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Abstract
Bone repair/regeneration is usually investigated through X‐ray computed microtomography

(μCT) supported by histology of extracted samples, to analyse biomaterial structure and new

bone formation processes. Magnetic resonance imaging (μMRI) shows a richer tissue contrast

than μCT, despite at lower resolution, and could be combined with μCT in the perspective of

conducting non‐destructive 3D investigations of bone. A pipeline designed to combine μMRI

and μCT images of bone samples is here described and applied on samples of extracted human

jawbone core following bone graft. We optimized the coregistration procedure between μCT

and μMRI images to avoid bias due to the different resolutions and contrasts. Furthermore, we

used an Adaptive Multivariate Clustering, grouping homologous voxels in the coregistered

images, to visualize different tissue types within a fused 3D metastructure. The tissue grouping

matched the 2D histology applied only on 1 slice, thus extending the histology labelling in 3D.

Specifically, in all samples, we could separate and map 2 types of regenerated bone, calcified

tissue, soft tissues, and/or fat and marrow space. Remarkably, μMRI and μCT alone were not able

to separate the 2 types of regenerated bone. Finally, we computed volumes of each tissue in the

3D metastructures, which might be exploited by quantitative simulation. The 3D metastructure

obtained through our pipeline represents a first step to bridge the gap between the quality of

information obtained from 2D optical microscopy and the 3D mapping of the bone tissue

heterogeneity and could allow researchers and clinicians to non‐destructively characterize and

follow‐up bone regeneration.
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1 | INTRODUCTION

In the last years, the research towards novel biomaterials both for

orthopaedic and dental applications has been receiving growing atten-

tion, driven by the requirement to improve both the healing behaviour

of tissues around implants and the quality of life in patients. A natural

application for these materials is maxillofacial surgery, as the number

of implants is constantly increasing. Despite their medium dimensions

and volumes, jaw and mandible are highly load‐bearing structures

(Hellmich, Kober, & Erdmann, 2008) and the probability of implant

failure is considerable (Chee & Jivraj, 2007). In the case of critical bone

defect, the use of bone substitute biomaterials (BSBs) for bone tissue

replacement and/or repair represents the most used strategies in

dentistry. The success or failure of a dental implant depends on the

biological and clinical properties of BSBs (Komlev et al., 2010; Miri

et al., 2016; Torres et al., 2007), which together with the host bone

quality determine the regeneration process (Karsdal, Martin, Bollerslev,

Christiansen, & Henriksen, 2007). At present, it is possible to deter-

mine the actual bone strength of an individual to assess the risks of

bone fracture only locally through invasive methods (Farr et al.,

2014). Using quantitative parameters to obtain a better understanding

of biological reaction to artificial structure, under different tissue

conditions, is fundamental for an accurate investigation of the factors

influencing the fracture risk and for an effective follow‐up (Sievanen,

Kannus, & Jarvinen, 2007).

Currently, the standard technique for quantitative evaluation

of biomaterial biodegradation and bone formation is 2D

histomorphometry, which is based on serial sectioning and staining

of the sample, analysed through optical microscopy (Giannoni et al.,

2008). Histomorphometry provides images with an in‐plane resolution

better than 1 μm, a slice thickness ranging between 10 and 50 μm,

with high contrast between different tissues, but it is invasive, signifi-

cant sample parts can be destroyed during sectioning, and only the

observation of 2D structures in small samples is allowed. This limita-

tion paved the way to 3D microimaging as a promising methodology

to investigate bone microanatomy also by noninvasive in vivo assess-

ment (Khosla et al., 2006) supported by 2D histomorphometry, which

is often used to validate 3D structures revealed by tomographic tech-

niques (Giannoni et al., 2008), even in clinical practice.

High‐resolution X‐ray synchrotron radiation microCT (SRμCT)

features a 3D voxel resolution similar to 2D microscopy (Withers,

2007). Nonetheless, due to the low X‐ray absorption coefficient of

biological samples, the SRμCT contrast between different tissues in

regenerated oral bone (e.g., between the low mineralized bones and

the marrow) is worse than microscopy. Thus, 3D histomorphometry is

altered by the colonization of porous structure by marrow cells, bone

regeneration, angiogenesis, and BSBs degradation.

Micromagnetic resonance imaging (μMRI) is the best diagnostic

modality for the analysis of images of soft tissues in the body. More-

over, μMRI is also used to diagnose degenerative disc diseases and

to reveal stress fracture in bone and cartilage. Specifically, μMRI allows

investigation of the trabecular bone networks providing precious infor-

mation on the physiological and structural changes of bone quality,

such as the degree of vascularization (Vandoorne et al., 2010) and of

bone calcification, also by means of quantitative parameters correlated
to μCT parameters (Wurnig et al., 2014). Despite its worse spatial

resolution, μMRI produces images with a higher contrast, showing

richer bone tissue variability compared to SRμCT.

Here, a new multimodal approach aiming at bridging the gap

between high‐quality 2D optical imaging and 3D microtomographic

techniques is presented. Our main goal is the quantitative 3D imaging

of new bone tissue. The presented method is tested over ex vivo bone

cores obtained after bone graft in human maxilla. We exploit the

potential of combining images from μMRI and SRμCT to increase the

imaging contrast of biological tissues and to obtain their 3D spatial

distribution. Specifically, we combine the images through an optimized

3D registration and an automatic algorithm for multivariate clustering

analysis of 3D images, and we label clusters through comparison with

histological references.
2 | MATERIALS AND METHODS

2.1 | Biomaterial and surgical protocol

The investigated samples were retrieved from three patients (two

females ~50 years old, sample C‐1 and C‐2, and one male 65 years

old, sample C‐3) who presented a partial edentulous maxilla and were

candidate for implant placing after a bone graft. The patients signed

their informed consent for the treatment plan and for the sample col-

lection according to the ethical principles of the Declaration of Helsinki

including the World Medical Association. A cone beam computed

tomography was performed before surgery to plan the treatments.

