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ABSTRACT The historical buildings of a nation are the tangible signs of its history and culture. Their
preservation deserves considerable attention, being of primary importance from a historical, cultural, and
economic point of view. Having a scalable and reliable monitoring system plays an important role in the
Structural Health Monitoring (SHM): therefore, this paper proposes an Internet of Things (IoT) architecture
for a remote monitoring system that is able to integrate, through the Virtual Reality (VR) paradigm,
the environmental and mechanical data acquired by a wireless sensor network set on three ancient buildings
with the images and context information acquired by an Unmanned Aerial Vehicle (UAV). Moreover,
the information provided by the UAV allows to promptly inspect the critical structural damage, such as
the patterns of cracks in the structural components of the building being monitored. Our approach opens
new scenarios to support SHM activities, because an operator can interact with real-time data retrieved from
a Wireless Sensor Network (WSN) by means of the VR environment.

INDEX TERMS Internet of Things, structural health monitoring, virtual reality, unmanned aerial vehicles,
condition monitoring.

I. INTRODUCTION
Cultural Heritage (CH) offers value and attractiveness to the
cities and places of a nation. Therefore, the exploitation and
preservation of it is of utmost interest. SHM aims at provid-
ing asset managers with actionable information [1] to make
informed decisions. It can provide damage detection and
characterization, risk assessment, or can be used to hypothe-
size future performance. Recently, the use of digital sensors
has gradually replaced analog and/or mechanical devices in
SHM systems; moreover, the advent of the IoT paradigm
has brought interworking capabilities, opening to the use of
sensor networks for the remote monitoring of monuments
and/or structures of great impact [2]. Finally, information
systems allow for processing the data produced by these
sensors, whether they are images, vibration, acceleration data,
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environmental parameters, thus opening to the techniques
able to provide complex aggregate information, alarms,
or actuation without direct human intervention. Nowadays,
fixed installations only are concerned, temporary or defini-
tive [2], [3], which allow for a level of monitoring and
implementation that is limited to what assumed at the design
stage. The advent of UAVs is reversing this logic and lays
the foundation for a dynamic concept of remote monitoring
of the infrastructure. As a matter of fact, it is now conceiv-
able to perform a survey even on parts of structures where
no fixed detection systems were provided, or to integrate
an existing monitoring system with other information cap-
tured by an UAV flying on the structure of interest. The
use of UAVs for photogrammetry activities is already widely
adopted today [4], [5] and has led to a significant reduction
in costs and to an enhancement of services offered in the
application field, ranging from video shooting to goods deliv-
ery [6], [7]. In the field of SHM systems, a joint use of fixed
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sensor networks, mobile sensors (e.g. cameras and Light
Detection and Ranging (LIDAR) radars) on board UAVs, and
VR techniques provides an additional powerful system to
support operators in the field.

In this work, an UAV was used to obtain a 3D recon-
struction of a structure with the exact position of the sensors
deployed on itself, in order to allow the operator to dynami-
cally interact with the sensors in a VR environment: monitor-
ing data retrieved by the sensor network can be visualized in
real time, in order to infer the structure health. Such a system
opens new scenarios for SHM and for new applications of
Artificial Intelligence (AI) techniques to automatically detect
anomalies and generate alarms or simulate a forecast in the
VR environment. As already mentioned, the UAV payload
was also used for sensing: the UAV camera is used to inspect
the crack patterns of a monitored structure with high mea-
surement accuracy. The camera calibration is obtained by
detecting the markers posed aside the crack and by estimating
the 3D position.

This article analyses and describes the architecture of
a remote monitoring system, herein referred to as the
MOSCARDO system, which integrates a network of fixed
sensors and an UAV. The proposed system allows to interact
on a 3D graphic model of the monitored structure with the
relative sensing information, showing the location of sensors
on the structure and displaying instantaneous and/or histori-
cal records in a VR environment. Section II provides a survey
of the literature, highlighting how the proposed system is in
the vanguard of the SHM domain. Section III describes the
use cases and the real testbed that was performed. Section IV
describes the IoT architecture of the proposed system and the
real case studies, while Section IV-B presents the advanced
monitoring capabilities based on the use of an UAV. Then,
the methods used for image processing and VR, as well as
their validation, are presented in Section V. Section VI high-
lights the current and future role of the proposed monitoring
system for decision makers, beyond pure numerical results.
Eventually, the conclusions can be read in Section VII.

II. STATE OF THE ART
Nowadays, SHM is being increasingly used in practical appli-
cations as, for instance, the monitoring of CH described
in this work, or to perform predictive maintenance activi-
ties. SHM can be seen as an enabler of the objectives of
the 11th Sustainable Development Goal,1 which advocates
to strengthen efforts to protect and safeguard the world’s
cultural and natural heritage. More generally, SHM is one
of the bricks to build the so-called smart cities, where an
increasing degree of intelligence and automation will bring
urban intelligence into play. For instance, such an idea is
in [10], which discusses smart cities and the necessity to
preserve and revitalize the past, as for instance in the case
of CH. Along with this, the authors argue that livability,

1The Sustainable Development Goals can be read here: sustainabledevel-
opment.un.org

revitalization, and sustainability are needed, because of the
increasing number of people leaving rural areas in favor of
cities. In order to aim towards a smart city targeting those
values, the authors propose an IoT architecture composed of
different layers for sensing, interconnecting, handling data,
and providing services at the very top. The case study under
consideration sees the city of Trento, Italy, benefiting of a
context-aware recommendation system for tourism and CH,
namely Treesight. Another core activity in this context is
environmental monitoring [16], [17], because the preserva-
tion of CH may exploit environmental data, in order to enrich
data coming from typical SHM deployments.

