(will be inserted by the editor)

Software Tools for Technology Transfer manuscript No.

Towards Formal Methods Diversity in Railways:
an Experience Report with Seven Frameworks

Franco Mazzanti, Alessio Ferrari and Giorgio O. Spagnolo

ISTI-CNR, Via G. Moruzzi 1, Pisa, ITALY,
e-mail: {firstname}.{lastname}@isti.cnr.it,
WWW home page: http://fmt.isti.cnr.it

Received: date / Revised version: date

Abstract. In the ever expanding universe of formal meth-
ods, several tools exist that can be exploited to validate
early system designs, and that are applicable to prob-
lems of the railway domain. In this paper, we present
an experience report in formal modelling and verifica-
tion using seven different formal environments, namely
UMC, Promela/SPIN, NuSMV, mCRL2, CPN Tools,
FDR4 and CADP. In particular, we model and verify
an algorithm that addresses a typical railway problem,
namely deadlock avoidance in train scheduling. The al-
gorithm is designed according to a prototypical architec-
ture, the so-called blackboard pattern, in which a set of
global data is atomically updated by a set of concurrent
guarded agents. Our experience, limited to the specific
problem, shows that the design of the algorithm can be
translated into the different formalisms with acceptable
effort, while deep proficiency with the tools is required
to optimise the performance. The current paper estab-
lishes the preliminary foundations for the concept of for-
mal methods diversity in the development of railway sys-
tems. The concept is based on the idea that, if different
non-certified formal environments are used to verify the
same design, this increases the confidence on the verifica-
tion results. Furthermore, by checking that the number
of states generated during the verification process is the
same for each framework, the designer can have an initial
indication of the equivalence of the diverse models. The
industrial application of this promising concept requires
further research, and appropriate guidelines shall be es-
tablished to identify the proper formal environments to
use for a specific railway problem, and to define an in-
dustrial process in which formal methods diversity can
be exploited at its full benefits. The paper presents the
different models developed, compares the tools employed
in terms of language features and performance, and dis-

Send offprint requests to:

cusses the industrial implications of the concept of for-
mal methods diversity in the railway domain.

Key words: Formal Methods Diversity, Model Checking,
Deadlock Avoidance, Train Scheduling, Railways, Auto-
matic Train Protection, CBTC.

1 Introduction

The CENELEC EN 50128 norm [13], for the develop-
ment of railway safety-critical software, recommends the
usage of formal methods during the design and imple-
mentation of railway products. Several industrial expe-
riences have been documented in the literature concern-
ing the formal development of railway software [24,39,
71]. The usage of the B method [2] for the develop-
ment of the SACEM system — a control platform for
a line of Paris RER [18] —, and the iterative formal
verification of the Paris automatic metro line 14, also
based on the B method [8], are successful, early experi-
ences that have shown the practicability and effective-
ness of formal methods to railway companies. With the
advent of model checking techniques and tools [17], ex-
periences on the application of these approaches were
performed in railways, especially for what concerns the
validation of interlocking systems [70,68,44,29,11,49,4].
More recently, formal model-based approaches [69,26],
involving graphical modelling and code generation, were
also used for the development and verification of railway
systems, with a main focus on automatic train control
(ATC) and protection (ATP) systems [28,47,63,15,27].
Some experiences were also performed on the usage of
Coloured Petri Nets (CPN) for modelling and simulation
of railway signalling platforms [67,50]. Recently, experi-
ences have been published in which model checking and

2 F. Mazzanti et al.: Formal Methods Diversity in Railways

induction-proof techniques are used in combination for
the verification of several railway systems [9].

When using any support tool (e.g., compilers, testing
environments, formal verification frameworks) along the
development of a railway product, the CENELEC EN
50128 norm asks the tool to be qualified, or certified, for
its usage in the process [13]. This requirement is com-
mon to other standards, as, e.g., the DO 178C for the
software of avionic systems [64]. Although formal tools
exist that are certified according to the EN 50128 norm,
as, e.g., SCADE [22] from Esterel Technologies, the ma-
jority of the formal environments available are not cer-
tified. Hence, notwithstanding the usefulness of formal
methods for discovering design flaws early in the devel-
opment, the result of a formal modelling and verification
process in which a non-certified tool is used cannot be
considered as a final proof of the correctness of a cer-
tain design with respect to the verified properties. On
the other hand, the existence of different, non-validated,
tools producing the same results might increase the over-
all confidence on the verification outcomes. This prin-
ciple was previously applied in the avionic domain by
Rockwell Collins [60], which, in collaboration with other
partners, developed translators from semi-formal mod-
els expressed in Simulink/Stateflow towards the Lustre
formal language [41], and then towards formal environ-
ments, such as PVS [61] and NuSMV [16], in which de-
sign properties and system requirements can be veri-
fied. However, to our knowledge, no equivalent experi-
ence exists in the railway domain. We hypothesise that
this might be due to the perceived difficulty of formal
methods for railway practitioners, and to the common
idea that, if mastering a single formal tool is a problem,
mastering more than one might be hardly feasible.

In this paper, we show that a representative rail-
way problem can be modelled and verified with lim-
ited effort using seven different tools, namely: UMC [65],
Promela/SPIN [46], NuSMV [16], mCRL2 [38], FDR4 [35],
Coloured Petri Nets (CPN) Tools [51] and CADP [33].
We have selected model checking tools, given the in-
creasing interest in this technology shown by the railway
sector in the last years [24]. In particular, we modelled
an algorithm for deadlock avoidance in train schedul-
ing. The algorithm was previously implemented as part
of an Automatic Train Supervision (ATS) system [57,
58] of a Communications-based Train Control System
(CBTC) [30]. Such system controls the movements of
driverless trains inside a given yard. The deadlock avoid-
ance algorithm takes care of avoiding situations in which
a train cannot move because its route is blocked by an-
other train. Equipped with this algorithm, the ATS is
able to dispatch the trains without ever causing situ-
ations of deadlock, even in presence of arbitrary delays
with respect to the planned timetable. This kind of prob-
lem is a rather typical one — not only for the railway
domain [21] — which can be modelled as a set of global
data that is atomically updated by a set of concurrent

guarded agents — i.e., agents that, when certain global
conditions are met, are allowed to atomically change the
global status. This design strategy is normally referred
to as the blackboard architectural pattern [21]. In this pa-
per, we show the design of the algorithm, the different
models produced with the seven formal tools, and the re-
sults of the verification activities, observing differences
and hurdles in the usage of the seven environments. All
the models produced within this experience, and referred
in this paper, are available in our public repository [56].

This paper establishes a preliminary basis for the po-
tential usage of formal methods diversity in the design
and verification of railway software. In particular, our
experience shows that, given a simple blackboard sys-
tem design, while limited effort and adjustments were
required to translate the design into different formalisms,
a much greater effort was needed to fully exploit the var-
ious verification framework capabilities. Small choices in
the specification of the models, or in the verification op-
tions, resulted in a great impact on the performance of
the tools. Our goal is to ensure that, given a certain spec-
ification, different non-certified formal tools provide the
same verification results. In this way, although the tools
are not certified, we can increase the confidence on the
correctness of the specification. From his point of view
our main focus is on the validation of the specification
rather than on the validation of the requirements — see
Sect. 12 for more details. We also suggest a lightweight
method to provide an initial indication on the equiv-
alence of the specifications designed with the different
tools, which is based on observing the number of states
produced by the formal tools. If the number of states is
the same, and all the specifications satisfy the properties,
this increases the confidence on the equivalence of the
specifications. To fully ensure specification equivalence,
model transformation and verification of the translation
step [3] should be performed.

Our proposal is focused on the railway domain, given
the interest of the domain in formal methods [24], and
the certification constraints [13]. Nevertheless, the pre-
sented principles, which take inspiration from code/design
diversity [12,52,62], and early studies on diversity of for-
mal approaches [5], can in principle be applied also to
other domains.

The paper extends a previous contribution to the
ISoLA 2016 conference [56]. With respect to this previ-
ous work, the current one describes the experience with
three additional environments, namely CPN, FDR4 and
CADP (Sect. 7, Sect. 8 and Sect. 9), provides a more in-
depth discussion on the lessons learned while using the
seven tools (Sect. 11), and discusses the potential of for-
mal methods diversity in the railway domain (Sect. 12).

The rest of the paper is structured as follows. In
Sect. 2 we describe the deadlock avoidance algorithm
that we modelled. In Sect. 3-9, we show our models and
the verification results for UMC, NuSMV, Promela/SPIN,

F. Mazzanti et al.: Formal Methods Diversity in Railways 3

mCRL2, FDR4, CPN Tools and CADP, respectively!,
and, within the descriptions of the models, we highlight
the peculiarities of the different languages and environ-
ments. In Sect. 10 we present a more complex case, based
on an extension of the original design, in which trains
perform round-trip missions. All the models referred in
this paper can be retrieved from the data repository [59].
In Sect. 11, we provide a discussion on the experience,
and in Sect. 12 we discuss the potentials and the chal-
lenges associated to the concept of formal methods diver-
sity. Finally, Sect. 13 concludes the paper and discusses
our future work.

2 The Deadlock Avoidance Algorithm

This section describes basic elements of the modelled al-
gorithm, which was defined in our previous works [57,
58]. Fig. 1 shows the structure of the railway layout con-
sidered in this study. Nodes in the yard correspond to
itinerary endpoints, and the connecting lines correspond
to the entry/exit itineraries to/from those endpoints.
Eight trains are placed in the layout. Each train has its
own mission to execute, defined as a sequence of itinerary
endpoints. For example, the mission of train0, which
traverses the layout from left to right along top side of
the yard, is defined by the mission vector: Ty = [1,9, 10,
13,15,20,23]. The mission of train7, which instead
traverses the layout from right to left, is defined by the
vector: Ty = [26,22,17,18, 12,27, 8]. The progress status
of each train is represented by the index, in the mission
vector, which allows the identification of the endpoint in
which the train is at a certain moment. We will have 8
variables Py, ..., P;, one for each train, which store the
current index for the train. For example, at the begin-
ning, we have Py = 0,..., Py = 0, since all the trains
occupy the initial endpoints of their missions — at index
0 in the vector.

If the 8 trains are allowed to move freely, i.e., if their
next endpoint is free, there is the possibility of creating
deadlocks, i.e., a situation in which the 8 trains block
each other in their expected progression. To solve this
problem the scheduling algorithm of the ATS must take
into consideration two critical sections A and B — i.e.,
zones of the layout in which a deadlock might occur —
which have the form of a ring of length 8 (see Fig. 2),
and guarantee that these rings are never saturated with
8 trains — further information on how critical sections are
identified can be found in our previous work [57, 58]. This
can be modelled by using two global counters RA and
RB, which record the current number of trains inside
these critical sections, and by updating them whenever
a train enters or exits these sections. For this purpose,
each train mission 73, with ¢ = 0...7, is associated with:

L All the verification experiments have been conducted on a Mac
Pro (late 2013) workstation with Quad-core 3,7Ghz Intel Xeon E5,
64 GB RAM running OS X 10.11 (El Capitan)

a vector of increments/decrements A; to be applied to
counter RA at each step of progression; a vector B; of
increments/decrements to be applied to counter RB.

For example, given Ty = [1,9, 10,13, 15,20, 23], and
Ay =10,0,0,1,0,—1,0], when train0 moves from end-
point 10 to endpoint 13 (Py = 3) we must check that
the +1 increment of RA does not saturate the critical
section A, i.e., RA 4+ Ag[Py] < 7; if the check passes
then the train can proceed and safely update the counter
RA := RA+ Ay[Py]. The maximum number of trains al-
lowed in each critical section (i.e., 7), will be expressed
as LA and LB in the rest of the paper.

The models presented in the following sections, which
implement the algorithm described above, are deadlock-
free, since the verification is being carried on as a fi-
nal validation of a correct design. The actual possibility
of having deadlocks, if the critical sections management
were not supported or incorrectly implemented, can eas-
ily be observed by raising from 7 to 8 the values of the
variables LA and LB.

The current design, in which each system state log-
ically corresponds to a set of train progresses and each
train movement logically corresponds to an atomic sys-
tem evolution step, leads to a state-space of 1,636,535
configurations. This data is important because it will
allow the user to cross-check the correctness of the en-
coding of this logical design in the various frameworks.

3 The UMC Model

UMC [65] is a model checker that belongs to the Kan-
dISTI? [66] family. Its development started at ISTI in
2003 and has been since then used in several research
projects. So far UMC is not really an industrial scale
project but more an (open source) experimental research
framework. It is actively maintained and is publicly us-
able through its web interface?.

The KandISTI family comprises four model checkers,
each of which is oriented to a particular system design
approach, but all of which share the same underlying
abstract model and verification engine. The basic un-
derlying idea behind KandISTT is that the evolution in
time of the system behaviour can be seen as a graph
where both edges and states are associated with sets of
(composite) labels [37]. The graph is formalised as an
abstract doubly labelled transition system (L2TS) [20].
Labels on the states represent the observable properties
of the system states, and labels on the edges represent
the observable properties of the atomic system transi-
tions. The logic supported by the KandISTI framework
uses the evolution graph as semantic model and allows
the user to specify abstract properties in a way that is
rather independent from the internal implementation de-
tails of the system [25]. From this point of view the state

2 nttp://fmt.isti.cnr.it/kandisti
3 http://fmt.isti.cnr.it/umc

4 F. Mazzanti et al.: Formal Methods Diversity in Railways

Via Roma
Via Marco Polo
13

@
BCAO3 Piazza Dante
|
00
®

Parco della Vittoria
|
@

A\@/

- &= (o)

)

18

@ e

2 25

-
~
N

© 11
BCAO. (12)
® ;

—
®

Viale dei Giardini

T — v
29 [vain7]

Fig. 1: A fragment of the yard layout and the 8 missions of the trains

Via Roma

Via Marco Polo _ <

BCAO3 Piazza} Dante

Il Parco della Vittoria
|

Py ‘. @

S

Il
@

Viale dei Giardini

Fig. 2: The critical section A and B which must not be saturated by 8 trains

labels become the the state predicates of the logic, and
action labels become the basic actions of the logic.

