
Composing Event Constraints

in State-Based Specification

Tommaso Bolognesi

CNR - ISTI
t.bolognesi@isti.cnr.it

http://fmt.isti.cnr.it/

Abstract. Event-based process algebraic specification languages sup-
port an elegant specification technique by which system behaviours are
described as compositions of constraints on event occurrences and event
parameters. This paper investigates the possibility to export this specifi-
cation paradigm to a state-based formalism, and discusses some deriving
advantages in terms of verification.

1 Introduction

Process-algebraic specification languages have received much attention in the
eighties and nineties, with emphasis, in the first decade, on theoretical founda-
tions and semantics, and with various experiments and projects, in the second
decade, for their application to the development of large-scale software systems.

Many people involved in software production, and several researchers from
academia as well, agree today in observing that most of the early, ambitious
goals of process algebra have not been met. The diffusion of process-algebraic
languages within software companies, as a routine tool for design and verification
activities, is quite limited.

Process-algebras and related methods represent just a portion of the articu-
lated area of Formal Methods (FM). It is fair to admit that, so far, FM’s in gen-
eral have gained only limited acceptance in industry. Typically, they are applied
in the development of safety-critical (sub-)systems, for which formal verification
becomes crucial; but their popularity does not compare with that reached by
more ’practical’ approaches such as the object-oriented UML.

The reasons for these difficulties have been already discussed quite extensively
in the past; we only mention, below, those that have more directly motivated
the work presented in this paper.

– The offer of FM’s appears still too wide and fragmented. The WWW Virtual
Library on Formal Methods, as of today, provides a list of 92 individual no-
tations and associated tools (http://vl.fmnet.info/#notations). While some
techniques are fairly stable, others keep evolving, and new ones appear, al-
though less frequently than in the past; making choices in such a wide and
dynamic set is hard, also considering the high training costs associated with
the adoption of a FM.

D. de Frutos-Escrig and M. Núñez (Eds.): FORTE 2004, LNCS 3235, pp. 13–32, 2004.
c© IFIP International Federation for Information Processing 2004

14 Tommaso Bolognesi

– ’Political’ concerns and parochial attitudes have often obstructed the recog-
nition of similarities among formal languages and the convergence towards
fewer stable proposals. FM’s would greatly benefit from some unification ef-
fort, as it happened with the definition of the Unified Modelling Language.
Some steps in this direction have been already taken, as indicated, for exam-
ple, by the recently established Integrated Formal Methods (IFM) series of
international conferences, by the work on the Unified Theories of Program-
ming [1], and by proposals such as Circus [2], but much remains to be done,
also in the sense discussed in the next bullet.

– Perhaps more specifically in the area of process algebraic FM’s, there has
often been a mismatch between the offers from FM developers, and the real
needs of perspective FM users, with the former emphasizing on the meta-
level of formal semantic definition, on axiomatisations, on countless semantic
relations, and the latter emphasizing on ease of use, expressive flexibility,
pragmatic guidelines, tool support. The well known work on Design Patterns
is an important factor for the wide acceptance of Object Oriented technology
(note that patterns are language-independent!): this is, again, a lesson from
O-O technology that the FM community might want to take into serious
consideration.

Formal approaches to the behavioural specification are often partitioned into
state-based (e.g. Abstract State Machines [3, 4], B [5], TLA [6, 7], or Z [8]), usu-
ally rooted in logics, and event-based (e.g. CSP [9], CCS [10], or LOTOS [11, 12]),
with algebraic roots. Today, software engineers seem to look more favourably at
state-based FM’s: they better relate with other traditional and well understood
engineering methods, they have proven to be quite effective in hardware de-
sign, and they lend themselves to increasingly effective analytical techniques.
And yet, event-oriented thinking keeps playing an important role, at least in the
early phases of system development; for example, use case diagrams, scenarios,
message sequence charts are widely used in requirements analysis.

This paper is an attempt to promote some cross-fertilisation and convergence
in the area of FM and, in particular, between the event-based and state-based
specification paradigms: in line with the remarks above, we wish to address as-
pects of language pragmatics, namely specification style, structuring principles,
and tool-supported verification, rather than semantic foundations.

Fifteen years have passed since the publication of the LOTOS specification
of Al’s Node by Quemada and Azcorra, [13] which has represented a tiny but
very effective example of the so called ’Constraint-Oriented’ specification style.
We believe that, while several results of theoretical interest from process algebra
have failed to scale up to realistic-size system development, some expressive tools
from this area of FM’s have shown to be very effective. We wish to list three of
them, in order of increasingly complexity:

– The basic notion of ’event’. This is an abstraction that process-oriented
specification languages regard as equally important as the notion of ’state
variable’, but conveniently distinguished from it.

Composing Event Constraints in State-Based Specification 15

– Parallel composition operators. These are the most typical among the ad-
hoc, high level behavioural operators of process algebras. In particular, se-
lective synchrony (i.e., the general LOTOS parallel operator ’|[S]|’, where S
is a list of synchronization gates), fundamentally based on the gate/event
concept, is crucial for compactly specifying interaction patterns simultane-
ously involving interleaving and synchronized events from different system
components.

– The constraint-oriented specification style mentioned above. This way of
structuring specifications is in turn based on the use of the selective syn-
chrony parallel operator.

