions of the lists. In fact, just elements belonging to the
same sub-tree are joined.

From this observation we can show that the complexity of our algorithm, in the
average case, can be considered linear in the dimension of the input. In fact, the com-
plexity of a single Cartesian product is equal to the product of the sizes of the sub-lists
SLi. This can be realistically bounded by the average size of the sub-trees. Let’s call
savg that size. Then, the complexity of the Cartesian product isO((savg)k). The num-
ber of Cartesian products computed is bounded by the number of sub-trees, since the
algorithm computes at most one Cartesian product for every sub-tree. The number of
sub-trees can be estimated asn/savg, wheren is the total number of elements in the
dataset. Therefore, the complexity of the algorithm is

O((savg)k × (n/savg)) = O((savg)k−1 × n).

In case that the average size of the sub-trees is much smaller than the size of the dataset
(savg ¿ n), which is generally true in practice, the complexity is linear with the sizen
of the input. Note also that in practice we have noticed that the sizes of the listsLi are
smaller than those of the corresponding sub-trees. Of course, in the worst case when the
levmin is set to 0 and the data set is composed of one large XML file the result is that
savg = n and the complexity isO(nk). However, this case does not occur in practice,
since all combinations of occurring elements in the XML file will always be found and
a structure search query would not make sense.

3.5 Data Twig Derivation

In order to derive a qualifying twigTQ for querySS Q in treeT , we start with the
sub-signaturesub sigSR(T ) representing the query’s qualifying pattern. Then for each
ancestor setA(tsi), i = 1, 2, . . . , k, we determine a sub-signaturesub sigSi(T ) of the
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Fig. 3. Structure Join execution example

path from the nodetsi
to the l.c.a. of all nodes inSR. In this way, we obtain setsSi,

and the qualifying twig is obtained as a tree induced from the pattern as

sig(TQ) = sub sigST (T )|ST = ∪n
i=1Si ∪ SR,

considering the setsSi as ordered – the setSR is also ordered.
ProvidedST = {s1, s2, . . . sh}, the sub-signaturesub sigST (T ) defines a tree twig

TQ with root ts1 of preorder values1 in T . Since the preorder/postorder values in sub-
signatures are those of the original tree, leaves in sub-signatures are not necessarily
leaves ofT , so they can only be recognized by checking consecutive entries of the
sub-signature. Specifically, ifpost(tsi) < post(tsi+1) then thei-th entry in the sub-
signature is a leaf of the twigTQ. Naturally, the last element,tsh

in our case, is always
a leaf. The elementts1 needs not be checked, because it is the root ofTQ.

If we continue with our previous example of the structure search query(//g )
∧ (//f) ∧ (//c) , resulting in the query pattern sub-signaturesub sigSR(T ) =
〈c, 3; g, 4; f, 9〉 |SR = {3, 6, 7}, the sub-signatures of the ancestors define the sets
S1 = {1, 2} (for the nodec) , S2 = {1, 2} (for the nodeg), andS3 = {1} (for the
nodef ). The union of the ordered sets ofSR, S1, S2, andS3 is ST = {1, 2, 3, 6, 7},
which is a sub-tree of nodesa, b, c, g, f fromT , rooted at nodea. If we change our query
set toB = {g, c}, we getsub sigSR(T ) = 〈c, 3; g, 4; 〉 |SR = {3, 6}, soS1 = {2}
andS2 = {2}, because the lowest common ancestor ofc andg is b. When we make the
ordered union of all these sets, we getST = {2, 3, 6}, which defines a sub-tree rooted
at nodeb.

4 Experimental Evaluation

In this section we validate theStructure Join algorithm from the performance point
of view. Our algorithm, as demonstrated in Table1, offers very high performance and
scales very well with the increasing size of the joined lists. The structure join algorithm
was implemented in Java, JDK 1.4.0 and the experiments run on a PC with a 1800 GHz
Intel pentium 4, 512 Mb main memory, EIDE disk, running Windows 2000 Professional
edition with NT file system (NTFS).