Focusing on systems built to meet the necessities of SHM
explicitly, WSNs stand out as a well suited solution to deploy
sensor nodes in an economical manner for this purpose [18].
In general, the idea is relying on simple and small sensor
nodes to collect raw data to be delivered to a control center
for analysis purposes. From a networking viewpoint, sin-
gle and multi-hop networks can be used towards this aim,
as well as gateways or other related network devices used
for the purposes of synchronization, computing and storing,
and other coordination activities. According to the type of
data to be collected, small or large amount of them can be
expected, with a direct repercussion on the expected lifetime
of sensor nodes [19], especially if battery powered. Different
approaches for setting up low-cost monitoring systems are
discussed in [20]–[23]. Reference [20] describes an SHM
system exploiting accelerometers in smartphones to monitor
structural vibrations. In other words, the authors propose to
rely on widely diffused devices as smartphones to detect
and measure sinusoidal vibrations, so to build a citizens’
network for crowdsourcing data for analytics purposes. The
presented results, similarly to those in [21], can be considered
as relevant in this field, when taking into account the low
cost of smartphones with respect to high-end sensor nodes
typically used in such monitoring scenarios. Another low-
cost technique is explored in [22], based on the use of moiré
patterns: two fully overlapped circular fringes are mounted
on both sides of a crack in a wall. Then, pictures taken with
a smartphones can be collected for processing by means of
a mobile app developed for such a purpose: in fact, any
displacement causes the two fringes to misalignment, which
is a phenomenon that can be captured with a phone camera.
The authors compare the results achieved with this technique
with those achievable with digital micrometers, eventually
estimating the measurement accuracy to be ±5× 10−2mm.
WSNs used for SHM should satisfy requirements such

as: network scalability, high synchronization, optimal sensor
placement, energy efficiency, and clustering. According to
the authors in [18], several research issues are still open, as for
instance: damage prediction, energy harvesting, the use of
mobile phones as sensor nodes, and large amount of data
that can put network infrastructures under pressure. The focus
on using WSNs, more specifically on IoT as a paradigm
for data collecting and data analysis for SHM, is discussed
in [24]. The authors survey Low-Power Wide Area Network
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(LPWAN) in the context of SHM, considering, for instance,
the use of Long Range (LoRa) protocol to deliver small
amount of data in an energy efficient manner, as proposed
in this work. The monitoring of buildings relies on the use
of lightweight, reliable, and open network stacks, enabling
interoperability and lowering integration costs. On this topic,
the use of Message Queuing Telemetry Transport (MQTT)
or Constrained Application Protocol (CoAP) protocols is a
de facto standard [25] because they can provide lightweight
solutions for IoT data exchanges in an energy efficient man-
ner. The Publish / Subscribe (PUB/SUB) paradigm, connect-
ing data publishers to data consumers through a rendezvous
entity, allows flexible and customisable implementations.

Looking to closely related works, the ones in [2], [3] can
be referenced. In [3], the authors describe the design and
deployment of a SHM system based on the use of Mem-
sic Imote2 nodes to collect acceleration data, temperature,
humidity, and light level. Sixteen sensor nodes have been
deployed in a basilica, aiming at monitoring the building that
suffered severe damage in the 2009’s earthquake in central
Italy. Similarly to this work, the authors exploit a WSN
to collect data at a local sink, then delivered to a remote
center via a 3G connection. In a similar fashion, reference [2]
describes an IoT-based system to monitor a bell tower. The
authors analyze the impact of large moving crowds on the
structure, during a large festival hosted in the city of Lucca,
Italy; thanks to this and to the oscillations due to the bell,
it was possible to provide a characterization of the structure.

Two other cases of interest are here analysed: the use of
UAVs in this context, and the increasing role played by
Machine Learning (ML)-based techniques.

ML-based techniques have been used to provide prelimi-
nary assessments of potential upcoming dangerous situations
that may be recognised by jointly analysing heterogeneous
quantities and exploiting historical data. For instance, in [11]
the authors discuss the use of data clustering and Support
Vector Machines (SVMs) to classify the data streams coming
from a wired SHM system. The aim is in providing a haz-
ard management method related to earthquake disaster. The
authors modify the data classifiers in order to support online
training. Data are collected from accelerometers, labelled in
an unsupervised way, then classified, clustered, and used to
train the SHM process. The output is binary: a structure has
been damaged (or not) by an earthquake. In [12], Convolu-
tional Neural Networks (CNNs) are used to assess the damage
to bridges in China. Real-time data are fed to a CNN, aim-
ing at classifying possible bridge cracks, in order to reduce
the so-called risk coefficients. The authors are convinced
that the method proposed in [12] could effectively solve the
problems of low fracture diagnosis efficiency and high risk
factor, thus proposing intelligent systems for bridge safety.
Bridges are monitored also in [9], which anyway focuses on
the performance of the wireless system rather than results
related to SHM. In [14], the authors show that the integration
of CNN and other classifiers can improve detection accu-
racy for images of masonry structures. The training phase

is performed on a dataset containing images of cracks from
masonry structures (created using a digital camera and an
UAV), in order to extract significant features. Other classi-
fiers, such as SVMs, are used to enhance the classification
ability, reaching a detection accuracy of approximately 86%
in the validation stages and 74% in the testing stage.

The role played by aerial vehicles is rapidly increasing in
this domain, seeing the use of Micro Air Vehicles (MAVs)
and UAVs [26] to overcome the drawbacks of manual visual
inspection. In addition, the use of on-board digital image pro-
cessing can specifically address the characterization of crack
patterns. In [13], the authors describe a processing technique
to measure cracks thicker than 0.1 mm with the maximum
length estimation error of 7.3% on concrete surface; this
approach is also complemented with a CNN, to improve
its feasibility with respect to real world conditions (e.g.
[27], [28]). In [15], a system for infrastructure monitoring
based on the use of multiple UAVs is proposed: the paper is
focused, mostly, on the real-time path planning and on the
introduction of a classical yet effective image segmentation
method based on iterative thresholding for crack detection
and quantification.Moving from the domain of civil buildings
and infrastructures to the domain of CH, specific features
and constraints must be considered: for instance, the phys-
ical and chemical properties of the material inspected can
significantly vary, even in the same structure; the condition
in which data are collected may be challenging (with area
difficult to access, or variable environmental conditions); the
methods used for acquiring data and monitoring relevant
parameters should be not invasive. In the CH domain, most
of the methods using MAVs or UAVs for the data acquisition,
and aiming at the detection and characterization of the crack
pattern, are based on 2D image processing and digital pho-
togrammetry. In [8], close range photogrammetry is applied
to the analysis of structural damage detected in a masonry
structure (Basilica da Ascension, north-west of Spain). 3D
point clouds of the monitored damage (a crack) are gathered
at different epochs; shape parameters of each point cloud are
extracted and used to assess the damage and track its evolu-
tion. In [29], the authors perform a stereo-photogrammetric
scanning of the Bridge of the Towers, Italy, by means of
an UAV. A large amount of high-resolution photos were
analysed and processed in order to reconstruct the 3D model
of the bridge. Starting from the 3D model, the crack pattern
is monitored, by mapping the damage onto two orthophotos,
which represent the two sides of the bridge. Other remote
techniques have been used in this context, further than UAVs.
For instance, in [30], the authors survey the use of Global
Navigation Satellite System (GNSS)-based technology, like
multi-sensor and multi-constellation data acquisition tech-
niques, to support monitoring activities for towers, buildings,
and bridges. Six GNSS systems are considered in the paper to
be used jointly with Real Time Kinematic (RTK) techniques
to improve the achievable accuracy in monitoring activities
on the ground. Anyway, it should be noted that GNSS tech-
nology is intrinsically limited by multipath errors and low
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TABLE 1. Comparison among implemented functionalities in relevant monitoring systems for ancient buildings in the literature and the one proposed in
this work, namely MOSCARDO.

