ISO/IEC JTC1/SC21 Meeting - Florence, November 6th, 1989

An aerial view on LOTOS
(IS 8807)

Tommaso Bolognesi

UNI/UNIPREA
C.N.R./CNUCE - Pisa

Contents

1. Four general questions on LOTOS 4
2. The "mental laéﬁdscape" of the LOTOS user 13
3. The two comp%é)nents of the language 3
4. Defining abstr%tct data types and expressing data values 3
5. Defining processes and expressing their behaviours 2
6. An example: specification of a switching node 5
7. Existing LOTOS specifications and tools ‘4

34

Warning:

the "I" symbol that appears-in some of the sheets is a
place-holder for fragments of LOTOS text to be inserted by the
uninitiated reader, as an exercise, and by the speaker at
presentation time. *

1. Four general questions on LOTOS

s R T TN SR N NIV LY O

Where does it stand as a specification language

1.1

for concurrent / distributed systems ?

e Languages based on the model of

- communicating, extended Finite State Machines (FSM)

SDL (CCITT)
Estelle (ISO)

. Petri nets

® ® ® @

condition / event
place/transition
with predicates
timed

e Process algebras

CCS (Milner)
CSP (Hoare)
LOTOS (ISQ)
Language Of
Temporal Ordering Specification

e Logics

Modal
Temporal (linear-time, branching-time)

1.2

Why "algebraic" ?

LOTOS offers special algebraic operators
for building algebraic expressions
that describe:

the behaviour of processes

Examples:

3 explession

4

Sequentiality P @

& “ (process) operator
Parallel | lo}
composition J«L 1 &y P(Iyl

B s
Disabling P v PP Q

the data values / structures handled by the processes

Example: A Transport Service primitive

G_ConReq. (01, 2, p3, p4, p5)

(dafon) o?ercﬂér

%XF(QSSI' onh

1.8

Should one forget about FSM's ? (no)

Example: design of a buffer of capacity 2 — &'—‘
e as a FSM:

in in

out out

¢ in LOTOS:

Buff-2[inp, out](0)

where |
process Buff-2[inp, out](s : state) : noexit :=

[s=0] --> in; Buff-2[inp, out](1)

1 [s=1]--> (in; Buff-2[inp, out](2)
[1 out; Buff-2[inp, out](0) -

)
1 [s=2]--> out; Buff-2[inp, out](1)

endproc

1.4

- Which advantages |
in using algebraic expressions ?

Modularity: |
1 FSM + 1FSM = 2 FSMs
IPetriNet + 1PetriNet = 2 PetriNets

1 expressions + 1 expression

1 expression

Expressions can be composed, by operators such as >>, lll, [>
thus obtaining more complex expressions

?

Example: design of a buffer of capacity 4

- asaFSM (re-designed from scratch)

out out out out

e as a LOTOS expression (using process Buff-2)

<

L

Buff-2[inp, mid] I[mid]l Buff-2[mid, out]

2. The "mental landscape" of the LOTOS user

...OT:
« what is inside the specifier's mind when he starts writing ?
* what is the LOTOS-oriented view of a system ?

e what can be easily and directly expressed in LOTOS ?

I want to design a
photo-acoustic psycho-tester

ftwo
alternative
mental

struclured
boxes

3rap‘\5

adequate MODERT LOTOS '" Z
manual DESIGN IS
for the Stples 8807 |
design |

!

2.2

The behaviour of box/process P~
manifests itself at gate a, by ‘a-events’

process P[a] := <behaviour expression> endproc

Fo

o event ‘a’ occurs once ;

a; stop

Example

One can successfully push Camera P can flash once
pedal 'a’' of piano P. light 'a'.