We have conducted most of our experiments on the XML DBLP dataset, consisting
of about 200 MB[DBLP] of data. We have verified the performance of the structure
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join algorithm in three tests. First, we have measured its performance using different
queries, which have different number of conjuncts and different sizes of the input sets
(see Section4.1). Second, we have compared the efficiency of our structural join with
themeetoperator proposed in [SKW01] (see Section4.2) . Finally, we have run exper-
iments in a real applicative scenario, with a more complex dataset containing insurance
records, as reported in Section4.3.

4.1 Performance measurements

The queries that we have used to run the first group of experiments are listed in the
first column of Table2. Each query is coded as ”QDn”, where D indicate the size of
the input set (which can be Small S, Medium M, or Large L) and n can be 2 or 3 to
indicate the number of conjuncts. For all our queries, the level constrainlevmin was set
to 1 (just below the root element that is on level 0). For each query, Table2 reports the
size of the corresponding input set, the size of the output set, the number of Cartesian
products computed (that is the number of qualifying sub-trees containing elements in
the input set), the average number of iterations executed in each Cartesian product, and
the elapsed time to complete the structure join in milliseconds.

Queries #input set #output set #CP (#ICP) Time
(ms)

QS 2 //phdthesis/title∧ 72 72 72 (1) <1
//phdthesis/author 72

QM 2 //incollection/title∧ 1410 2931 1400 (2) 30
//incollection/author 2931

QL 2 //inproceedings/title∧ 22004 53243 21977 (2) 392
//inproceedings/author 53243

QS 3 QS 2∧ 72-72 72 72 (1) <1
//phdthesis/year 72

QM 3 QM 2∧ 1410-2931 2931 1400 (2) 37
//incollection/year 1410

QL 3 QL 2∧ 22004-53243 53243 21977 (2) 512
//inproceedings/year 22004

Table 2. Performance of Structure Join algorithm. In the last but one column#CP indicate the
number of Cartesian products and#ICP the average number of iterations for each Cartesian
product.

The reported processing time is obtained as the average over one hundred indepen-
dent executions of the algorithm. It only includes the processing time required for the
structure join algorithm and it does not include the time needed to obtain the input sets.
The experiments demonstrate the linear trend with respect to the cardinality of largest
input set, confirming our expectation of linear complexity.

As explained previously, a trivial technique to execute the structure search is to
compute a Cartesian product of the input sets and to eliminate the non qualifying tu-
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ples. The complexity of such a strategy would have been polynomial. In particular the
number of iterations required would have been equal to the product of the cardinalities
of the input sets. Our algorithm, on the other hand, computes several Cartesian products
and the number of iterations in each product is small. Therefore, the overall cost of our
algorithm is linear.

Note that the number of computed Cartesian products increases linearly with sizes
of the input sets (given that the number of qualifying sub-trees increases linearly with
the sizes of the input sets). On the other hand, the number of iterations computed in
each Cartesian product is independent of the sizes of the input sets, it is very small in
practical cases (and it can be considered constant). This is explicated considering the
actual number of Cartesian products computed, the average number of iterations in each
product, and the elapsed time reported in Table2.

For example, the trivial Cartesian product technique would have required 72*72*72
iterations to process query QS3, while our technique needs only 72*1 iterations. The
trivial Cartesian product technique would have required 22004*53243*22004 iterations
to process query QL3, while our technique requires just 21977*2 iterations. Note that
the number of computed Cartesian products (21977) is smaller than the size of the
smaller input set (22004). This is due to the fact that sometimes elements were dis-
carded, because no elements from the same sub-trees were found in the other input sets
(inproceedings with title and without authors or years).