FIGURE 1. The proposed IoT system, namely MOSCARDO, for monitoring ancient buildings via a modular IoT-based system: sources of raw data on the
left, data exchange and data analysis in the middle, available services on the right.

sample rates, among others. Thus, GNSS systems coupled
with accelerometer units close to the monitored buildings
provide an increased accuracy, as in the case of Robotic
Total Station (RTS) integration with GNSS. Pseudolites are
considered in [30] as well, to enhance satellite-based systems,
which are anyway able to identify modal frequencies up to
10 Hz, enough to accurately determine cable forces of bridges
from GNSS data.

As shown in Table 1, the system proposed in this work
covers almost all the selected features, thus pushing further
both the level of complexity and integration that a monitoring
system provides. In particular, our implementation allows
interacting with the monitored buildings and the deployed
sensor nodes by means of a VR environment. That allows
for easily visualising both current and historical readings,
further than knowing the exact location of the monitoring
points all over the buildings under consideration. Thanks
to that, remote technicians can also access information in

real-time, especially during or immediately after events of
interest.

III. THE PROPOSED MONITORING SYSTEM AND THE
THREE REAL CASE STUDIES
The whole system is configured as shown in Figure 1: data
collected by sensor nodes and by theUAV is sent to the remote
server for data processing and storing. On the one hand, data
is pushed from sensor nodes towards a local gateway, hosting
simple services: that allows to ensure the correct functioning
of the local network at each site and to take care of the
actual data delivery towards the remote server. Therefore it
avoids that intermittent connections force sensor nodes to stay
awake longer than necessary. On the other hand, the data
collected by the UAV is sent to a close Ground Control
Station (GCS), acting similarly to the aforementioned local
gateway. The latter relies on the use of the MQTT protocol,
to reliably deliver collected data in a PUB/SUB fashion: the
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FIGURE 2. Three case studies under analysis in the MOSCARDO project; all sites are located in Tuscany, Italy. The Mastio di Matilde is
the large round tower (in the top center) pertaining to the Old Fortress in Leghorn; the Voltone is the waterway below a large town
square; the Torre Grossa is the tallest of the historical towers in the city of San Gimignano, close to Siena.

local gateway hosts, among others, a MQTT broker config-
ured as a MQTT bridge, connected to the remote gateway,
which hosts a MQTT broker as well, feeding Fast Fourier
Transform (FFT) of data to the remote database. Thus, from
the local to the remote gateway, PUB/SUB data exchanges
occur in a reliable way, delivering data in one direction (from
sensor nodes to the remote server) and commands in the other
one (from the remote server to the sensor nodes). The other
logical data link, from the UAV to the remote server, is based
on the use of a Representational State Transfer (REST)-ful
Application Programming Interface (API), transferring data
to a remote image analysis service. Both results are stored
into the remote database for providing historical and real-
time data querying services, aiming at feeding analysis and
alert systems and at comparing fresh data with historical
ones. The main source of information for building periodic
reports is the WSN, while the UAV can be promptly used,
in case of alerts, as visual moving system able to provide real-
time and high-quality video feeds. The VR features can help
technicians to visualise both instantaneous and historical data
in a human-friendly manner, by immediately recognising the
sensor nodes and their locations. Eventually, the API allows
external systems, once authorized, to connect to our network,
to receive collected data in a real-time manner.

In the following, Sections IV-B and IV-C focus both on
sensor nodes, used in the WSN, and on the UAV role.
Figures 3 and 5 show the position of the sensor nodes
on the three buildings used as case studies and the UAV
tasks, respectively. More details about the sensors nodes are
reported in Tables 3 and 4, as well as the related statistics
in Table 2. Section IV presents the concentrator module, that
means, the local gateway and the GCS that collects data from
close sensor nodes and from the UAV, respectively. Data
exchange occurs as described in Section IV-A and according
to the infrastructure depicted in Figure 4. Sections IV-D andV
provide a detailed description about the data analysis module,
that means, the used algorithms for time series analysis and
the methods used for image processing and VR. The results
are then reported in Tables 6 and 7. Section IV-D also pro-
vides a description of the data storage module. Both data
storage module and on-top services run at the Monitoring

Control Center (MCC), which is described in Section IV-D.
In addition, Figures 9 and 10 show an example of 3D recon-
struction and the VR environment. The 3D reconstruction and
the VR environment can be seen at http://moscardo.isti.cnr.it.

The MOSCARDO architecture has been designed to pro-
vide technicians and authorities, in the field of cultural her-
itage preservation, with key insights into the condition of
the monitored structure. Therefore, we can affirm that it
can be considered as a support system for decision makers,
especially during or immediately after events of interest. The
whole system has been installed and tested in three different
locations, visible in Figure 2, having different requirements,
installation and data collection challenges. The first instal-
lation (see Figure 2c) is in large tower, namely Mastio di
Matilde, pertaining to the Leghorn’s Old Fortress, next to
the sea and to the city’s port, mixing indoor and outdoor
sensor nodes. This large old tower is close to the port, thus
being exposed to strong winds and salt air, further than the
vibrations due to the engines of large ships departing closely.
Sensor nodes have been installed indoor and a weather sta-
tion outdoor. The second installation (see Figure 2b) is in a
waterway below a large square, namely Voltone, with sensor
nodes very close to the water below and to passing boats.
The streets all around the square above the waterway are
part of the Leghorn’s arterial roads, thus exposing the water-
way to varying loads [31]. The installation in the waterway
has required the presence of specialized personnel, able to
climb the inside walls for installing small devices in pre-
cise locations. The third installation (see Figure 2a) is in a
large tower in the medieval city of San Gimignano, Siena.
It is the tallest tower in the city, measuring approximately
54 meters, and daily visited by a large number of tourists.
Sensor nodes have been installed indoor and a weather station
outdoor. Several preliminary campaigns have been conducted
to identify the most suitable placement locations for the
sensor nodes in the monitored buildings, in order to: (i) install
the minimum number of devices necessary to support SHM
activities; (ii) limiting obtrusive installations; (iii) respect-
ing enforced regulations on any placement on ancient sur-
faces (like walls). Installing the minimum number of sensor
nodes, which anyway suffice to monitoring activities, has the