The bone cores used in this study were obtained using a trephine

bur of 3 mm diameter during surgery performed to place titanium

screw implants. The three samples were retrieved after 6 months

healing process following augmentation of maxillary sinus floor with

particles of anorganic bovine bone (Bio‐Oss, Geistlich, Wolhusen,

Switzerland) mixed with venous blood and fibrin sponge (Spongostan

dental, FerrosanMedical Devices A/S, S.borg, Denmark). The extracted

jawbone cores (in the following referred as C‐1, C‐2, and C‐3) were

fixed in 10% buffered formalin at pH 7.1, washed in sodium phosphate

buffer solution at pH 7.2 and dehydrated in graded alcohols. The cores

were small cylinders with a length between 3.5 and 4.5 mm and a

diameter ~ 2.5 mm.
2.2 | X‐ray computed microtomography

The sample was analysed by SRμCT at the SYRMEP beam line of the

Elettra Synchrotron Laboratory (Tromba, Abrami, et al., 2010) with a

monochromatic beam of 23 keV in free propagation‐based phase

contrast imaging. The chosen detector was awater‐cooled CCD camera

by Photonic Science, model VHR, 4008 × 2672 full frame, used in 2 × 2

binning mode (resulting in a 9 μm isotropic voxel) and coupled to a

Gadolinium Oxysulphide scintillator placed on a fibre optic taper. In

addition to the specimens, a water sample was measured in the same

conditions to calculate the Hounsfield units (HUs) of the samples.

Two standard samples with density similar to trabecular bone

(100 mg/cm3 and 400 mg/cm3) were measured to find calibration

parameters and calculate sample mineral density from the HU (Genant

et al., 1996). The equation HU = 1.475 ρ +19.7 was used to calculate
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the mineral density ρ of each sample. The bone cores were then

scanned in a parafilm cap to prevent desiccation and fixed on the

sample holder with plasticine. Scans were reconstructed by applying

the conventional filtered back projection procedure (BPI) after prepro-

cessing the original dataset with the application of theTIE‐based (trans-

port of intensity equation) phase‐retrieval (PR) algorithm (Gureyev,

Mohammadi, Nesterets, Dullin, & Tromba, 2013). Application of PR

techniques on biological samples is used to improve the visualization

of structures and of details within complex geometries, which could

be hardly detected in standard BPI.
2.3 | Micromagnetic resonance imaging

μMRI measurements were carried out on a Bruker 9.4 T Avance

spectrometer, operating with a microimaging probe (10 mm internal

diameter) and equipped with a BGU2 gradient unit (max gradient

strength of 1,200 mT/m). Spin echo images were acquired by a Multi

Slice Multi Echo sequence (repetition time TR = 2,500 ms, matrix

256 × 256, in‐plane resolution 18 × 18 μm2 and slice thickness

200 μm, 100 scans, 22 slices) at four different echo times TE (4.8, 9.5,

14.3, and 19.1 ms). We acquired T2
APP‐weighted MR images, because

the apparent transverse relaxation timeT2
APPis sensitive to the internal

magnetic field gradient (IMFG) generated at the interface between

tissue and bone, which is related to different calcification levels of bone

matrix and dimension of pores filled with bone marrow, which is mainly

composed of fat and water (Di Pietro, Palombo, & Capuani, 2014). As a

consequence, the spin‐echo decay S as a function of TE is described as

S(TE) = S(0)*exp(−TE/T2
APP), where S(0) is the signal at TE = 0 and T2

APP

depends on the spin–spin relaxation time T2 and on the IMFG experi-

enced by bone marrow protons diffusing at the interfaces between

bonemarrow and solid bone in each pore (De Santis, Rebuzzi, Di Pietro,

Maraviglia, & Capuani, 2010; Rebuzzi et al., 2013). Therefore, spin‐echo

images obtained in bone are weighted by T2
APP that depends on several

parameters related to different cancellous bone features (for more

details about T2
APP, see Supporting Information).

The μMRI acquisition was performed on the sample immersed

in water to increase the image contrast of the porous mineral

network. Indeed, water molecules in different cancellous bone zones

are characterized by different values of T2
APP, depending on

different local water concentrations and/or on different local

micromorphology.
2.4 | Histological investigation

The light microscopy investigation was performed after the other

imaging scans, as the preparation of the samples for this technique is

invasive and destructive. The samples were embedded in resin (LR

White, London Resin, Berkshire, UK) and transverse undecalcified cut

sections of (50 ± 20) μm were prepared by using the TT System

(TMA2, Grottammare, Italy) and ground down to about (35 ± 10) μm

using the EXAKT grinding system (EXAKT Vertriebs Gmbh,

Norderstedt, Germany). The sections were double stained with

basic methylene and blue‐azure II. We selected this stain, noted also

as methylene blue‐azure B, because it contains blue cations

attracted by cartilage matrix, or mast cell granules and red anions
attracted by proteins. DNA and rRNA are then stained blue, but

structures with high density of anionic sites, such as mast cell

granules and cartilage matrix, are coloured reddish‐purple (Kierman,

2010). The chosen method was adopted to study different human

tissues in epoxy resin (Fritsch, 1989). The samples were studied in

normal transmitted light using a bright field light microscope

(Axiolab, Carl Zeiss, Jena, Germany). The optical system was con-

nected to a high‐resolution CCD‐IRIS digital camera (Sony DXC‐

107‐A, Tokyo, Japan), and the images were captured using Image‐

Pro Plus 6.0 (Media Cybernetics Inc., Bethesda, MD, USA). The in‐

plane resolution was 1.6 μm.
2.5 | Normalized mutual information‐based
registration

Strategies for image registration aim at finding the set of parameters t,

defining the transformationT that overlaps one image A onto a second

image B maximizing their spatial correspondence, then B = TA. T is

obtained from the product of two independent transformations: a

zoom transformation, to match the different resolutions of the two

techniques, and a rigid transformation defined by three translation

and three rotation parameters related to the reference system of

image A.