In this paper we investigate the extent to which the three expressive tools
above, typical of process-algebraic specification, can be imported into state-based
specification. For fixing ideas, we select one representative language from each
paradigm: we choose LOTOS and TLA+. For space reasons, we have to assume
some familiarity with both of them, but the uninitiated reader should still be
able to follow our discussion on specification structuring principles, without being
distracted by the details of the two concrete languages.

The key question addressed by the paper can be summarized as follows.

– Assume you want to adopt a state-based formalism such as TLA+ for spec-
ifying systems, being attracted by:
• the simplicity and universality of its constructs, which are based on first

order logic, and on few temporal logic operators – no need to learn ad-
hoc, process-algebraic behavioural operators;

• the conceptual simplicity of the verification technique it supports (im-
plementation is pure logical implication);

• the free availability of tools (most notably, the model checker TLC).
– Assume also you have an inclination towards structuring some behavioural

specifications as collections of constraints insisting on partially overlapped
sets of events (deriving from a possibly unconfessed past experience in the
community of ’LOTOS-eaters’).

Should you give up your way to conceive specifications? In this paper we try to
justify a negative answer to this question.

In Section 2 we recall Al’s Node, we introduce two abstract, monolithic formal
specifications of it, in LOTOS and in TLA+, and show one way to model ’events’
in TLA+.

In Section 3 we address constraint-oriented specification. We show that the
behaviour of Al’s Node can be conveniently expressed in terms of three con-
straints, and that their interplay can be compactly expressed in LOTOS. We
then illustrate two ways in which we can approximate that structuring in TLA+.

In Section 4 we take advantage of the translations into TLA+ by conducting
some verification activity. We prove, by the TLC model checker, that the two
TLA+ constraint-oriented specifications of Al’s Node are equivalent, and that
they implement the initial, monolithic specification.

In Section 5 we present our conclusions and identify items for further work.

16 Tommaso Bolognesi

2 Event-Based, Monolithic Specification

In this section we introduce Al’s Node by providing an informal, monolithic (one
process) description and a formalisation in LOTOS. We then illustrate a very
similar formalization in TLA+, based on a simple idea for preserving the no-
tion of observable event. This TLA+ specification provides the reference against
which the subsequent, structured, constraint-oriented TLA+ specifications are
formally verified.

2.1 Informal Description of Al’s Node

Al’s Node is a switching device for controlling message traffic in a network. The
node keeps the following data structures:

– a bag of messages,
– a set of active ports,
– a set of (route, port) pairs, defining the active routings.

Messages can be accepted by the system at any active port, and stored in the
node. An incoming messages consist of a (data, route) pair: the data item has to
be re-directed to the associated route. Stored messages can be lost, or output,
not necessarily in FIFO order, at some active port that is paired, according to
the current active routings, to the route indicated in the message.

For keeping specifications concise, and in accordance with the original exam-
ple, we allow elements to be only added to, not removed from the set of active
ports and the set of (route, port) pairs. We omit the treatment of timeouts.

2.2 Monolithic Specification in LOTOS

The LOTOS specification makes use of three predefined sets: Data, Ports, Routes.
For representing data structures we depart from the LOTOS standard, and use
plain mathematical structures; besides being more convenient, they can be re-
used in TLA+. The specification consists in a single process, called AlsNode-
Monol. This process insists on gates DATA IN, DATA OUT, DATA LOSS,
CTL, and is parameterized by the three variables:

msgBag: a bag of (data, route) pairs, of size at most N ,
activePorts: a set of Ports,
activeRoutes: a set of (route, port) pairs.

Process AlsNodeMonol is structured as a set of alternatives, each consisting of
an event, controlled by a guard (a ’selection predicate’, in LOTOS terminology),
and followed by a recursive process instantiation with updated parameters. In
the specification we omit gate lists in recursive process instantiations: they are
the same that appear in the enclosing process definition. We use symbol ’(+)’
for bag union and ’(-)’ for bag subtraction.

Composing Event Constraints in State-Based Specification 17

PROCESS AlsNodeMonol

[DATA_IN, DATA_OUT, DATA_LOSS, CTL]

(msgBag: BagOf(Data x Routes),

activePorts: SubsetOf(Ports),

activeRoutes: SubsetOf(Routes x Ports))

:=

DATA_IN ?d: Data ?r: Routes ?p: Ports

[p in activePorts, Size(msgBag) < N];

LET msgBag’ = msgBag (+) {<d, r>} IN

AlsNodeMonol [---] (msgBag’, activePorts, activeRoutes)

[]

DATA_OUT ?d: Data ?r: Routes ?p: Ports

[p in activePorts, <d, r> in msgBag, <r, p> in activeRoutes)];

LET msgBag’ = msgBag (-) {<d, r>} IN

AlsNodeMonol [---] (msgBag’, activePorts, activeRoutes)

[]

DATA_LOSS ?d: Data ?r: Routes [<d, r> in msgBag];

LET msgBag’ = msgBag (-) {<d, r>} IN

AlsNodeMonol [---] (msgBag’, activePorts, activeRoutes)

[]

CTL ?p: Ports [p notin activePorts];

LET activePorts’= activePorts union {p} IN

AlsNodeMonol [---] (msgBag, activePorts’, activeRoutes)

[]

CTL ?r: Routes ?p: Ports [<r, p> notin activeRoutes];

LET activeRoutes’= activeRoutes union {<r, p>} IN

AlsNodeMonol [---] (msgBag, activePorts, activeRoutes’)

ENDPROC (* AlsNodeMonol *)

The interpretation of the events at the process gates is as follows. An event at
gate DATA IN, with parameters (d , r , p) represent the input of message (d , r)
at port p. Events at gate DATA OUT have a similar interpretation, while those
at DATA LOSS do not need a port parameter. Gate CTL is used only for adding
elements to activePorts and activeRoutes. The complete set of possible events is
explicitly defined in TLA+ module AlsNodeInterface in the next subsection.