The different flavours of the various tools of Kan-
dISTTI family are related to the supported specifications
languages, that range from process algebras to sets of
UML-like statecharts. In our case, we will use the UMC
tool (version 4.6), because it allows the user to model in
a direct way nondeterministic system evolutions (trig-
gered by global conditions) that read and update global
data. Moreover UMC is the only tool of the KandISTI
family that supports composite data structures.

It is not the main concern of paper is give a detailed
presentation of UMC, for which we refer to the specific
documents available online*. Here we focus instead on
those aspects used by our models. In UMC, a system
is described as a set of communicating UML-like state
machines. In our particular case, the system is composed
of a unique state machine, in which we have a vars part
— including the global state — and a Behavior part —
specifying the state machine behaviour.

The vars Part The vars part contains the vectors de-
scribing the train missions (7;), the indexes recording
the train progresses (P;) — i.e., the indexes in the pre-

4 http://fmt.isti.cnr.it/umc/DOCS

vious vectors —, the occupancy counters RA and RB of
the two critical sections, and the vectors A;, B; including
the increments/decrements that should be performed by
the trains at each step of their progress for the critical
sections A and B, respectively. In addition, we have the
two constants indicating the maximum number of trains
allowed in the critical sections (LA, LB).
Vars:

-— mission steps for train0
TO: int[] := [1, 9,10,13,15,20,23];

-— RA updates steps for train0
A0: int[] := [0, O, O, 1, 0,-1, 0];

—— RA updates steps for train7

A7: int[] := [0, O, O0,-1, 0, 0O, 0];
—— occupancy of region RA

RA: int :=1;
—-- limit value for region RB

LB: int :=7;

-— RB updates steps for train0

BO: int[] := [0, O, O, 1, O,-1, O];

—— RB updates steps for train7

B7: int([] := [0, O, O,-1, O, 0, O0];
—— occupancy of region RB

RB: int :=1;

-— train progresses

PO,P1,P2,...,P7:int :=0;

F. Mazzanti et al.: Formal Methods Diversity in Railways 5

In this particular case the size of a state is fixed and
static. However, this is not a requirement for UMC, since
we can have variables representing unbounded vectors,
queues, unbounded integers, which together with the
(potentially unbounded) events queues can contribute
to make the actual size of a state ° highly dynamic. This
dynamism might lead to potentially infinite state sys-
tems.

The Behavior Part In the Behavior part of our class
definition we will have one transition rule for each train,
which describes the conditions and the effects of the ad-
vancement of the train. A generic transition rule is ex-
pressed as follows:

Behavior:
<SourceState> -> <TargetState>{
<EventTrigger>[<Guard>]/<Actions>

}

A transition rule expressed as above intuitively states
that when the system is in the state sourcestate, the
specified EventTrigger is available, and all the cuards
are satisfied, then all the actions of the transition are
executed sequentially and the system state passes from
SourceState tO0 TargetState.

The interleaving of the progress of the various trains
is therefore modelled by the internal non-determinism
of the possible applications of state machine transitions.
In our case there is no external event that triggers the
system transitions, therefore the transitions will be con-
trolled only by their guards.

In the case of train To0, for example, we will have the
transition rule:

sl -> sl

{* [-— train0 has not yet completed its mission
PO <6 &
—— next position not occupied by trainl
TO[PO+1] != T1[PO] &

—— next position not occupied by ...

—— next position not occupied by train7
TO[PO+1] != T7[P7] &

—-— A is not saturated by arrival of train0O
RA + AO[PO+1] <= LA &

—-— B is not saturated by arrival of train0
RB + BO[PO+1] <= LB
17/

—— update occupancy of critical section A

RA = RA + AO[PO+1];

—— update occupancy of critical section B

RB = RB + BO[PO+1];

—— update train progress

PO := PO +1;

}

Verification As a last step we have to define what we
want to see on the abstract L2TS associated to the sys-
tem evolutions. Indeed, we recall that the overall be-
haviour of a system is formalised as an abstract L2TS,

5 i.e. the sum of the sizes of the current values held by all vari-

ables.

and abstraction rules allow us to define what we want to
see as labels of the states and edges of the L2TS. The ab-
straction rules are expressed in the abstraction part of
the specification, in which we define which labels should
appear on the edges and states of the abstract evolu-
tion graph. In our case, we are interested to observe the
existence of a certain state in which all trains have com-
pleted all their missions. This can be done assigning a
state label, e.g. ARRIVED, to all the system configurations
in which each train is in its final position.

Abstractions {
State SYS.PO=6 and
SYS.P1=6 and

SYS.P7=6 —-> ARRIVED
—— abstract label on final node

}

The L2TS associated to our model will be a directed
graph that will converge to a final state labelled AR-
RIVED in the case that no deadlock occurs in the system.
The branching-time, state/event based temporal logic
supported by UMC has the power of full u-Calculus but
also supports the more high level operators of Compu-
tation Tree Logic (CTL). The property that for all exe-
cutions all the trains eventually reach their destinations
be easily checked by verifying the CTL-like formula:

AF ARRIVED

The AF operator inside the above CTL formula specifies
that for all execution paths (A) of the system, eventually
in the future (F), we should reach a state in which the
state predicate ARRIVED holds.

If this property does not hold, UMC provides an ex-
planation of why the evaluation of the formula failed,
allowing the user to interactively explore the set of sys-
tem evolution steps that led to failure of the relevant
subformulas and view all the internal details of the tra-
versed states.

UMC completes the evaluation of the formula return-
ing true in a time that ranges from 38 seconds to 86
seconds depending on how the tool is used. The fastest
results of 38 seconds is obtained by exploiting a multi-
core approach during statespace generation[55], and by
adopting a depth-first exploration strategy.

Cyclic Generalisation The case study illustrated above
is a particularly simple model, in which a set of trains
perform a limited one way mission across a yard. In gen-
eral the situation can be more complex, e.g. with trains
that repeatedly perform one mission after another, con-
tinuously cycling across the yard. In this case the evolu-
tion graph would contain: (a) fair cycles in which all the
trains always eventually move even if they might never
pass again from a state in which all the trains are in
their final destination at the same time (b) bad cycles
in which a few trains actually block each other while
the system as a whole would continue to evolve with the

6 F. Mazzanti et al.: Formal Methods Diversity in Railways

non deadlocked trains (i.e. a case of partial deadlock);
(¢c) not relevant cycles in which only a few trains evolve,
but just because of allowed unfairness of the underlying
dispatching policy.

Under these cirumstances the above formula AF AR-
RIVED can no longer be used to evaluate the correct-
ness of the model because it would signal as errors all
the above three cases of cycles. There is another CTL
property that allows us to distinguish a correct model
from a wrong one, which is represented by the formula:

AG EF ARRIVED

The above formula states that from every reachable
state of the system (AG) there is at least one path (EF)
that leads to a state in which all trains have reached their
final destination (ARRIVED). This formula is false only in
presence of true partial deadlocks, in which some trains
are no longer allowed to reach their destination, inde-
pendently from the fairness of the dispatching policy. An
additional benefit of the the above formula is that, if vi-
olated, the corresponding explanation provided by UMC
would show a precise path towards the train movement
that is the real cause of a possibly future partial dead-
lock. Let us consider, for example, the case of two trains
trying to traverse the same linear sequence of itineraries
in opposite directions. The real cause of the deadlock
would be the entering of the second train inside that lin-
ear sequence, while the explicit partial deadlock would
occur at a later time when the two trains would actually
meet face to face. A full deadlock would occur when no
more trains in the system were allowed to move.

4 The NuSMYV Model

NuSMV® [16] is a software tool for the formal verification
of finite state systems. NuSMV was jointly developed by
FBK-IRST and by Carnegie Mellon University. NuSMV
allows the user to check finite state systems against spec-
ifications in the Computation Tree Logic (CTL), Linear
Temporal Logic (LTL) and in the Property Specification
Language (PSL)[1].

Since NuSMYV is intended to describe finite state ma-
chines, the only data types in the language are finite
ones, i.e. boolean, scalar, bit vectors and fixed structures
of basic data types. A state of the system is represented
by a set of variables. Assignment rules in the language
allow the user to specify total functions, which define all
the possible values that a state variable can assume in
the next state.

Constants and Variables NuSMV distinguishes between
system constants (DEFINE construct), and variables (var
construct). The system constants are represented by the
T;., A;, B; and LA, LB data values:

6 http://nusmv.fbk.eu/

DEFINE
TO := [1, 9,10,13,15,20,23];
T7 := [26,22,17,18,12,27, 81;
LA := 7;

A0 := [0, O, O, 1, O,-1, O];
A7 := [0, 1, 0,-1, 0, O, 01;
IB := 7;

BO := [0, O, O, 1, 0,-1, O];
B7 := [0, O, O, -1, 0, O, 0];

The state variables consist of the different P; of the
various train progresses, and of the occupancy status of
RA and RB of the two critical sections. Furthermore,
we will need an additional rRunNING input variable for
modelling the non-determinism in the choice of the po-
tentially moving train and consistently synchronise the
updates of the P;, RA, and RB variables.

IVAR

RUNNING: 0..7;
VAR

PO: 0..6;

P7: 0..6;

RA: 0..8;

RB: 0..8;

Behaviour The initial state of the system can be de-
scribed within the assign construct making use of the
init operator:

ASSIGN
init (PO) := 0;
init (P7) := 0;
init (RA) := 1;
init (RB) := 1;

The total transition relation that models all the pos-
sible system evolutions can be defined within the TrRans
construct structured using a nested sequence of condi-
tional expressions (condition? thenpart: elsepart) as
shown by the following rule:

TRANS
—-— progression rule for the evolving train TO
RUNNING =0 &
—— the train has not yet completed its mission
PO < 6 &

—-— the next place is not occupied by other trains

TO[PO+1] != TI1[P1l] &
TO[PO+1] != T2[P2] &
TO[PO+1] != T3[P3] &
TO[PO+1] != T4([P4] &
TO[PO+1] != T5[P5] &
TO[PO+1] != T6([P6] &
TO[PO+1] != T7[P7] &

—-— the progression step satisfies all contraints
RA + AQO[PO+1] <= LA &
RB + BO[PO+1] <= LB

F. Mazzanti et al.: Formal Methods Diversity in Railways 7

-— TO0 advances one step

next (PO) in (PO+1) &

next (P1l) in P1 & -— ot
—-— the other trains do not move
next (P2) in P2 &

next (P3) in P3 &
next (P4) in P4 &
next (P5) in P5 &
next (P6) in P6 &

next (P7) in P7 &

—-— critical sections occupancy is updates
next (RA) in (RA + AO[PO+1]) &

next (RB) in (RB + BO[PO+1])

—— progression rule for the evolving train T1
RUNNING =1 &

—-— progression rule for the evolving train T7
RUNNING =7 &

Since the rule must be total, we must add a final
:elsepart describing the system transition in the case
the train selected by the RUNNING input value is not
allowed to move. In these cases the system status should
not change.

: —— no train can move
next (PO) in PO &

next (P7) in P7 &
next (RA) in RA &
next (RB) in RB

Verification The description of the properties to be ver-
ified is expressed within the cTrspEc/ LTLSPEC constructs
of a NuSMYV module. The property that all trains even-
tually complete their mission is encoded in the following
way:

CTLSPEC -- all trains eventually complete their mission
AF ((P0=6) & (Pl=6) & (P2=6) & (P3=6) &
(P4=6) & (P5=6) & (P6=6) & (P7=6))

LTLSPEC -- all trains eventually complete their mission
F ((P0=6) & (P1l=6) & (P2=6) & (P3=6) &
(P4=6) & (P5=6) & (P6=6) & (P7=6))

The NuSMYV version of the above CTL formula makes
use of the same AF operator already seen in the previous
Section. The only difference with respect to the UMC
version is that now the state predicate to be verified is
directly expressed in terms of values on internal variables
of the model. However, unless we introduce appropriate
fairness constraints the above formulas would appear to
be false.

In fact, the final else clause of the transition relation,
triggered when an input-selected train cannot move, in-
troduces non progressing self loops in the system evo-
lutions. In order to discard these uninteresting paths,
and to make insignificant the dummy transitions corre-
sponding to trains that are not allowed to move, we must
introduce a set of rFaTRNESS constraints of the form:

FAIRNESS RUNNING = 0;

FAIRNESS RUNNING

7;

In this way, NuSMV limits its evaluations to the fair
paths of the system evolutions, i.e. those infinite paths
for which the fairness constraints are true for an infinite
number of times. With the above constraints, an infinite
path in which only train0 is selected is discarded, be-
cause it violates the fairness rules rRUNNING=1, ..., RUN-
NING=7. With the introduced FaIrRNESS constraints, we
find the formula to be true in about 39 seconds in the
case of the CTL formula, and in about 43 seconds in the
case of the LTL formula. It is worth noticing that, in the
UMC model presented in Sect. 3, fairness issues did not
arise, because all paths are finite”.