To obtain the best estimate of the transformation T, an itera-

tive procedure maximizing a cost function is applied over several

Regions of Interest (ROIs) of the reference image B (instead of

the whole image to save computational time) and starting from

different initial guesses. A suitable cost function is the normalized

mutual information (NMI), which is less sensitive than mutual infor-

mation (Studholme, Hill, & Hawkes, 1999) to the size of the over-

lapping parts of the two 3D structures.
2.6 | Minimization and grouping procedures

We used adaptive simulated annealing (ASA) to find the best set of

parameters of the transformation T* maximizing the NMI. NMI is a

not convex function of the set of parameters t, and ASA is a robust

method to avoid trapping in local minima and funnels (Press, Flannery,

Teukolsky, & Vetterling, 1991), which could be present in the

parameters space when coregistering 3D image stacks. At each

iteration, the transformation T* is estimated and applied to image A.

Notably, because the spatial sampling of SRμCT is different from

μMRI, the transformed position of each voxel may not coincide with

the regular grid of the original image. Additionally, numerical trunca-

tion might force two or more voxels from the original volume to be

transformed into the same voxel, thus producing empty voxels in the

transformed volume. To avoid empty voxels in the transformed image,

which alter the NMI, we implemented a reverse mapping procedure

and trilinear interpolation (Sinibaldi et al., 2013).

Notably, we applied a specific downsampling/grouping strategy

when estimating NMI, because the transformed and the target image

must be sampled with the same spatial resolution. Each voxel in the

down sampled SRμCT images has a value obtained as the average of

a number of voxels equal to the ratio between the μMRI and the

SRμCT 3D resolutions. Thus, the total number of voxels averaged in
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the 3D grouping window Nav
3D is

Nav
3D ¼ int ∏

i¼1;3

lowResi
highResi

 !
;

where i denotes each of the three directions in the grid. In our case,

Nav
3D was 88. Notably, because the sample and background volumes

scanned by the two methods could not be exactly the same, the posi-

tion of the 3D window on the SRμCT grid will determine the

registration accuracy. Thus, during each minimization iteration, the

3D window can be translated on the high‐resolution image to select

the position of the downsampled grid centre providing the best

registration accuracy. Thus, three additional subvoxel translation

parameters were considered, and the number of trials for individuating

the best tessellation was Nav
3D.

Eventually, a minimization run is performed for the different

tessellations looking for the best set of parameters to maximize the

NMI. During this optimization step, only three translational parameters

are involved, hence downhill simplex method in multidimensions (Press

et al., 1991) was employed instead of ASA. The output of the software

was the stack of transformed high‐resolution images coinciding with

the low‐resolution one. See Supporting Information for further details

on the coregistration procedure.

2.7 | Multivariate 3D clustering

A multivariate clustering procedure (Chen, Luo, & Parker, 1998) was

used to determine whether the different phases of bone structure

and the different biological tissues could be automatically distin-

guished one from the other. This analysis was conducted on the
FIGURE 1 Left: Sample C‐1, slices obtained by (a) PR BPI SRμCT and (
18 × 18 × 200 μm3 for μMRI. In the SRμCT images, a phase corresponding
and two additional phases, possibly corresponding to soft biological tissue
detected. μMRI images show a good contrast between mature bone (red a
possibly corresponding to newly formed bone (blue and cyan arrows) and fa
(a) SRμCT and (b) μMRI histograms showing the grey scale distribution calc
(black line) are fitted (grey line) by the convolution of four distributions. Ho
could be disentangled based on their distribution, it was not possible to sepa
statistical comparisons). In (b), the experimental data (black line) are fitted (gr
bone is well separated from the marrow space and the bright areas
registered SRμCT–μMRI stacks. A matrix comprising the grey values

of all the voxels was created, and data were clustered through a

modified version of the standard K‐means procedure, developed for

analyzing magneto‐encephalographic data (Spadone, De Pasquale,

Mantini, & Della Penna, 2012) and adapted for functional MRI data

(Sestieri, Corbetta, Spadone, Romani, & Shulman, 2014). To avoid

possible biases, the algorithm was modified to automatically estimate

the cluster number through maximization of cluster size and based

on measures of cluster validity (silhouette, Dunn Index and Davies‐

Bouldin Index as in Spadone et al., 2012).

Cluster analysis was first performed on the single reference slices

corresponding to the microscopy images, to assign a label to each clus-

ter through visual matching with the histological images. Then, cluster

analysis was run on the whole 3D coregistered volumes (slice thickness

of 200 μm), and cluster results on the reference slices were again

compared with labelled ROIs in the histological image to allow voxel

labelling throughout the sample volume. This procedure was repeated

for the three samples.
3 | RESULTS

3.1 | SRμCT and μMR images

Sample axial slices acquired with both SRμCT and μMRI on the same

cylindrical jawbone core are shown in Figure 1 for sample C‐1. The

SRμCT images were obtained with PR BPI (see in Figure S1 the same

slices reconstructed through BPI without PR) and were endowed with

high contrast between calcified tissues and marrow space. Addition-

ally, a third phase representing tissues softer than calcified tissues
b) μMRI. The spatial resolutions are 9 × 9 × 9 μm3 for SRμCT and
to calcified bone (red arrow), one to marrow space (green arrow)

(orange arrow) and less calcified bone (pink arrow) can be visually
rrow) and marrow spaces (green arrow). Additionally, three phases,
t in the marrow space (violet arrow), can be visually disentangled. Right:
ulated on the whole 3D sample volumes. In (a), the experimental data
wever, although calcified bone (red line) and marrow space (green line)
rate the other two tissue types (orange and pink lines—seeTable S1 for
ey line) by the convolution of five distributions. However, only calcified
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appears in the images together with a fourth phase, possibly related to

less dense calcified bone. The distribution of the image grey values is

shown in the related histogram (Figure 1a, right—thick black line),

which was calculated over the whole sample volume and was

deconvolved into four Gaussian populations (the theoretical estimate

is in light grey). A statistical test versus the null hypothesis stating that

pairs of Gaussian distribution were overlapped (p < .05), assessed

whether the distance between the mean of a reference distribution

and all the others, normalized to the standard deviation of the refer-

ence distribution, was >2.5. The test results are reported in Table S1.

