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Abstract.

In this paper the constitutive equation of masonry-like materials is generalised in order to
account for thermal dilatation. Subsequently, the explicit solution to the equilibrium problem
of a circular ring subjected to two uniform radial pressures p; and pa, acting respectively on
the inner and outer boundary and a temperature distribution depending linearly on the radius,
is calculated.

Sommario.

In questo lavoro si generalizza l'equazione costitutiva dei materiali non resistenti a trazione
per tenere conto delle dilatazioni termiche. Successivamente si calcola la soluzione esplicita
del problema di equilibrio di una corona circolare costitnita da un materiale non resistente a
trazione, soggetta a due pressioni radiali uniformi, p; € p2, agenti rispettivamente sul bordo
interno e sul bordo esterno ¢ a una distribuzione di temperatura variabile linearmente col

raggio.

Key words: Masonry-like material, thermal expansion, equilibrium problem.

1. Introduction

In many applications it is necessary to model the behaviour of masonry-like solids in the
presence of thermal dilatation. For example, molten metal production processes, in particular
integrated steel manufacturing, require refractory coatings able to withstand the
thermomechanical actions produced by high-temperature fluids. Analysis of these coverings
is usually carried out by considering the refractory materials to be linear elastic, though they
are actually non-resistant to traction. Results obtained by applying such a constitutive model
are generally characterised by considerable tensile stress and are thus quite unrealistic.
Further applications are presented in [1], where the Pozzuoli's volcanic caldera is studied and
in [2] where the influence of the temperature on the stress field in a masonry arch is analysed.

In Section 2 a constitutive equation which can model the behaviour of some refractory
materials is presented; to this end the constitutive equation of isotropic masonry-like
materials {3] is generalised in order to account for thermal dilatation. Specifically, we
suppose that the total strain minus the thermal expansion is the sum of an elastic strain, on
which the stress, negative semi-definite, depends isotropically and linearly and of an inelastic
part, positive semi-definite and orthogonal to the stress. We thus obtain a non-linear elastic
material conforming to a masonry-like material when there is no temperature change. A more
detailed description of this generalised constitutive equation is given in [4], where the
temperature-dependence of the material constants is taken into account.

In Section 3 we then consider a circular ring made of an elastic material characterised by
the constitutive equation introduced in Section 2, The circular ring is subjected to a plane
stress brought about by two uniform radial pressures acting on the inner and outer boundary



and a temperature distribution varying linearly with the radius. Once the Poisson's ratio, the
Young's modulus and the thermal expansion coefficient of the material are fixed, we
determine the explicit solution to the equilibrium problem of the circular ring and we study
the dependence of this solution on the inner and outer temperatures and pressures. We verify
that if they satisfy certain inequalities involving the inner and outer radii and the material's
constants, then the elastic solution given in [5] is negative semi-definite and therefore
represents precisely the solution for the material under consideration. On the contrary, if
these inequalities are not satisfied, the elastic solution is characterised by a tensile
circumferential stress which may arise on both the inner and outer boundary of the ring. In
this case, by following a procedure similar to that used in [6] for a circular ring at constant
temperature, the equilibrated stress field, negative semi-definite, is calculated, and the
corresponding fractures determined.

2. The constitutive equation

In this section a constitutive equation able to model the behaviour of some refractory
materials is presented; in particular, the constitutive equation of isotropic masonry-like
materials [3] is generalised in order to account for the presence of thermal dilatation. The
dependence of the material constants on temperature is omitted here because it is irrelevant to
the application examined in the next section; a detailed description of the more general
constitutive equation is presented in [4].

In the following, t is the temperature change with respect to a reference temperature, say
te, and v, E and o denote the Poisson's ratio, the Young's modulus and the thermal expansion
coefficient, respectively, which, in this case, are temperature-independent.

Let us indicate as Sym+ and Sym- the subsets of the linear space Lin of second order
tensors constituted by symmetric positive semi-definite and symmetric negative semi-definite
tensors, respectively. The inner product of two tensors A and B of Lin is A+-B = tr(ATB),
where AT is the transpose of A and tr{A) is the trace of A.

Let E and o t I be the infinitesimal strain and thermal expansion tensor, respectively; we
suppose that the tensor E - ot t I is the sum of an elastic part E¢ and of a positive semi-definite

inelastic part E&:
(2.1) E-atI=E¢ +E2, E% Sym*,
and that the stress tensor T depend linearly and isotropically on Ee:

=i.._.. e . __V__ [
2.2) T T+v {E® + o5y tr (E%) I}.