4.2 Comparison with other techniques

To compare our algorithm with the meet operator, we have repeated the experiments
from [SKW01]. Specifically, we have searched DBLP for the string ”ICDE” and for the
year records, incrementally including years from 1999 to 1984. We have performed the
structure join on this two sets and we have computed the elapsed time of our algorithm.
Figure4 compares the elapsed time of the original meet operator and our algorithm
varying the size of the input set (obtained in correspondence of the number of years
included in one input set). The graph on the left side shows the performance of our
algorithm, while the graph on the right shows the performance of the meet operator.
Our technique is about two orders of magnitude faster than the meet operator – the time
scale of the graph on the left is 100 times smaller than that of the graph on the right. For
instance, with the maximum input set sizes, our technique is 96 times more efficient
than the meet operator technique. Specifically our algorithm processes the query in
about 30 ms, while the meet operator needs about 3 seconds.

4.3 On-the-field experiment

In addition to the previous performance tests, we have also conducted experiments with
a dataset related to a more realistic and complex scenario. Figure5 sketches the XML
structure of information used by a car insurance company to keep track of the customers
and their record of accidents, that is an information about the type of accident, its status,
those involved in the accident as witnesses, those injured, etc. In order to detect possible
frauds, the insurance company may be interested to discover all relationships between
two (or more) of their customers. Examples of requests are as follows: have they been
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Fig. 4. Comparison between our structJoin algorithm and the meet operator

involved in many accident, possibly with different roles (i.e. causing the accident, wit-
ness, injured person, etc.)? Who were those involved as witness or as injured persons
or as the insurance owners?

The size of this dataset is 45 Mb and it contains 10000 insurance policies. In the
experiment, we have searched for co-occurrences of four specific persons, identified by
their names, using as level thresholds (levmin) 0, 1 and 2, corresponding, respectively,
to elements<Insurance Policy> , <Risk> , and<Accident> . In the first case
we implicitly searched for co-occurrences of the four persons either as an owner, wit-
ness, or subject involved in accidents of the same insurance policy. In the second case
we implicitly searched for co-occurrences as a witness or subject involved in accidents
of the same policy. In the last case, we searched for co-occurrences in the same accident.
The number of twigs that we have found, which is satisfy the search criteria, are 6 for
the level 0, 2 for the level 1, and 1 for the level 2. It is interesting to notice that we have
discovered that the specified persons were somehow involved together in 6 different
insurance policies and the related accidents with different roles. This could suggest that
further investigation should be performed by the insurance company on these subjects.
The time required for processing such queries was, respectively, 7, 5, and 4 millisec-
onds, confirming the high performance of the technique in real application scenarios.

5 Conclusions

Contemporary XML search engines reason about the meaning of documents by consid-
ering the structure of documents and content-based predicates, such as the set of words
that are contained within them. However, the structure of the documents is not always
known, so it can become the subject of searching.

In this paper, we have introduced a new type of queries, called the structure search,
that lets users to query XML databases with value predicates and node names, but with-
out specification of their actual relationships. The retrieved entities are sub-trees of the
searched trees (twigs), which obviate the structural relationships among determined tree
nodes, if they exist. The twigs can also contain additional tree nodes, not explicitly re-
quired by the query, so the transitive relationships are also discovered. Our prototype
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implementation demonstrates that the proposed algorithms yield useful results on real
world data and scale well, enabling interactive querying. In this way, our approach can
be seen as a considerable extensions of previous approaches to proximity searching in
structured data. With the help of tree signatures, it also has a very efficient implemen-
tation as needed for processing of large XML data collections available on the web.
Results are confirmed by systematic experiments on the DBLP dataset. A possible ap-
plication is outlined by the structure search on insurance records including performance
evaluation.

Our future plans concern introducing even more flexibility or vagueness to the
specification of expressions determining nodes. For example by considering alterna-
tive names, such as Author or Writer, which can be automatically chosen from proper
dictionaries or lexicons. We are also working on developing ofrankingmechanisms that
would order or group the retrieved twigs according to their relevance with respect to the
query. In this place, the analytic properties of tree signatures will play an indispensable
role.
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