In summary, although four Gaussian distributions were needed to

obtain a satisfying fit, the distribution of calcified tissue overlapped

with the fourth phase, but they both differed from background and

from the third phase, which overlapped with each other.

Figure 1b shows μMRI slices possibly matching with the SRμCT

ones, obtained from the sample immersed in water and TE = 4.8 ms,

which produced the best contrast between different types of bone

(in Figure S2, see the left slice in Figure 1b at different TE). Despite

the lower spatial resolution, μMRI disclosed a rich biological environ-

ment possibly composed by five different tissues. The grey tone

reflects the dependence of T2
APP on IMFG generated by the different

bone mineral densities and on the restricted dynamics associated to

water protons constricted in bone pores (De Santis et al., 2010;

Rebuzzi et al., 2013). Thus, we expect signal from water in the trabec-

ular space to produce brighter voxels, whereas water molecules fast

decaying inside submicrometer pores embedded into bone matrix

produce darker voxels. Highly porous phases corresponding to either

newly formed bone or soft tissue (dark grey voxels) should appear at

a grey tone lighter than calcified bone (black voxels). Finally, very

bright areas overlapped on the light grey regions can be spotted on

the MR image, whereas their counterparts were missing from the
FIGURE 2 Sample C‐1, two slices of the jawbone core are shown in (a) an
coregistered SRμCT slices (in the centre), after their binarization. On the ri
where both the techniques reveal bone and background/marrow space, resp
μMRI and as background/marrow space in SRμCT, whereas cyan indicates t
SRμCT images. We suppose that these bright signals were due to the

partial overlap of signals produced by water and soft tissue rich in fatty

molecules, adipocyte, or multinucleate cells (called fat in the following;

Hardy, Henkelman, Bishop, Poon, & Plewes, 1992), brightening these

voxels more than bulk water due to the different chemical shifts of

water and fat (Hood, Ho, Smirniotopoulos, & Szumowski, 1999).

Therefore, these bright areas cannot be exclusively linked to either

fat or to water. The histogram obtained from the whole sample volume

is displayed in Figure 1b, together with the deconvolution into five

Gaussian populations. A statistical test similar to SRμCT (see Table S2

for results) stated that the distributions of more and less calcified bone

tissues were partly overlapping. The water in the marrow space and

the bright areas partly overlapped, but could be distinguished

(p < .05) from the bone types.

3D morphometric parameters were estimated on both images and

are described in Supporting Information.

Finally, in the two stacks of images no residues of the anorganic

bovine biomaterial implanted in the patient jaw were clearly

detectable.

In summary, Figure 1 suggests that SRμCT and μMRI alone only

partially described the sample content although in a complementary

way, suggesting the fusion of the two imaging methods to discriminate

between different bone phases. This indication was supported by

inspection of the coregistered images. The SRμCT stack was resampled

at the slice thickness (each resampled slice was the average of 22

original slices) and resolution of μMRI before coregistration. Two

sample slices of the coregistered SRμCT stack are shown in Figure 2a,

b for sample C‐1 (left μMRI, middle SRμCT) and in Figure S3 for samples

C‐2 and C‐3. The overlap/nonoverlap between μMRI and the

resampled and coregistered SRμCT images are reported in Figure 2

right, where the SRμCT images and the negative version of μMRI were
d (b): The μMR images (on the left) are compared to the corresponding
ght the results of these comparisons: White and black indicate voxels
ectively. Green areas represent voxels which were detected as bone in
he opposite case
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binarized by applying a threshold at 195, and then overlapped. In the

resulting image, white and black indicate overlap of bone tissue and

marrow spaces/voids, respectively, detected by both techniques,

although detailed structures within bone (new and calcified bone) and

marrow spaces (soft tissue including fat) differ. Light green indicates

voxels where only μMRI detects bone, whereas cyan voxels indicate

the opposite case. The resulting image suggests that although a large

number of voxels are ascribed to similar tissues by both methods, the

overlay of the results of the two techniques evidences some differ-

ences among the structures. These results emphasize that merging

the two techniques should improve the ability to detect bone micro-

morphology and composition in the jawbone.
3.2 | Histological evaluation

In order to compare the outcome of the multimodal 3D imaging with

histology, two reference sections were taken from the bone core by

cutting them at positions as close as possible to two corresponding

slices imaged by μMRI (as this was the method with the worse axial

resolution). The two images in Figure 3a are the histological references

(thickness ~ 35 μm) for sample C‐1 and roughly correspond to the left

and middle slices shown in Figure 1 and to the upper and lower

coregistered slices in Figure 2 (histological sections for sample C‐2

and C‐3 are shown in Figure S4).

According to criteria reported in Hayat, 1993, in Figure 3a, we can

appreciate differential maturation within the bone tissue, comprising a

mature trabecular structure, stained with dark blue and azure (labelled

with B) and some areas of newly formed bone, stained with lighter blue

and azure (labelled with NB). These areas are stained by different light

blue tones and when observed at higher magnification (Figure 3—

insert) reveal different types of tissue/structure. Presumably, they

are covered by different osteoid seam thicknesses that is newly

formed organic matrices less mineralized (Premkumar, 2011), thus sug-

gesting the coexistence of two types of new bone with different

amount of minerals and pores. In marrow spaces, we can spot

dehydrated soft tissues picking a tiny amount of colour (DT) and small

areas with debris (BD). The DT staining is irregular possibly due to an

artefact determined by the dehydration shrinkage of the soft tissue.