A more efficient way of verifying with NuSMV the
correctness of the system behaviour is to avoid the in-
troduction of the rFatrNESS constraints and verify instead
the NuSMV CTL equivalent of the already seen ac EF
arrIVED property (i.e. that from any state the system
has the capability to reach the successful final state). In
this case the property rule becomes:

CTLSPEC -- all trains eventually complete their mission

AG EF ((P0=6) & (P1l=6) & (P2=6) & (P3=6) &
(P4=6) & (P5=6) & (P6=6) & (P7=6)

Indeed in this case the formula is proved to be true
in just 2.8 seconds.

When a logical formula is found to be false, NuSMV
automatically returns a path as counterexample of the
formula, in the shape of an evolution trace, and it is
possible to check in detail the internal values of the vari-
ables along the states in the path. Since in general the
counterexample for a branching time formula might have
the shape of a tree, the returned path would necessarily
describe just a fragment of the real counterexample.

Cyclic Generalisation We have already seen in the UMC
case that the verification of the branching time formula
AG EF ARRIVED allows us to verify the correctness of the
cyclic model (i.e. find livelocks) also in presence on unfair
scheduling paths. This alternative formula has also the
advantage of identifying the real cause of partial dead-
locks as soon as they are triggered and, in the NuSMV
case, the effect of making unnecessary the addition of
FAIRNESS assumptions, with great advantages in terms
of performance.

5 The Promela/SPIN Model

SPIN® [46] (Simple Promela Interpreter) is an advanced
and very efficient tool specifically targeted for the veri-

7 The language used by UMC does not support explicit fairness
constraints. Instead, fairness-related properties can be specified by
means of the supported logics, e.g., u-Calculus.

8 http://spinroot.com

8 F. Mazzanti et al.: Formal Methods Diversity in Railways

fication of multi-threaded software. The tool was devel-
oped at Bell Labs in the Unix group of the Computing
Sciences Research Center, starting in 1980. In April 2002
the tool was awarded the ACM System Software Award.
The language supported for the system specification is
called Promela (PROcess MEta LAnguage). Promela is
a non-deterministic language, loosely based on Dijkstra’s
guarded command language notation, and borrowing the
notation for I/O operations from Hoare’s CSP language.
Once a model is formalised in Promela, a corresponding
analyser is generated as a source C program (pan.c).
The compilation and execution of the analyser performs
all the needed on-the-fly state generations and verifica-
tion steps. The properties to be verified can be expressed
in LTL, and a violation of a property can be explained
by observing the generated counterexample trail path.
In our case the Promela model consists in single main
process which defines a set of global state variables, their
initialisations, and a main execution body. A Promela
model can also include a set of property specifications
that will be verified by the generated process analyser.

State Variables The state variables declarations (a) in
our case consist in the definition of T;, A;, B; vectors,
plus the numeric variables P;, RA, RB, LA, LB, as
shown below.

// mission data for train TO ... T7

byte TO[7], ,T7171;

// progress data for trainO,...train7

byte PO,...,P7;

// constraints of train TO ...T7 for Region A
short AO[7], ... , AT[7];

// constraints of train TO ...T7 for Region B
short BO[7], ... , B7[7];

// occupancy of region A, B
byte RA, RB;

// limits of region A, B
byte LA, LB;

Initialisation The system initialisation appears within
the atomic {...} construct inside the system init {...}
section. In Promela, sequences of statements, when in-
cluded inside an atomic {...} construct, are executed as
part of a single system (or process) transition.

The setting of the initial value for the state variables
has to assign a single numeric value to each vector com-
ponent, as shown below:
init {

// initializations of state variables
atomic {

// TO:[1, 9,10,13,15,20,23]

TO[0]=1; TO[1]=9; TO[2]=10; TO[3]1=13;

TO[4]=15; TO[5]=20; TO[6]=23;

// T7:[26,22,17,18,12,27
T7[0]1=26; T7([11=22; T7[2]=17; T7[3]1=18;
T7[4]=12; T7[5]=27; T7[6]=8;

// A0:[0,0,0,1,0,-1,0]
AQ[3]= 1; AO[5]= -1;

// A7:[0,1,0,-1,0,0,0]
A7[11=1; AT[3]=-1;

// B0:[0,0,0,1,0,-1,0]
BO[3]=1; BO[5]=-1;

// B7:[0,0,0,-1,0,0,0]

B7[3]=-1;
RA=1; RB=1; LA=7; LB=7;
// main sequence of statements

Behaviour In our case, the non-determinism of the sys-
tem can be modelled, as already done in the UMC and
SMV case, by the non-determinism of the main process
evolutions. The main sequence of statements, in our case,
is a do loop containing a sequence of atomic guarded
transitions, in which each transition models the progress
rule for a train. The do loop still appears inside the init
section, after the inititialization code.

init {

// initializations of state variables

// main sequence of statements

do
:: atomic {
// progress rule for train0
(PO < 6 &&
TO[PO+1] != T1[P1l] &&
. . . // next place not occupied by other trains
TO[PO+1] != T7[P7] &&

// critical sections constraints satisfied
RA+AO [PO+1] <= LA &&

RB+BO[PO+1] <= LB

) —>

// update the status of critical sections
RA = RA + AQ[PO+1];

RB = RB + BO[PO+1];

// update the progress of train0

PO++;

}i

atomic {

// progress rule for train?

+i
// all missions are completed

(PO0==6) && (Pl==6) && (P2==6) && (P3==6)

&& (P4==6) && (P5==6) && (P6==6) && (P7==6)

-> skip;

od;

}i

Verification The property we are interested in is the
classical property that all trains eventually complete their
missions:

1tl pl {eventually ((P0==6) && (P1l==6) && (P2==6)

&& (P3==6) && (P4==6) && (P5==6)
&& (P6==6) && (P7==6)) }

F. Mazzanti et al.: Formal Methods Diversity in Railways 9

The above LTL formula is equivalent to the one al-
ready seen in the NuSMV example. The only difference
is in the syntax of the eventually operator which is in
this case encoded as eventually instead of F.

The evaluation of the formula is carried out by the
process analyser (pan.c) in about 13 seconds when the
process analyser is compiled with all gcc optimisations
turned on (-O3 flag). We have also experimented the
version of this specification in which each train was rep-
resented by an explicit process, whose activity consists in
just executing the loop of its own atomic progress transi-
tion. In this case, the evaluation time raises to about 47
seconds. The introduction of processes with the only pur-
pose of replacing an internal sequential nondeterminism
with an external interprocess nondeterministic schedul-
ing does not seem to pay off from the point of view of
the performance. Surely also in the case of SPIN a more
detailed fine tuning of the many options provided by the
tool would allow us to further increase its overall perfor-
mance.

When a formula does not hold the tool saves a counter-
example trail which can be further analysed. Since the
logic supported by SPIN is a linear time logic, it is not
possible to express and verify branching time properties
like AG EF ARRIVED. This means that in the cyclic exten-
sion of the model we might have difficulties in proving,
for example, the absence of livelocks.

6 The mCRL2 model

mCRL2%[38] is a formal specification language with an
associated toolset. The toolset can be used for mod-
elling, validation and verification of concurrent systems
and protocols. The mCRL2 toolset is developed at the
department of Mathematics and Computer Science of
the Technische Universiteit Eindhoven, in collaboration
with LaQuSo, CWI and the University of Twente. The
mCRL2 language is based on the Algebra of Commu-
nicating Processes (ACP) which is extended to include
data and time. Processes can perform actions and can
be composed to form new processes using algebraic op-
erators. A system usually consists of several processes,
or components, running in parallel.

In our case, we need to model the existence of a
global status shared among the various trains, and this
can be represented in mCRL2 by a single, recursive,
non-deterministic process, whose parameters precisely
model the global system state. Also in this case, the
non-determinism of the system evolutions is modelled
through the non-determinism of the main process be-
haviour. Our mCRL2 specification includes a set of data
types specification which describe the constants of our
model, a set of actions specifications that qualify the
possible kinds of system evolution steps, a single process
definition and a main process specification.

9 nttp://www.mecrl2.org/

Data Types Specifications The data types specifications
in our case are used to define the vectors of the train
missions, the vectors of the sections constraints, and the
limits associated to each critical section. In particular
we have modeled the vector of a train mission T; as a
map, i.e., a function from natural numbers (Nat) to nat-
ural numbers. The values returned by the function are
expressed by means of the egn construct.

map TO: Nat -> Nat;
%% 10 [1, 9,10,13,15,20,23]
egn TO(0)=1; TO(l)= 9; TO(2)=10;
; TO(5)=20; TO(6)=23;

map T7: Nat -> Nat;
%% T7[(26,22,17,18,12,27, 8]
egqn T7(0)=26; T7(1)=22; T7(2)=17;
; T7(5)=27; T7(6)= 8;

Similarly, we have used the map construct for the
critical sections limits (LA, LB), and for the vectors of
increments A;, B; that trains should apply, with respect
to critical sections, during their progress in the mission:

map LA: Nat; %
eqn LA = 7;

limit for region A

map AO: Nat -> Int;
%% A0 [0, 0, 0, 1, 0,1, 0]
egn A0(0)=0; A0(1l)= 0; A0(2)=0;
; A0 (5)=-1; A0(6)=0;

map BO: Nat -> Int;
¢ BO [0 0 0 1, 0,-1, 0]
egn B0 (0)=0; BO(1)= 0; BO(2)=0;
; BO(5)=-1; BO(6)=0;

Actions Specification The actions specification should
define the structure of the possible actions appearing
inside processes. In our case, we define an action move,
to represent the movement of the train at each progress
step, and a final arrived action, which is performed when
all trains have completed their missions:

act arrived; move: Nat;

Process Definitions The set of process definitions con-
sists in one unique recursive process, which we name
AllTrains, whose parameters po, .., P7 represent the
progress indexes P; of all the train missions, while the
RA, RB parameters represent the occupancy counters of
the two critical sections A and B. The body of this pro-
cess definition specifies the nondeterministic rules that
govern the train evolutions in the usual way.

proc AllTrains (PO:Nat, P1l:Nat, P2:Nat, P3:Nat,
P4:Nat, P5:Nat, P6:Nat, P7:Nat,
RA:Int, RB:Int) =
% progress of train0
(PO < 6 &&
TO(PO+1) != T1(P1l) &&

10 F. Mazzanti et al.: Formal Methods Diversity in Railways

TO(PO+1) != T7(P7) &&

RA + A0 (PO+1) <= LA &&

RB + BO(PO+1) <= LB

) —> move(0).

AllTrains (PO+1,P1,P2,P3,P4,P5,P6,P7,
RA+AO0 (PO+1) , RB+BO (P0+1))

+

+ % progress of train7’

(P7 < 6 &&
T7(P7+1) != TO(PO) &&
T7(P7+1) != T6(P6) &&

RA + A7(P7+1) <= LA &&

RB + B7(P7+1) <= LB

) -> move (7).

AllTrains (PO,P1,P2,P3,P4,P5,P6,P7+1,
RA+A7 (P7+1) ,RB+B7 (P7+1))

+ % all trains have completed their missions
((PO ==6) && (Pl ==6) && (P2 ==6) &&

(P3 ==6) && (P4 ==6) && (P5 ==6) &&

(P6 ==6) && (P7 ==6)

) —>

arrived . AllTrains(PO,P1,P2,P3,P4,P5,P6,P7,

RA, RB) ;

Main Process Specification Finally, the main process spec-
ification consists in the call of our A11Trains process
with the appropriate initial data:

init AllTrains(0,0,0,0,0,0,0,0, 1,1);

Verification The mCRL2 toolset allows us first to lin-
earise the mCRL2 specification, and then to convert it
into a linear process. Given a linear process and a for-
mula that expresses some desired behaviour of the pro-
cess, a PBES (Parametrised Boolean Equation System)
can be generated. The tool pbes2bool executes the
PBES and returns the evaluation status of the formula.
The formulas supported by the mCRL2 toolset are based
on full p-Calculus with parametric fix points.

The property that the system will eventually always
reach a state in which all trains have completed their
mission can be expressed as:

mu X. ((['arrived] X) && (<true> true))

The evaluation of this formula takes from 2 to about
19 minutes before returning the true value, depending on
the options selected during the various evaluation steps.
The greatest impact, which reduces the evaluation time
from 19 minutes to about 2 minutes, is obtained with the
selection of the jittyc rewriting option that compiles
the rewriting engine to be used for the evaluation of
the formula '°. Further minor optimizations are surely
possible but it is outside the purpose of the paper to
analyse all of them.

The logic supported by mCRL2 permits in many
cases to replace the explicit use of fixpoints with the use
of regular expressions inside box ([...1) and diamond

10 http://mcrl2.org/web/user_manual /tools.html

(<...>) operators. For example the absence of deadlock
can be checked with the formula [true*]<truestrue.

The mCRL2 framework has no problems in verifying
also the other branching time formula — equivalent to ac
EF ARRIVED — which can be expressed as:

nu X. ((<true*.arrived>true) && ([truelX))

or, using regular expressions:

[true*] < true* . arrived > true

When an unexpected false value is returned by the
evaluation, the user can request the generation of a coun-
terexample. This counterexample, however, is based on
the structure of the evaluation process, and shows the oc-
curred nested evaluations of the fixpoint formulas, with-
out any link to the actual structure of the model or the
details of its possible evolutions. The tool 1psxsim al-
lows the user to explore the possible evolutions of the
model under analysis. However, it does not seems that
this exploration can be directly connected to a coun-
terexample generated by a previous unsuccessful evalu-
ation.