2.3 Monolithic Specification in TLA+ and Event Representation

A monolithic specification of Al’s Node in TLA+ with the same structure of
the above LOTOS specification can be provided quite easily, since the latter
matches a state-oriented style, and makes use of a restricted number of operators,
namely action prefix with guards, choice and process instantiation. We only have
to decide about the representation of events. TLA+ does not offer a primitive
notion of event. It offers actions. A TLA+ action is logical formula that includes
primed and unprimed variables, and may or may not be satisfied by a step.
A step is a pair of successive states. A state is an assignment of values to all
state variables.

18 Tommaso Bolognesi

LOTOS events occur at gates. A gate is a location at which processes atom-
ically synchronize and agree on tuples of values. A gate cannot be assimilated
to a normal state variable because it is intrinsically unable to retain any value.
Processes may be thought of as writing values at gates, but these values are
immediately lost. They can only be retained by using local process variables (as
in ’?d: Data’).

Thus, we model events in TLA+ by a write-only state variable that we con-
ventionally call e, and that shall only appear in primed form in action predi-
cates, so that it never contributes to pre-conditions. Event e shall be a tuple (or
a record), in which the first component is a sort of event type, and is the equiv-
alent of a LOTOS gate identifier, while the remaining components represent the
event parameters. The advantages of introducing the special event variable be-
come more apparent with constraint oriented specification, as discussed in the
next section.

A TLA+ specification is formed by a set of modules. Our first module, pre-
sented below, is called AlsNodeInterface. It introduces the basic components of
the specification, that shall be imported by the subsequent TLA+ specifications.
The interface introduces the node capacity N , the predefined sets Data, Ports
and Routes, the special event variable e, and the set where it is supposed to
range. These are also the events of the LOTOS specification.

module AlsNodeInterface
variable e
constants N , Data, Ports, Routes

EventSet ∆=
{〈“DATA IN”, d , r , p〉 : d ∈ Data, r ∈ Routes , p ∈ Ports}
∪ {〈“DATA OUT”, d , r , p〉 : d ∈ Data, r ∈ Routes , p ∈ Ports}
∪ {〈“DATA LOSS”, d , r〉 : d ∈ Data, r ∈ Routes}
∪ {〈“CTL”, p〉 : p ∈ Ports}
∪ {〈“CTL”, r , p〉 : r ∈ Routes , p ∈ Ports}

EventTypeInvariant ∆= e ∈ EventSet ∪ {〈〉}

The monolithic TLA+ specification of Al’s Node is provided in two steps, by
modules InternalAlsNodeMonol and AlsNodeMonol below. The attribute ’inter-
nal’ refers to the fact that the specification in that module makes use of vari-
ables msgBag, activePorts, activeRoutes, that should not be regarded as con-
tributing to the reference, observable behaviour of the system. Adopting the
process-algebraic view, the only observable behaviour should be that expressed
by events, that is, by variable e (which is contributed by module AlsNodeIn-
terface). Thus, in module AlsNodeMonol all variables except e are hidden, by
means of temporal existential quantification.

Composing Event Constraints in State-Based Specification 19

module InternalAlsNodeMonol
extends AlsNodeInterface, Naturals , Bags

variables to be internalized

msgBag , bag of messages in transit

activePorts , set of active ports

activeRoutes the dynamic association route-port

TypeInvariant ∆=
∧ EventTypeInvariant
∧ IsABag(msgBag)
∧ BagToSet(msgBag) ∈ subset (Data × Routes)
∧ activePorts ∈ subset Ports
∧ activeRoutes ∈ subset (Routes × Ports)

DataIn(d , route, port) ∆=
∧ e ′ = 〈“DATA IN”, d , route, port〉
∧ port ∈ activePorts
∧ msgBag ′ = msgBag ⊕ SetToBag({〈d , route〉})
∧ unchanged 〈activePorts , activeRoutes〉

DataOut(d , route, port) ∆=
∧ e ′ = 〈“DATA OUT”, d , route, port〉
∧ port ∈ activePorts
∧ 〈d , route〉 ∈ BagToSet(msgBag)
∧ 〈route, port〉 ∈ activeRoutes
∧ msgBag ′ = msgBag � SetToBag({〈d , route〉})
∧ unchanged 〈activePorts , activeRoutes〉

DataLoss(d , route) ∆=
∧ ∃ x ∈ BagToSet(msgBag) : x = 〈d , route〉
∧ e ′ = 〈“DATA LOSS”, d , route〉
∧ msgBag ′ = msgBag � SetToBag({〈d , route〉})
∧ unchanged 〈activePorts , activeRoutes〉

AddPort(port) ∆=
∧ e ′ = 〈“CTL”, port〉
∧ port /∈ activePorts
∧ activePorts ′ = activePorts ∪ {port}
∧ unchanged 〈msgBag , activeRoutes〉