The BD can be individuated due to its morphology, consisting of tiny

tissue pieces with irregular borders, separated from the other tissues,

due to disaggregation of the bone matrix induced by the drilling pro-

cess. No residual particles of anorganic bovine bone could be detected.

To allow labelling of different tissue regions on the coregistered

stack (see next section), SRμCT was coregistered to each of the two

stained histological sections independently (see Figure 3b). Before

the SRμCT and histology coregistration, the optical microscopy images

were downsampled to the in‐plane resolution of SRμCT. During the

coregistration procedure, the SRμCT image stack was resampled to a

slice thickness of 36 μm by using the histological sample0s thickness

as first guess. Thus, a voxel in the coregistered SRμCT–μMRI stack

could be labelled through the application of two transformations: (a)

an inverse transformation from the SRμCT stack coregistered with his-

tology slice and (b) a transformation from the original SRμCT stack to

the coregistered SRμCT‐μMRI stack.
Notably, the SRμCT slices registered to the corresponding histo-

logical sections and the corresponding SRμCT slices registered to the

μMRI stack (Figure 2, middle) do not overlap.
3.3 | SRμCT–μMRI image fusion

Following coregistration, a clustering algorithm was applied to the

SRμCT–μMRI stack to group homologous voxels. Eventually, the

resulting clusters were labelled according to the coregistered 2D opti-

cal microscopy. First, a 2D version of the multivariate clustering algo-

rithm was run separately on the single slices roughly corresponding

to the ones analysed by histological evaluation (Figure 3).

The algorithm output consisted of six clusters, and is shown in

Figure 4a. These clusters, through comparison with the corresponding

histological sections, suggested that merging μMRI and SRμCT images

was able to disclose the following tissues: calcified bone, newly formed

bone type I, newly formed bone type II, dehydrated soft tissue, fat, and

marrow space/background. Qualitatively, these tissue types seem to

be similar to the one shown by the histological images. Notably, the

multivariate clustering on the coregistered images allowed to disentan-

gle voxels comprising two phases of newly formed bone, which were

detected by histological evaluation but were not revealed by μMRI

and SRμCT when used separately.

Eventually, the multivariate grouping algorithm was applied to the

sample volume (e.g., between the two reference slices of Figure 2 for

sample C‐1) and the 3D metastructure discloses high similarity to the

2D one obtained on the single slices. Figure 4b shows the clusters

we obtained over the sample volume. In the 3D rendering, for sake

of clarity, only the voxels representing the two types of newly formed

bone are represented inside the sample volume, whereas detailed clus-

tering results are displayed for three representative slices. Figure 4c

contains the results of the cluster analysis for sample C‐2, which can

be compared with the related histological section in Figure S4a. For

sample C‐3, two slices of the 3D metastructure are shown in

Figure 4d,e, because part of the histological section obtained from this

sample (Figure S4b and S4c) corresponds to the slice in Figure 4d and

the other part corresponds to Figure 4e. Notably, the clustering analy-

sis for sample C‐2 and C‐3, supported by histological evaluation to

label clusters, allowed identifying volumes of two types of new bone

tissue as in sample C‐1. In C‐2, no fat tissue was clustered, as this tis-

sue was not detected by μMRI, whereas in sample C‐3, the dehydrated

tissue was not detected.

We evaluated the precision of clustering over two groups of ROIs

manually selected on the histological images downsampled at the res-

olution of μCT, one group clearly representing homogeneous bone tis-

sues (10 ROIs) and the other clearly representing new bone tissues (10

ROIs). The selected ROIs are shown in Figure S5. Using the procedure

described in Section 3.2, the ROIs highlighted in Figure S5 were trans-

formed to the corresponding slice in the 3D metastructures. We then

counted the fraction of voxels in the ROI included in each cluster.

We averaged these values across ROI groups to evaluate the clustering

precision. The overall clustering precision is 99.7% ± 0.7% for bone and

95% ± 5% for new bone. The larger standard deviation associated with

the new bone tissue could also be driven by inhomogeneities in this

type of tissue already detectable from histology. Using the same



FIGURE 3 Sample C‐1: (a) histological references with in plane resolution of 1.6 μm labelling calcified bone (B), newly formed bone (NB),
dehydrated bone marrow (DT), and bone debris (BD) within the coregistered SRμCT slices. In the zoomed insets the presence of different types
of newly formed bone, that is, more (NB1) and less mineralized (NB2) can be appreciated. (b) Co‐registered images obtained by in‐plane
downsampling the optical microscopy photographs at the SRμCT resolution (9 μm) and by reducing the out‐of‐plane SRμCT resolution to the
histological slice thickness (35 μm). The SRμCT images coregistered to these two histological sections are slightly different from the ones registered
to the μMRI (see Figure 2)
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procedure as describe above, we evaluated how the edge voxels were

grouped by the clustering. We selected 10 ROIs representing bone

edges and 10 ROIs representing new bone edges as revealed by the

different colour tones in the histological images. We obtained the

percentage of voxels grouped in accordance with the histological

image is 91% ± 9% for bone edge and 90% ± 5% for new bone edge.

These values are suggesting that possible biases of partial volumes

are lower than 10% over the sample edge volumes.

We estimated the degree of mineralization for calcified bone and

newly formed bone from the SRμCT images obtained by BPI recon-

struction shown in Figure S1, where grey values correspond to HU.