Model Variants We have also made several experiments
in which the global status of the system was modeled
by explicit processes instead that as data argument of
the unique system process. In particular we have ex-
perimented the use of (i) one process for each itinerary
endpoint, modelling its occupancy state, (ii) one pro-
cess for each critical section, modelling its availability,
and (iii) one process for each train, modelling its mis-
sion. The overall system is now resulting by the parallel
composition of all these components that appropriately
synchronize to model the desired system evolutions. All
the systems described in this way (we have tried sev-
eral versions of them) result much less performing that
our initial nondeterministic sequential case (the execu-
tion times range from 78 minutes to a few hours) and
are therefore not further discussed.

7 The FDR4 Model

FDR4!! [35] is a refinement checker that allows the user
to verify properties of programs written in CSPy;, a lan-
guage that combines the operators of Hoare’s CSP with a
functional programming language. Originally developed
by Formal Systems (Europe) Ltd in 2001, since 2008
is supported by the Computer Sceince Department of
University of Oxford. Being the specification approach
based on a process algebra, the overall structure of the
system is very similar to the one of mCRL2, i.e. we will
have a single, recursive, non-deterministic, process defi-
nition whose parameters precisely model the global sys-
tem state.

1 nttps://www.cs.ox.ac.uk/projects/fdr

F. Mazzanti et al.: Formal Methods Diversity in Railways 11

Data Types and Constants The global data types and
constants of our model are defined in a functional style.
While sequences (encoded as <value, ..
the predefined data types, indexing inside them must be
explicitly defined introducing a selector operator:

el(y,x)=
if x==0 then head(y) else el(tail(y),x-1)

The global constants defining the train missions and
the region constraints can be easily introduced as:

———— train missions ————-—
T0 = < 1, 9,10,13,15,20,23>
Tl = < 3, 9,10,13,15,20,24>

T7 = <26,22,17,18,12,27, 8>

————— region A: train constraints —--—---—-
AQ = <0, 0, 0, 1, 0,-1, O>
Al = <0, 0, 0, 1, 0,-1, O>

77777 region B: train constraints —--—---—-
BO = <0, 0, 0, 1, 0,-1, 0>
Bl = <0, 0, 0, 1, 0,-1, 0>

B7 = <1, 0, 0, 0,-1, 0, 0>

Also in this case we must declare the possible channel
names appearing inside processes:

channel arrived, move

Recursive Process Definition The recursive process def-
inition, which we still name A11Trains, has as param-
eters the progress indexes P; of all the train missions,
and the occupancy counters of the two critical sections
RA and RB.

AllTrains (PO,P1,P2,P3,P4,P5,P6,P7,RA, RB) =

(PO < 6 and —— progress of train0
el (TO0,P0+1) != el(T1l,P1l) and
el (TO,PO0+1) != el (T7,P7) and

RA + el (AO,PO0+1) <= LA and
RB + el (BO,P0+1) <= LB
) & move —>
AllTrains (PO+1,P1,P2,P3,P4,P5,P6,P7,
RA+el (AO,PO+1), RB+el (BO,PO+1))
[1]

[]

(P7 < 6 and -- progress of train7
el (T7,P74+1) !'= el(TO,P0) and
el (T7,P74+1) != el(T6,P6) and

RA + el (A7,P7+41) <= LA and
RB + el (B7,P7+1) <= LB
) & move ->
AllTrains (PO,P1,P2,P3,P4,P5,P6,P7+1,
RA+el (A7,P7+1),RB+el (B7,P7+1)

., value>) are among

[]

—-— all trains have completed their missions
(PO==6 and Pl==6 and P2==6 and P3==6 and
P4==6 and P5==6 and P6==6 and P7==6
) & arrived -> STOP

Main Process Specification Finally, the main process spec-
ification consists in the call of our A11Trains process
with the appropriate initial data, and with the hiding of
the internal train moves:

SYS = AllTrains(0,0,0,0,0,0,0,0, 1,1)\{move}

Verification The main difference of FDR4 with respect
to all the previous approaches is that the system proper-
ties to be checked are specified not by means of temporal
logics formulas, but by assertions stating adherence to a
given abstract specification. In our case, for example, if
we want to verify that the system always executes the
arrived event, we can define an abstract specification
like: sPEC = arrived -> sTop and then state that the
system is a valid refinement of the specification.
assert SPEC [FD= SYS

The concept of a system that refines the behaviour
described by the specification is not a trivial one, and
can be adjusted according to several refinement notions,
expressed by the [T= (trace), [F= (failure) and [FD= (fail-
ure divergences) refinement constructs. The most useful
of these refinement notions is the [FD= refinement, which
is the one used in the example. We refer to Hoare [45]
and De Nicola et al. [19] for a deeper analysis of their
relations and semantics.

While a case study with 6 trains instead of the usual
8 can be verified by FDR4 in about 15 seconds, the ver-
ification of the complete case with 8 trains took about
one hour and 20 minutes.

When a refinement assertion returns a negative re-
sult, a system evolution trace is also presented as counter-
example. This trace is just a sequence of communication
actions, with no information about the structure of the
CSP processes at the various steps, and in the case of
nondeterministic models it might not be trivial to under-
stand precisely which synchronizations actually occurred
during the trace (even if we reveal the underlying actions
hidden behind the top level tau actions).

Model Variants Also in this case we have experimented
several different designs of the system that better exploit
the compositional features of the framework. In particu-
lar, as already tried in the mCRL2 case, we have modeled
the system as a parallel composition of processes, using
one process for each itinerary endpoint, one process for
each critical section and one process for each train.
The result has been quite amusing as the verification
of the system with 8 trains has now been carried out in
about in a few tens of seconds (from 28 to 41 seconds
depending on the chosen design aternatives) versus the
about 80 minutes of the sequential version. We omit here

12 F. Mazzanti et al.: Formal Methods Diversity in Railways

the presentation of the various encoding of the parallel
versions, which can however be found among the exam-
ples in the data repository of all the experiments [59].

Let us now take into consideration the other branch-
ing time property, i.e. that from any reachable state it
should be possible to reach a target state in which all
trains are at their target destination. It becomes very
difficult in this case to find a specification — in terms of
CSP processes — and refinement relation which allows us
to check whether a system verifies this property.

For example, we might adopt as specification a pro-
cess that behaves as shown in Fig. 3, but there is no
refinement relation which can distinguish a correct im-
plementation from the wrong implementation shown in
Fig. 4. If we consider our more general example of con-
tinuously cycling trains (see Sect. 3), this means that we
might have some difficulty in discovering partial dead-
locks — i.e., cases in which the state arrived becomes
nomore reachable even if some of the trains are still al-
lowed to continuosly move.

8 The CPN Tools Model

CPN Tools'? is an environment for editing, simulating,
and analysing Colored Petri Nets (CPN) [51]. It is orig-
inally developed by the CPN Group at Aarhus Univer-
sity from 2000 to 2010. The main architects behind the
tool are Kurt Jensen, Sgren Christensen, Lars M. Kris-
tensen, and Michael Westergaard. From the autumn of
2010, CPN Tools is transferred to the AIS group, Eind-
hoven University of Technology, The Netherlands. The
main difference between Coloured Petri Nets and ordi-
nary Petri Nets is that the tokens that move across the
network are allowed to contain some data (which colour
them). Places of the network are typed with respect to
the colour of the token they can contain. Transitions can
be guarded with expressions that constrain that token
allowed to pass, and may transform the data inside the
token while moving from the source to the target place.

A direct mapping of our reactive model into a CPN
can be achieved by modelling the system as a CPN with a
single place s1, initially containing a single coloured to-
ken that represents the value of the initial system state.
The outgoing transitions from this place model the possi-
ble evolutions of the system: they (conditionally) accept
the token from the source place, transform it according
to the transition activity and return the modified token
to its original place.

CNP Tools is a graphical tool, i.e., the CPN structure
must be graphically drawn using ad hoc graphic tools.
CPN places are represented by ovals, and CPN transi-
tions elements by rectangles. The language used to de-
scribe the datatypes, the functions, and expressions is
Standard ML, a powerful functional language which is
also at the base of the FDR4 tool.

12 nttp://cpntools.org

Data and Behaviour Figure 5 shows the CPN transition
modelling the activity of train0. The label of the edge
that exits from place s1 is labelled with an expression
that describes the structure of the system state: as for
all the previous cases, the data consists of the sequence
containing the various train progress indexes P; and cur-
rent occupancy counters for the two critical regions RA
end RB. The inscription associated to the guard of tran-
sition trainO describes the conditions under which the
transition is allowed to fire, and these are precisely the
same conditions already seen in all the previous cases.
The label of the edge returning to the source place s1
describes the transformation performed by the transition
on the current system state, and corresponds precisely
to the usual transformation performed by the activity of
trainO.

Figure 6 shows the CPN transition modelling the
reaching of the final status of the system, when all the
trains have completed their missions. Apart from its
graphical notation, the information is also in this case
the same as in all the previous cases.

The overall structure of the resulting CPN — omit-
ting all inscriptions and labels — is shown in Figure 7.
A reader with experience in CPN may observe that the
presented model is a counter intuitive formalization of
the problem. However, we recall that we made an effort
in faithfully translating our initial specification into the
different languages, and, to replicate our UMC model, we
had to chose this modelling style. Different styles may
be chosen, if the interest is in requirements validation
instead of specification validation, as in our case — see
Sect. 12.

Verification The first step of the verification of a CPN
network consists in completely generating its state-space.
Once that is done it is possible to write and evaluate ML
functions that perform some standard queries and new
specific computations on the underlying system evolu-
tions graph. For example the expression NoOfNodes ()
allows the user to see the number of states of the sys-
tem, and NoOfSecs () shows the time taken to gener-
ate the state space. The nodes of the state space are
consecutively numbered and the initial state has num-
ber 1. The internal details of the status of a system
configuration (i.e. the marking of a node) can be seen
by evaluating the expression print (NodeDescriptor
n), where n is the node number. The expression List—
DeadMarkings () lists of all the nodes without suc-
cessors, while the expression ListHomeMarkings ()
lists all the nodes that are reachable by all the nodes
of the state space. If our model is correct we would have
precisely one home marking constituted by the state in
which all the trains are arrived at their destination. In
case of problems the list of home markings would be null.
To see why an error situation has occurred we should
first find the internal number of the node corresponding
to the expected final node (i.e. the node in which the

AGEFa

F. Mazzanti et al.: Formal Methods Diversity in Railways

rrived

%}arr‘ived

Fig. 3: Spec AG EF arrived

[p0<6 andalso

el(To,p0+1)<>el(T1,p1)
el(To,p0+1)<>el(T2,p2)
el(TO,p0+1)<>el(T3,p3)
el(To,p0+1)<>el(T4,p4)
el(To,p0+1)<>el(T5,p5)
el(To,p0+1)<>el(T6,p6)
el(To,p0+1)<>el(T7,p7)

andalso
andalso
andalso
andalso
andalso
andalso
andalso

ra+el(A0,p0+1)<=7 andalso

rb+el(B0,p0+1)<=7]

IMPLko

Fig. 4: Partially deadlocking implementation

(pO+1,p1,p2,p3,p4,p5,P6,p7,

train0
moving

ra +el(AO,p0+1),rb+el(BO,p0+1))

13

1°(0,0,0,0,0,0,0,0,1,1)

(pO,p1,p2,p3,p4,p5,p6,p7,ra,rb)

Fig. 5: A CPN transition modelling the activity of train 0

global

[pO=6 andalso
pl=6 andalso

(PO,p1,p2,p3,p4,
pP5,p6,p7,ra,rb)

4

p2=6 andalso

p3=6 andalso arriving

p4=6 andalso

p5=6 andalso
p6=6 andalso
p7=6]

(pO,p1,p2,p3,p4,
p5,p6,p7,ra,rb)

ona (smvec)

Fig. 6: Transition modelling the arrival of all trains

global 1
dat
Q-a/l:mm

Fig. 7: The overall structure of the complete CPN

train0 train7
moving moving
traini train6
moving moving
global
train2 dats train5s
moving moving
train3 o train4
moving arrving moving

14 F. Mazzanti et al.: Formal Methods Diversity in Railways

place arrived contains 1 token), and then find all the
nodes of the statespace from which that final node is not
reachable. The evaluation of the expression:

SearchNodes (EntireGraph,
fn n => (length(Mark.SYS'arrived 1 n) =1),
NoLimit , fnn=>n, [], op::);

displays as result (in the 6 trains case):

val it = [60272] : Node list

The above result indicates that the list of nodes satis-
fying our requests contains precisely one node identified
by number 60272.

We can now search the state space for any node from
which our final 602762 node is not reachable, by evalu-
ating the expression:

SearchNodes (EntireGraph,

fn n => (not (Reachable (n, 60272))),
NoLimit , fn n =>n, [], op::);

The displayed result is:

val it = [] : Node list

and it indicates that the list of the nodes in which a
partial deadlock occurs is empty.

If we evaluate the ML expression Reachable’ (1, xx) ;

we would get a list of nodes (i.e. that path) that connect
node 1 (the initial state) with node xx (that can be the
final or a dealock state).

Notice that the property we are verifying is actually
the one of the kind ac ErF arrIVED, which allows us to
find the errors also in the general case of continuously
cycling trains.

It is also possible, by loading an ad-hoc ASK_CTL
package to write and evaluate ML expressions that cor-
respond to CTL-like formulas. No proofs / counterex-
amples / explanations are however generated after the
evaluation.