VOLUME 8, 2020 50135



M. Bacco et al.: Monitoring Ancient Buildings: Real Deployment of an IoT System Enhanced by UAVs and VR

FIGURE 3. Position of the sensor nodes in the three buildings used as cases studies: a) Torre Grossa, b) Voltone, and c) Mastio di Matilde. The legend can
be read in the middle bottom.

advantage of reducing the amount of data to be delivered, thus
reducing energy consumption as well. The main criterion,
used for choosing the most suitable placement locations, aims
at reducing any possible correlation among the data collected
by the sensor nodes. In Figure 3, the sensors placements for
the three cases study are shown. The sensors placement has
been performed so to achieve minimal visual impact, while
contemporary providing the desired detection of the structure
modes.

IV. MONITORING SYSTEM
The system designed to support SHM purposes relies on
PUB/SUB data exchanges, thus leveraging IoT communi-
cation protocols. In particular, the data collected from the
sensor nodes is delivered to the remote server by means
of MQTT, an IoT protocol for reliable data exchanges that
decouples data producers from data consumers by means
of a rendezvous node, referred to as broker. MQTT offers
intrinsically reliable data exchanges because it is TCP-based,
contrarily to the plain version of CoAP [25], [32], an UDP-
based solution for RESTful data exchanges.

Looking at Figure 4, the blue blocks on the left can be
identified, connecting the WSNs at each monitored site to
the remote server via a 3G/4G data link. The local gateway,
based on a Raspberry Pi and equipped with both WiFi and

LoRa connectivity, collects data from close sensor nodes.
The LoRa concentrator is based on the iC880A radio module
transmitting and receiving at a frequency of 868MHz. LoRa-
based sensor nodes, such as environmental sensors, gener-
ate tiny amount of raw data in a periodical manner (up to
12B/s for each node), exploiting an energy-efficient radio
transceiver. WiFi-based sensor nodes generate really moder-
ate amounts of raw data in a periodical manner (up to 300B/s
for each node). A lightweight implementation of an MQTT
client, running on sensor nodes themselves, publishes data
on the local broker. Note that all WiFi sensor nodes collect
data for TW seconds in a temporally synchronized manner.
In the first building (see Figure 2c), seven WiFi-based and
one LoRa-based sensor nodes were installed; in the second
building (see Figure 2b), fourteenWiFi and two LoRa, while,
in the third building (see Figure 2a), ten WiFi and two Lora
sensor nodes. Totally, 31 WiFi and 5 LoRa sensor nodes have
been installed. Table 2 provides information on those sensor
nodes, and on the average net and gross bitrate transferred by
the proposed system.

The local gateway hosts an MQTT broker, namely
Mosquitto, to receive data from both WiFi and LoRa nodes.
The latter ones exploits an open-source LoRaWAN network-
server, namely LoRaServer,2 running as a daemon on the

2Documentation and source code available at: loraserver.io.
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FIGURE 4. An overview of the communication infrastructure in use.

local gateway to encapsulate received LoRa payloads into
outgoing MQTT messages. In the end, the local broker
receives data from both WiFi and LoRa sensor nodes; being
configured as an MQTT bridge connected to the remote
MQTT broker at the MCC (described in Section IV-D),
the received messages are immediately transferred towards
the latter, if Internet connectivity is available. In fact, during
our large testbed (still running), 3G/4G connectivity has been
intermittent for several reasons: such issue was taken into
account during the design phase, motivating the choice of a
reliable protocol solution and the aforementioned transparent
bridge configuration. Such a setup, in our experience, relieves
sensor nodes from the burden of dealing with intermittent
Internet connectivity, because the gateway is always on and
reachable (local network) and can persist data until a success-
ful data transfer to the remote server, so, in the end, allowing
the development of lightweight and energy-efficient sensor
nodes.

Inwhat follows, PUB/SUBdata exchanges andMQTT top-
ics are detailed in Section IV-A, and the UAV-based solution
is described in Section IV-B. Then, the manuscript focuses
on the deployed sensor nodes in Section IV-C. The function-
alities provided by the MCC are described in Section IV-D,
and eventually Section V deepens the techniques for image
analysis and related results.

A. PUB/SUB DATA EXCHANGES
Our system implements state-of-the-art IoT solutions for
data transmission and collection, thus ensuring interoper-
ability as a core feature. Reliable data transfers have been
taken into account thanks to the use of the MQTT proto-
col: the PUB/SUB architecture rests then on the gateways
installed in the buildings, hosting rendezvous functional-
ities for both WiFi and LoRa sensor nodes. MQTT top-
ics in use adhere to the following format and exchanging
data payloads in JavaScript Object Notation (JSON) format.
More specifically, in the case of sensor nodes, the following
topic structure has been used. Each topic is prefixed by
moscardo/[building_id], where [building_id] is the ID of the
site under monitoring. Then, the next element in the topic
structure can be node or gateway, the former in the case of
data exchanges with sensor nodes and the latter in the case of
data exchanges with gateways. Unless explicitly stated below,
the payload of each message is ignored (flag value) if the
message does not need to carry any actual data. In the case
of sensor nodes, taking into account that multiple sensors can
be connected to a single node, the topic structure is as follows:

• sensor readings: [node_id]/(measure_type)/
[sensor_id]/data where (measure_type) can assume
values:
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TABLE 2. Sensor nodes and gateways (gtw) installed on the three monitored sites (see Fig. 2) and average bitrate: in the first two rows, the net bitrate is
shown per sensor node in the last column; in the last row, aggregated values are instead shown, both net and gross (i.e., including control traffic and
protocol stack overhead for the latter).

1) accel for accelerometers;
2) th for temperature and humidity;
3) strain for strain;
4) disp for displacement;
5) bar for atmospheric pressure;
6) wind for wind velocity and direction.

• sensor commands: [node_id]/cmd/[command] where
[command] can assume values:
1) status for status reports;
2) reboot to reboot the sensor node;
3) update to trigger a firmware update, if a new ver-

sion is available;
4) set [JSON payload] to set the configuration param-

eters;
5) get to read the configuration parameters.