In the PR BPI images, the intensity values are no longer referred to

HU. For each sample, we projected on the BPI images the voxels

corresponding to the three types of bone. The mean grey values across

volumes included in the same cluster were used to calculate the miner-

alization degree of the different bone types in the three samples.

Mineralization of calcified bone was different across samples, with
values 990 ± 320 mg/cm3 for C‐1, 770 ± 225 mg/cm3 for C‐2 and

915 ± 340 mg/cm3 for C‐3. The two newly formed bone types I and

II assume very similar grey values on the BPI images. The mean degree

of mineralization across all the new bone volumes in the three samples

was 515 ± 270 mg/cm3. Thus, the differentiation between the two

types of new bone detected by the clustering is not driven by the

mineralization degree alone and should be ascribed to the fusion of

SRμCT and μMRI.
3.4 | 3D histomorphometry

As an example of a quantitative analysis of the 3D multivariate cluster-

ing output, we computed the tissue percentages for the three investi-

gated samples, obtained from tissue volumes reported inTable S3. For

each slice and each sample, we computed the volume fraction of the

three mineralized tissues as the ratio between each mineralized phase

and the total tissue volume (Komlev et al., 2010). This normalization



FIGURE 4 2D and 3D metastructures produced by the multivariate clustering of the coregistered μMRI‐SRμCT images for the three samples.
(a) Sample C‐1, 2D metastructure for the slices corresponding to histological images. (b) 3D metastructure for the whole volume between the
two slices of Figure 3. Both groupings disclose the same six clusters with the same distribution within the slices: calcified bone (cyan cluster), newly
formed bone type I (yellow cluster), newly formed bone type II (orange cluster), dehydrated soft tissue (i.e., bone marrow; blue cluster), fat (dark
blue cluster), and marrow space/background (brown cluster). For the sake of clarity, the 3D rendering in (b) shows only the semitransparent spatial
distribution of the two newly formed bone clusters. The 3D image was obtained with Amira v. 4.1 (Mercury Computer System). On the right, the six
clusters are displayed on the two reference slices corresponding to the histology sections and on a third slice within the sample volume.
(c) Representative slice from the 3D metastructure of sample C‐2, corresponding to Figure S4a. (d) and (e) Representative slices from the 3D
metastructure of sample C‐3. Part of the histological section obtained from this sample (Figure S4b and S4c) corresponds to the slice in Figure 4d
and the other part corresponds to Figure 4e

FIGURE 5 Volume fractions of newly formed bone type I (empty
symbols) or II (filled symbols) as a function of calcified bone fraction.
Data from the three samples are merged and shown with different
symbol shapes. The continuous lines represent the power trends
y = 0.072x−1.2 (R2 = 0.56) for NB1 and y = 0.195x−2.0 (R2 = 0.84), for
NB2, respectively
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strategy allowed us to collapse the data from the three samples. In

Figure 5, the volume fraction of NB1 and NB2, calculated for each slice

of the 3D metastructures, are reported as a function of the volume

fraction of the calcified bone. Specifically, a larger percentage of calci-

fied bone corresponded to a smaller percentage of newly formed bone.

Hence, these volume fractions of newly formed bone type I or II were

fitted with a power law function. For the experimental data corre-

sponding to the newly formed bone type I, the fitted equation was

y = 0.072x−1.2 (R2 = 0.56), and for the newly formed bone type II, the

equation was y = 0.0195x−2.0 (R2 = 0.84). Albeit these fits were run

on a number of points probably too small to draw precise conclusion

about the physiology of newly formed bone, they clearly show that

quantification of relative new bone growth was possible over the

whole volume without destroying the sample. Finally, a two‐tail paired

t test between the two fractions of the two types of new bone tissues

suggested that the ratio for type I was always larger than type II

(p < 7*10−5).
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4 | DISCUSSION

4.1 | Multimodal imaging for monitoring tissue
regeneration

Cone beam X‐ray computed tomography is the X‐ray imaging gold

standard in clinical practice (Dawood, Patel, & Brown, 2009) and is

used in clinical trials to evaluate bone regeneration and to plan the sur-

gery intervention. However, SRμCT and cone beam micro/nano X‐ray

tomography are actually the most powerful techniques to characterize

the 3D structure of bone. With respect to cone beam, SRμCT can

record subtle changes in attenuation across a wide range of tissue

radiodensities, with a higher contrast thanks to the better uniformity

of the incident X‐ray beam over the area detector. These two powerful

techniques can be employed on ex vivo bone cores, which can be

retrieved during the implant bed preparation without any

inconvinience to the patient and stored for further characterization.

SRμCT alone is not able to provide a complete picture of bone tissue

heterogeneity (Torrente et al., 2006), pushing towards support of

SRμCT imaging through complementary techniques. Phase contrast

tomography and X‐ray microdiffraction were combined to investigate

the crystalline phase associated to the newly formed bone, but

required sectioning of the sample as well as histomorphometry (Cedola

et al., 2014). Trabecular bone samples were analysed through correla-

tion between MR T2
* 3D relaxation maps and trabecular parameters

separately estimated from μCT micromorphology (Wurnig et al., 2014).

In our approach, the detailed information on bone calcification

using SRμCT and the information on bone chemical composition and

matter physical state obtained by μMRI are integrated through multi-

variate clustering on coregistered images. The multimodal integration

allowed to cluster two types of new bone tissue and disentangle them

from calcified bone. This distinction was not possible on the images

obtained by a single modality. Future implementation of themultimodal

approach could include images from other independent technique, for

example, small angle X‐ray scattering tomography (Liebi et al., 2015),

to reveal collagen volume fraction, fibre length and orientation

(Buehler, 2006) or neutron scattering to improve the characterization

of interfaces and submicrometre pores (Pozdnyakova et al., 2010).
4.2 | Quantitative assessment of regenerated tissue

When BSBs are implanted into a bone defect site, continuous tissue

remodelling occurs, to achieve high vascularization degree, stable

physiological conditions, optimal stiffness, and geometrical shapes

(Rezwan, Chen, Blaker, & Boccaccini, 2006; Woodruff et al., 2012).