(experiment, interaction) (observation)

2.3

Further possible behaviours for P[a].

event ‘a’ twice

a; a; stop

event ‘a’, infinite times

event ‘a’, n times

Pla](n)
where
process P[a](k ¢ nat)
[k ne 0] --> a; P[a](k-1)

endproc

The behaviour of box/process P

manifests itself at gates a and b

process P[a, b] := <beh. expr.> endproc

first event a, then event b

a; stop [] b; stop

SR T

a and b, in either order

a; stop lll b; stop

s

\U (...graphs...)
Endless iteration of

a, b, ¢, in any order, followed by d

process Pla, b, c, d] : noexit :=

(a; exit lll b; exit lll ¢; exit) >>
d; |
Pla, b, c, d]

2.6

(...structured boxes...)

either behaviour P1

b ® o c ata and b
: or behaviour P2
at c and d
o 1 PL Hed |

Pl[a, b] [] P2[c, d]

|

§

!

i/) |
Y

| behaviour P1

I ' at a and b
then behaviour P2
at c and d

(C b ? ¢ behaviour P1
[
. l .
Ao can be interrupted
> P1 2409, d at any time by
behaviour P2

A S A A A NS
’M[a, b] [> P2[c, d]

2.7

behaviour P1 at a, b,

| and
. &4 P2 o behaviour P2 at c, d

take place
independently of each other

behaviour Pl at a, b,
' and

oL P4 P2 C behaviour P2 at b, ¢

take place

independently of each other

> ..
| behaviour P1 at a, b,
b 7 and
/\\

behaviour P2 at b, c

take place
a o P P2 c independently of each other
except that they
synchronize at gate b

3

/(o As above,
| - Jurthermore gate ‘b’ is
> o e P1eqPLHec hidden, that is,

not available for synchron.
with external behaviours

hide b in
Pl[a, b] Ib]l P2[b, c]

The behaviour of P at a, b, ¢, d,
is determined and constrained by the behaviours of

Pl ata, b,
P2 at b, c,
P3 at c, d,
P4 atd, a,
P5 at a, b, c, d.

(\
(P4[d, a] I[a]l Pl[a, b])
I[d, b]l
(P3[d, c] I[a]l P2[c, b])
) |

I[a, b, c, d]l
P5[a, b, c, d]

2.9

[~ % ?x tnat .
? P accepts (inputs) at gate 'a’
any natural number x

e _ once a 7x:nat; stop
e twice 5 ...
e infinite times &

é e - ntimes s ...

first a accepts any natural x,
then b offers that x,
and this happens all the time.

Note: this is a buffer of capacity 1.

process Buff-1[a, b] : noexit :=
a 7x : nat; b Ix; Buff-1[a, b]

endproc

2.10

b Pl may exchange data at a and b;
o o __: P2 may exchange data at b and c;
PI and P2 act independently,

but must synchronize at b,

which is hidden to anybody else.

hidebin PlJ[a, b] I[b]l’ P2[b, c]

Note: we may build a Buff-2 out of two instances of Buff-1,
as an alternative to the state-oriented Buff-2 of p. 1.3
(here we also specify data):

process Buff-2[inp, out] : noexit :=

hide mid in
Buff-1[inp, mid] I[mid]l Buff-1[mid, out]

endproc

woid (0 oul (0)
fvaid, (12:—\\ ot (1)
, .) . % —“\1

wid) 0] g 1

L : \

2.11

A complex data d is accepted at a.
Then, depending on its qualities
either P takes place,
which processes a part of d,
or Q takes place,
which handles another part of d.

7.7

24 . comp\ea@a‘ajl

?

i 1sGood (d) ! if lsMice (&)
then ; en
e 1 <
: er- — C
b e\ Rtope) | 1 G

a 7d : complex-data;

[ISGood(d)] ---> P[b] (PartOf(d))
[1 [IsNice(d)] ---> Q[c] (OtherPartOf(d))

mmP)ex~o(a11

{&qood

|2 Nice 3] m-o‘e.[»\:heo{
nto}

Ot R tOf

212

(...managers of password-sets...)