AddRoutePort(route, port) ∆=
∧ e ′ = 〈“CTL”, route, port〉
∧ 〈route, port〉 /∈ activeRoutes
∧ activeRoutes ′ = activeRoutes ∪ {〈route, port〉}
∧ unchanged 〈msgBag , activePorts〉

20 Tommaso Bolognesi

Init ∆=
∧ e = 〈〉
∧ msgBag = EmptyBag
∧ activePorts = {}
∧ activeRoutes = {}

Next ∆=
∨ ∃ d ∈ Data, r ∈ Routes , p ∈ Ports : DataIn(d , r , p)
∨ ∃ d ∈ Data, r ∈ Routes , p ∈ Ports : DataOut(d , r , p)
∨ ∃ d ∈ Data, r ∈ Routes : DataLoss(d , r)
∨ ∃ p ∈ Ports : AddPort(p)
∨ ∃ r ∈ Routes , p ∈ Ports : AddRoutePort(r , p)

Spec ∆= Init ∧ �[Next]〈e, msgBag,activePorts, activeRoutes〉

BagConstraint ∆= BagCardinality(msgBag) ≤ N
theorem TypeInvariant

module AlsNodeMonol
extends AlsNodeInterface

Inner(msgBag , activePorts , activeRoutes) ∆=
instance InternalAlsNodeMonol

Spec ∆= ∃∃∃∃∃∃msgBag , activePorts , activeRoutes :
Inner(msgBag , activePorts , activeRoutes)!Spec

The central part of module InternalAlsNodeMonol consists in the definition
of five basic actions: DataIn, DataOut, DataLoss, AddPort, AddRoutePort. Each
manipulates in a different way parts of the global state, and accounts at the
same time for one event type which, in the first three cases, has the same name
as the action predicate. These five actions appear as disjuncts in the global ac-
tion Next. Finally, formula Spec defines all legal behaviours of Al’s Node: these
are infinite sequence of global states in which the first element satisfies the Init
formula, and any pair of adjacent states satisfies the Next action, or leaves all
variables unchanged (stuttering step). Note that, although in principle a step
could simultaneously satisfy more than one basic action, this never happens
because the actions end up being mutually exclusive, if not for the incompatibil-
ity of their pre-conditions, because of the disjoint event sets that they support
(post-conditions).

The correspondence between the LOTOS and TLA+ specifications is clear.
In particular: LOTOS choice corresponds to disjunction; selection predicates
and the updated process parameters reflect pre- and post-conditions in TLA+

Composing Event Constraints in State-Based Specification 21

ActivePortsHandler ActiveRoutesHandler

MsgTransit

CTL

DATA_LOSS

DATA
_OUT

DATA
_IN

messages

activeRoutesactivePorts

Fig. 1. Constraint-composition for Al’s Node

actions; the LOTOS symbol ’?’ corresponds to existential quantification, which
generalizes disjunction.

3 Event-Based, Constraint-Oriented Specification

In this section we first provide an informal, constraint-oriented description of
Al’s Node and its LOTOS formalisation, essentially following [QA89]. Then we
introduce two TLA+ specifications meant to approximate, in two different ways,
the compact structure of the LOTOS specification.

3.1 Informal

The behaviour of Al’s Node is captured by the three constraints illustrated in
Figure 1. This diagram reflects the key ideas of event-based, constraint-oriented
specification. The behaviour of a system is conceived as the composition of some
constraints, each insisting on some subset of the externally visible events. Typ-
ically, these subsets are partially overlapped. A constraint C may encapsulate
data structures; these are not directly accessible by the other constraints. Based
on their values, C expresses pre-conditions that concur in determining the ’when’
(ordering constraints) and the ’what’ (constraints on parameters) of its con-
trolled events. On other parameters of these events, as well as on the other
events, C has no influence. An event occurrence has an impact on the data
structures of all the constraints that support the event (post-conditions).

Informally, the constraints for Al’s Node are as follows:

MsgTransit Messages consisting of a (data, route) pair are input by the system
and stored. Each of the stored messages is eventually lost or output.

22 Tommaso Bolognesi

ActivePorts Messages can be input and output only at one of the currently
active ports. The set of currently active ports can be updated, by adding
one new port at a time.

ActiveRoutes A (data, route) stored message can be output only at a port
which is associated, according to the current active routings, to the message’s
route. The current active routings can be updated, by adding one new (route,
port) pair at a time.

The above description contains the same information as the previous, monolithic,
informal description of the system, but organizes it into three partial behavioural
views according to a principle of separation of concerns intended to favour both
the writing and the reading of this type of documentation.

3.2 Constraint-Oriented Specification in LOTOS

The three constraints of Al’s Node behaviour are directly expressed, in LOTOS,
by the following three processes. We use the same constants, predefined sets and
events of the monolithic specification, and a constant NoMsg, that is required to
be different from any message. Note that process MsgTransit is in turn defined
in terms of an auxiliary process OneMsg. Ultimately, MsgTransit is formed by N
interleaved instances of process OneMsg, each temporarily holding one message,
or no message. We write msg[1] and msg[2] for denoting the two components of
a message.