• errors: [node_id]/error in the case of errors.
In the case of gateways, the topic structure is equivalent:
• gateway commands: [gw_id]/cmd/[command] where
[command] can assume values:
1) status to collect detailed info about the gateway

status;
2) ntp_restart to restart the NTP service;
3) mqtt_restart to restart the MQTT broker;
4) vpn_start / vpn_stop to enable or disable the VPN

client connection from the gateway to a remote
VPN server for maintenance;

5) set [JSON payload] to set the configuration param-
eters.

B. UNMANNED AERIAL VEHICLE (UAV)
The monitoring system makes use of an UAV, which can be
considered as a mobile node of the WSN, to be deployed on-
demand or in a periodical manner. In our scenario, it has been
used to monitor the crack patterns of the structure in a regular
fashion; also, it may be used for specific surveys close to the
sensors should there be anomalies in the data stream and in
the case of alerts, whenever other kinds of intervention might
not be viable. There are several valuable advantages in using
an UAV to monitor the structure: (i) improved accessibility
to difficult areas; (ii) improved safety for operators that are
not required to reach potentially hazardous areas (iii) time-
effective surveys; (iv) repeatability of measurements, useful
for long-term monitoring activities; (v) possibility to perform
promptly structural assessment in case of alerts.

As shown in Figure 5, the task of the UAV is twofold:
in the initial phase, it is used to acquire high resolution

video footage of the structure to generate a 3D model for
the VR environment; in the monitoring phase, it is able to
follow a predefined path to take high quality pictures of all
the cracks and spots under observation. To allow the former
tasks, the sensing payload of the UAV is composed by two
vision units: a Canon EOS M, capable of very high-quality
18MP still pictures, and an embedded smart camera that
features the NVIDIA Jetson TX1 as computing module. The
first unit is used mainly to take images of the cracks and it is
remotely operated by the UAV pilot, while the smart camera
compresses and sends a real-time video stream to the GCS;
this helps the pilot during the navigation and it enables the
Simultaneous Localization and Mapping (SLAM) software
module, needed to position of the UAV in the virtual environ-
ment in real time. The UAV delivers an H.264 compressed
video stream over an UDP-based protocol stack. 802.11g
connectivity has been used to transfer data in Visual Line of
Sight (VLoS) trials [33], while 4G-based data transmissions
have been used in Beyond Visual Line of Sight (BVLoS)
scenarios [34].

C. DEPLOYED SENSOR NODES
The sensor nodes used in our monitoring application are
based on commercial components, carefully chosen to respect
the requirements of SHM applications, which aims at per-
forming Operational Modal Analysis (OMA). A careful anal-
ysis of the literature [1], [16], [18], in the field of SHM, has
shown typical requirements to be met by the sensor nodes,
meaning that the hardware should be able to reveal at least
what follows: accelerations vary in the range ± 2÷2.5 g,
where g is the standard gravity; the bandwidth (BW) of the
modes falls in the range 0.5÷50 [Hz], and the admissible
noise level is ωN , in the range 1.4-14×10−3g. The noise
level ωN determines the minimum measurement resolution,
labeled with (RM), because it is directly proportional to the
ratio RM/

√
BW . In our case, the minimum resolution is

0.01÷0.1 10−3g, for an useful signal bandwidth of about
50 [Hz]. The sensitivity of the transducer is related to the
analog-to-digital converter (ADC). In fact, measuring a mini-
mum signal value RMof 0.01×10−3g, by using an ADCwith
voltage levels between 0÷ 3.3 [V], with a minimum number
of bits equal to 20 bits, the minimum useful value to vary the
least significant bit is 3.3/220 = 3.14 [µV]. Hence, the trans-
ducer sensitivity must be greater than 3.14 × 10−6/0.01 ×
10−3 = 314 [mV/g]. A final consideration about the ADC
is related to its sampling frequency, which must be at least
twice the maximum band of detectable frequencies, which
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FIGURE 5. The two main different tasks of the UAV in the proposed IoT system: on the left, image acquisition for 3D reconstruction; on the right,
periodical image acquisition for marker-based structural defects monitoring.

in our case is 100 [Hz]. Strain-gauge transducers should
measure strains that generate displacements in the range of
a few millimeters, with a resolution of a tenth of a millimeter.
Instead, transducers have to measure displacements in the
range of a few tens of millimeters. In both cases, the sensitiv-
ity of the transducer must guarantee a voltage level enough
to vary the least significant bit of the ADC. Temperature and
humidity transducers must be able to measure temperatures
between - 10 and + 50 ◦C , and relative humidity between
30% and 90%. An accuracy of ± 0.5 ◦C and ± 0.5% is
considered sufficient for the temperature and the relative
humidity, respectively.

The sensor node was designed as a set of logical blocks,
where the latter can be interconnected through commer-
cial hardware connectors: such a choice allowed a rather
general design phase whose output can be adapted to the
specific characteristics of the site and/or to the quantity to
be monitored. The blocks, composing the system, are the
following ones: the core block, the signal transduction block,
the communication block, and the power block. Figures 6a
(accelerometer) and 6b (temperature and humidity) show two
sensor nodes configured for the mechanical and environmen-
tal quantities acquisition, respectively. The core block takes
care of controlling all the other sub-blocks, i.e., managing the
communication logic, conditioning the transduced signals,
formatting (timestamp included) and storing of the acquired
data. The core block is based on a 32-bit ARM Cortex-M
by ST-Microelectronics, namely the STM32F411RE device.

FIGURE 6. The casing in use: on the left (6a), the transducer is visible in
the lower part of the figure in the light gray encasing, while the other
hardware blocks are in the transparent IP67 casing above (a WiFi antenna
is visible). On the right (6b), the environmental sensor nodes are in the
accordion-like casing above, and the other hardware blocks in the open
casing below (a LoRa antenna is visible).

The conversion and conditioning of the signals is performed
by an active low-pass filter, by a conversion circuit of the
signal from differential to single-end, and by an ADC with
variable gain amplification (PGA). The low-pass filter allows
for a first detrending of the acquired signal, and it is based
on a low-noise operational amplifier suitably configured to
guarantee the lowest degradation of the acquired signal.
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TABLE 3. The transducers in use in our testbed.