Moreover, we suppose that T is negative semi-definite and orthogonal to the inelastic strain:



(2.3% Te Synr,
2.3)2 T-E2=0.

E2 is sometimes called the fracture strain because the body can be expected to crack in the
regions where E2 is different from zero. (2.1)-(2.3) is the constitutive equation of a non-linear
elastic material which, when t = 0, reduces to the classical constitutive equation of masonry-
like materials described in [3].

By a procedure similar to that used in [7], taking into account that & t I is a spherical
tensor, it can be proven that tensors E, T, E* and E¢ are coaxial, and that the constitutive
equation (2.1)-(2.3) has a unique solution. The coaxiality of E, T, E2 and E¢ allows one to
write the constitutive equation (2.1)-(2.3) with respect to the basis g1, g2, g3 of the
eigenvectors of E, and thus, given the material's constants, to explicitly calculate the stress
and inelastic strain as functions of E [4].

In view of the application to be described in Section 3, we limit our attention to a plane
stress. Let us suppose that the eigenvalue t3 = g3-Tga of T is nil; if e, €2, €3 and a3, a3, a3 are
the eigenvalues of E and E2, respectively, from (2.2) we obtain

(2.4) eg-at-a3=~l-¥v(a1+a2-c1-e2+2at).

Moreover , since by virtue of (2.3),, a3 is arbitrary , it can be assumed to be equal to zero. By
taking (2.4) into account , relation (2.2) can be written in terms of the eigenvalues t; and t; of
T and the eigenvalues e, €2, a and a3

Q= E2 {cl-at—a}+v(ez-at-a2)},
l-v

(2.5)

= E {ez-at-ag+viep-at-ap).
1-v2

3. The circular ring

The circular ring Q shown in Figure 1, made of a non-linear elastic material with
constitutive equation (2.1)-(2.3) and having inner radius a and outer radius b, is subjected to a
plane stress as a consequence of two uniform radial pressures p; and p; acting, respectively,
on the inner and outer boundary and a temperature distribution varying linearly with the
radius p:

__Hu-t bty - atp
3.1) tpy=- Uy Dzl



where t) and ty are the temperatures of the inner and outer boundary, respectively.

Figure 1, The circular ring.

The problem has been studied in [6], without considering the temperature. In particular, it has
been proven that once py is fixed, if p; satisfies the inequality p2 > %‘i—fipl, then the

circular ring is entirely compressed; on the contrary, if p; belongs to the interval

%ph az—zi-% p1 ) the circular ring is cracked in a region which starts at the inner boundary

and varies as py varies. In particular, the crack region is characterised by a transition radius

po which coincides with a for pp = _32_*:_2b_ P1, and increases as p; decreases, until the radius
b

b is reached when p; = % P1.

In this paper we aim to study how in the presence of a linear temperature distribution the
crack region varies as o(t; - t;) increases from zero. In particular, we shall prove that once
pressures p; and p; are fixed, there exist Wy and W3, such that if a(t; - 1) belongs to the
interval [y, y2], then the circular ring is compressed; on the contrary, if a(t; - t) is outside
this interval, fractures are present. More precisely, there exists @y such that if p2 2¢1p1, then
the crack region behaves roughly like as in Figure 2; in this picture the amplitude of the
region where cracks are present (dashed region) is drawn as function of oty - t).



L4 V2 oty -ty)

Figure 2. Behaviowr of the cracked region when au(t, - t5) varies.

Having chosen a polar reference system {O, p, 8} whose origin coincides with the
centre of the ring, let us consider the stress field T having principal components

_a?b¥py-py) 1, p1a?-pob?
(3.2) op(p) = 2. 2 B—; + o 2 +
oty - tpE

[(a + b)p3 - (a2 + b? + ab)p? + a?b?] , e[a, b],
3pX02 - ) p”-( p p

(3.3) Ce(p) = - a?6%(p2-p1) | + p1a? - pab? +

$ 2oE b bpd - @b +ab)p2-a?],  pela,bl.
3p%(b? - a?)

It is well known that stress field (3.2)-(3.3) is the solution to the equilibrium problem of a

circular ring composed of a homogeneous isotropic linear elastic material with temperature

distribution (3.1) and subjected to pressures p; and pz [3].