P mahtains a deposit of passwords,

by inserting or deleting elements as requested at c;
furthermore, it accepts pairs message-password at a:
the message is offered at b only if its password is legal
("adjustable filter"). -

é:%, ©

S Msg

/a b

nsq I - P

PS\X/

process Pla, b, c] (s : password-set) : noexit

¢ IINSERTION ?psw : password;
P[a, b, c] (insert(psw, s))

[c¢!REMOVAL ?psw : password;
Pla, b, c] (remove(psw, s))

[l a?msg:message 7psw:password;
([psw IsIn s]--> b !msg;
Pla, b, c] (s)
[1 [psw Notln s]--> PJ[a, b, c] (s)
)

eno\proc

2.13

In conclusion, what is the LOTOS-oriented
view of a system ?

L

L F

{

A system is a process, able to interact (= synchronize +
exchange data) with its environment via gates.

!

e

A process can be structured as a collection of processes
which are combined in various ways

(in particular, they are composed in parallel for interacting
with one-another) |

9 <3,TRVE >

The behaviour of a process can be seen as an 'action tree', ;*
possibly of infinite depth and branching, whose arcs are :
labelled by observable (inter-)actions:

<gate-name> <list-of-data-values>
(example: g <3, TRUE>)

or by the unobservable action 'i' (not discussed).

3. The two components of the language

3.1

A LOTOS specification has two components

Definitions of Definitions of
Abstract Data Types (ADTs) processes / behaviours

%/

7N
Abstract data types(ADT) Processes
value expression: behaviour expression:
express WHICH values express WHEN/WHERE
are handled / exchanged does the interaction occur
by processes
push((x + 1), stack) either explicitly

a, b; stop

or implicitly

Plab] /|| Qla.b]

3.2

Syntactic interplay of the two components

(specification)__ spec-identifier formal-parameter-list

_C
data-type-definition _j
behaviour)

)

behaviour-expression

where

' /

data-type-definition

/- A

(process-definition) N

@
E.
3
&
\.
.

process)___ proc-identifier formal-parameter-list __(:

7N

)

behaviour-expression

where data-type-definition

/- A

(process-definition] ~N

endproc) J

HISUN

1)

2)

3)

4)

Value expressions may appear within behaviour expressions . . .

3.3

in four different places, for expressing:

values offered at a gate
(<value expr. 1>);

values offered at the special 'successful termination' gate
~ (<value expr. 2>);

conditions for a behaviour to take place
(<bool. value expr. 3>);

actual values for instantiating a parametric process

(<value expr. 4>).

<behaviour expression>

-

.

g ! <value expr. 1>; exit (<value expr. 2>)

[]

[<bool. value expr. 3>] --> P[g] (<value expr. 4>)

J

behaviour expressions are built up with

LOTOS predefined operators (e.g.: '[19;

value expressions are built up with

user-defined operators, and
LOTOS predefined operators.

4. Defining abstract data types
and expressing data values

41

* Data type definitions provide the syntax
and the semantics of the value expressions
to be used within behaviour expressions.

¢ Usér—defined data types
appear within an actual LOTOS spec.;

« Standard data types
appear in the standard library of data types, in
IS8807, and can be referenced by an actual

LOTOS spec.

4.2

Example of data type definition

type VeryBaSicNaturalenber is

sorts Nat \
L the signature
opns O : -——> Nat \ defines the
Succ : Nat --> Nat syntax
+_ Nat, Nat —> Nat of velue expressions
- = /
eqns forall m, n: Nat \ :
the equations
ofsort Nat X dofine the
m+ 0 =m semantics
of value expressions

m + Succ(n) = Succ(m) +n
endtype

Graphic representation of the signature:

‘Some correct value expressions of sort 'Nat': 0
Succ(0)
0 + Succ(0)

‘Two value expressions of sort 'Nat' with the same semantics
(one can be transformed into the other by applying both
equations once, as rewrite rules)

0+ Succ(0) = Succ(0)

4.3

Another example of data type definition
(for the 'adjustable filter' of p. 2.12)

type complex-item is

sorts
complex-item, password, message

opns
(* constructor : ¥*)
X-item: password, message --> complex-item

o1 %)
psw: complex-item --> password

(* selector *)
msg: complex-item ——> message

eqns A
forall p: password, m: message

of sort password
psw(x-item(p, m)) = p

of sort message
msg(x-item(p, m)) = m

endtype

5. Defining processes
and expressing their behaviours

5.1

A process definition defines the temporal
ordering of the interactions in which the
process can engage at its gates.