The main problem found with this tool is its per-
formance during the state-space generation. While the
state-space of a system with 5 trains (10410 states) re-
quires 14 seconds, the statespace of a system with 6
trains (60272 states) requires about 9 minutes. We have
not been able to generate the statespace for the complete
case with 7 trains (323196 states) even after 12 hours of
execution.

Model Variant In order to see if this performance prob-
lem was caused by our rather particular use of the Petri
Net tool, which stressed the use of coloured tokens ver-
sus the usual place/ transitions constructs, we have also
tried to redesign the system using a normal Petri Net
without making use of coloured tokens. The adopted
structure, here shown for modelling the activity of just
one train, is the one illustrated in Figure 8.

In that structure, we have used one place for each
itinerary endpoint, that initially contains a token only if
the endpoint is not occupied by a train. We have used
one place for each critical section, that initially contains
as many tokens as the number of trains allowed to en-
ter the critical section. Finally we have a set of places
modelling the current progress of the train, that initially
contains a token if that train is at that stage of the
progress. The transitions of the system are constituted
by the transitions of the trains that can move from one
step to the next one only if the next endpoint is not occu-
pied and possibly there are no problems in entering any
critical section required by step. The effect of the tran-
sition is to make unavailable to other trains the next
endpoint, to release to other trains the previously oc-
cupied endpoint, and possibly to remove or reintroduce
a token in the places representing the critical sections.
While the performance of this pure Petri Net system is
slightly higher, (e.g. 6.5 minutes versus the original 9
minutes in the case of 6 trains) the tool is still not able
to generate the full statespace for systems with an higher

number of trains!3.

9 The CADP Model

CADP (Construction and Analysis of Distributed Pro-
cesses) is a verification framework for the design of asyn-
chronous concurrent systems [33]. While its origins dates
back to the mid 80s, since than it has been continuously
improved and enriched, and is currently actively main-
tained by the CONVECS team at INRIA. It has been
used in many industrial projects among many differ-
ent application fields. Among the various languages sup-
ported for the specification/design or models, we have
chosen the LNT (Lotos New Technology)[34] notation
which, having an imperative style, is the one that better
reflects our style of design. For the evaluation of the sys-
tem properties we have selected the Evaluator4d model
checking engine, that allows to verify formulas written
in MCL (Model Checking Language)[54]. MCL is a pow-
erful branching time temporal logics extends a regular
alternation-free p-Calculus with data-handling , regular
formulas over transition sequences, and fairness opera-
tors. In our case a LNT model consists in module defin-
ing a set of types for the various data elements used
in the model, plus a single sequential nondeterministic
process that contains all the system data and evolves
according the rules associated to the train movements.

13 CPN Tools requires a Windows system. We made our experi-
ments both on a Windows Virtual Machine running under macOS
with 64GB RAM, and on a dedicated Windows system with 64
GB RAM. In both cases the used memory remained far below the
available memory provided by the System. The “CPN Tools State
Space Manual” says that 200,000 nodes is the upper limit for the
size of state spaces.

4 nttp://cadp.inria.fr/

F. Mazzanti et al.:

Al

Formal Methods Diversity in Railways

t0_

1.9 e el el

= 0t

o6 i B 5

t0_15_20

-20_23 Arriving

EEEE S

Fig. 8: The basic Petri Net modelling the activity of train 0

Data Types Specifications The data types specifications
assign a name and a definition to each class of values
used in the model. In particular, we have:

type Train_Number is

range O

end type

7 of nat

type Train_Mission is

array
end type

type Train_Constraint
[o

array
end type

[0

6] of nat

is

6] of int

channel Movement is

(Train

end channel

Train_Number)

Process Definition The system behaviour can described
by a single nondeterministic process that executes a main
loop which includes the nondeterministic choice among
all the trains allowed to progress. A final clause of the
choice is triggered when all the trains have completed
their missions.

process MAIN [MOVE: Movement, ARRIVED:
var PO,P1,P2,P3,P4,P5,P6,P7 nat,
RA, RB int,
LA, LB int,

TO, T1,T2,T3,T4,T5,T6,T7
AO0,Al,A2,A3,A4,A5, A6, A7
BO, B1,B2, B3, B4, B5, B6, B7

in

PO :
RA :=
LA :=

—-— data initializations
o= 0;

1;
7;

7 P7 =
RB := 1;
—-- limit for region A

0;

Train_Mission,
Train_Constraint,
Train_Constraint

none]

is

IB := 7; —— limit for region B
loop
select
only if
—— description of movement of trainO
(< 6) and
([PO+1] != T1 [P1l]) and -
([PO+1] != T2 [P2]) and -
([PO+1] != T3 [P3]) and
([PO+1] != T4 [P4]) and
(TO [PO+1] != T5 [P5]) and
([PO+1] != Te [P6]) and
([PO+1] != T7 [P7]) and
(RA + A0 [PO+1] <= LA) and
(RB + BO [PO+1] <= LB)
then
MOVE (0 of Train_Number) ;
PO := PO + 1;
RA := RA + A0 [PO];
RB := RB + BO [PO];
end if
[] only if
[] only if
—-— description of movement of train 7
then
end if
[] only if
—— condition for successful completion
(P0==6) and (P1l==6) and (P2==6) and (P3==
and
(P4==6) and (P5==6) and (P6==6) and (P7==
then
ARRIVED
end if
end select
end loop
end var

end process

15

)

)

16 F. Mazzanti et al.: Formal Methods Diversity in Railways

Verification The CADP framework allows to generate
and export the whole state-space in standard formats
(e.g. .bgc, .aut, .dot), to minimize the graph according
to several equivalence relations, to display and edit its
graphical layout, and to verify properties over it. The
verification can be carried "on the fly”, i.e. generating
the fragment of the state-space actually used by the eval-
uation of a logical formula.

The property that the system will eventually always
reach a state in which all trains have completed their
mission can be expressed as:

mu X. (([not ARRIVED]X) and (<true> true))

The evaluation of the above formula is completed in
about 29 seconds.

As in the mCRL2 case, using regular expressions to
denote transition sequences, the absence of deadlock can
be checked with the formula [true*]<trues>true. The
other branching time formula — equivalent to ac EF ar-
RIVED can be expressed, using regular expressions, as:

[true*] < true* . ARRIVED > true

Model Variants Also in this case have have made an ex-
periment in which the system was modelled a parallel
composition set of interacting processes (one process for
each itinerary endpoint, one process for each critical sec-
tion and one process for each train). As in the mCRL2
case, the alternative modelling does not result more per-
forming than the sequential case (evaluation time raises
from 29 seconds to 15 minutes) and is therefore not fur-
ther discussed.

10 The Round-trip Model

The system described in Section 2, where trains move
only one way from one side the other side of the yard,
has been chosen as the main reference for the illustration
of the possible encodings of the blackboard style design
into the seven selected frameworks. Indeed the main goal
of our work is precisely to show the feasibility and the ad-
vantages resulting from this possibility of diversity, and a
simple case study that does not require the exploitation
of very specific tool features for being experimented has
been considered as an appropriate choice for illustrating
our idea.

We have however mentioned that our case study is a
simplification of a more complex case study where trains
cyclically perform never ending round missions along the
yard. In this section we outline how this more complex
case can be analysed in the various frameworks and the
impact that this complexity has on the verification is-
sues.

First of all we make an important observation. We
are interested in proving that the critical section con-
straints that have been added at each movement step of

any train are sufficient to avoid the occurrence of dead-
locks or livelocks, and therefore guarantee that each train
has the possibility to always continue to advance — and
reach its destination in presence of a fair dispatching
policy. We can observe that any two trains of the same
colour (i.e. TO-T4, T1-T5, T2-T6, T3-T7) always per-
form exactly the same cyclic mission, even if starting
from different points. Therefore, the two system states
in which two trains of the same color swap their identity
are perfectly equivalent in terms of the overall system be-
havior. The exploitation of this symmetry leads to the
consequence that the correctness of the system can be
analysed by just observing the eight trains to perform a
single round-trip mission, instead of an infinite sequence
of them. This observation has a major impact on the
system verifiability: not only it reduces the overall size
of the problem'®, but it removes the complexity of hav-
ing to deal with livelocks issues because the presence of
a blocked train will eventually lead to a complete system
deadlock.

Given this premise, we can now show how the given
initial case study can be easily extended to the case of
single round-trip missions.

The first step is to extend the definition of the mis-
sions of the trains and the definitions of the tables of
constraints governing the traversal of the A and B criti-
cal sections. In the case of UMC, we will have:

Vars:
-— mission steps for train TO
TO: int([] := [1, 9,10,13,15,20,23,
22,17,18,11, 9, 2, 11;
T7: int[] := [26,22,17,18,12,27,

8, 7,27,11,13,16,20,26];
—-— region A constraints for train TO
AO: int[] := [0, O, O, 1, 0,-1, O,

i, 0, 0,-1, 0, 0, 0I;

A7: int[] := [O, 1, O0,-1, O, O, O,

BO: int[] := [0, 0, 0, 1, 0,-1, ©
i, 0, 0,-1, 0, 0, 071;
B7: int[] := [0, 0, 0,-1, 0, 0, O,

The second step is the update of the rules governing
the advancements of trains, by extending the limit on
the train progresses from 6 to 13:

Behavior:
-— rule for advancement of train TO
sl —-> sl

{- [PO < 13 &
—-— all the rest of the rule remains unchanged
TO[PO+1] != T1[P1l] &

15 The continuously cycling model (syntactically a minimal vari-
ation of the round-trip one) has 159,374,352 states and 810,710,977

transitions.

F. Mazzanti et al.: Formal Methods Diversity in Railways 17

Finally we have to update the detections of the fi-
nal condition, when all the trains have completed their
round mission:

Abstractions {
State SYS.P0=13 and
SYS.P1=13 and

SYS.P7=13 —-> ARRIVED
-— abstract label on final node

}

Mutatis mutandis, i.e. after performing the few syn-
tactic changes that differentiate one encoding from the
other, the same change can be repeated for all the frame-
works taken into consideration.

This further analysis leads to the discovering of two
novel cases of deadlocks (see Fig. 9), that require the def-
inition of two other critical sections (that we call C and
D), the definition of their corresponding constraints to
be applied at each step by any trains, and the extension
of the train advancement rules by taking into account
also these new sections. For example, the rule governing
the movement of train TO will, in the end, become:

sl —-> sl

{- [PO < 13 &
TO[PO+1] != T1[P1l] &
TO[PO+1] != T2[P2] &
TO[PO+1] != T3[P3] &

0[PO+1] != T4[P4] &

TO[PO+1] != T5[P5] &
TO[PO+1] != T6[P6] &
TO[PO+1] != T7[P7] &
RA + AO[PO+1] <= LA &
RB + BO[PO+1] <= LB &
RC + CO[PO+1] <= LC &
RD + DO[PO+1] <= LD] /

PO := PO +1;

RA = RA + AQ[PO];

RB = RB + BO[PO];

RC = RC + CO[PO];

RD = RD + DO[PO];

The formula to be verified will remain the same in
the case of UMC, mCRL2, FDR4, CADP, and will have
to take into account the new mission length in the case
of SPIN and NuSMV.

This new single cycle model now appears to have
91,890,065 states, 453,321,793 transitions, and its ver-
ification time ranges from 34 minutes in the case of
NuSMYV, to 166 minutes in the case of mCRL2, and up
to 16 hours in the case of UMC (see Table 3).

In the case of CADP, SPIN and UMC we have been
forced to execute the verification not directly under the
macOS environment but under a Linux virtual machine
running within the macOS. This has been necessary, in
the case of CADP to be able to use the 64-bit version
of the tool (not yet available under macOS), and in the
other two cases to be able to use an amount of virtual

memory greater than 1.5 times the size of the physi-
cal RAM of the computer. It happens in fact that the
macOS kernel autonomously decides to kill the great-
est memory eating application when the overall system
response time would risk to be too damaged by the pres-
ence of memory hungry user applications. The best re-
sults in the case of UMC are obtained by adopting a
depth first strategy, omitting the recording of counter-
examples related informations, and using multiple cores
during state space generation. The extremely high amount
of memory used by UMC — which induces the extremely
high evaluation time because of the amount of virtual
memory swapping required — reflects the fact that the
tool has not been designed with the goal of performing
extremely large system validations, but rather with goal
of facilitating the debugging of reasonably small system
designs. The use of FDR4 requires the explicit setting of
a disk based storage directory to avoid to hit the maxi-
mum amount of virtual memory allowed by the OS ker-
nel. Any attempts to use SPIN under macOS always fails
with process analyser being killed by the kernel. Under
the Linux virtual machine, SPIN successfully verifies the
model only forcing a breadth first evaluation strategy, re-
questing the use of on disk memory allocation, and by
extending the default cache and vectors size. In the case
of mCRL2, no particular measures have to be taken to
tailor the use of virtual memory, while the —vrjittyc
option should be used to get a satisfactory evaluation
time. In the case of SMV and CADP the verification
tools can be used in their default configuration without
having to specify any particular evaluation choice. It is
quite impressing the amount of virtual memory that ap-
pears to be used by NuSMV,| i.e., only 1.4 GB.