First of all, we intend to determine the conditions which p;, p2, t1, tz and o must satisfy so
that the stress field with components (3.2)-(3.3) is negative semi-definite and is therefore
precisely the solution to the problem. Subsequently, we shall consider the situations in which
these conditions are not verified; in such cases we shall determine the solution, starting from



the stress field (3.1)-(3.2). To this end, we have chosen to fix the radial pressures and study
the sign of the linear elastic solution as oty - tp) varies.
Let us now define the quantities

(3.4 yo = 3 PuaZ+D%) - 2pb”
E  2p2-ab-a?

and
(a2 + b?) - 2p;a?
(3.5) y = 2 B2 ;
¥ E b2 + ab - 2a?

v, is positive and the interval [Wo, W2] is non empty if we choose pressures p; and ps
satisfying the inequality

(3.6 P22 @1p1,

where

(3.7) oy = D2+ab+dg?
4b? + ab + a2

belongs to the interval (0, 1). In the following we shall suppose that condition (3.6) is always
verified; in this case yg and 3 satisfy the inequality

(3.8) Yo <2,

thus we can consider the values of a(t; - t) belonging to the interval [yo, y2] and those

outside it. In particular, if pz = ¢1p1, then Yo=Yz = 2 P1 _ b%-a2 and the interval {yy,
E™" 4b2+ab+a?

;] reduces to the point yo.
For the sake of simplicity we shall limit our treatment by supposing that the thermal
expansion coefficient and temperatures t; and t; are such that the inequality

3.9 alt-t) 20
is satisfied(D). Thus, since the quantity yy is positive when the inequality

(3.10) P2 < PP,

1 Accounting for negative values of a(t; - 1) as weil would make both calculation and their description more
onerous, without however improving the quality of the solution itself.



is satisfied, where

2 2
3.11) = a2+b*
2 2b

ranges from 0 to 1 and verifies the inequality @1 < ¢z, we define a new number ¥, as
follows: yq = Wy, if (3.10) holds , and y =0, when (3.10) does not hold.

The next subsections are dedicated to separate treatment of two cases: that in which
aft; - t) belongs to the interval [y, ¥;], and that in which a(t; - tp) is outside this interval.

3.1 aft; - ) BELONGS TO THE INTERVAL [y, y2]

In this subsection we prove that, with a fixed pressure p; on the inner boundary of €2, if (3.6)
is satisfied and if temperatures t; e ty are such that ot - e [y, /7], then the stress T with
components (3.2)-(3.3) is negative semi-definite.

The stress component Gp in (3.2) is the sum of a stress due to the pressures py and py, say

2k - 2. 2
cﬁ‘(p):mz——gﬁ-l— 4 P1aZ-pb and a thermal stress
o oty - 1)E 3. (a2 + b2 2, 252 Si _ -
oh(p) = [(a + b)p? - (a2 + b? + ab)p? + aZb’]. Since of(a) =-p1, Cp(b) =-p2
3p2(b? - a2)

and of¥(p) is a monotonic function of p, we can deduce that 6f'(p) is negative in the interval
[a, b]. Taking into account both the boundary conditions cj(a) = Op(b) = 0 and assumption
(3.9), simple calculations reveal that oh(p) is non-positive in {a, b] and, finally, that 6,(p) is
non-positive for each pe [a, b}.

We now move on to evaluating the sign of the circumferential stress Og given in (3.3). Let
us begin by noting that the circumferential stresses on the boundary

2+ b2) - 2p0b2
(.12 gg(a) = pi(@® + 5% - 2psb +ofty -tp) E ap+a‘-2b7 2. 2b?
b? - a? 3(b2 - 32)
and
2 _ (a2 + b2
(3.13) oob) = 212 pa@ DY oy p biiab-2e?
b? - a? 302 - a?)

are both non-positive, since ¢(t; - t7) belongs to the interval [y1, W3). Moreover, 6g(a) = 0, if
aft; - tz2) =y, and Gg(b) =0, if alty - t2) =2

We now aim to prove that g is non-positive in the internal part of €2 as well. In order to
arrive at this result, we consider the third degree polynomial

(3.14) s(p) = 2(a + bty - ) E p3 + [3(p1a2 - p2b?) - aefty - 1) E (b2 + ab + a2)lp2 +



- 3a2b2(p; - p1) - &ty - ) E a2b2Z,

whose sign coincides to that of Gg(p) . Polynomial s(p) is non-positive in [a, b], in fact s(p)

GE (11 - t)(a2 + b% +ab) - 3(pra? - ppb?)
3aE (1 -t2)(b+a)

0(2), Three situations can occur: p2 € [a, b), p2 £ a and, finally, b < p;. In the first case, s(p)

has a minimum in (a, b); in the second case, s(p) is an increasing function in [a, b]; in the

third case, s(p) is decreasing in [a, b]. These results, taken together with the fact that s(a) <0

and s(b) £ 0, are sufficient to guarantee the non-positiveness of s(p) in [a, b].