The commercial device used for signal filtering is the
AD8572. Such a choice has been dictated by the need of
ultra-low offset, drift, and bias current. The AD8572 is able to
eliminate the inter-modulation effects from interaction of the
chopping function with the signal frequency in AC applica-
tions by using a spread-spectrum, auto-zero technique. With
an offset voltage of 1 µV and a drift of 0.005 µV/◦C ,
the AD8572 is perfectly suited for applications, where error
sources must be reduced as much as possible, such as in the
case of strain gauges and accelerometers. The ADC adopted
in our system is the ADS124S06, it operates with a precision
of 24 bits and it is configured to ensure the least degradation
of the converted signal. This is possible thanks to its PGA
that allows an effective conversion of very weak signals,
using an amplification algorithm optimized on the physical
characteristics of the acquired signal. The transduction block
involves different type of devices: accelerometers and strain
gauges for the detection of mechanical quantities; humidity,
temperature, and wind speed for the detection of environmen-
tal quantities. Transducers of mechanical quantities have a
rather high sensitivity, as shown in Table 3, because they must
enable the modal analysis of the structure on the basis of envi-
ronmental forces. Furthermore, in order to limit the effects of
common mode noise, the acquisition of the transduced signal
is performed in differential mode. The communication block
deals with formatting the digital signals from the ADC in
JSON format, establishing communication with the gateway
through the MQTT communication protocol, ensuring time
synchronization through the Network Time Protocol (NTP),
and managing the transceiver interface. A reliable and precise
time reference is critical to allow for time series analyses at
the MCC, by taking into account the spatial-time correlation
of the acquired quantities. The available transceiver interfaces
for the sensor node are shown in Table 4. Finally, the power

supply block has been designed to use a solar-powered battery
system enabling the energy harvesting paradigm. Table 4
shows some of the most important features of the components
installed in the sensor nodes.

All the installed sensor nodes perform a TW = 900 sec-
onds long acquisition every hour. In the case of mechanical
data, the sampling frequency is set to 100Hz, considering 3D
coordinates; in the case of environmental data, the sampling
frequency is set to 1Hz.

D. MONITORING CONTROL CENTER (MCC)
All the collected data are reliably delivered via MQTT to a
remote cloud platform, which can be referred to as MCC.
Looking at Figure 1, data analysis, storage, and on-top ser-
vices run at the MCC. Raw data incoming from the WSNs
deployed at the three different locations, earlier described,
are analysed: the data coming from the sensor nodes pass
preliminary validity checks to filter out incorrect measure-
ments, and then significant modal frequencies are extracted
and correlated with environmental data. Data coming from
strain gauge and displacement sensors help in monitoring
existing fractures on the walls. As in Figure 1, data coming
from theWSN are collected and then forwarded by theMQTT
broker at the MCC; data coming from the UAV arrive at the
MCC via a REST-based API. Once the data elaboration has
been performed, raw and elaborated data are stored in the
database, which is used to feed the developed services on top
of the lower layers of the system.

Three types of services have been developed, plus an API:
all those services are used by authorized personnel and ser-
vices, like local institutions in charge of the maintenance
and care of the three aforementioned sites. The first service
delivers periodic reporting, also allowing to browse historical
raw and elaborated data: in such a way, the state of the
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TABLE 4. The hardware components for signal conditioning and communications in use in our testbed.

building can be analysed taking into account natural decay
and the maintenance actions to prevent and reduce it. It is
one of most importance sources of information, because the
understanding of long-term effects due to undertaken actions
can be corroborated from numerical data provided by the
remote monitoring system. Further than that, an alert service
is in place: it is designed to immediately report any readings
out of expected ranges, triggering alert procedures. On this,
one of the procedures designed is based on the use of an UAV:
it can be quickly deployed in an alert case to visually confirm,
if possible, any sudden deterioration that triggered the alert.
The use of a UAV allows to perform from the above such an
inspection, in a safe manner, avoiding that technicians and
other personnel enter the building, potentially exposing them
to dangerous situations. If the UAV cannot detect anything
significant, or in the rare case of a false alert, an additional
assessment by authorized personnel can be performed on
site. As aforementioned, the UAV is used in a periodical
manner to complement data coming from the WSN with a
visual inspection, allowing a technician to virtually navigate
the building from the outside and seeing instantaneous and
historical readings associated to the sensor nodes. Eventually,
data stored in the database can be accessed by authorized
external subjects via a REST-based API.

V. IMAGE ANALYSIS
In this section is provided the description of the image
processing services and of the interface of virtual reality
developed. A marker-based image processing method is
specifically designed and developed tomonitor crack patterns
in ancient structures, while an interface of virtual reality
provides real time information about the structure and the
sensors on it.

A. IMAGE PROCESSING
The main goal of this task was to implement a robust and
computationally inexpensive algorithm able to automatically
inspect the crack patterns of an ancient building, with no
detriment in measurement accuracy.

As regards crack monitoring, our main case study was
the Old Fortress, which shows sides quite far and definitely
not co-planar. This makes very difficult to achieve absolute
and accurate measures of the crack opening with standard
methods. Also, the walls are partially surrounded by the sea,
hence difficult to be monitored. For such structures, which
are irregular, subject to environmental agents and to seasonal

changes (e.g. for weeds growing on it), photogrammetric
reconstruction quality may be not enough to monitor over
time the crack pattern variations. Hence, a set of coded
markers was used, to provide a complete and stable 3D
information about specific fiducial points along the crack,
to be tracked over time. Under the assumption that the fiducial
markers were placed along the crack in themost critical points
(i.e., most stressed and subject to variations), our image-
processing method aimed at a reliable long-term crack mon-
itoring.

Our solution is based on the SLAM approach and opti-
mized for the creation of 3D map of the markers visible in
the images acquired. It was inspired by the work in [35],
in which the authors: (i) define a dictionary of coded planar
square markers; and (ii) address the mapping problem as a
variant of the sparse bundle adjustment problem, by solving
the corresponding graph-pose problem. A sequence of frames
of the same scene, as well as camera calibration parameters,
has been acquired. At each frame, the markers are detected
(using the ArUco library3), and their 3D pose is estimated.
The optimization is done thanks to the simultaneous sub-
pixel detection of the corners of all the markers placed in
the scene, by minimizing their re-projection errors in all the
observed frames. The output of the algorithm is a complete
3D information about each marker, thus enabling to track the
variations of the crack pattern over time. In particular, such
data includes: (i) the set of the 3D coordinates of the corners
of eachmarker; (ii) the set of the Euclidean distances between
the barycenters of each pair of markers; and (iii) the angle
variations between the reference frame associated to each
marker. More in detail, the algorithm works as follows: (1) a
sequence of frames of the same scene (at least six) is acquired;
(2) at each frame, the graph-pose is estimated by minimizing
the re-projection error in the detection of the marker corners;
(3) for eachmarker, the coordinates of its corners are assessed
in the 3D space, as well as the coordinates of the barycen-
ter, and the associated reference frame; (4) the Euclidean
distances between the markers’ barycenters are computed;
(5) the change in markers’ poses is assessed by computing
the Euler angles {yaw, pitch, roll} associated to the rotation
matrix, which sends the reference frame of one marker into
the reference frame of the other. An example about how the
image processing algorithm computes the Euclidean distance
between markers is shown in Figure 7. Since there is not

3ArUco is a library for Augmented Reality (AR) applications based on
OpenCV, available at: https://www.uco.es/investiga/grupos/ava/node/26.
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FIGURE 7. How the marker-based SLAM algorithm works from image acquisition to the barycenter
detection for each marker in the scene.