PROCESS MsgTransit[DATA_IN, DATA_OUT, DATA_LOSS] (k: Nat)

:=

[] [k > 1] -> OneMsg[DATA_IN, DATA_OUT, DATA_LOSS](NoMsg, Empty)

|||

MsgTransit[DATA_IN, DATA_OUT, DATA_LOSS](k-1)

[] [k = 1] -> OneMsg[DATA_IN, DATA_OUT, DATA_LOSS](NoMsg, Empty)

WHERE

PROCESS OneMsg[DATA_IN, DATA_OUT, DATA_LOSS]

(msg: Data x Routes, status: {Empty, Full})

:=

[] [status = Empty] -> DATA_IN ?d: Data ?r: Routes ?p: Ports;

LET msg’ = <d, r>, status’ = Full IN OneMsg[---] (msg’, status’)

[] [status = Full] -> DATA_OUT !msg[1] !msg[2] ?p: Ports;

LET msg’ = NoMsg, status’ = Empty IN OneMsg[---] (msg’, status’)

[] [status = Full] -> DATA_LOSS !msg[1] !msg[2];

LET msg’ = NoMsg, status’ = Empty IN OneMsg[---] (msg’, status’)

ENDPROC (* OneMsg *)

ENDPROC (* MsgTransit *)

PROCESS ActivePortsHandler[DATA_IN, DATA_OUT, CTL]

Composing Event Constraints in State-Based Specification 23

(ActivePorts: SUBSET of Ports)

:=

[] DATA_IN ?d: Data ?r: Routes ?p: Ports [port in activePorts]

ActivePortsHandler---

[] DATA_OUT ?d: Data ?r: Routes ?p: Ports [port in activePorts]

ActivePortsHandler---

[] CTL ?p: Ports [port in activePorts]

LET activePorts’ = activePorts \union {p} IN

ActivePortsHandler[---](activePorts’)

ENDPROC (* ActivePortsHandler *)

PROCESS ActiveRoutesHandler[DATA_IN, DATA_OUT, CTL]

(ActiveRoutes: SUBSET of (Routes X Ports))

:=

[] DATA_OUT ?d: Data ?r: Routes ?p: Ports [<d, r> in ActiveRoutes];

ActiveRoutesHandler---

[] CTL ?r: Routes ?p: Ports [<r, p> notIn in ActiveRoutes];

LET activeRoutes’ = activeRoutes \union {<r, p>} IN

ActiveRoutesHandler[---](activePorts’)

ENDPROC (* ActivePortsHandler *)

Once the three constraints are defined as processes, their composition is de-
scribed by a parallel expression, which directly reflects the cooperation pattern
of Figure 1. This if found in the body of process AlsNodeCO (’CO’ stands for
constraint-oriented).

PROCESS AlsNodeCO[DATA_IN, DATA_OUT, DATA_LOSS, CTL]

(n: Nat)

:=

MsgTransit[DATA_IN, DATA_OUT, DATA_LOSS](n)

|[DATA_IN, DATA_OUT]|

(ActivePortsHandler[DATA_IN, DATA_OUT, CTL](EmptySet)

|[DATA_OUT]|

ActiveRoutesHandler[DATA_OUT, CTL](EmptySet)

)

ENDPROC (* AlsNodeCO *)

3.3 First Constraint-Oriented Specification in TLA+

The challenge we pose now, in moving to state-based specification, and to TLA+
in particular, is to try and preserve the three-fold structure of the constraint-
oriented specification, first by independently describing the three constraints,
and then by trying to combine them in a compact expression.

Even more ambitiously, we try to do that by using only what we might call
’basic TLA+’. In the introduction of [7] Lamport indicates that the basic con-
cepts introduced in Part I of his book should enable the reader to handle most

24 Tommaso Bolognesi

of the specification problems one is likely to encounter in ordinary engineer-
ing practice. Thus, we stick to those basic concepts and investigate the extent
to which constraint-oriented specification fits into this picture. An additional,
pragmatic reason for this restriction is that we want to verify our specifications
by the TLC tool, which currently does not handle the composite specifications
discussed in Part II of that book (’More advanced topics’).

In basic TLA+ one models a complex component by writing a complex ac-
tion. The action consists of a disjunction of more elementary actions, each de-
scribing some event possibility. For writing our constraint-oriented specification
we use the conventional, write-only, event variable e, and set two requirements:

– Each constraint must be described by a separate action, handling a disjoint
portion of the global state, namely the bag of messages, the set of active
ports, and the set of active routes; these actions must share only the generic
event variable, and must cooperate in defining its value, according to con-
straint groupings that depend on the type of event, as illustrated in Figure 1.

– The global system (action Next) must only refer to those three actions, not
to their sub-components.

Composition can only be logical conjuntion or disjunction; disjunction is readily
excluded – it is too weak – and we are left with the tentative definition:

Next ∆= MsgTransit ∧ActivePortsHandler ∧ ActiveRoutesHandler

The problem now is one of defining the three component actions in such a way
that the global behaviour is as expected. Since each component is going to be
a disjunction of sub-components, and some sub-components contain only partial
descriptions of events, to be conjoined with complementary, partial descriptions
of the same event in other constraints, we need to make sure that the global
conjunction induce all the desired pairings among the disjuncts, but only those
pairings.

To this purpose, we design our first TLA+ specification according to the
following three criteria:

– We explicitly identify, for each constraint, the subset of events of primary
interest (called KeyEvents): these are events that involve the reading and/or
writing of the state variables the constraint is in charge of.

– Each constraint C is described as the disjunction of two cases: if the occurring
global event is one of the key events, then C contributes to it by a disjunction
of sub-components, say C1, ..., Cn , each one describing a different type or
subtype of event; if the global event is not a key event, then C contributes by
’neutrally’ allowing the event to occur (’don’t care’) and by simply making
sure that its own state variables are unaffected.