For values of a(t, - t;) greater than v, or less than y, the radial stress (3.2) is still non-
positive, on the contrary the circumferential stress (3.3) becomes positive. In particular, if we
progressively increase the quantity «(t; - t3), examination of (3.13) reveals that, beginning at
\p, positive circumferential stresses arise on the outer boundary and spread in the internal
part of Q. Instead, in view of (3.12), the circumferential stress for values of a(t; - t2) less
than y; becomes positive starting at the inner boundary. Therefore, for values of oty - tz)
outside the interval [y, W2], the stress field with components (3.2)-(3.3) does not constitute
the solution of the equilibrium problem of the circular ring made of a material having
constitutive equation (2.1)-(2.3).

has a maximum at p; = 0 and a minimum at p3 =

3.2 oty - t2) IS GREATER THAN vy

In this subsection we consider the values of o{ty - t2) satisfying the inequality oty - tz) 2 Y2
and calculate the solution for a material with constitutive equation (2.1)-(2.3), by starting
with the solution (3.2)-(3.3) corresponding to a linear elastic material. The procedure
followed in determining the solution is similar to that used in [6] for a circular ring made of a
masonry-like material, subjected to pressures p1 and p2.

Let us suppose that the circumferential stress vanishes in the circular ring Qy; = {(p, 9);
pe{pr, bl}, where the radius p, € [a, b] is unknown. In this region the radial stress must be
determined in such a way as to satisfy the equilibrium equation

do, o]
(3.15) et AR A §
dp p

Moreover, by virtue of (2.5), taking into account that the circumferential stress and the
circumferential inelastic strain €} are nil, we have

(3.16) Op = E (g - ab),

2 Since @, > a/b, condition (3.6) implies that p; > (a/b)p; and then the numerator of p; is positive.
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where €, is the radial strain and € =€, - ot the elastic strain. Denoting u as the radial
displacement, in view of the relation g, = gg and (3.16), (3.15) is equivalent to the

differential equation
2
(3.17) du _on 4t du gy,
P dp? Pdp "dp
from which we obtain
(3.18) du i+ £
dp p

and then 6p = E g— , where the constant ¢ is determined imposing the boundary condition

bp2

Op(b) = - p2 and it holds thatc = - < Therefore, the stress components in Q»; are
Sp(p) =~ gpz, pe [Py, bl,

(3.19)
ce(p) =0, pe [py, b].

From (3.18) we obtain the expression for the radial displacement

P
(3.20) u(p) = f at(p’) dp' - b% Inp+d, pe [pr. bl,

pr

where d is a constant which will be determined subsequently by imposing the continuity of u
at p = pp. By virtue of (2.1), the relation &g = g and (2.5), the circumferential inelastic strain

is
(3.21) £5(P) = eg(p) - at(p) - €5 (P) = ";—p)-at(p)- F bpﬁ, pe [Py, bl.

Let now consider the remaining circular ring Q;, = {(p, 0); pe[a, p;]}, it is subjected to

pressures py and py = %33, acting on the inner and outer boundary, respectively, and has the

T
- t1-4a .
-t p+ Prt - Ak , where t, is the temperature at p;

Pr-a Pr-2a

linear temperature distribution t(p) = -



Il

tl}):? Pr+ btﬁ :tz- On the other hand, by virtue of

the results obtained in subsection 3.1, the linear elastic solution in £y,

which, in view of (3.1),is t, = t(py) = -

pi1a - Prpr2 +

_aPpip-p) 1
(3.22) Cplp)=—"T—"— 5t 7

pt-a?

+ oty - t)E

[(a+pp° - a2+ pl +ap)p? + a2pl, &[a, pil,
3P2(Pr2 ) Prip P PP P P p

2n2 _ 2. 2
(3.23) Ge(p) = - a_PLé_IZr_TPQ L, REpe?
pr-at P pf - a?
v S -WE (oG4 pypd - a2+ p2+apip?- a2l pela, py,

3pX(pi - ad)
is negative semi-definite, under the assumption that the condition

2+ pHp, - 2a%py
p# + ap, - 2a?

(3.24) ol - t) = 2 @

holds®). (3.24), being equivalent to 6g(p,) = 0, expresses the continuity of the circumferential
stress at p;. Taking into account the expressions of t; and py, from (3.24) it can be deduced
that p, is a root of the following fourth-degree polynomial:

(3.25) q(p) = oE (t; - t2)p* - 3[0E (t; - tp)aZ + (b - a)bpa]p? +
+ 2[aE (t; - t)a3 + 3(b - a)aZp;]p - 3(b - a)aZbp,.