11 Discussion

The pattern of having a set of global data that is con-
currently and atomically updated by a set of concurrent
guarded agents [21] is an architectural pattern often en-
countered in many fields. In our case, we met this pat-
tern during the verification of the deadlock avoidance
kernel inside the ground scheduling system that con-
trols the movements of driverless trains inside a given
yard. This pattern can be rather easily formalized and
verified using different languages and frameworks. We
have experimented with seven possible alternatives, i.e.,
UMC, NuSMV, Promela/SPIN, mCRL2, FDR4, CPN
and CADP, which differ greatly in expressive power, and
support different verification approaches. The best re-
sults obtained, together with the options used for each
framework, are described in more detail in the previous
sections, and are summarized in Tables 2 (for the one-
way, initial case) and 3 (for the round-trip case). The ac-
tivity is still in progress, since, on the one hand, we plan
to extend our experiments to several other well known
toolsets, and, on the other hand, there are still many as-

18 F. Mazzanti et al.: Formal Methods Diversity in Railways

Via Roma

BCAO3 piazze} Dante Via Marco Polo

Parco della Vittoria
|

Viale dei Giardini

Fig. 9: The new critical sections C and D

pects of the currently explored frameworks that need a
deeper understanding and evaluation. Notwithstanding
the preliminary nature of our experiments, it is useful to
report a comparison of the different tools, in which we
discuss the features offered by the environments, based
on four broad parameters that had an impact on our ex-
perience, namely (1) specification formalism, (2) prop-
erty definition language, (3) platforms compatibility, and
(4) performance. The parameters have been evaluated
by the authors in the context of the current experience,
and, although the evaluation is biased by our background
and by the specific context of this work and general con-
clusions cannot be drawn, we believe that it can offer
a useful perspective on the applicability of the tools to
specific problems of the railway context.

In the following paragraphs we describe the parame-
ters, and, based on them, we compare the different tools,
while in Table 1 and Fig. 10, we summarize our evalua-
tion'S.

Specification Language The reference family of the lan-
guage supported by a tool to specify the model is a pa-
rameter that a designer should carefully consider when
choosing a formal environment. Indeed, based on (a) the
confidence that the designer has with a certain formal-
ism, and (b) the type of problem at hand, the modelling
activity can be extremely fluid, or particularly cumber-
some. The deadlock avoidance algorithm could be eas-
ily represented with the different languages, but it is
useful to report the general differences among the tools
considered. In this paper, three families of specification
languages can be observed, namely state-machine ori-
ented representations, process algebras, and Petri Nets.
Among the three families, the state-machine oriented
representation, which supports an explicit shared data
structure, seems the most intuitively suitable for the for-

16 Tn Table 1 we show the time ranges for the one-way case.
We do not show time ranges for the round-trip case, since these
times are highly influenced by the memory swapping, and different
operating systems were used for the round-trip experiments, due
to the constraints explained in Sect. 10

malization of our problem, in which agents atomically
read and update a common data blackboard. Process al-
gebras are usually more oriented to model designs with
communication agents that do not share a global sta-
tus. Nevertheless, in our case, the algebraic model of the
system, in which a system state is represented by pro-
cess parameters (see Sect. 6 and 7), does not seem very
distant from the other state-machine oriented represen-
tation. This is particularly evident in the case of CADP:
the LNT specification has the aspect of a classical im-
perative state-machine oriented representation, while it
is automatically transformed by the tool into a classical
set of LOTOS algebraic processes.

With Petri Nets, the system state was concealed in
the colour of a token (Sect. 8). In this case, our model
with a single place is definitely not the intuitive way
of modelling with Petri Nets, which are a more natural
choice when one wants to model the flow of a set of
activities.

It shall be noticed that, in our context, we were inter-
ested in replicating the same simple blackboard design
solution, with the different tools. However, since other
frameworks rely on a different kind of design approach
with respect to the original state-machine oriented one —
as mentioned, process algebras and Petri Nets —, we felt
compelled to try see what would have happened if a dif-
ferent design were used (see Sect. 6, Sect. 7, Sect. 9 and
Sect. 8). This has led to the observation that sometimes
(e.g., in the case of FDR4) a different and more com-
positional design approach might actually induce much
better performance, suggesting a possible solution to
scalability problems of the verification effort. Another
consideration is that the choice of using different design
strategies might be interesting also from the point of ex-
ploiting design diversity — instead of tool diversity only —
as another approach for the improvement of the overall
trustworthiness of the verification process.

Another observation related to the specification lan-
guages concerns the data structures made available by
the different environments. NuSMV and Promela/SPIN
admits only integer and vector types of fixed size. UMC

F. Mazzanti et al.: Formal Methods Diversity in Railways 19

instead admits also dynamically sized vectors, with nested
vector data structures. The remaining tools have the
full power of functional languages, allowing for complex
data types, including high-order types (e.g., functions as
data). It is not a surprise that this additional complexity
takes its toll in terms of performance.

Property Definition Language The language in which a
property can be expressed affects the type of properties
that can be verified on a certain design. Our initial prop-
erty, that all execution paths end in certain state, is a
very simple property which can easily be checked in all
frameworks, either as a CTL formula, or as a LTL for-
mula, or a CSP specification to be refined. However, it
is useful to briefly summarize the languages supported,
since, in some cases, not all properties can be verified by
all the tools, and this may impact on the choice of the
formal environment to adopt. For example, our general-
ized case study involving continuously cycling trains (see
Sect. 3) might give raise to relevant verification difficul-
ties in frameworks that do not support truly branching
time formulas. The most powerful environments in terms
of property definition language are mCRL2 and CADP
(both event based), that support a parametric version of
p-Calculus (that subsumes both LTL and CTL). Also,
UMC supports plain u-Calculus, even if in its plain non-
parametric form. The original point of UMC is that it
support both state and event based approaches, allowing
to write formulas that can take into account both pred-
icates over the states and conditions over of the events
occurring during a system evolution. The property spec-
ification language supported by SPIN is the classical
(state based) Linear Time Logics (LTL), and we have
seen that this choice might lead to difficulties in specify-
ing and verifying livelock related properties in the case
of cyclic models. NuSMV instead supports directly both
LTL and CTL (in their state based versions). FDR4 is
not based on temporal logic, but uses a refinement check-
ing approach, in which the property to be verified is
represented with the same specification language of the
model. This approach has its own advantages (e.g. in
terms of compositionality) and disadvantages (e.g. in the
difficulty of finding the correct specification). In our case
we we have observed that we might have difficulties in
specifying and verifying livelock related properties (see
Sect. 7).

Platform Compatibility Although not having a direct
impact on the usability of a tool, its compatibility with
multiple platforms gives an indication of the potential
audience of a formal environment. Indeed, while operat-
ing system (OS) emulators exist that can support soft-
ware developed for different OSs, a user might not even
start using a tool simply because it is not supported by
his/her preferred OS, or the OS used by the company.
With the exception of CPN Tools, all the considered
environments are available on all the platforms. While

most of our experiments were performed on directly un-
der macOS, in case of CPN tools a Windows emulator
was used. While in the cases of UMC and SPIN a Linux
emulator has instead been used (for the more complex
case studies) to overcome the limits of our native OS,
in the case CADP it has been used to exploit a more
advanced version of the tool — see Sect. 10.

Performance Fig. 10 summarises the execution time ran-
ges observed in our experiments for the simpler one-way
case study. Each point in a range corresponds to the use
of a specific evaluation option or to a specific variation
in the system design. The actual code and evaluation in-
structions for each specific case can be found in our data
repository [59]. It was outside our goals to make a rig-
orous comparative evaluation of the performance of the
various approaches, and the data shown here should be
considered as indications of the observed experiments.
For example, we did not try to exploit the “swarm”
feature of SPIN (taking advantage of multicore archi-
tectures) or of the “cluster” features of CADP (taking
advantage of distributed architectures). Almost all the
tools show extremely great differences in terms of evalua-
tion times depending on the design or evaluation choices
done by the user. This fact seems to indicate that a deep
mastering of the tools is required to exploit at their best
the capabilities of the various frameworks, and this fact
is somewhat an obstacle for our goals of applying diver-
sity in tool selection. It might be expensive to become re-
ally experts in many different frameworks. In particular,
process algebraic (FDR4, mCRL2) approaches appeared
to be very sensitive to design variations (e.g. sequential
versus parallel designs, alternative ways of composing
parallel processes), while SPIN and mCRL2 are proba-
bly the most sensitive frameworks from the point of view
of user options applicable at verification time.

12 Towards Formal Methods Diversity

The possibility to model and verify a certain design with
completely different verification frameworks can be an
interesting solution from the point of view of the wal-
idation of critical systems. The CENELEC EN 50128
norms [13], for the development of railway software, asks
the tools used along the process to be qualified, or certi-
fied, for their usage in the context of safety-critical prod-
ucts development. With some limited exceptions, i.e.,
SCADE [22], none of the verification tools available, in-
cluding the ones considered in this study, is designed and
validated at the greatest safety integrity levels by itself.
However, the existence of different, non validated, tools
producing the same result might increase the overall con-
fidence on the verification results. This observation poses
the basis for a novel concept for railways, which is formal
methods diversity. The idea is to apply the concept of di-
versity, quite common in safety-critical systems engineer-

20

F. Mazzanti et al.: Formal Methods Diversity in Railways

Table 1: Summary of the different environments

. . Property
Tool Version / Year Specification Definition Platforn.l e
Language Compatibility
Language
State Machines u-Calculus Online, Unix,
uMe V. 46 /2017 (Structured Data) | CTL/ACTL Windows, macOS
State Machines Unix, Windows,
NuSMV v. 2.6.0 / 2015 (Flat Data) CTL/LTL/PSL macOS
State Machines Unix, Windows,
SPIN v. 6.4.7 / 2017 (Flat Data) LTL macOS
Process Algebra parametric Unix, Windows,
mCRL2 V- 201707.1 / 2017 (Algebraic Data) u-Calculus macOS
Petri Nets ML functions .
CPN Tools | v. 4.0.1 / 2015 (Functional Data) | CTL Windows
Process Algebra Refinement Unix, Windows,
FDR4 V- 4.2.3 /2017 (Functional Data) | Checking macOS
. LNT/LOTOS Unix, Windows,
CADP V- 2017+ / 2017 (Structured Data) MCL macOS
Table 2: Data summary for the one-way experiments — best cases only.
Best Best
Tool System | Num. States | Encoding Evaluation | VMem. Commands
Structure | Time
UMC macOS | 1,636,545 sequential | 38 secs 2.9 GB umc -m3 -100 umc_oneway8.txt AF.txt
NuSMV | macOS | 1.63654e+06 | sequential | 2.9 secs 74 MB nusmv -r -v 1 smv_oneway8.smv
time spin -a spin_oneway8.pml;
SPIN macOS. | 1,636,546 sequential | 13 secs. 1 GB gce -0O3 -0 pan pan.c;
pan -v
mcrl22lps mcrl2_oneway8.txt temp.lps;
mCRL2 | macOS | 1,636,545 sequential | 113 secs. 1 GB lps2pbes -fmuAF.mcf temp.lps temp.pbes;
pbes2bool -s2 -vrjittyc temp.pbes;
CPN n/a n/a n/a n/a n/a n/a
FDR4 macOS 1,636,546 parallel 41 secs 650 MB | refines fdr4_oneway8.txt
CADP macOS | 1,636,545 sequential | 29 secs. 78 MB Int.open cadp-oneway8.Int evaluator4 AF.mcl
Table 3: Data summary for the round-trip experiments — best cases only.
Best Best
Tool System | Num. States | Encoding | Evaluation | VMem. | Commands
Structure | Time
UMC Linux 91,890,065 sequential | 16 hours 112 GB | umc -m3 -110 umc_round8.txt AF.txt
NuSMV | macOS | 9.18901e+07 | sequential | 34 min. 1.4 GB nusmv -r -v 1 smv_round8.smv
time spin -a spin_round8.pml;
. . . gee -O3 -DBFS -DBFS_DISK
SPIN Linux. 91,890,066 sequential | 185 min. 102 GB _DVECTORSZ=256000 -0 pan pan.c:
pan -v
merl22Ips merl2_round8.txt temp.Ips;
mCRL2 | macOS | 91,890,065 sequential | 145 min. 43 GB Ips2pbes -fmuAF.mcf temp.lps temp.pbes;
pbes2bool -s2 -vrjittyc temp.pbes
CPN n/a n/a n/a n/a n/a n/a
FDR4 | macOS | 91,890,066 arallel | 60 min g1 gp | refines ~refinement-storage-file-path
T P ’ swapdir fdr4_round8.txt
CADP Linux 91,890,065 sequential | 79 min. 7.3 GB Int.open cadp_round8.Int evaluator4 AF.mcl

F. Mazzanti et al.:

Formal Methods Diversity in Railways 21

CPN

CADP |-

FDR4 |-

mCRL2 -

SPIN

NUSMV

UMC -

*

|

W

*—o—o

>
|

10!

10% 10% 10*

Evaluation Time (seconds)

Fig. 10: Summary of evaluation time ranges - one-way case (logarithmic scale).

ing [52,62], in the application of formal methods. More
specifically, we suggest to use different non-certified for-
mal environments for the modelling and verification of
a certain railway problem or design, and compare the
results. Of course, this simple concept has possible hur-
dles in terms of applicability. Below, we reflect on the
potentials and challenges that the idea opens, based on
our experience and knowledge of the railway industry.

Specification Validation In the experience described in
this paper, we validate the specification'” of an algo-
rithm, by ensuring that the encoding of the specification
into different formal environments produce the same ver-
ification results.