– As required, the sub-components C1, ..., Cn of constraint C shall only ma-
nipulate the set, say Cvars , of state variables controlled by the constraint.
However, if some Ci updates only some of these variables, it will also make
sure that the other variables of Cvars are unaffected.

Composing Event Constraints in State-Based Specification 25

The need to preserve the value of some variables across a step is a consequence
of the fact that in TLA+ the variables not explicitly controlled by an action can
assume arbitrary values.

TLA+ module AlsNodeCO1 below directly reflects the requirements and cri-
teria above.

module AlsNodeCO1
extends AlsNodeInterface, Naturals , FiniteSets , TLC

variables

msg, array of N messages in transit

ctl , array of N control states

activePorts , set of active ports

activeRoutes the dynamic association route-port

TypeInvariant ∆=
∧ EventTypeInvariant
∧ msg ∈ [1 . . N → ((Data × Routes) ∪ {〈〉})]
∧ ctl ∈ [1 . . N → {“empty”, “full”}]
∧ activePorts ∈ subset Ports
∧ activeRoutes ∈ subset (Routes × Ports)

EventSubset(key) ∆= {ee ∈ EventSet : ee �= 〈〉 ∧ ee[1] = key}

MsgTransit In ∆=
∃ i ∈ 1 . . N , d ∈ Data, route ∈ Routes , port ∈ Ports :

∧ ctl [i] = “empty”
∧ ctl ′ = [ctl except ![i] = “full”]
∧ e ′ = 〈“DATA IN”, d , route, port〉
∧ msg ′ = [msg except ![i] = 〈d , route〉]

MsgTransit Out ∆=
∃ i ∈ 1 . . N , d ∈ Data, route ∈ Routes , port ∈ Ports :

∧ ctl [i] = “full”
∧ msg[i] = 〈d , route〉
∧ ctl ′ = [ctl except ![i] = “empty”]
∧ e ′ = 〈“DATA OUT”, msg[i][1], msg[i][2], port〉
∧ msg ′ = [msg except ![i] = 〈〉]

MsgTransit Loss ∆=
∃ i ∈ 1 . . N , d ∈ Data, route ∈ Routes :

∧ ctl [i] = “full”
∧ msg[i] = 〈d , route〉
∧ ctl ′ = [ctl except ![i] = “empty”]
∧ e ′ = 〈“DATA LOSS”, msg[i][1], msg[i][2]〉
∧ msg ′ = [msg except ![i] = 〈〉]

26 Tommaso Bolognesi

MsgTransit ∆=
let KeyEvents ∆=

EventSubset(“DATA IN”)
∪ EventSubset(“DATA OUT”)
∪ EventSubset(“DATA LOSS”)

in

∨ ∧ e ′ ∈ KeyEvents
∧ ∨MsgTransit In

∨MsgTransit Out
∨MsgTransit Loss

∨ ∧ e ′ ∈ EventSet \KeyEvents
∧ unchanged 〈msg, ctl〉

ActivePortsHandler ControlIn ∆= . . .
ActivePortsHandler DataIn ∆= . . .
ActivePortsHandler DataOut ∆= . . .
ActivePortsHandler ∆= . . .

ActiveRoutesHandler ControlIn ∆= . . .
ActiveRoutesHandler DataOut ∆= . . .
ActiveRoutesHandler ∆= . . .

Init ∆=
∧ e = 〈〉
∧ msg = [i ∈ (1 . . N) → 〈〉]
∧ ctl = [i ∈ (1 . . N) → “empty”]
∧ activePorts = {}
∧ activeRoutes = {}

Next ∆=
∧ MsgTransit
∧ ActivePortsHandler
∧ ActiveRoutesHandler

Spec ∆= Init ∧ �[Next]〈e, msg, ctl, activePorts,activeRoutes〉

AlsNodeCO2Instance
∆
= instance AlsNodeCO2

AlsNodeCO2Spec
∆
= AlsNodeCO2Instance!Spec

theorem Spec ⇒ �TypeInvariant

theorem Spec ⇒ AlsNodeMonol !Spec

theorem Spec ⇒ AlsNodeCO2Spec

Composing Event Constraints in State-Based Specification 27

3.4 Second Constraint-Oriented Specification in TLA+

A second approach to the constraint-oriented specification of Al’s Node in TLA+
is suggested by considering the two-step procedure introduced in [14] for trans-
forming a LOTOS multiple parallel expression into a set of algebraic expressions
describing explicitly the process groupings that support the events at the differ-
ent gates.

Let us apply the first step of that simple procedure to the top behaviour
expression of LOTOS process AlsNodeCO. For every gate G we rewrite the
parallel expression as follows: we replace a process instantiation by the plain
process name, if G is in the gate list of that process, and by a zero otherwise;
and we replace a parallel operator by a product operator, if G is in the list of
synchronization gates, and by a sum operator, if it is not. We thus obtain the
following set of gate-labelled algebraic expressions:

DATA_IN: MsgTransit * (ActivePortsHandler + 0)

DATA_OUT: MsgTransit * (ActivePortsHandler * ActiveRoutesHandler)

DATA_LOSS: MsgTransit + (0 * 0)

CTL: 0 + (ActivePortsHandler + ActiveRoutesHandler)

By the second transformation step, these expressions are flattened into SOP
(sum of products) form:

DATA_IN: MsgTransit * ActivePortsHandler

DATA_OUT: MsgTransit * ActivePortsHandler * ActiveRoutesHandler

DATA_LOSS: MsgTransit

CTL: ActivePortsHandler + ActiveRoutesHandler

Each gate-labelled SOP represents now the possible groupings of processes that
support the events at that gate (see [14] for details).