At the end of this subsection we will prove that polynomial q has a unique root p; in the
interval (a, b].

3y alty - t2) 2 0, then at; - t;) is also non-negative by virtue of the linear dependence of t on p and this is
sufficient to guarantee the non-positiveness of the radial stress (3.22). The non-positiveness of the

circumferential stress (3.23), by virtue of (3.12), (3.8), (3.6), (3.7) and the relation p, = %*’2‘ is due to the
inequality

p +ap? + da’po 1+ ab®+dald
4p? + ap; + a? 4b% + ab+a®

which holds for each pr belonging to [a, b].
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Now let us calculate the strains and displacement corresponding to the stress field (3.22)-
(3.23) in the region Q,; here the inelastic strain is nil, therefore
1 a%p?(pr-py) 1 p1aZ - pip?
(3.26) gp)=atp)+efp)=w|(1+V)———=-- + (1 -V)———
E p2-a2 p? pZ- a2

oty - tr)

1-2v)@a+pp +
3t oty @ PP

+atp)+

2
- (1-v)(a2 +ap; + pP) + (1 +V) p‘ ] pela, pd,

2
(3.27) eg(p) = a1(p) +e5(P) = 11 (1+v)a_°.zM’_.L+(1 vy P2 pp? |
p2-a2 p? p? - a?

a(tl t1')

3(p?

+otp)+—— [(2-V@a+ppp +

a2p?

-(1-v)@2+ap +pH-(1+V) 7 1, pela, pid,

and the radial displacement is

2
(3.28) u(p) =1 (1 + V) ML + (1 V) Bu?f_
pf-a2 P pi - a?
2
3"(‘&-%[(1 2V)(a + p,) E s (v- 1)@ +ap +pPp - (1 +v)ap? 1]
p2-a
p
+ -p_cf_a[ -(t1- &) 5 + (et - at)ps pela, pel.

We are now in a position to calculate the constant d contained in the relation (3.20), by
imposing the continuity of the radial displacement at p = py and then determine the radial

displacement in the region 2y,

(3.29) u(p) = bm (p') — Pt [2a2p; - (p? + ad)p; + V(p? - aVp] +
(pr - 32)
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2
+JLp —a L (t1- &) %"" (pity - at)p| +

%P (1 - t)(p? + ap, + 4aD), pe [pr. bl.

6(p? - a2)

By virtue of (3.21) and (3.29), the circumferential inelastic strain has the expression

2 Ot -t) | bpo

(3.30) eg(P) = o R

{ % P In (pi/p) - % bpz +

Pt 2a%p; - (p? +ad)p; + V(pE - ad)p,] +

(p? - aE

o
2P (1 1)(p? + ap, + 4aD)), pe [Py, bl
6(pf - a%)
In view of (3.24), it can be immediately verified that €g(p,) =0, and that &§ is moreover a
positive function of p in the interval (py, b]. In order to prove this, it can first be noted that the
sign of the circumferential inelastic strain (3.30) coincides with the sign of the function f(p) =

p €4(p), which, setting p= A/ % , has a maximum at p = - p and a minimum at p =
|

p. It can then be proven that the minimum point p is less than the transition radius py. In fact,
in view of (3.24), the inequality p < p; is equivalent to the condition
Dy > 3 a%p}
b(p? + 3aZp, - a3)
3 a?p?
b(p? + 3a2p; - a3)
f(p;) = 0, it can be concluded that f(p) and, consequently E;(p), are both non negative in [py,
bl.

Our aim is now to prove that polynomial g given in (3.25) has a unique root in the
interval (a, b]. To this end, let us first note that q(b) = ai(t; - t2)E b(b - a)(b2 + ab - 2a2) - 3b(b
- a)[(a2 + b2)py - 2a?p1] is positive when a(t; - tz) > W2 and is nil for a(ty - t2) = y2.
Moreover, q(a) = 6(b - a)a2 (ap; - bpz) is temperature-independent and negative in view of
the inequalities p; 2 @) p1 > % p1. Therefore, there exist at least one p, belonging to the

p1 which is trivial to verify by virtue of the relations

< ¢ and of (3.6). Therefore, f(p) is increasing for p 2 p, and so, since

interval (a, b] such that q(py) = 0.
In order to prove the uniqueness of p,, let us consider the polynomial
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<ot -3]a2 M] 2 [3 3(b-a)a2p1} _3(b - a)a%p,
p(py=p 3{&1 +aE(t1-t2) p? +2lad+ E -1 TR