TABLE 5. Simulation of the crack opening: three pairs of markers (A and B, C and D, E and F) moving away from each other, in five steps by 5 mm
(T1, . . . , T5) and 5 steps by 1 mm (T6, . . . , T10). All the distance values are expressed in mm.

any absolute reference frame, in the present study, the pose
variation of the markers is tracked over time, by computing
the rotation matrix between the frame associated to each pair
of marker at each acquisition. All the pairs in the marker
configuration are considered in the algorithm, in order to
account for any possible pose variation.

1) CONTROLLED EXPERIMENTS
In order to assess the robustness of the overall marker-based
SLAM algorithm, the accuracy of ArUco marker detection
and the repeatability of the measurements, some tests in a
controlled setting were preliminary conducted.

In such experiments, a crack opening (of around 1 mm up
to 5 mm) was simulated and a set of images was acquired at
about 150 cm from the target. Six planar markers, with side
length of 5.5 cm, were fixed on two identical boxes (three
markers on left, three on right). The left box was allowed slid-
ing integral with a mobile axis of a coordinatographer, while
the right one was fixed to the table. The certified accuracy of
the coordinatographer is of 0.1 mm. For simplicity, a planar
motion was simulated and only some distances between the
pair of markers were considered: 5 steps by 5 mm, and other
5 steps by 1 mm, by moving the left box far from the right one
along one axis, as shown in Table 5; nonetheless, the approach
can be easily applied, as it is, to a 3D variation of the marker
configuration.

Furthermore, the marker-based SLAM method was
compared with a more traditional one, which uses the 3D
translation vectors directly estimated from the camera pose

FIGURE 8. The ArUco markers glued to the wall of the Old Fortress
(Leghorn, Italy) were correctly detected by the marker-based SLAM
algorithm.

parameters, in the computation of the 3D position of the
markers. Such tests showed that the marker-based SLAM
method is quite a stable method, able to provide an accuracy
of less than 1 mm with only six images of the scene. Further
details about the methods, as well as the results, are described
in [36], [37].

2) REAL TESTBED
Experiments were carried out in real settings, as described
in [38], which reports the initial results of the crack moni-
toring of Old Fortress walls in Leghorn (Figure 2c), located
in the area called Bastione della Capitana. This is the only
case study, where large cracks need to be monitored. Six
pairs of markers, four small pairs (0.1 m side length) and two
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TABLE 6. The table focuses on two marker pairs (#38-#23 and #3-#4); data was acquired at about 6 mt during the whole experimentation (acquisitions I
to VII). The pose variation is appreciated estimating the Euler angles (first three rows, in degree) associated to the rotation matrix sending one marker’s
frame into the other marker’s frame; also the norm of the (theta, phi, psi) vector is computed (fourth row, in degrees). The last row, for each pair, is the
Euclidean distance between barycenters is expressed in meter.

TABLE 7. Computed distances between the barycenters of each pair of markers. The data refers to image acquisitions performed 3m far from the crack.
Last two columns show the ground truth and the absolute value of the difference between the ground truth and the average value of the evaluated
distance. All the distances are expressed in meters.

larger ones (0.2 m side length), have been glued to the wall.
A sequence of 6 images were acquired 3 m, 6.5 m and 9 m far
from the wall. All markers were correctly detected, as shown
in Figure 8. Further acquisition campaigns, performed over
a period of four months, allowed for extending such prelimi-
nary results, as shown in Table 7. As expected, the computed
distances are very close to the ground truth, in most cases.
In one case (pair of markers #27-#20), the proposed method
reached a sub-millimeter accuracy in estimating the distance.

In Table 6, details are provided on the data acquired during
the whole experimentation, especially on the two marker
pairs #38-#23 and #3-#4: the Euler angles (theta, phi, and
psi [degrees]) are shown, the norm of the vector made of

Euler angles [degrees], and the distance [meters] between
barycenters. The standard deviation is provided as well. This
experimentation leads to the two following key points: the
feasibility of the proposed method for the crack monitor-
ing through UAV, and the robustness of such measurement
method outdoor in an uncontrolled environment. Actually,
since the markers are not co-planar, the distance between the
barycenters are measured with a flexible meter: this cannot
be considered an accurate measure, but allow us to under-
stand whether the distances computed with our method are
plausible. In addition, the low standard deviation computed
over the 4-month period through regular acquisitions (with
no critical events over such a period) shows the robustness
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TABLE 8. Comparison between the state-of-the-art, minimally-invasive methods for crack monitoring and the proposed one.

of our measures. A final remark about how to use these data
in the long-term monitoring: after acquiring data over about a
year (without critical events), and estimating the crack pattern
variation as the linear and pose variations associated to the
configuration of markers, those measurements can be used,
along with their standard deviations, to define alert thresholds
or pejorative trends, so triggering further investigations or
recovery actions.

3) CONSIDERATIONS
The results discussed so far demonstrate that irregular ancient
structures, subject to environmental agents and to seasonal
changes, a marker-based SLAM algorithm provides a com-
plete and robust 3D information about specific critical points
along the crack. Therefore, the proposed image processing

method allows for both an accurate quantitative analysis of
the crack and a comparison of the crack measurements over
time. Furthermore, compared to other minimally-invasive,
state-of-the-art methods for crack monitoring, as in Table 8,
the solution herein proposed can be considered as a reason-
able trade-off between the minimal invasiveness required to
work with cultural heritage, the cost-effectiveness of the tech-
nological resources, and the measurement accuracy required
for structural defects monitoring.