Module AlsNodeCO2 below represents an alternative, constraint-oriented
specification of Al’s Node in which the global Next action is formed by exactly
the five disjuncts above (interpreting sum and product as disjunction and con-
junction, respectively). Each disjunct refers to a specific event type, as identified
by the different gates. Notice that we could make use of the same elementary
actions used in module AlsNodeCO1, which is instantiated with name CO1.

module AlsNodeCO2
extends AlsNodeInterface, Naturals , FiniteSets

variables

msg, array of N messages in transit

ctl , array of N control states

activePorts , set of active ports

activeRoutes the dynamic association route-port

CO1 ∆= instance AlsNodeCO1

28 Tommaso Bolognesi

Init ∆= CO1!Init
TypeInvariant ∆= CO1!TypeInvariant
EventSubset(x) ∆= CO1!EventSubset(x)

MsgTransit ∆=
∨ CO1!MsgTransit In
∨ CO1!MsgTransit Out
∨ CO1!MsgTransit Loss

ActivePortsHandler ∆=
∨ CO1!ActivePortsHandler ControlIn
∨ CO1!ActivePortsHandler DataIn
∨ CO1!ActivePortsHandler DataOut

ActiveRoutesHandler ∆=
∨CO1!ActiveRoutesHandler ControlIn
∨CO1!ActiveRoutesHandler DataOut

Next ∆=
∨ ∧ e ′ ∈ EventSubset(“DATA IN”)

∧ MsgTransit
∧ ActivePortsHandler
∧ unchanged activeRoutes

∨ ∧ e ′ ∈ EventSubset(“DATA OUT”)
∧ MsgTransit
∧ ActivePortsHandler
∧ ActiveRoutesHandler

∨ ∧ e ′ ∈ EventSubset(“DATA LOSS”)
∧ MsgTransit
∧ unchanged activePorts
∧ unchanged activeRoutes

∨ ∧ ∃ p ∈ Ports : e ′ = 〈“CTL”, p〉
∧ unchanged 〈msg, ctl〉
∧ ActivePortsHandler
∧ unchanged activeRoutes

∨ ∧ ∃ r ∈ Routes , p ∈ Ports : e ′ = 〈“CTL”, r , p〉
∧ unchanged 〈msg, ctl〉
∧ unchanged activePorts
∧ ActiveRoutesHandler

Spec ∆= Init ∧ �[Next]〈e, msg, ctl, activePorts,activeRoutes〉

AlsNodeCO1Spec ∆= CO1!Spec

Composing Event Constraints in State-Based Specification 29

theorem Spec ⇒ �TypeInvariant

theorem Spec ⇒ AlsNodeMonol !Spec

theorem Spec ⇒ AlsNodeCO1Spec

Care should be taken in preventing uncontrolled behaviour of state vari-
ables that are not explicitly handled by a product of elementary actions. Thus,
the disjuncts in the body of Next, derived from the SOP’s, are enriched by
UNCHANGED clauses that handle those excluded variables: in this way, each
disjunct covers the complete global state.

4 Verification

Are the two constraint-oriented TLA+ specifications correct implementations of
the more abstract, monolithic specification of Al’s Node? In TLA, implementa-
tion is implication. Thus, let us start by verifying, using the TLC model checker,
that the Spec in module AlsNodeCO1 implies the Spec in module AlsNodeMonol.
Recall that the latter is obtained from module InternalAlsNodeMonol by hiding
all variables except the event variable e. The proof consists then in exhibit-
ing a refinement mapping that relates the variables of AlsNodeCO1 to those of
InternalAlsNodeMonol. Module MCAlsNodeCO1 below (MC stands for ’Model
Checker’) extends module AlsNodeCO1 by adding the definition of the desired
refinement mapping.

module MCAlsNodeCO1
extends Bags , AlsNodeCO1

omsgBag ∆= a state function of 〈ctl , msg〉
let f [k ∈ (0 . . N)] ∆=

if k > 0
then

if ctl [k] = “full”
then SetToBag({msg[k]}) ⊕ f [k − 1]
else f [k − 1]

else EmptyBag
in f [N]

AN ∆= instance InternalAlsNodeMonol with msgBag ← omsgBag

ImplementationProperty ∆= AN !Spec

theorem Spec ⇒ ImplementationProperty

30 Tommaso Bolognesi

The theorem at the end of the module states that if the tuple of variables
(e,msg, ctl , activePorts , activeRoutes) behaves as specified by the Spec in mod-
ule AlsNodeCO1, then the tuple (e, omsgBag, activePorts , activeRoutes) behaves
as specified by the Spec in module InternalAlsNode, with omsgBag playing the
role of msgBag. The refinement mapping provides ’witnesses’ for the hidden vari-
ables msgBag , activePorts , activeRoutes of the Spec in module AlsNodeMonol;
in particular, the implementation handles exactly the same data structures ac-
tivePorts and activeRoutes of the internal, abstract specification, so that the
refinement mapping for them is just the identity function (see [7] for further
discussion on refinement mappings, and on the way TLC supports these proofs).
The module required for proving that also our second TLA+ constraint-oriented
specification implements the initial, monolithic specification, is identical to the
module above, except that the EXTENDS clause has to refer to AlsNodeCO2.