All processes are defined by the specifier
(no standard library).

Syntax of a process definition:

process <name> [<gate-list>]
(<parameters>) : <functionality> :=

<behaviour-expression>
- where

<process-definition>'s and/or
<data-type-definition>'s

endproc

5.2

Fundamental behaviour expressions

name

syntax

1naction

action prefix,
possibly with
selection predicate
guard

choice

successful termination
possibly with value passing

enabling

stop

gx:s !E [El =E2];B
[E1 =E2] ---> B
B1 [] B2

exit (sy7, ..., sy)

possibly with value passing Bl >>
accept x1:87...,X;:8, in B2

disabling Bl [> B2
parallel composition B1 I[gq, ..., gnll B2

e full synchron. B11I B2

- * pure interleaving B1 I B2

process instantiation P [g1, - gnl Eq, ..., Ep)
“euos'mg hide 8199 = in B

. B, B1, B2 stand for behaviour expressions |

o g g; are gate names

. E, Ej are value expressions

° S, 8 are sorts ("types of value")

o P is a process name

6. An example:
specification of a switching node

Simplified version of
J. Quemada, A. Azcorra
"A Constraint Oriented Specification of Al's Node", in:

The Formal Description Technique LOTOS
P.H.J Van Eijk, C.A. Vissers, M. Diaz (editors)
North-Holland 19809.

6.1

Informal description

" mserl new /6%
| inserl new rogle.

6.2

Conrol
R

Dodor(n o DalolOut

Gates and alphabet of observable actions (formal)

Dataln ? :Portld ?_:DataMsg
(* at Dataln, at some Portld, some DataMsg is offered *)

DataOut ? _:Portld ?_:DataMsg

(* at DataOut, ar some port, some data is offered *)

Control ?_:PortMsg
(* at Control, some PortMsg is offered *)

- Control ?_:RouteMsg
(* at Control, some RouteMsg is offered *)

6.3

> P A EBaE &

1. 5.
6 7.
Data structures (informal)
A aPortldisa Nat
2. aRouteldisa Nat
3. aDataMsg is DataMsg(Routeld, Data)
4. aDataisan OctetString
5 a PortMsg is P OI‘ZMsg(POI'tId)» (* an envelope ...*)
6. aPortSetisa Set of Portld's
Z. a RouteMsg is RouteMsg(Routeld, PortSet)
a RouteSet is a Set of RouteMsg's
Furthermore

| PortNum(PortMsg) gives the Portld of that PortMsg

(* opens the envelope *)

Consistent(Portld, DataMsg, RouteSet) is TRUE iff

if p is the Portld,
DataMsg(r-id, ...) is the DataMsg,

then some RouteMsg(r-id, {...,p,...})
is in the RouteSet.

64
Conlvol

/ A
Ade rle ActiveRovles
(ps: TorlSet) (ns : RouleSet) [
Dafalin N N o Dokt

\ Hsaﬁav\sit‘

Top level behaviour expression
MsgTransit [Dataln, DataOut]
[[Dataln, DataOut]|

(ActivePorts [Control, Dataln, DataOut]({} of PortSet)
[[DataOut]!

ActiveRoutes [Control, DataOut]({} of RouteSet)
)

Process MsgTransit
Repeatedly inputs at DataIn at some Portld, some
DataMsg, then outputs at DataOut, at some PortId that
DataMsg, or loses it; unlimited buffering capacity.

Process ActivePorts
Inp. at Control a PortMsg & updates set of active ports,
or inp. at Dataln, at some active port, some DataMsg,
or outp. at DataOut at some active port, some DataMsg.

Process ActiveRoutes
Inp. at Control a RouteMsg & updates set of active routes,
or outputs at DataOut some DataMsg, at some port
consistent with the route indicated in such DataMsg.