The same idea can be applied whenever one has de-
veloped a specification for a certain system, and wishes
to translate it into different frameworks, to increase the
reliability of the verification results. The translation can
be performed manually, as in our case, or automati-
cally, as performed by Rockwell Collins in the avionic
domain [60]. Regardless of the means used for transla-
tion, the errors that might raise in this context are: (a)
errors in the specification, which may be introduced in
the design phase by the system designer; (b) errors in
the translation of the specification, introduced by the
automatic or human translators; (c¢) errors concealed in
the environments used for formal modelling and verifi-
cation, since, as observed, being the environments them-
selves not certified, some of them might include errors
that can be revealed only when the results of the verifi-
cation differ from those of other environments. In Sect. 2
we have already described that our abstract system de-
sign has a precise number of states and transitions, that
corresponds to the train positions and the allowed train
movements. If we look at the data of Table 2 and Ta-

17 The concept of specification is intended here in Jackson’s
terms [40], i.e., the model that, given certain environmental as-
sumptions, shall satisfy the requirements.

ble 3 we can indeed verify the precise size of this state
space in the one-way (1,636,535 states) and round-trip
cases (91,890,065 states). The fact that all the encod-
ings report the same size '® is an encouraging indica-
tor on the correctness of the translation. If the number
of states is the same, and all the specifications satisfy
the same properties, this increases the confidence on the
equivalence of the specifications. Further validation of
the translation (see, e.g., [3]) is however required to en-
sure that the specification verified is equivalent for the
different environments.

It is worth noticing that this does not fully guaran-
tee that the specification itself is free from faults, since
initial faults may be propagated from the original speci-
fication. To achieve higher confidence on the results, one
shall also pursue requirements validation, as explained
later in this section.

Diversity in Properties One of the potentials offered by
the usage of different environments is associated to the
diversity of logics that the environments support for
the definition of properties to be verified. In our con-
text, we used properties that can be equivalently speci-
fied with CTL and LTL logics, but, as well known, the
two logics are not comparable [17], and different require-
ments might have forms that can be specified only with
one logic. Therefore, the availability of diverse environ-
ments gives also the possibility of verifying properties
that have, e.g., an inherent CTL nature, with CTL-
oriented environments, and properties that have an in-
herent LTL nature with LTL-oriented ones. In this sense,
formal methods diversity also enlarges the scope of prop-
erties that can be verified for the same specification. It
is also worth noticing that the encoding of the property
to be verified can be a possible source of error. When

18 4 difference of +1 or +2 among the models is due to the dif-
ferent way in which is modeled the system initialization and the
system final state

22 F. Mazzanti et al.: Formal Methods Diversity in Railways

writing a LTL, CTL, MCL, p-calculus formula or an al-
gebraic specification, it is definitely not difficult to make
mistakes. Also in this cases a comparison of the results
of the verification might help in identifying and reduc-
ing this source of errors. A wider analysis on properties
that are typical of the railway domain and that can be
verified with the different tools, as performed, e.g., by
Frappier et al. [32] in the context of information sys-
tems verification, would clarify to which extent formal
methods diversity can facilitate the verification of rail-
way systems.

Requirements Validation Formal methods diversity can
be applied also if one wishes to pursue requirements val-
idation [14], e.g., to check completeness and consistency,
instead of specification validation as in our experience. In
this case, one should use different formal environments
to provide alternative specifications for the same require-
ments. In a requirements validation context, we argue
that employing the same formal methods expert for the
modelling tasks is not recommended, since s/he might be
biased towards a certain architecture, and might repli-
cate the same, potentially erroneous, design decisions in
the different specifications. In addition, different formal
environments might give different modelling capabilities,
and one might not use them at their best if s/he is biased
towards the replication of the same specification. This
opens to the possibility of diversifying formal methods
experts, as it happens when different developers are em-
ployed to implement software variants [6,52]. This choice
of having different models designed by different experts
has to be handled with care, since it may trigger compli-
cations in further development stages. Indeed, if only one
specification is chosen for a single implementation, one
might partially loose the benefits of modelling diversity.
On the other hand, if also code diversity is employed [6],
with each implementation being derived from different
specifications, modelling diversity can be exploited at its
full benefits. This observation suggests that, when formal
methods diversity is adopted, also the overall railway de-
velopment process shall be adapted. This is an issue that
we have previously encountered in railways when passing
from a code-centered development paradigm to a model-
centered development one, in which code generation was
used [27]. Rigorously defining a railway process, adher-
ent to the CENELEC EN 50128 norm [13], and based on
formal methods diversity is beyond the scope of this pa-
per. However, a rigorous definition becomes mandatory
when one wishes to apply the approach in the railway
industry.

Knowledge and Experience with Formal Environments

As already emphasised, one of the major hurdles in ap-
plying formal methods diversity is the experience re-
quired to proficiently handle different formal environ-
ments, since the performance of the tools is affected by
(a) design decisions, as we have shown, e.g., for FDR4

(see Sect. 7) and (b) verification options, as shown by the
different time ranges obtained in our experiments, re-
ported in Fig. 10. Therefore, if one is oriented to exploit
the capabilities of different tools at their best, high pro-
ficiency is required with different tools. This aspect can
be mitigated by employing multiple experts of different
environments, but we know that, from an industrial per-
spective, this requires a dedicated, or outsourced, formal
methods group, and, more in general, a major uptake of
formal methods by railway practitioners [31].

Appropriateness of a Formal Tool for a Design We have
seen that our algorithm design can be represented with
seven different tools, but this might not be true for all
the railway-specific problems. Hence, particular care and
guidance is required in the choice of the formal frame-
work to adopt in order to model and verify the speci-
fication [72]. For example, in the literature we see that
state-based graphical specifications are used to model
the control logic of ATC/ATP systems [28,47,63,15,27],
while interlocking systems are often modelled with tex-
tual specification, and verified by means of model check-
ing [70,68,44,29,11,49]. A clear definition of guidelines
for the choice of the appropriate formal method, or set
of formal environments, to be used for a specific railway
problem is therefore required to make formal methods
diversity applicable. Further practical and comparative
research, as the one performed, e.g., by Zave [72] in the
context of network protocols, shall be performed in the
railway domain to achieve this goal. The authors of this
paper are currently exploring this issue in the framework
of the ASTRail European Project'®, and results on this
aspect will be provided in future publications.

FEvolution and Acceptance of Formal Tools The tools
that we used in our experiments are freely available (some-
times with an academic licence), and mostly maintained
by universities or public organizations. Even within the
time span in which this paper was written, evolution
in terms of versions of the tools was observed (e.g., al-
most all the tools have had at least a new version in
2017). Keeping the pace of the evolution of a single tool
is complex, and it requires to rely on a robust framework
of release control, which ensures backward compatibility
of the platforms, and forward compatibility of the arti-
facts created with the platforms. The problem becomes
even more complicated if one company has to follow the
evolution of multiple environments at the same time, as
required if formal methods diversity is applied. The de-
velopment of a railway system can take several years,
continuous updates might be required by the customer,
and one has to rely on stable tools versions. In addi-
tion, in our experience [28], railway companies are keen
to prefer commercial tools expecially for the availabil-
ity of assistence and the support of legacy versions. We
are aware that, in general, also the open source world is

9 http://www.astrail.eu

F. Mazzanti et al.: Formal Methods Diversity in Railways 23

evolving towards a business model in which the revenues
come through the assistance services offered for free, or
commercial versions, of the tools. Hence, we foresee that,
if this business model gets a foot hold for formal envi-
ronments, also the mindset of railway companies might
be more open to these tools, and formal methods diver-
sity has some additional chance to become an established
practice in the railway industry.

13 Conclusion

The world of formal methods offers several options in
terms of automated environments [32,23], which can and
have been used to verify the design of railway systems [24,
36]. In this paper, we show the application of seven differ-
ent formal tools, namely UMC, Promela/SPIN, NuSMV,
mCRL2, CPN Tools, FDR4 and CADP, in the mod-
elling and verification of a deadlock avoidance algorithm
for train scheduling [57]. The algorithm takes care of
avoiding situations in which a train cannot move be-
cause its route is blocked by another train. This is a
typical problem, which can be modelled according to
a blackboard architectural pattern [21], in which con-
current guarded agents atomically update a global data
blackboard. Our experience shows that small choices in
the design or verification options trigger radical changes
in terms of performance, especially for process algebraic
(FDR4, mCRL2) approaches. Furthermore, we have ob-
served that limited effort is required to adapt the same
design to different formal environments. This observa-
tion opens up new possibilities for the establishment
of the concept of formal methods diversity in railways.
The idea is that the application of diverse, non-certified
formal tools on a replication of the same design allows
formal methods users to increase the confidence on the
correctness of the verification results. The paper com-
pares the characteristics of the different tools, in light
of our modelling and verification experience, and dis-
cusses the industrial potential and challenges associated
to the application of formal methods diversity in the rail-
way context. Specific challenges include, for example: the
need to have diverse formal methods expertise available
within railway companies; the preference of these com-
panies towards — possibly stable — commercial tools, in
a context in which formal tools are often open source,
academic platforms; the need to restructure the develop-
ment process to accommodate formal methods diversity,
while keeping the process compliant to the CENELEC
norms [13]. To fully establish, and possibly automate, the
idea, approaches for model transformation, and for the
verification of the correctness of the translation step [3],
should also be applied.

Our personal interest is now to further experiment
with additional free and open source tools, such as LTS-
Min [10], LTSA [53], DiVinE [7], JavaPathFinder [43],
Alloy [48], and commercial tools, such as SCADE [22],

and Stateflow with Simulink Design Verifier [42]. Our
idea is to model our prototypical railway problem, as
well as other cases, with these different tools, to have
a more complete in-field understanding of the practi-
cal hurdles that formal methods practitioners may face
when dealing with diverse formal methods. Furthermore,
we are also interested in comparing the different tools in
terms of clarity of the counterexamples provided, and in
terms of effectiveness in discovering specific types of er-
rors in the specifications. In this sense, we wish to inves-
tigate also the potential complementarity of the different
tools, in a development context in which formal meth-
ods are diversified, as proposed in this paper. It should
finally be noticed that the presented reflections, espe-
cially those concerning the different tools, come from
an experience report, with the limits entailed by this
research approach. Although general conclusion cannot
be drawn, and even though the reflections provided are
driven by the authors’ experience, we believe that our
work can offer inspiration for future research in the field.

Acknowledgments

This work has been partially funded by the ASTRail
project. This project received funding from the Shift2Rail
Joint Undertaking under the European Union’s Horizon
2020 research and innovation programme under grant
agreement No 777561. The content of this paper reflects
only the authors’ view and the Shift2Rail Joint Under-
taking is not responsible for any use that may be made
of the included information.

References

1. Accellera, property specification language - reference
manual - version 1.01. http://www.eda.org/viv/docs/psl
Irm-1.01.pdf, 2003.

2. Jean-Raymond Abrial. The B-book: assigning programs
to meanings. Cambridge University Press, 2005.

3. Moussa Amrani, Levi Lucio, Gehan Selim, Benoit
Combemale, Jurgen Dingel, Hans Vangheluwe, Yves
Le Traon, and James R Cordy. A tridimensional ap-
proach for studying the formal verification of model
transformations. In Software Testing, Verification and
Validation (ICST), 2012 IEEE Fifth International Con-
ference on, pages 921-928. IEEE, 2012.

4. Marc Antoni and Nadia Ammad. Formal validation
method and tools for french computerized railway inter-
locking systems. IET Conference Proceedings - 4th IET
International Conference on Railway Condition Monitor-
ing (RCM 2008), pages 6-6(10), 2008.

5. André Arnold, Marie Claude Gaudel, and Bruno Marre.
An experiment on the validation of a specification by
heterogeneous formal means: The transit node. In 5th
IFIP Working Conference on Dependable Computing for
Crritical Applications (DCCAS5), pages 24-34, 1995.

24

(@)

10.

11.

12.

13.

14.

15.

16.

17.

18.

F. Mazzanti et al.: Formal Methods Diversity in Railways

. Algirdas Avizienis. The N-version approach to fault-
tolerant software. IEEE Transactions on software en-
gineering, (12):1491-1501, 1985.

. Jifi Barnat, Lubo§ Brim, Vojtéch Havel, Jan Havlicek,

Jan Kriho, Milan Lenco, Petr Rockai, Vladimir Still, and

Jifif Weiser. DiVinE 3.0-an explicit-state model checker

for multithreaded C & C++4 programs. In International

Conference on Computer Aided Verification, pages 863—

868. Springer, 2013.

Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc

Meynadier. Meteor: A successful application of b in a

large project. In International Symposium on Formal

Methods, pages 369-387. Springer, 1999.

Nazim Benaissa, David Bonvoisin, Abderrahmane Feli-

achi, and Julien Ordioni. The perf approach for formal

verification. In International Conference on Reliability,

Safety and Security of Railway Systems, pages 203-214.

Springer, 2016.

Stefan Blom, Jaco van de Pol, and Michael Weber.

Ltsmin: Distributed and symbolic reachability. In In-

ternational Conference on Computer Aided Verification,

pages 354-359. Springer, 2010.

Andrea Bonacchi, Alessandro Fantechi, Stefano

Bacherini, Matteo Tempestini, and Leonardo Cipriani.

Validation of railway interlocking systems by formal

verification, a case study. In International Conference

on Software Engineering and Formal Methods, pages

237-252. Springer, 2013.

Susan S. Brilliant, John C. Knight, and Nancy G. Leve-

son. Analysis of faults in an n-version software ex-

periment. IEEE Transactions on software engineering,

16(2):238-247, 1990.

CENELEC. EN 50128:2011: Railway applications - Com-

munication, signalling and processing systems - Software

for railway control and protection systems. Technical

report, 2011.