B. VIRTUAL REALITY
As shown in Figures 9 and 10, the 3D environment and VR
solutions have been adopted in order to enrich the remote
inspection providing a high-quality reconstruction of the
monitored sites together with the location of installed sensors
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FIGURE 9. The three phases of 3D reconstruction of the Mastio di Matilde in the old fortress (Leghorn).

FIGURE 10. The VR environment: users can explore the virtual reconstruction of a monitored structure having,
in the meantime, direct access to values measured by the sensors deployed on it.

and their readings. Moreover, VR offers valid support during
periodical or extraordinary inspections, giving the UAV oper-
ator a quick look of the explored site and of the installed
sensors with the vehicle correctly placed in the virtual scene
in real-time.

In order to provide a useful tool to the UAV operator and to
the users who are responsible for monitoring the structures,
the 3D model reconstruction of the ancient structure has to
be as close as possible to the reality (see Figure 9). In this
way, the operator will easily plan UAV flights and rely on
that to estimate the vehicle position. In this scenario, pho-
togrammetric techniques come in handy to virtual reconstruct
the monitored site. Aiming at ensuring reconstruction qual-
ity, a reconstruction chain has been established that exploits
Agisoft Metashape4 (a commercial offline software) and
Meshlab5 for mesh downsampling and fine correction [48].
Reconstructions have been obtained employing Metashape
with the images acquired during the first UAV survey.

Generated reconstructions are used to create virtual 3D
scenes that are populated by adding information about
installed sensors and markers and linking to the available
records in the database (see Figure 10). In detail, each scene

4Agisoft Metashape at: https://www.agisoft.com/
5Meshlab at: http://www.meshlab.net/

is built through Unity Game Engine6; thanks to this, all the
linear transformations required to perform movement inside
the scene, object placement, lighting and collision manage-
ment are entrusted to the game engine. Thanks to a set
of dedicated developed scripts, the game engine is able to
connect with the database in the MCC to retrieve the list of
sensors installed in the site, populate the scene properly with
the sensors and, for each sensor, retrieve acquired data and
their elaboration. Inside the scene, sensors are represented as
an icon with color depending on sensor status. Moreover, for
each sensor, a panel, containing its name and a preview of
retrieved values, is shown. As shown in Figure 10, from this
panel, users can access all retrieved data that will be displayed
in a dedicated portion of the screen. The developed 3D virtual
environment7 offers the possibility to show, in real-time,
the UAV position inside the monitored site. This functionality
is useful, as mentioned before, for UAV operators who can
have another point of view of the vehicle and its surroundings
and the relative sensor positions. Further, in the case of an
alert that inhibits on-site inspection, the UAV and the operator
can still operate quickly and safe. The virtual environment

6Unity Game Engine at: https://unity.com/
7The MOSCARDO 3D virtual environment is available at:

http://moscardo.isti.cnr.it
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is directly connected with the SLAM software module,
operating on the GCS, to retrieve the live UAV position.
SLAM software module estimates UAV motion, exploiting
ORB-SLAM8 [49]; UAV movements are expressed as abso-
lute shifts from the starting point. In this scenario, the abso-
lute shift is a better choice with respect to incremental shifts,
since it avoids issues due to possible packet loss. Finally, each
UAV inspection and its movements are stored in the database
and can be accessed and run in playback mode directly from
the virtual environment.

VI. BEYOND NUMERICAL RESULTS
From a technical point of view, the use of a WSN and of
an UAV can be quite effective in acquiring a rich set of
data to provide both experts and local authorities with a
comprehensive description over time of the health of any
ancient structure. Furthermore, the design of such a support
system for decision making met the constraints of modular-
ity, flexibility, and minimally invasiveness; hence, its fea-
tures allow to customize the installation and the monitoring
process, thus respecting the peculiarities of the inspected
architectural asset. Beyond numerical results, the real deploy-
ment of MOSCARDO system clearly pointed out the posi-
tive acceptance of such a system by local authorities, whom
asked for the prolongation of the monitoring in two cases:
Torre Grossa in San Gimignano, and Mastio di Matilde in
Leghorn. Indeed, the local authorities demonstrated a strong
interest in collecting data on long temporal scales (months
or years) to be analysed as described in this work. Long-
term data collecting allows also the fine tuning the thresholds
currently in use in the system to trigger any alerts. Research
scientists, including the authors, have been and are still col-
laborating with the local decision makers on the planning of
future actions, in order to exploit and further improve the
MOSCARDO system.

VII. CONCLUSION
This paper describes the design and the implementation of
a monitoring system that integrates the environmental and
mechanical data acquired through an IoT network with the
images and the context information collected by means of
an UAV. The images collected from above are used to build
a 3D reconstruction of the ancient structures, showing the
exact position of the deployed sensor nodes, thus allowing
an operator to dynamically interact with the real-time read-
ings collected by the IoT network, exploiting a PUB/SUB
paradigm. Such a 3D virtual tool offers the possibility to show
the virtual point of view of the UAV. The VR tool can be
accessed online at this URL: http://moscardo.isti.cnr.it.

The UAV was also used for sensing purposes. In fact,
the on-board camera has been used to automatically inspect
and measure the crack patterns of the monitored structures
with high accuracy, as shown by the numerical results pre-
sented in this work. The proposed monitoring system has

8The software is available at: http://webdiis.unizar.es/ raulmur/orbslam

been deployed in three different case studies, so proving its
versatility and scalability in different operating conditions.
Furthermore, the system has proved to be reliable and robust
to rather severe operating conditions, in fact being tested for
more than twelve months. In fact, despite harsh environmen-
tal conditions, i.e., strong sun in summer and sustained rain-
falls inwinter, close seacoast, the system has proved to be able
to automatically restore all deployed services with minimal
human intervention. Our study has some limitations, anyway:
regarding the image-based method for crack monitoring, it is
essential for the UAV to be in stable hovering for properly
acquiring high resolution images without blur effects, further
than be close to the target (from 1.5 to 2meters). Furthermore,
the configuration of the markers installed along a crack may
greatly affect the accuracy of the analysis, which is based on
the evaluation of the distance variations between those, thus
requiring careful attention. Anyway, we highlight again the
low cost of such a monitoring solution.

As future tests, we plan to increase the number of samples
for each acquisition related to the image processing method
(six images per session have been acquired in the presented
tests), which would result in a lowering of the measurement
error. Finally, in order to improve the accuracy of the markers
pose estimation, the ChArUco diamond [50] markers9 may
be used instead of the single ArUco markers. The detection
of a diamond marker takes advantage of the known relative
position of the markers in it, and it will increase robustness
and accuracy of the marker pose estimation.
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