having the same roots of q, and then the second derivative of p:

a +

pn(p) = 12p2 _ 6 (b - a)bPZ }

oE (1 - t2)

which is an increasing function in [a, b]. By setting y3 = -F}‘_ L a2) iz
a

that p"(a) is non-negative if and only if a(t; - tz) 2 ys. In this case p is a convex function
and has a unique root p; in (a, b); p, may coincide with b, if y3 < 3. On the contrary, if
a(ty - t2) <3, then p"(a) < 0 and further operations are needed. A priori , we can distinguish
the following cases:

case (i) p"(b) 2 0, then there exists p* & (a, b] such that p"(p*) = 0.

case (i) p"(b) <0, then there exists p* > b such that p"(p*) = 0.

, 1t is easy to verify

Let us put Yy = —El,- %5—2—29—?—%3 and observe that W4 < Y3 and Y4 < 3. Firstly, we note that
-a

p"(b) < 0 if and only if a(t; - t2) <4, a sitnation which can never occur, given that we have

supposed ot - ty) > s, case (ii) is therefore excluded. Now we need only examine case (i),

which holds when the interval [y, y3) is non-empty and a(t; - t2)e {2, ¥3). In this instance
p'(p) has a minimum at p*. Sincep'(a) = %—llat)ﬁ (ap; - bpz) < 0, because p; > apy/b, p'(b)
must be positive, given that if it were negative or nil, then p' would be negative in [a, b] and p
6a(b - a)
oE (1 - t2)
p(b) =b(b- a) b2 +ab-2a2-3 (a2 ;E,z()gz -t;?)azpl 2 0. Thus, there exists p**<(a, b), such
that p'(p**) = 0. The polynomial p decreases in [a, p**), has a minimum at p**, increases in
[p**, b], and thus there is a unique p.e (p**, b}, such that p(p,) =0.
We have thus proven that with a, b, p; and p; fixed so that (3.6) holds, for each value of
a(ty - ©2) € [ya, +e=), there is a unique p(e(t; - t2))e (a, b root of the polynomial p and
therefore of the polynornial q.
The explicit value of p,(ci(t; - t2)) could be determined using the well-known formulas for the
calculus of the roots of a fourth-degree polynomial. This calculation is omitted here, however
we include an analysis of the dependence of p, on a(t; - t2); more precisely we shall prove
that p{a(t; - tp)) is a decreasing function of oi(t; - t2) and when aft; - t) goes to + oo, then
pr{a(ty - t)) goes to a. To this end, let us put f = a(t; - t7) and consider the function two
variables w(B,p) = BE p? - 3[BE a2 + (b - a)bp,]p? + 2[BE a3 + 3(b - a)aZp;]p - 3(b - a)abpy.
From (3.25) it follows that w(B, p(B)) = 0 and by virtue of the implicit function’s theorem,
we have

decreasing in [a, b], something which is excluded by p(a) = (ap; - bpz) < 0 and
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dpr _ (- p3 + 3a%p; - 2a%)p,E

(3.31) ,
dB  4BE p? - 6[BE a2 + (b - a)bpalpy + 2[PE a3 + 3(b - a)aZp;]

where the numerator is negative because p; > a, and the denominator never vanishes since p,
is a root of q having multiplicity equal to 1. Therefore, p; is a monotonic function of 3, which
result, together with the fact that a < p,(8) < b, leads to the conclusion that the limit of p(f)
for B going to + o exists and is finite. Let us indicate this limit by c and consider the relation

_ 3(b- a)(bp#(B)p2 - 2a%p(B)py + a%bp2)

(3.32) ,
E p:(B)(p:(B) - a)(pA(PB) + ap:(P) - 2a2)

obtained by deriving B from w(f, p:(B)) = 0. When [ goes to + e, taking into account that the
numerator of (3.32) is positive, we get ¢ = a. In particular, p«{p) is a decreasing function of f}
in [\7, +o). Figure 3 shows the behaviour of the radius p, as at; - t2) 2 ¥2 varies. This result
has been obtained by assuming a = 1. m, b = 2. m, p; = 0.1 MPa, pz =0.063 MPa, E = 5000.
MPa, and the corresponding value of y» is 0.17 104.