Angelo Chiappini, Alessandro Cimatti, Luca Macchi, Os-

car Rebollo, Marco Roveri, Angelo Susi, Stefano Tonetta,

and Berardino Vittorini. Formalization and validation of

a subset of the european train control system. In Soft-

ware Engineering, 2010 ACM/IEEE 32nd International

Conference on, volume 2, pages 109-118. IEEE, 2010.

Chan-Ho Cho, Dong-Hyuk Choi, Zhong-Hua Quan, Sun-

Ah Choi, Gie-Soo Park, and Myung-Seon Ryou. Model-

ing of cbtc carborne ato functions using scade. In Con-

trol, Automation and Systems (ICCAS), 2011 11th Inter-

national Conference on, pages 1089-1093. IEEE, 2011.

Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia,

Fausto Giunchiglia, Marco Pistore, Marco Roveri,

Roberto Sebastiani, and Armando Tacchella. Nusmv 2:

An opensource tool for symbolic model checking. In In-

ternational Conference on Computer Aided Verification,

pages 359-364. Springer, 2002.

Edmund M Clarke, Orna Grumberg, and Doron Peled.

Model checking. MIT press, 1999.

Clara DaSilva, Babak Dehbonei, and Fernando Mejia.

Formal specification in the development of industrial ap-

plications: Subway speed control system. In Proceedings

of the IFIP TC6/WG6. 1 Fifth International Conference
on Formal Description Techniques for Distributed Sys-
tems and Communication Protocols: Formal Description

Techniques, V, pages 199-213. North-Holland Publishing

Co., 1992.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Rocco De Nicola and Matthew CB Hennessy. Testing
equivalences for processes. Theoretical computer science,
34(1-2):83-133, 1984.

Rocco De Nicola and Frits Vaandrager. Three logics for
branching bisimulation. Journal of the ACM (JACM),
42(2):458-487, 1995.

Jing Dong, Shanguo Chen, and J-J Jeng. Event-based
blackboard architecture for multi-agent systems. In
Information Technology: Coding and Computing, 2005.
ITCC 2005. International Conference on, volume 2,
pages 379-384. IEEE, 2005.

Francois-Xavier Dormoy. Scade 6: a model based solution
for safety critical software development. In Proceedings
of the 4th Furopean Congress on Embedded Real Time
Software (ERTS08), pages 1-9, 2008.

Vijay D’silva, Daniel Kroening, and Georg Weis-
senbacher. A survey of automated techniques for
formal software verification. IEFEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 27(7):1165-1178, 2008.

Alessandro Fantechi. Twenty-five years of formal meth-
ods and railways: what next? In International Con-
ference on Software Engineering and Formal Methods,
pages 167-183. Springer, 2013.

Alessandro Fantechi, Stefania Gnesi, Alessandro La-
padula, Franco Mazzanti, Rosario Pugliese, and
Francesco Tiezzi. A logical verification methodology for
service-oriented computing. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), 21(3):16,
2012.

Alessio Ferrari, Alessandro Fantechi, and Stefania Gnesi.
Lessons learnt from the adoption of formal model-based
development. NASA Formal Methods, pages 24—38, 2012.
Alessio Ferrari, Alessandro Fantechi, Stefania Gnesi, and
Gianluca Magnani. Model-based development and for-
mal methods in the railway industry. IEEE Software,
30(3):28-34, 2013.

Alessio Ferrari, Alessandro Fantechi, Gianluca Magnani,
Daniele Grasso, and Matteo Tempestini. The metro
rio case study. Science of Computer Programming,
78(7):828-842, 2013.

Alessio Ferrari, Gianluca Magnani, Daniele Grasso, and
Alessandro Fantechi. Model checking interlocking con-
trol tables. In FORMS/FORMAT 2010, pages 107-115.
Springer, 2011.

Alessio Ferrari, Giorgio O Spagnolo, Giacomo Martelli,
and Simone Menabeni. From commercial documents to
system requirements: an approach for the engineering of
novel cbtc solutions. International Journal on Software
Tools for Technology Transfer, 16(6):647-667, 2014.
John Fitzgerald and Peter Gorm Larsen. Balancing in-
sight and effort: The industrial uptake of formal meth-
ods. In Formal methods and hybrid real-time systems,
pages 237-254. Springer, 2007.

Marc Frappier, Benoit Fraikin, Romain Chossart,
Raphaél Chane-Yack-Fa, and Mohammed Ouenzar.
Comparison of model checking tools for information sys-
tems. In International Conference on Formal Engineer-
ing Methods, pages 581-596. Springer, 2010.

Hubert Garavel, Frédéric Lang, Radu Mateescu, and
Wendelin Serwe. CADP 2011: a toolbox for the con-
struction and analysis of distributed processes. STTT,
15(2):89-107, 2013.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

F. Mazzanti et al.: Formal Methods Diversity in Railways 25

Hubert Garavel, Frédéric Lang, and Wendelin Serwe.
From LOTOS to LNT. In ModelEd, TestEd, TrustEd -
Essays Dedicated to Ed Brinksma on the Occasion of His
60th Birthday, volume 10500 of Lecture Notes in Com-
puter Science, pages 3—26. Springer, 2017.

Thomas Gibson-Robinson, Philip Armstrong, Alexandre
Boulgakov, and Andrew W Roscoe. Fdr3a modern re-
finement checker for csp. In International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems, pages 187—-201. Springer, 2014.

Stefania Gnesi and Tiziana Margaria. Formal methods
for industrial critical systems: A survey of applications.
John Wiley & Sons, 2012.

Stefania Gnesi and Franco Mazzanti. An abstract, on
the fly framework for the verification of service-oriented
systems. In Rigorous software engineering for service-
oriented systems, volume 6582 of LNCS, pages 390-407.
Springer, 2011.

Jan Friso Groote and Mohammad Reza Mousavi. Mod-
eling and analysis of communicating systems. 2014.
Stefan Gruner, Apurva Kumar, and Tom Maibaum. To-
wards a body of knowledge in formal methods for the rail-
way domain: Identification of settled knowledge. In In-
ternational Workshop on Formal Techniques for Safety-
Critical Systems, pages 87—102. Springer, 2015.

Carl A Gunter, Elsa L. Gunter, Michael Jackson, and
Pamela Zave. A reference model for requirements and
specifications. IEEFE Software, 17(3):37-43, 2000.
Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and
Daniel Pilaud. The synchronous data flow programming
language lustre. Proceedings of the IEEE, 79(9):1305—
1320, 1991.

Grégoire Hamon, Bruno Dutertre, Levent Erkok, John
Matthews, Daniel Sheridan, David Cok, John Rushby,
Peter Bokor, Sandeep Shukla, Andras Pataricza, et al.
Simulink design verifier-applying automated formal
methods to simulink and stateflow. In AFMO08: Third
Workshop on Automated Formal Methods 14 July 2008
Princeton, New Jersey, 2008.

Klaus Havelund and Thomas Pressburger. Model check-
ing java programs using java pathfinder. Interna-
tional Journal on Software Tools for Technology Transfer
(STTT), 2(4):366-381, 2000.

Anne E Haxthausen. Automated generation of formal
safety conditions from railway interlocking tables. Inter-
national journal on software tools for technology transfer,
16(6):713-726, 2014.

Charles Antony Richard Hoare. Communicating sequen-
tial processes. In The origin of concurrent programming,
pages 413-443. Springer, 1978.

Gerard Holzmann. Spin model checker, the: primer and
reference manual. Addison-Wesley Professional, 2003.
Simon Hordvik, Kristoffer @seth, Jan Olaf Blech, and
Peter Herrmann. A methodology for model-based de-
velopment and safety analysis of transport systems. In
11th International Conference on FEvaluation of Nowvel
Approaches to Software Engineering (ENASE), 2016.
Daniel Jackson. Software Abstractions: logic, language,
and analysis. MIT press, 2012.

Phillip James, Andy Lawrence, Faron Moller, Markus
Roggenbach, Monika Seisenberger, Anton Setzer, Karim
Kanso, and Simon Chadwick. Verification of solid state

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

interlocking programs. In International Conference on
Software Engineering and Formal Methods, pages 253—
268. Springer, 2013.

L. Jansen, M. Meyer Zu Horste, and E. Schnieder. Tech-
nical issues in modelling the European Train Control
System (ETCS) using Coloured Petri Nets and the De-
sign/CPN tools, 1998.

Kurt Jensen and Lars M Kristensen. Coloured Petri nets:
modelling and validation of concurrent systems. Springer
Science & Business Media, 2009.

G Latif-Shabgahi, Julian M Bass, and Stuart Bennett.
A taxonomy for software voting algorithms used in
safety-critical systems. IEEE Transactions on Reliabil-
ity, 53(3):319-328, 2004.

J Magree. Behavioral analysis of software architectures
using ltsa. In Software Engineering, 1999. Proceedings
of the 1999 International Conference on, pages 634—637.
IEEE, 1999.

Radu Mateescu and Damien Thivolle. A model check-
ing language for concurrent value-passing systems. In
FM 2008: Formal Methods, 15th International Sympo-
sium on Formal Methods, Turku, Finland, May 26-30,
2008, Proceedings, volume 5014 of Lecture Notes in Com-
puter Science, pages 148—164. Springer, 2008.

Franco Mazzanti. An experience in Ada multicore pro-
gramming: parallelisation of a model checking engine. In
Ada-FEurope International Conference on Reliable Soft-
ware Technologies, volume 9695 of LNCS, pages 94—109.
Springer, 2016.

Franco Mazzanti, Alessio Ferrari, and Giorgio O Spag-
nolo. Experiments in formal modelling of a deadlock
avoidance algorithm for a CBTC system. In Interna-
tional Symposium on Leveraging Applications of Formal
Methods, pages 297-314. Springer, 2016.

Franco Mazzanti, Giorgio Oronzo Spagnolo, Simone
Della Longa, and Alessio Ferrari. Deadlock avoidance
in train scheduling: a model checking approach. In In-
ternational Workshop on Formal Methods for Industrial
Critical Systems, volume 8718 of LNCS, pages 109-123.
Springer, 2014.

Franco Mazzanti, Giorgio Oronzo Spagnolo, and Alessio
Ferrari. Designing a deadlock-free train scheduler: A
model checking approach. In NASA Formal Meth-
ods Symposium, volume 8430 of LNCS, pages 264—269.
Springer, 2014.

Franco Mazzanti, Giorgio Oronzo Spagnolo, and
Alessio Ferrari. Formal Tool Diversity — Exper-
iments Data Repository. https://github.com/ISTI-
FMT/TrainSchedulingModels, 2017.

Steven P Miller, Michael W Whalen, and Darren D
Cofer. Software model checking takes off. Communi-
cations of the ACM, 53(2):58-64, 2010.

Sam Owre, John M Rushby, and Natarajan Shankar.
Pvs: A prototype verification system. In International
Conference on Automated Deduction, pages T48-752.
Springer, 1992.

David Powell, Jean Arlat, Ljerka Beus-Dukic, An-
drea Bondavalli, Paolo Coppola, Alessandro Fantechi,
Eric Jenn, Christophe Rabéjac, and Andrew Wellings.
Guards: A generic upgradable architecture for real-time
dependable systems. IEEE Transactions on Parallel and
Distributed Systems, 10(6):580-599, 1999.

26

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

F. Mazzanti et al.: Formal Methods Diversity in Railways

Jie Qian, Jing Liu, Xiang Chen, and Junfeng Sun. Mod-
eling and verification of zone controller: the scade ex-
perience in china’s railway systems. In Complex Faults
and Failures in Large Software Systems (COUFLESS),
2015 IEEE/ACM 1st International Workshop on, pages
48-54. IEEE, 2015.

RTCA. DO-178C Software Considerations in Airborne
Systems and Equipment Certification, 2012.

Maurice H ter Beek, Alessandro Fantechi, Stefania Gnesi,
and Franco Mazzanti. A state/event-based model-
checking approach for the analysis of abstract sys-
tem properties. Science of Computer Programming,
76(2):119-135, 2011.

Maurice H ter Beek, Stefania Gnesi, and Franco Maz-
zanti. From EU projects to a family of model checkers. In
Software, Services, and Systems, volume 8950 of LNCS,
pages 312-328. Springer, 2015.

Somsak Vanit-Anunchai. Application of coloured petri
nets in modelling and simulating a railway signalling
system. In International Workshop on Formal Methods
for Industrial Critical Systems, pages 214-230. Springer,
2016.

Linh Hong Vu, Anne E Haxthausen, and Jan Peleska.
Formal modelling and verification of interlocking systems
featuring sequential release. Science of Computer Pro-
gramming, 133:91-115, 2017.

Michael Whalen, Darren Cofer, Steven Miller, Bruce H
Krogh, and Walter Storm. Integration of formal analysis
into a model-based software development process. In In-
ternational Workshop on Formal Methods for Industrial
Critical Systems, pages 68-84. Springer, 2007.

K Winter, W Johnston, P Robinson, P Strooper, and
L Van Den Berg. Tool support for checking railway in-
terlocking designs. In Proceedings of the 10th Australian
workshop on Safety critical systems and software-Volume
55, pages 101-107. Australian Computer Society, Inc.,
2006.

Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and
John Fitzgerald. Formal methods: Practice and experi-
ence. ACM computing surveys (CSUR), 41(4):19, 2009.
Pamela Zave. A practical comparison of alloy and spin.
Formal Aspects of Computing, 27(2):239, 2015.

