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Abstract

We provide an amended version of Corollaries 7 and 9 in [De Terán,
Iannazzo, Poloni, Robol, “Solvability and uniqueness criteria for gener-
alized Sylvester-type equations”]. These results characterize the unique
solvability of the matrix equation AXB + CX

?
D = E (where the coef-

ficients need not be square) in terms of an equivalent condition on the
spectrum of certain matrix pencils of the same size as one of its coeffi-
cients.
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1 Setting

We consider the generalized ?-Sylvester equation

AXB + CX?D = E (1)
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for the unknown X ∈ Cm×n, with ? being either the transpose (>) or the conju-
gate transpose (∗), and A,B,C,D,E being matrices with appropriate sizes. We
are interested in the most general situation, where both the coefficients and the
unknown are allowed to be rectangular. The most general setting in which all
the matrix products in (1) make sense is A ∈ Cp×m, B ∈ Cn×q, C ∈ Cp×n, D ∈
Cm×q.

We recall a few definitions from [3] which are necessary to state and prove
our results.

Throughout the paper we denote by I the identity matrix of appropriate
size. A matrix pencil P(λ) = λM + N is said to be singular if either P(λ) is
rectangular or p(λ) := det

(
P(λ)

)
is identically zero. If P(λ) is not singular, and

so M,N are n× n matrices, then it is said to be regular and the set of roots of
p(λ), complemented with ∞ if the degree of p(λ) is less than n, is the spectrum
of P, denoted by Λ(P). With mλ(P) we denote the algebraic multiplicity of
the eigenvalue λ in P, namely, the multiplicity of λ as a root of p(λ), if λ ∈ C,
or n − deg p(λ) if λ = ∞. If M is a square matrix, by Λ(M) and mλ(M) we
denote, respectively, the spectrum of M and the algebraic multiplicity of λ as
an eigenvalue of M .

We shall deal with certain matrices and matrix pencils that always have
|m − n| zero or infinite eigenvalues which are dimension-induced, that is, they
are present simply because of the sizes of the coefficient matrices they are con-
structed from (see [6]). Hence we define a variant of the spectrum in which
these eigenvalues are omitted:

Λ̂(P) :=

{
Λ(P), if m∞(P) > |m− n|,

Λ(P) \ {∞}, if m∞(P) = |m− n|,

Λ̃(P) :=

{
Λ(P), if m0(P) > |m− n|,

Λ(P) \ {0}, if m0(P) = |m− n|.

Following [6], we refer to the eigenvalues in either Λ̂(P) or Λ̃(P) as core eigen-

values. If M is a square matrix, we use the notation Λ̃(M) to denote Λ̃(λI−M).

Definition 1. (Reciprocal free and ∗-reciprocal free set) [1,5]. Let S be a subset
of C ∪ {∞}. We say that S is

(a) reciprocal free if λ 6= µ−1, for all λ, µ ∈ S;

(b) ∗-reciprocal free if λ 6= (µ)−1, for all λ, µ ∈ S.

This definition includes the values λ = 0,∞, with the customary assumption
λ−1 = (λ)−1 =∞, 0, respectively.

The reversal pencil of the matrix pencil P(λ) = λM + N is the pencil
revP(λ) := λN +M . The pencil P(λ) has an infinite eigenvalue if and only if
revP(λ) has the zero eigenvalue. The multiplicity of the infinite eigenvalue in
P(λ) is the multiplicity of the zero eigenvalue in revP(λ), thus

Λ̃(revP) =
{
λ−1 | λ ∈ Λ̂(P)

}
. (2)
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We recall now the main result from [3].

Theorem 2. Let A ∈ Cp×m, B ∈ Cn×q, C ∈ Cp×n, and D ∈ Cm×q and set

Q(λ) :=

[
λD? B?

A λC

]
. (3)

The equation
AXB + CX?D = E

has a unique solution, for any right-hand side E, if and only if Q(λ) is regular
and one of the following situations holds:

(i) p = m 6= n = q, either m < n and A is invertible or m > n and B is
invertible, and

– If ? = >, Λ̂(Q) \ {±1} is reciprocal free and m1(Q) = m−1(Q) 6 1.

– If ? = ∗, Λ̂(Q) is ∗-reciprocal free.

(ii) p = n 6= m = q, either m > n and C is invertible or m < n and D is
invertible, and

– If ? = >, Λ̃(Q) \ {±1} is reciprocal free and m1(Q) = m−1(Q) 6 1.

– If ? = ∗, Λ̃(Q) is ∗-reciprocal free.

(iii) p = m = n = q, and

– If ? = >, Λ(Q) \ {±1} is reciprocal free and m1(Q) = m−1(Q) 6 1.

– If ? = ∗, Λ(Q) is ∗-reciprocal free.

2 Amended corollaries

In [3], we provided several corollaries that convert the conditions in Theorem 2
into conditions on pencils and matrices of smaller size. Unfortunately, some
issues with the counting of dimension-induced eigenvalues were brought to our
attention after the publication of that paper.

The following amended version of Corollary 7 has the exact same statement,
but with the symbols Λ replaced by Λ̂.