Recently, different dynamics of tissue growth/maturation/remodelling

were reported, suggesting that defects filled with immature tissue

should not be considered regenerated although BSB was resorbed

and an accurate differentiation among bone tissues would be funda-

mental to prevent implant failures (Traini et al., 2015; Woodruff

et al., 2012).

In this study, we were able to disentangle mature from two types

of new bone tissues. As the multivariate clustering allowed assigning

every voxel of the coregistered image to a cluster, the 3D amount of

the different bone tissue types could be quantitatively analysed. As
an example, we found a power law between the volume fraction of

new bone tissue types I and II versus the fraction of mature bone

(Figure 5). Notably, fractions of fat and dehydrated tissue were approx-

imately constant over the considered slices. Despite acknowledging

that the exact relationship between the different bone fractions

deserves further investigation due to the small data size, a decreasing

trend between the new and calcified bone fractions is clearly shown in

Figure 5. This trend could be compatible with bone regeneration pro-

cesses, related to the local density of osteoclasts/osteoblasts. Specifi-

cally, during bone growth, osteoblasts are differentiated in osteocytes

and embedded within the bone. This process implies a decrease of the

osteoblasts number and a slowdown of the bone formation process, as

the calcified bone matrix increases (Kini & Nandeesh, 2012). Similarly,

when the osteoclast number decreases, new bone formation is

reduced (Karsdal et al., 2007; Trubiani et al., 2010). The investigation

of a larger number of samples would allow to analyse these power

coefficients as a function of time and in different clinical protocols

and to understand whether their values could be used as a marker of

the regeneration process.

The multimodal tomographic approach proposed in this work

discloses the possibility to detail and visualize 3D morphological

structures embedded in bone samples and to differentiate tissue types

that are detected as the same with one imaging technique alone. The

possibility to reconstruct the sample in silicon with realistic 3D

morphology is essential when running possible materials simulations

resembling the real behaviour of the investigated bone structure

(De Santis et al., 2010; Dejaco, Komlev, Jaroszewicz, Swieszkowski,

& Hellmich, 2012).

Despite the higher spatial resolution of microscopy, histological

sectioning cannot be used as input in numerical simulation to estimate

biomechanical parameters such as bone strength or fracture tough-

ness, as the input of these software tools should be a 3D volume with

voxelwise labelling. The non‐destructive character of the proposed

investigation allows further spectroscopic and mechanical test follow-

ing SRμCT and μMRI recordings. Notably, the use of different dyes

allows to enhance the presence of different tissues, which could be

contained or absent from the samples, but one selected dye does not

allow to detect the whole tissue heterogeneity over the sample, nei-

ther it is possible to apply different dyes in sequence to detect features

that are not disclosed by the first dye treatment.
4.3 | Methodological considerations

Our approach, based on the coregistration of images with different

properties supported by multivariate clustering, could disentangle the

newly formed from calcified bone. To assess how reliable are our

results, we first evaluated the clustering precision. Despite the reduced

image resolution of the 3D metastructure with respect to SRμCT and

histology, the clustering precision was at least 95% when evaluated

on homogeneous regions selected on histological images of the three

samples. This value is fairly satisfying, although a voxelwise evaluation

was not possible as a voxelwise labelling of histology in the field of

bone tissue engineering is still a work in progress and could also pro-

duce biased results (Janssens et al., 2014). In addition, the stain we

used is not able to detect all the tissue types obtained by cluster
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analysis of the coregistered images. Specific attention should be

devoted to the partial volume effect on the 3D metastructure, partly

due to the clustering precision and partly due to the handling of images

with different resolution. Clustering precision evaluated on edge ROIs

was >90%, with a standard deviation larger than homogeneous ROIs.

In part, this precision, which was however large, was possibly affected

by the difficulty, which sometimes affect the marking of a clear‐cut

edge between B and NB and between NB and DT on histology. In

other part, it was also affected by the procedure used to evaluate

the precision itself, which is influenced by the different resolution

between histology and the fused images. In this perspective, as a con-

tribution to the partial volume effects, it is important to discuss how

the different properties of the two imaging methods might affect our

results. The first issue is whether the considerably different resolution

is efficaciously handled during the coregistration, because the large

voxel size of μMRI requires that 22 SRμCT slices are averaged to

obtain the same axial step of the μMRI grid. This procedure applied a

spatial low pass filter to the SRμCT slices, smoothing trabeculae, and

pores edges. What is the effect of the partial volumes on the “newly

formed bone”? Despite acknowledging that part of the voxels

comprised in the newly formed bone type I surround the calcified bone

in Figure 4, and might be due to the partial volume effect, this part

represents only a small subset of the voxels included in this cluster.

Thus, its contribution to the morphometric parameters is negligible,

as supported by the following considerations: (a) a large part of the

voxels in the yellow cluster are placed far from the edge of the calcified

bone and corresponded to new bone in the histological evaluation; if

these voxels were clustered with the edge ones, then their tissue types

should be robustly similar and could represent new bone tissue; (b) a

large part of the voxels in the yellow cluster surrounding the cyan

one correspond to the light green voxels in Figure 2, which are the

voxels assumed as bone in μMRI only and thus do not correspond to

the smoothed ones in SRμCT; (c) the negative power law between

the newly formed bone type I and the calcified bone fractions suggests

that most of voxels in the yellow cluster are not edge voxels, as the

number of edge voxels would increase with the calcified bone fraction;

(d) because also the newly formed bone type II, comprising voxels far

from the mature bone edge, changes as a negative power law with

the calcified bone fraction, the newly formed bone type I should not

be driven by edge‐smoothing effects. Similar arguments could also be

applied against possible distortion effects introduced by μMRI (Duchin,

Abosch, Yacoub, Sapiro, & Harel, 2012). In our case, the Field of View

of the current system was small enough to ensure high homogeneity of

the main and gradient fields. Finally, we do not expect that any distor-

tion would produce a negative power law between the new bone tis-

sue and the calcified bone fractions, but a relationship with a positive

slope/power (the longer are the edges, the larger is the number of

voxels involved in the distortion). Thus, despite we cannot exclude that

slight distortion effects might affect the MR images, we assume that

their contribution was negligible and could not generate the two new

bone clusters.