L_oand

0r(m)
2.0

1.9
1.8-
1.7 -
1.6 1
151
L4-
1.31
12+

1.14

10 . T . —

0 3 4 6 8 10 12:107°
a(t,-t2)

Figure 3. Radius p, vs. a( - t2).
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3.3 a(t; - ty) BELONGS TO THE INTERVAL [0, y]

In this subsection we shall consider values of a(t; - t3) belonging to the interval [0, y1]. First

of all, we notice that if y; = 0, then the interval reduces to the point 0. On the other hand, if

vy > 0, that is, if pressures py and p; satisfy the inequality (3.10), then the interval [0, wy]is

non-empty. Given pj, let us choose pye [@1p1, 92p2) and fix the temperatures t; and t; such
that a(t; - t2)e [0, y;]. As already noted in Subsection 3.1, the linear elastic solution (3.2)-

(3.3) is not negative semi-definite because it is characterised by positive circumferental

stresses emerging from the inner boundary of the circular ring. It is possible to determine a

negative semi-definite stress field by following the procedure used in Subsection 3.2. Also in

this case we suppose that in the circular ring Qi = {(p, 0); pe[a, ps]}, where p is unknown,

the stress components are

Gplp) = ~f;;p1, pe[a, ps]

(3.33)
cg(p) =0, pe(a, psl.

In view of (2.1) and (2.3);, we have €} =0, €5 = €, - o t and the radial dispIuacement is

p
(3.34) u(p) = Jr at(p)dp' - a—pél- Inp+d, pela, ps]

where the constant d is determined by imposing the continuity of u at p = p,. The
circumferential inelastic strain is

B35 ) e axp) - sp(p)= " o) ¥ pez, pd

where u is supplied by (3.34).

The remaining circular ring Q3¢ = {(p, 8); pe[ps. b]} is subjected to pressures p; = ap1

Ps
and p, acting on the inner and outer boundary, respectively, and experiences the temperature

distribution t(p) varying linearly from t; = - t11) ;2 ps + bté - :tz forp=ps totzyforp=b.In

Qs the linear elastic solution

bpdp2-ps) 1 |, PPZ-pab? |

3.36 o(p) =
(359 o) b2-p2  p? b? - p?
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_Olts - )E 3 242 )
" 3002 pd) [+ po)p” - (b° + ps® + bp)p® + b1, pelps, bl.

22 - 2 . 2
(3.37) oop) =~ LPEP2TP) 1 PePi-pab”

b2-p2  p? b2- p?
M (2(b + Ps)P3 - (0% + 952 + bps)Pz - bzpsz]- pe [ps, b
3p2(b? - pd)

is negative semi-definite, if the condition 4

v I
(3.38) oy - 1) = 3 TIRIP 2b%s .
E 2b% - Ps - bps

is satisfied. (3.38) is equivalent to the continuity of the circumferential stress at p;. Taking
into account the expressions of t; and ps, it follows that (3.38) is satisfied if and only if psis a
root of the following fourth-degree polynomial:

(3.39) h(p) = & (t; - t2)p* - 3[@E (1) - t)b? + (b - a)api1p? +
+ 2[0E (4 - t)b% + 3(b - a)b?p,lp - 3(b - a)blap; .

We begin by noting that h(a} = a(t; - t2)E a(b - a)(2b? - ab - a?) - 3a(b - a)[(a® + b2)p; -
2b2p2] is negative for at; - t) <y and nil for a(t; - tz) =y;. Moreover, h(b) = 6(b - a)b?
(bpy - ap;) is temperature-independent and positive, by virtue of the inequality
pz2P1p1> % p1. Therefore, there exists at least one p; in the interval [a, b), such that h(ps)
= 0. By a procedure similar to that used in Subsection 3.2 for the polynomial q, it is possible
to prove that h(p) has a unique real root p; in [a, b]. The proof is omitted here for the sake of
brevity. Therefore, with a, b, p; and p; fixed in a such a way that both (3.6) and (3.10) hold,
for each value of oft; - tz) €[0, ], there is a unique root p(a(t; - t2))e [a, b) of the
polynomial h. ps(a(t; - t2)) is a decreasing function of &(t; - tz); in particular, when aft; - t2)
=y, Ps = a and when a(t; - t7) = 0, the fourth degree polynomial h reduces to the second
degree polynomial

(3.40) n(p) = - 3(b - a)(ap1p? - 2b?p2p + bapy) ,

4 If a1 - tp) 2 0, then ot - t3) is also non-negative by virtue of the linear dependence of t on p and this is
sufficient to gurantee the non-positiveness of the radial stress (3.36). The non-positiveness of the
circumferential stress (3.37) can be proven with arguments similar to those used in the footnote 3 for the case

oty - 12} > .
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a result already obtained in {6). In this case the explicit value of the radius p, can be easily