Corollary 3 (Corollary 7 in [3], amended version). Let A ∈ Cp×m, B ∈ Cn×q, C ∈
Cp×n, and D ∈ Cm×q. Then the equation AXB + CX?D = E has a unique
solution, for any right-hand side E, if and only if one of the following situations
holds:

(a) p = m 6 n = q, A is invertible, the pencil P1(λ) := B? − λD?A−1C is
regular and

– If ? = >, Λ̂(P1) \ {1} is reciprocal free and m1(P1) 6 1.
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– If ? = ∗, Λ̂(P1) is ∗-reciprocal free.

(b) p = m > n = q, B is invertible, the pencil P2(λ) := A? − λDB−1C? is
regular and

– If ? = >, Λ̂(P2) \ {1} is reciprocal free and m1(P2) 6 1.

– If ? = ∗, Λ̂(P2) is ∗-reciprocal free.

(c) p = n 6 m = q, C is invertible, the pencil P3(λ) := D? − λB?C−1A is
regular and

– If ? = >, Λ̂(P3) \ {1} is reciprocal free and m1(P3) 6 1.

– If ? = ∗, Λ̂(P3) is ∗-reciprocal free.

(d) p = n > m = q, D is invertible, the pencil P4(λ) := C? − λBD−1A? is
regular and

– If ? = >, Λ̂(P4) \ {1} is reciprocal free and m1(P4) 6 1.

– If ? = ∗, Λ̂(P4) is ∗-reciprocal free.

Proof. Let us assume first that (1) has a unique solution, for any right-hand
side E. Then Theorem 2 implies that at least one of the following situations
holds: (C1) p = m < n = q and A is invertible, (C2) p = m > n = q and B is
invertible, (C3) p = n < m = q and C is invertible, (C4) p = n > m = q and D
is invertible, or (C5) p = m = n = q. Let us first assume that case (C1) holds.
We can perform the following unimodular equivalence on Q(λ):[

I −λD?A−1

0 I

] [
λD? B?

A λC

]
=

[
0 B? − λ2D?A−1C
A λC

]
. (4)

Taking determinants in (4) we arrive at

det(Q(λ)) = ±det(A) det(P1(λ2)). (5)

This shows that P1 is regular. Note that D?A−1C has rank at most m < n,
hence det(P1(λ)) has degree at most m and |n−m| dimension-induced infinite
eigenvalues are present in Λ(P1). Similarly, Q(λ) has |n−m| dimension-induced
infinite eigenvalues. The left- and right-hand sides of Equation (5) are nonzero

polynomials in λ with degree at most 2m; therefore we have Λ̂(Q) =

√
Λ̂(P1) :={

µ : µ2 ∈ Λ̂(P1)
}

, including multiplicities and core infinite eigenvalues. Then
Theorem 2 implies that part (a) in the statement holds.

If case (C2) holds, then we apply the ? operator in (1) and apply the previous
arguments to the new equation and its corresponding pencil.

If case (C3) holds, then after introducing the change of variables Y = X?,
the roles of A,B and C,D are exchanged, so we apply the same arguments as
in case (C1) to the corresponding pencil, P3(λ).
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In case (C4), we apply the ? operator in (1) and introduce the change of
variables Y = X?. Then we apply the same arguments as for case (C1) to the
pencil corresponding to this new equation.

Finally, if we are in case (C5), Corollary 12 of [2] guarantees that at least
one of A,B,C,D is invertible and thus at least one of (a)–(d) in the statement
holds, and we are done.

To prove the converse, let us assume that any of (a)–(d) in the statement
holds. Then, reversing the previous arguments, we can conclude that at least
one of the situations (i)–(iii) in the statement of Theorem 2 occurs, and Theorem
2 implies that (1) has a unique solution, for any right-hand side.

The statement and proof of Corollary 8 in [3] are true without need for
corrections. The statement of Corollary 9 still holds, but its proof needs a
correction.

Corollary 4 (Corollary 9 in [3]). Let A,B ∈ Cn×m. Then the equation AXB+
X? = E has a unique solution, for any right-hand side E, if and only if the
following conditions hold:

• If ? = >, Λ(AB>) \ {1} is reciprocal free and m1(AB>) 6 1.

• If ? = ∗, Λ(AB∗) is ∗-reciprocal free.

Proof. It is sufficient to observe that the condition in Corollary 3 (taking C = I,
D = I) is equivalent to the condition stated on the spectrum of AB?, for each
of the cases in Corollary 3. If m > n, we are in case (c), with P3 = I − λB?A.
The eigenvalues of P3 are the reciprocals of the eigenvalues of B?A. Note that
B?A has m − n dimension-induced zero eigenvalues and Λ̃(B?A) = Λ(AB?)
(this equality follows from [4, Theorem 1.3.20]). Hence the set Λ(AB?) is the

reciprocal of Λ̂(P3), so one of the two is (∗-)reciprocal-free if and only if the
other is, while the multiplicity of 1 is the same in both spectra.

Similarly, if m < n, we can take P4(λ) = I − λBA?; then Λ̂(P4) is the

reciprocal of Λ̃(BA?), or, applying the ? operator, the (∗-)reciprocal of Λ̃(AB?).

Since a matrix never has ∞ as an eigenvalue, Λ̃(AB?) is a (∗-)reciprocal-free
set if and only if Λ(AB?) is so, regardless of the additional zero eigenvalues.

The cases with m = n can be proved in a similar way.

A version of [3] which incorporates these corrections is available at https:

//arxiv.org/abs/1608.01183.
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