Although the two constraint-oriented specifications of Al’s Node have been
developed by following different intuitions, a closer comparison of the definitions
of MsgTransit, ActiveRoutesHandler, ActivePortsHandler, and Next in the two
modules suggests that they might be logically equivalent. Rather than manually
rewriting one into the other, we run again TLC, and prove their equivalence by
showing that they imply each other (note that they manipulate exactly the same
state variables). The two relevant theorems appear at the bottom of modules
AlsNodeCO1 and AlsNodeCO2. (For convenience of exposition, the two modules
we show end up instantiating each other; of course TLC cannot handle this
circularity, and before running the tool, one has to edit them so that they refer
to each other in turns.)

5 Conclusions

We have investigated the possibility to export what we consider an elegant,
event-based specification style, based on constraint composition, to a state-based
formalism such as TLA+. For doing so, we have introduced in our TLA+ spec-
ifications a special purpose, write-only variable, conventionally called e, which
plays the role of LOTOS gates and events. When composing TLA+ actions
by logical conjunction, this variable plays a crucial role in selecting the desired
pairings of disjuncts, while filtering out the undesired ones.

The main advantage of using a process-algebraic formalism for writing speci-
fications in constraint-oriented style is one of conciseness: the ad-hoc specialized
operator of selective synchrony allows one to capture constraint composition
by compact parallel composition expressions. Not surprisingly, using the more
generic, logical conjunction operator generally leads to longer specifications. In
particular, one has to split the specification effort between two complementary
concerns: describing the changes of some variables, and making sure that other
variables preserve their values. This feature, known as the ’frame problem’, is
shared by other logic-based formalisms, e.g. Z, while is completely absent in
event-based formalisms.

Composing Event Constraints in State-Based Specification 31

However, moving to a state-based, and logic-based setting, while retaining
event-oriented thinking, may offer some benefits:

– The formalism is more basic, more general, and can be learnt more easily.
– Specifications can be manipulated and transformed by simple and univer-

sally recognized laws of logics, rather than by specialized algebraic laws for
behavioural operators.

– When events are assimilated to state variables, they inherit all the manipula-
tion techniques available for the latter. For example, one can express different
levels of visibility, for a given specification, by simultaneously hiding some
components of the global state and some components of the event.

This last circumstance enables interesting expressive and analytical possibilities
that we have only started to explore.

Acknowledgments

I express my gratitude to Leslie Lamport and Egon Boerger, for various stimu-
lating discussions on the state-based vs. event-based diatribe.

References

[1] Hoare, T., He, J.: Unifying Theories of Programming. Prentice Hall (1998) 14
[2] Woodcock, J.C.P., Cavalcanti, A.L.C.: The semantics of Circus. In Bert, D.,

Bowen, J., Henson, M.C., Robinson, K., eds.: ZB 2002: Formal Specification and
Development in Z and B, Springer-Verlag (2002) 184–203 Lecture Notes in Com-
puter Science, 2272. 14

[3] Gurevich, Y.: Evolving Algebras 1993 - Lipari Guide. In Boerger, E., ed.: Speci-
fication and Validation Methods, Oxford Univ. Press (1995) 9–36 14

[4] Boerger, E., Staerk, R.: Abstract State Machines - A Method for High-Level
System Design and Analysis. Springer (2003) 14

[5] Abrial, J.R.: The B-Book - Assigning Programs to Meanings. Cambridge Univ.
Press (1996) 14

[6] Lamport, L.: The temporal logic of actions. ACM Transactions on Programming
Languages and Systems 16 (1994) 872–923 14

[7] Lamport, L.: Specifying Systems - The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2003) 14, 23, 30

[8] Spivey, J.M.: The Z Notation - A Reference manual. Prentice-Hall (1989) 14
[9] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985) 14

[10] Milner, R.: A Calculus of Communicating Systems. Volume 92 of Lecture Notes
in Computer Science. Springer-Verlag (1980) 14

[11] Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LO-
TOS. Computer Networks and ISDN Systems 14 (1987) 25–59 14

[12] Brinksma, E.: ISO, Information Processing Systems, Open Systems Interconnec-
tion, LOTOS, a formal description technique based on the temporal ordering of
observational behaviour - IS8807. Technical report, Geneva (1989) 14

32 Tommaso Bolognesi

[13] Quemada, J., Azcorra, A.: A constraint oriented specification of al’s node. In
van Eijk, P.H.J., Vissers, C.A., Diaz, M., eds.: The Formal Description Technique
LOTOS, North-Holland (1989) 83–88 14

[14] Bolognesi, T.: Deriving graphical representations of process networks from alge-
braic expressions. Information Processing Letters 46 (1993) 289–294 27

	Composing Event Constraints in State-Based Specification
	Introduction
	Event-Based, Monolithic Specification
	Informal Description of Al's Node
	Monolithic Specification in LOTOS
	Monolithic Specification in TLA+ and Event Representation

	Event-Based, Constraint-Oriented Specification
	Informal
	Constraint-Oriented Specification in LOTOS
	First Constraint-Oriented Specification in TLA+
	Second Constraint-Oriented Specification in TLA+

	Verification
	Conclusions