- A h2nt - a2
calculated and it holds that p = b 2B2 :’ p‘l’% a%pf Figure 4 shows the behaviour of p, as

a function of ¢(t] - t3) in the interval [0, y;]. This result has been obtained using the
following parameter values: a = 1. m, b = 2. m, p; = 1. MPa, p2 = 0.536 MPa, E = 5000.
MPa, the corresponding value of v is 0.85 10-4.

ec(m)}
1.37 |
136 ]
1.321
1281
124
120
1.16 -
1.12-

1,08

1.04 1

1.00 T T T ™Y -
0 20 40 60 80 85 - 10°°

a{t;- ¢z}

Figure 4, Radius p, vs. ot - I2).

The radial displacement corresponding to the stress field (3.36)-(3.37) in the region Qa
where the inelastic strain is nil is thus

bzpz(Pl - Ps) P p2 - p2b2
3.41 =_}__1+v_1m__s__1_+1_v_s_§___+
( ) u(p) El: ( ) b2 - psz o ( ) b2 - p;"'

ots-t) | Pr -~ 22L}
+3(b2-psz) [(1 V)b +ps) 5+ (v 1)(b? + bp; + pHp - (1 + V)b pé 3 +
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2

+—-qss— - (ts - tz)%~ + (btg - pst2p |» pe [ps, bl.

With this we are now in a position to calculate constant d contained in (3.34) by imposing
the continuity of the radial displacement at p = p, and then determining the radial
displacement in Qi

_ap1, (Ps Ps
) ue = ) P ok b v p2pl

2
o | ey P .
o [ (ts- 1) 5+ Ot - pitadp |+
cp

—ts-t 2 + bp, + 4b? , Psl.
- p )( 2(ps +bp ), pe {a, psl

In view of (3.35) and (3.42), the circumferential inelastic strain is

(3.43) g = L (Lo S + i o) - Faps +

@p_;__ [(p? + b2)p, - 2b%p; + V(b2 - psE)psl +

—---——t5-t 2 4+ bp, + 4b? , Ps).
602 p )( 2(p2 +bp e pe [a, ps]

From (3.38), it follows immediately that sae(ps) = (. Moreover, eg is positive in the interval
[a, ps). In proof of this, we first note that the sign of the circumferential inelastic strain (3.43)

coincides with the sign of the function g(p) = p £5(p), which by setting p = wﬂ,
s alte - DE

has a minimum at p = p. The non-negativeness of g in [a, ps) follows from the inequality p>
a(pz + 3b%p; - b%)

3 b2p§ p1, which is trivial to

ps, which in turn derives from the condition p2 >

a(p? +3b%p; - b°)

3b%p?

<1 and (3.6).

verify through the inequalities
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4. Conclusion

The analysis performed in Section 3 shows that when a linear temperature distribution is
present in the circular ring, fractures can arise, not only from the inner boundary, as occurs
when the temperature is uniform [6], but from the outer boundary as well. Figure 5 depicts
the behaviour of the cracked region as aft; - tz) varies from 0, for p2€ (¢1p1, 92p1). In
particular, for a(t;-tz) = 0 the cracked region is delineated by radius

- A/ bipt - g2n
bp a?plz% ZPL (Figure 5 a); for values of oty - 1) belonging to the interval (0,

y), the radius p, root of the polynomial (3.39), decreases until it coincides with the inner
radius a of Q for a(t; - t3) =y (Figure 5 b). When o(t; - t2) belongs to the interval (1, y2),
the circular ring is entirely compressed and then the inelastic strain is nil (Figure 5 ¢). Finally,
for a(ty - tp) 2y (Figure 5 d), the cracked region is determined by the radius py, root of the
polynomial 3.25; p, equals b for a(t; - tz) = Wy, and decreases as at; - tz) increases.
Therefore the radial extension b - p, of the cracked region increases, spreading towards the
interior of L.

For pz > @2p1, V1 is equal to 0 and the behaviour of the crack region is that depicted in Figure
6; in this case, the inelastic strain is different from zero only starting at the outer boundary.

ps=b

Figure $a. af; - t2)=0. Figure S b. a(t; -t) € (0, y,).
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Figure 5 ¢. ot - ©2) € [y, ¥} Figure §d. ati - 2) > ya.

b b= —m — — — — -
Al — — — —— = -
‘ -
v, =0 h ) aty-ty)
Figure 6. Behaviour of the cracked region for p; > §;p; when oft; - t) varies.
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