The last methodological consideration discusses whether the

specific clustering algorithm we here applied might produce the two

new bone clusters, which do not correspond to real tissue differences.

We applied a modified version of k‐means (Spadone et al., 2012)
suitable to cluster multivariate data. A limit of the standard k‐means

clustering is that the number of clusters should be user‐selected, but

in the actual version, the number of clusters is automatically selected

using quantitative validity indices (Spadone et al., 2012). Thus, accord-

ing to our algorithm, the partition of the new bone tissues into two

clusters produces the best grouping and reducing the cluster number

spoils the clustering performances. Then, the different exponents in

the power law for the two new bone fractions suggest that the tissues

are different, while we would expect the same power for the same

type of tissue. We thus conclude that the two “new bone” clusters

are reliable, as also confirmed by labelling through histology. Finally,

in the actual implementation, we did not use classifiers, thus requiring

histology of one slice for labelling the tissue types. In a future imple-

mentation of the whole pipeline, trained classifiers (e.g., self‐organizing

feature maps) using histological evaluation of a large number of

samples as training data could be used to automatically recognize bone

tissues at different mineralization degrees.
5 | CONCLUSIONS

In this paper, the data‐driven analysis of specific 3D micromorphol-

ogies of different tissues composing an ex vivo human jawbone core

was achieved applying multivariate clustering on the coregistered

images obtained from two different non‐destructive tomographic

techniques, SRμCT and μMRI, and supported by 2D microscopy for

tissue labelling.

By using the present, non‐invasive approach, we were able to dis-

tinguish and to quantitatively analyse different types of newly formed

bone from the calcified one, as confirmed by histological examinations.

The technical aspects of the processing pipeline were accurately

designed to provide a completely non‐invasive and powerful tool for

the coregistration and analysis of multimodal images. Specifically, the

introduction of a 3D floating grouping window increased registration

accuracy. The multivariate clustering algorithm with the automatic

selection of the cluster number allowed the data‐driven identification

of different biological tissues, suggesting different types of new bone

emerging during the bone maturation process. It is very important to

evaluate the bone tissue heterogeneity and its distribution over the

sample volume. This information allows to know how different tissues

andmineral density are distributed inside the sample, which are needed

to estimate the bone strength. This estimate is not possible from the

measure of the average bone mineral density using only X‐ray tomogra-

phy, which does not exactly disentangle the two new bone tissues from

soft tissue. On the other side, the estimation of failure risk would benefit

from the 3D distribution of tissues obtained from the 3D metastructure.
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supporting information tab for this article.

Figure S1 The SRμCT slices obtained by Back Projection Imaging (BPI)

reconstruction without pre‐processing were less detailed than the

ones obtained by Phase Retrieval BPI reconstruction. These figures

demonstrate that it is hard to disentangle low mineralized bone and

soft tissues from bone trabeculae. As a matter of facts, the related his-

togram was fitted by 3 distributions (not shown) with just one common

peak describing both tissues.

Figure S2 A sample slice displayed at different TE. At TE = 4.8 ms

(which is the one used for further processing) the highest contrast

between different tissues is obtained.

Table S1 Relative distance between distributions obtained from PR BPI

SRμCT. The histogram on which the Gaussian populations were
deconvolved was obtained over the sample volume only. The relative

distance is expressed as the ratio between the absolute value of the

distance of the two means and the standard deviation of the reference

distribution (the first letter in each of the “Distribution” boxes). Coding:

G = Green, O = Orange, P = Pink, R = Red. In bold we highlight the

comparisons which were below statistical significance (p < 0.05). Dis-

tribution pairs were assumed as overlapping when the null hypothesis

was verified in one of the two comparisons (a reference distribution vs

the other and/or the other way round).

Table S2 Relative distance between distributions obtained from μMR

images. The histogram on which Gaussian population s were

deconvolved was obtained over the sample volume only. The relative

distance is expressed as the ratio between the absolute value of the

distance of the two means and the standard deviation of the reference

distribution (the first letter in each of the “Distribution” boxes). Coding:

G = Green, B = Blue, C = Cyan, R = Red, V = Violet. In bold we highlight

the comparisons which were below statistical significance (p < 0.05).

Distribution pairs were assumed as overlapping when the null hypoth-

esis was verified in one of the two comparisons (a reference distribu-

tion vs the other and/or the other way round).

Table S3 Slice‐specific volume number for each of the clusters

detected by the 3D multivariate‐grouping algorithm in the three

samples.

Figure S3 μMRI (left side) and SRμCT (right side) images of samples

C‐2 (a) and C‐3 (b, c). The gray values in the SRμCT image of sample

C‐2 are lower than the other samples, possibly due to a lower mineral-

ization degree in the bone tissues.

Figure S4 Histological sections (left side) and clustering results (right

side) for sample C‐2 (a) and C‐3 (b). The histological section of sample

C‐3 matches on two different slices of the 3D metastructure obtained

through clustering.

Figure S5 Rois selected in the histology slice to evaluate precision of

clustering. (a) and (b) sample C‐1, (c) sample C‐2, (d) sample C‐3. The

latter is divided in two parts because left and right side match on

two different slices of the 3D metastructure.
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