6.5
process MsgTransit [Dataln, DataOut] : noexit :=

OneMsg[Dataln, DataQut] ||| MsgTransit[Dataln, DataQut]
where
process OneMsg[Dataln, DataOut] : noexit :=
Dataln ?port : Portld ?msg : DataMsg;

(DataOut ?port : Portld !msg; stop
[i; (* message loss *); stop
|)
endproc
endproc

Process ActivePorts [Control, Dataln, DataOut]
(ps : PortSet) : noexit t=

Control newport : PortMsg;
ActivePorts [Control, Dataln, DataOut]
(Insert(PortNum(newport), ps))

[l Dataln ?port : Portld ?msg : DataMsg [port IsIn ps]
ActivePorts [Control, Dataln, DataOut] (ps)

[1 DataOut ?port : Portld ?msg : DataMsg [port IsIn ps]
ActivePorts [Control, DataIn, DataOut](ps)

endproc

Process ActiveRoutes [Control, DataOut]
(rs : RouteSet) : noexit

Control ? newroute : RouteMsg;
ActiveRoutes [Control, DataOut](Insert(newroute, rs))

DataOut ?port : Portld ?msg : DataMsg

[consistent (port, msg, rs)];
ActiveRoutes [Control, DataOut](Insert(newroute, rs))

endproc

7. Existing LOTOS specifications and tools

7.1

LOTOS specifications have been produced of:

Proway Highway interface (1gee slandard)
IEEE LAN Service

HDLC ;

'ISO connectionless internetting protocol
ISO Network Service

ISO Transport Protocol

ISO Transport Service

ISO Session Protocol

ISO Session Service

ISO Presentation Protocol

ISO Transaction Processing Service

Flow Control by Latency Protocol

parts of ISO FTAM, MTS of X400
Computer Integrated Manufacturing architectures/r:ompouenfé

(worl(.&féﬁoh conlrolle r-)

@ [] ® [] e e ® [] ® ® & e e e

... and several more

7.2

LOTOS TOOLS%P:oduced by the ESPRIT/SEDOS Project

b

an integrated set of prototype tools,
written in C, on UNIX BDS 4.2:

@

editor (not structured)

front end: |
checking syntax + static semantic, handling ADT library,
generating Abstract Syntax Trees (input form for other tools).

simulator- (HIPPO)

simbolic execution of full LOTOS specifications;

generation of term rewrite system (TRS) from ADT spec., eval. of
terms;

building/navigation of communication tree; state information display,
etc.

compiler (LIW, LOTOS implementation Workbench)
translation from high level to machine-oriented spec.;

compilation of ADT specs. into TRS's, for computation of normal
forms; ;

translation of processes into C coroutines; implementation of multiwa
synchronization. |
(early stage)

pretty-printer

cross-reference generaor

further prototypes written in logic/functional languages for

verification of behavioural equivalences for basic
LOTOS (Squiggles, Tilt), and of ADT properties
(Perlon) and testing functions (Cantest).

i

7.3

Tools at varjovs Universities.

LIE (Lotos Integrated Editor) structure-editor

. for creating / debugging standard full LOTOS specs.: syntax +
static sem. check

e handles ADT libraries

. data type / process browser

. pretty printing

J based on Cornell Synthesizer Generator (CSG).

structure-editor and transformation tool
. similar to previous tool, but for basic LOTOS

. includes transformation function, based on the laws for

bisimulation congruence (IS8807, Annex B)
° based on Cormnell Synthesizer Generator (CSG).

LOLA (LOtos LAboratory)
for interactive / batch LOTOS to LOTOS transformations;
written in Pascal

TOY
Compiler: from LOTOS to C coroutines.

mterpretérs / simulators
Graphical LOTOS editors

.*J
I

Other experimental tools

LOTTE45 -

a working environment for existing / original LOTOS tools. Written in Pascal.

SPIDER
Graphical simulator, textual/graph1ca1 LOTOS interface

LOTOS envn‘onment ‘ o
Simulation / transfonnatlon for a subset of LOTOS Wntten in LISP

SDS - Symbolic Debugging System — -
Testing / debugging implementations derived from LOTOS.

Graphical LOTOS editor
Based on tool generator LOGGIE.

